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We revisit a singlet Majoron model in which neutrino masses arise from the spontaneous violation of
lepton number. If the Majoron obtains a mass of order MeV, it can play the role of dark matter. We discuss
constraints on the couplings of the massive Majoron with masses of order MeV to neutrinos from
supernova data. In the dense supernova core, Majoron-emitting neutrino annihilations are allowed and can
change the signal of a supernova. Based on the observation of SN1987A, we exclude a large range of
couplings from the luminosity and the deleptonization arguments, taking the effect of the background
medium into account. If the Majoron mass does not exceed the Q-value of the experiment, the neutrino-
Majoron couplings allow for neutrinoless double beta decay with Majoron emission. We derive constraints
on the couplings for aMajoronmass of orderMeV based on the phase space suppression and the diminishing
signal-to-background ratio due to the Majoron mass. The combination of constraints from astrophysics and
laboratory experiments excludes a large range of neutrino-Majoron couplings in themass range of interest for
Majoron dark matter, where they complement existing cosmological bounds from dark matter stability and
the effects of a decaying Majoron on the cosmic microwave background anisotropy spectrum.
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I. INTRODUCTION

The observation of neutrino oscillations [1–3] gives
evidence to at least two nonvanishing neutrino masses much
smaller than the masses of the other standard model (SM)
particles. As the SM still lacks an explanation for neutrino
masses and their smallness, a large variety of neutrino mass
generating mechanisms has been explored over the past
years with the most popular one being the seesaw mecha-
nism [4]. In the seesaw mechanism, heavy right-handed
neutrinos suppress the masses of the left-handed neutrinos
and thus offer a natural explanation for the smallness of the
neutrino mass. This mechanism requires neutrinos to be
Majorana particles and consequently leads to a violation of
baryon-lepton numberUð1ÞB−L by two units. Assuming that
Uð1ÞB−L is a global symmetry and that the symmetry
breaking occurs spontaneously, a massless Goldstone
boson, called the Majoron, will be generated [5–8].
Models with massless (or very light) Majorons have been
studied extensively in the literature, where the Majoron was
originally either a singlet [5] or part of a doublet or triplet
[7,8]. However, the last two options are ruled out due to
contributions to the invisible Z-width via decays of the Z

boson to the Majoron and its scalar partner, equivalent to
one-half or two extra neutrino species [9].
Currently, a major part of research in particle physics is

dedicated to the ongoing search for a dark matter (DM)
particle. The Majoron as a DM particle has already been
discussed in [10,11] and as the search for DM continues to
be unsuccessful, the interest in Majoron models is recently
reviving. An appealing feature of Majoron models with
respect to DM is the suppression of the couplings of the
Majoron to SM fermions by the seesaw-scale, rendering it
stable on cosmological timescales. If the Majoron acquires
a mass and becomes a pseudo-Goldstone boson, it will be a
viable DM candidate [12].
Constraints on the couplings of the Majoron to neutrinos

can be derived from astrophysics as well as from laboratory
experiments. First, theMajoron can have a significant impact
on the process of explosion and cooling of a supernova (SN).
Second, constraints can be derived from laboratory experi-
ments searching for neutrinoless double beta decay with
Majoron emission. While the constraints for the case of a
masslessMajoron have been discussed in great detail (see for
example [9,13–16] and references therein),models including
a massive Majoron have rarely been considered.1 In this
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1Recently, constraints on a massive Majoron from SN data
have been derived in [17] and constraints from double beta decay
have been discussed in [18]. In contrast to [17,18], we include the
impact of the effective potentials and data from other experiments
searching for neutrinoless double beta decay with Majoron
emission. Moreover, in [19], constraints on a massive vector
Majoron have been derived.
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work, we aim to perform a dedicated analysis of the
constraints on the neutrino-Majoron couplings from SN data
and neutrinoless double beta decay for Majorons in theMeV
mass range.
This paper is organized as follows. In Sec. II, we discuss

neutrino-Majoron interactions in vacuum and in matter.
In Sec. III, we briefly discuss a mechanism to generate a
Majoron mass and the possibility of Majoron DM. In
Sec. IV and V, we derive bounds on the neutrino-Majoron
couplings from SN data and neutrinoless double beta decay
with Majoron emission which we compare in Sec. VI.
We conclude in Sec. VII.

II. MAJORON INTERACTIONS

The Lagrangian coupling neutrinos to the Majoron can
be in general written as

Lint ∝
X
ij

gijνiγ5Jν̄j ð2:1Þ

where in vacuum, the Majoron couples diagonally to the
neutrino mass eigenstates, i.e., gij ¼ δijgi ∝

mi
f . In the

presence of a background medium, the neutrino-Majoron
interactions are modified, which will be discussed in the
following.
In general, when propagating in a medium, flavor

neutrinos interact with the background medium coherently
via charged-current (CC) and neutral-current (NC) inter-
actions. This gives rise to effective potentials that shift the
energy of the neutrinos and therefore change the evolution
equation. An example for a medium where the neutrino
interactions with matter have to be taken into account is the
core of a SN. The corresponding effective potentials are
given by

VC ¼
ffiffiffi
2

p
GFnBðYe þ YνeÞ; ð2:2Þ

VN ¼
ffiffiffi
2

p
GFnB

�
−
1

2
YN þ Yνe

�
; ð2:3Þ

where nB is the baryon density, GF is the Fermi coupling
constant, and the particle number fraction Yi is defined as

Yi ¼
ni − nī
nB

: ð2:4Þ

The background medium in a SN core consists mostly
of electrons e, protons p and neutrons n. Therefore,
electron neutrinos νe can have CC and NC interactions
with the background medium and their effective potential is
given by

VðhÞ
e ¼VCþVN¼−h

ffiffiffi
2

p
GFnB

�
Yeþ2Yνe−

1

2
YN

�
; ð2:5Þ

where h ¼ �1 is the helicity of the respective neutrino.
Muon and tau neutrinos νμ;τ can only have NC interactions
and their effective potential is consequently given by

VðhÞ
μ;τ ¼ −hVN: ð2:6Þ

The Hamiltonian describing the neutrino evolution has to
be extended by a term that takes the flavor-dependent
energy shift in matter into account. Therefore, the mass
eigenstates jνiiwill no longer be eigenstates in matter and it
will be necessary to introduce a third type of eigenstate, the
medium eigenstate jν̃ii. As shown in Appendix, in dense
media, the medium eigenstate jν̃ii can be approximated as
the weak state jναi with medium energy eigenvalues

EðhÞ ¼ pþ VðhÞ ð2:7Þ

and nondiagonal neutrino-Majoron couplings in medium

g̃fm ¼ gαβ ¼ U�
αigijUβj: ð2:8Þ

Thus, in medium, the Majoron couples effectively to the
neutrino flavour eigenstates.

III. MASSIVE MAJORONS AS DARK MATTER

In this section, a mechanism to generate a nonvanishing
Majoron mass is discussed. We stress that the constraints
on the neutrino-Majoron couplings derived in IV and V
do not depend on the mass-generating mechanism and
other possibilities exist, see for example [20].
A Majoron mass can be generated by explicitly breaking

the global Uð1ÞB−L symmetry via a radiatively induced
term [12,20],

LH ¼ λhσ
2H†H þ H:c:; ð3:1Þ

After spontaneous symmetry breaking at the seesaw-scale f
and electroweak symmetry breaking at the scale v, a
Majoron mass mJ is generated via

LH ¼ −
1

2
m2

JJ
2

�
1þ h

v

�
2

; ð3:2Þ

where the mass of the Majoron is directly proportional to
the VEVof the Higgs, m2

J ¼ λhv2. In order for the Majoron
to account for DM, the Majoron relic density ΩJ has to
coincide with the DM relic density. For simplicity, the only
Majoron production mechanism considered in the follow-
ing discussion is the Higgs decay h → JJ.2 The corre-
sponding decay rate is given by [20]

2It has been shown in [20] that the Higgs decay dominates the
Majoron-producing scattering processes, assuming small Yukawa
couplings of the heavy neutrinos to J in order to neglect Majoron
production at the seesaw-scale.
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Γðh → JJÞ ¼ 1

16π
λ2h

v2

m2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2
J

m2
h

s
ð3:3Þ

and depends only on mJ. There exist two well-known
production mechanisms for DM, known as the freeze-out
and the freeze-in mechanisms. The scenario of the freeze-
out mechanism (for details, see [20,21]) is ruled out in the
mass range of interest by constraints from direct detection
or h → invisible, as shown in shown in [22]. However, the
freeze-in mechanism is capable of producing the correct
Majoron relic density, as we will discuss in the following.
In the freeze-in mechanism [21], the initial abundance of

the DM particle is negligible with respect to those of the
SM particles after reheating. The DM particle is produced
via the decay of a heavier particle X. If the decay rate is
small enough, it will never thermalize. As the temperature
reaches T ≈mX, the DM density reaches a plateau due to
the Boltzmann suppression of the heavy particle. An
interesting feature of the freeze-in mechanism is that the
relic abundance of DM increases with the coupling to the
heavy particle. In the freeze-in scenario, the Majoron relic
density is given by [12,21]

ΩJh2 ≈ 2
1.09 × 1027

gs�
ffiffiffiffiffi
gρ
�

p mJΓðh → JJÞ
m2

h

: ð3:4Þ

Using (3.3), the only free parameter in (3.4) is mJ and
ΩJh20 ≈ 0.12 can be fulfilled for

mJ ≈ 2.8 MeV; ð3:5Þ

which translates to a coupling

λh ≈ 1.3 × 10−10: ð3:6Þ

Note that in our discussion, we assumed the Majoron to
be the only DM particle. If other DM particles exist, the
Majoron has to account only for a fraction of the DM relic
density, translating to mJ ≲ 2.8 MeV, i.e., (3.5) is an upper
bound on the Majoron mass.
A stringent bound on the neutrino-Majoron coupling can

be derived from DM stability which requires the lifetime of
the Majoron to exceed the age of the universe. As has been
shown in [12], this can easily be achieved for mJ ≈ 1 MeV
by assuming f ≥ 109 GeV. In the case of normal ordering,
i.e.,mi ≲ 10−2 eV from neutrino oscillations, this translates
to a strong constraint on the neutrino-Majoron coupling,
g < 10−20, in order for the Majoron to be DM. Moreover,
the anisotropies of the cosmic microwave background
(CMB) can be used to derive constraints on the lifetime
of the Majoron [23,24], resulting in a similar constraint on
the neutrino-Majoron couplings, approximately g < 10−20.

IV. SUPERNOVA CORE-COLLAPSE WITH
MAJORONS

In this section, constraints on the neutrino-Majoron
couplings gαβ for a Majoron mass range 0.1 MeV≲mJ ≲
1 GeV are derived based on SN data. For simplicity, we
assume that only one neutrino-Majoron coupling constant
gαβ is nonzero.
In the following, the inner core radius is approximated

to be RC ≈ 10 km with a temperature of T ≈ 30 MeV.
The abundance of electron neutrinos in a SN core is
extremely high, thus they have a chemical potential of
μνe ≈ 200 MeV, while the chemical potential of the elec-
tron antineutrinos is given by μν̄e ≈ −200 MeV. In the first

approximation, the chemical potentials of ν
ð−Þ

μ;τ vanish,

μð νð−Þμ;τÞ ≈ 0 [25]. In the core, the effective potentials are
of order

jVej ≈Oð1 eVÞ; ð4:1Þ

jVμ;τj ≈Oð10 eVÞ: ð4:2Þ

There are three different constraints on the neutrino-
Majoron couplings gαβ from SN data to be examined in
the following. Our approaches concerning the “luminosity
constraint” and the “trapping constraint” in Sec. IVA and
Sec. IV C, respectively, follow [17], with the difference
of explicitly including the contribution of the effective
potentials in IVA. A different approach to obtain the
“deleptonization constraint” is presented in Sec. IV B.

A. Constraints from Majoron luminosity

The predicted amount of binding energy released in a SN
explosion is compatible with the neutrino signal measured
from SN1987A [26–30]. Consequently, introducing an
additional particle, in this case the Majoron, must not alter
the signal significantly to be in agreement with experiment.

Therefore, the impact of the process ν
ð−Þ

ν
ð−Þ

→ J has to
be considered, as it can lead to an additional energy
depletion that changes the neutrino signal. Constraints
on the neutrino-Majoron couplings gαβ are derived under
the terms that the Majoron luminosity does not exceed the
total neutrino luminosity within one second after the
explosion, LJ ≈ 5 × 1052 erg=s.
The luminosity of the inverse Majoron decay νν → J is

given by

LJð ν
ð−Þ

α ν
ð−Þ

β → JÞ ¼ 4

3
πR3

CDQð νð−Þα ν
ð−Þ

β → JÞ: ð4:3Þ

The decay factor

D ¼ e−ΓðJ→ ν
ð−Þ

α ν
ð−Þ

βÞRC ð4:4Þ
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takes into account that the Majoron can decay back to
neutrinos inside the core which would prevent an exotic
energy depletion. Taking the effective potentials into
account, the decay width is given by

ΓðJ → ν
ð−Þ

α ν
ð−Þ

βÞ ¼
Z

pJ

0

jgαβj2
8π

1

pJ

�
m2

J

�
1

EJ
−

Vα þVβ

2pβðEJ −pβÞ
�

− ðVα þVβÞ
�
dpβ: ð4:5Þ

FormJ ≥ 1 keV, the contribution of the effective potentials
can be neglected.3 Therefore, the decay width reduces to

ΓðJ → ν
ð−Þ

α ν
ð−Þ

βÞ ≈
jgαβj2
8π

m2
j

EJ
: ð4:6Þ

The energy emission rate [17,31,32] for the process

ν
ð−Þ

ν
ð−Þ

→ J is given by

Qð νð−Þα ν
ð−Þ

β→JÞ

¼
Z

dΠαdΠβdΠJEJjMj2FSfαfβð2πÞ4δð4ÞðPαþPβ−PJÞ;

ð4:7Þ

where the symmetry factor FS ¼ 1
1þδαβ

takes identical

particles in the initial state into account and the Fermi-
Dirac distribution fα is approximated as a Maxwell-
Boltzmann distribution, fα ≈ 1

expEα−μαT

. We find Q → 0 as

mJ ≳ T, which is expected since the Majoron production is
suppressed by e−

mJ
T and thus extremely ineffective for

Majoron masses mJ ≳ T. The only free parameters in
(4.7) are mJ and gαβ, thus we evaluate bounds on jgαβj
for Majoron masses 0.1 MeV < mJ < 1 GeV, demanding
LJ < 5 × 1052 erg=s. For a rough approximation, (4.1) and
(4.2) are used. The constraints are shown in Fig. 1, where the
colored regions are excluded. A large range of couplings
jgeej and jgeαj; ðα ¼ μ; τÞ is excluded, while the constraints
on jgααj are comparably weak. This can be traced back to the
high abundance of electron neutrinos and the low abundance
of muon and tau neutrinos, resulting in neutrino flavor
dependent Majoron luminosities as LJðνeνe → JÞ >
LJðνeνα → JÞ > LJðνανα → JÞ. At mJ ≈ 2.8 MeV, the
mass of interest regarding Majoron DM produced via
freeze-in, constraints on jgeej and jgeαj; ðα ¼ μ; τÞ are
derived, while jgααj is not constrained at this certain
Majoron mass.
We stress that the constraints suffer from very poor

experimental data from SN1987A. As discussed in [17], the

detection of a future SN at a distance of order 1 kpc could
reinforce the constraints on gαβ and would allow us to probe
couplings jgαβj up to 10−13.

B. Deleptonization constraints

The strength of the SN bounce shock depends on the
trapped lepton fraction during the infall stage,YL ¼YeþYνe ,
which has to be larger than YBounce

L ≈ 0.375 at the time of the
core bounce in order to allow for a successful explosion
[33–35].
The inverse Majoron decay νeνα → J changes ΔLe by

one (α ≠ e) or two (α ¼ e) units and if the neutrino-
Majoron coupling is too large, it could prevent a successful
explosion.
The deleptonization rate for theΔLe ¼ 2 process νeνe →

J can be calculated in terms of the Boltzmann equation [36]

_YL ¼ −2
1

nB
γeqðνeνe → JÞ; ð4:8Þ

where the factor of 2 takes into account that the process
violates electron lepton number by two units and γeq is the
thermal rate, given by

γeqðνeνe → JÞ ¼
Z

dΠαdΠβdΠJjMj2FSDfαfβð2πÞ4

× δðPα þ Pβ − PJÞ; ð4:9Þ

which differs from (4.7) only by a factor of EJ. We suppose
νeνe → J is the only process violating electron lepton
number, thus nB _YL ¼ _nνe . Additionally, the number density
of the Majoron is neglected and neutrinos are taken to
be in thermal equilibrium. The number density of electron
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g e Luminosity

gee Trapping
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FIG. 1. Constraints from SN data. The colored regions are
excluded due to luminosity and deleptonization constraints. The
region above the lines leads to trapping of Majorons inside of
the core. The vertical corresponds to mJ ¼ 2.8 MeV, i.e., the
mass where the Majoron can account for DM. T is the core
temperature and α ¼ μ, τ. The trapping bounds suffer from
numerical instabilities that could not be solved in the available
computation time.

3Due to numerical instabilities, we only present constraints for
mJ ≥ 0.1 MeV, which still covers the mass range of interest.
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antineutrinos is small compared to the number density of
electron neutrinos. Therefore, the impact of the process
ν̄eν̄e → J has been neglected.
We solve the differential equation numerically, with the

initial conditionYInfall
L ð1012 g=cm3Þ ≈ 0.75 at the timewhen

neutrinos become trapped. Constraints on jgeej for the
Majoron mass range of interest are derived under the
condition YBounce

L ð3 × 1014 g=cm3Þ ≥ 0.375 at the time of
the core bounce [37]. The constraints are visualized in Fig. 1,
where the colored regions are excluded. The deleptonization
constraints for jgeej are less stringent than the luminosity
constraints on jgeej and do not exclude an additional range of
couplings. At mJ ≤ 100 MeV, a small range of couplings
jgeej is not excluded due to the deleptonization constraints,
however, the luminosity constraints on jgeej are still valid in
this region. On the other hand, using the same method as
above, no deleptonization constraints for jgeαj; ðα ¼ μ; τÞ
could be derived. First, the abundance of nonelectron
neutrinos during the infall stage is much lower than the
abundance of electron neutrinos and, second, the process
νeνα → J violates electron lepton number only by one unit.
Consequently, the deleptonization constraints for jgeαj are
expected to be significantly less stringent compared to the
constraints for jgeej.
We want to stress the strong dependence of the dele-

ptonization constraints on the explosion mechanism, which
is not yet well understood, and the numerical modulation.
Moreover, the density profiles used in this section are taken
from SN simulations without Majoron processes, thus
including the Majoron in SN simulations could improve
the deleptonization constraints.

C. Majoron trapping

So far, it was assumed that the Majorons produced via

ν
ð−Þ

α ν
ð−Þ

β → J either freely leave the core or decay back to
neutrinos. However, if the coupling between neutrinos and
the Majoron is too large, neutrino-Majoron scattering

ν
ð−Þ

J → ν
ð−Þ

J can lead to trapping of the Majoron in the
core. This has two effects. First of all, trapped Majorons do
not lead to an additional energy depletion to be measured
on earth.4 Second, if there is a considerable amount of
Majorons in the core, the SN dynamics might change
drastically, thus our model would not be valid anymore.
Therefore, it is reasonable to assume that the constraints
only hold if Majorons do not become trapped.
The thermal average of the inverse mean free path is

given by [17]

l̄−1J ðmJ; jgαβjÞ ¼
P

α;β

R
dEil−1fJðEiÞR
dEifðEiÞ

; ð4:10Þ

where [31]

l−1J ¼
Z

d3pα

ð2πÞ3 σð ν
ð−Þ

αJ → ν
ð−Þ

βJÞ: ð4:11Þ

For a rough approximation, the influence of the effective
potentials is neglected, i.e., the result is a slight under-
estimation of the mean free path. However, as p ≫ Vαβ, we
assume that the discrepancy is marginal. Moreover, the
Majoron distribution function is approximated as the
convolution of two neutrino distribution functions,

fJðEiÞ ¼
Te

μaþμb
T

e
μaþμb

T − e
Ei
T

log

�
e
Ei
T ð1þ e

μa
T Þð1þ e

μb
T Þ

ðeμa
T þ e

Ei
T Þðeμb

T þ e
Ei
T Þ

�
: ð4:12Þ

For the neutrinos, a Fermi-Dirac distribution fα ¼ 1

1þexpEα−μαT

is used.
We evaluate constraints on jgαβj for 0.1 MeV≲mJ ≲

1 GeV from (4.10) under the condition that Majorons are
not trapped, i.e., l̄J > RC. The constraints for jgαβj are
shown in Fig. 1, where the regions above the lines lead to
trapping of Majorons. The trapping regions do not intersect
the luminosity constraints, i.e., trapping has no impact on
our constraints. Note that the “trapping constraint” is rather
a bound on the validity of our discussion than an actual
constraint on the neutrino-Majoron couplings jgαβj.
The combined constraints from SN data, shown in Fig. 1,

exclude a large region of parameter space. For the neutrino-
Majoron couplings jgeej and jgeαj; ðα ¼ μ; τÞ, a range is
excluded in which the Majoron could act as DM, i.e., where
mJ ≈ 2.8 MeV. The constraints involving nonelectron
neutrinos are less extended since their abundance in the
SN core is significantly smaller than the abundance of
electron neutrinos. Since an increasing neutrino-Majoron
coupling results in a higher Majoron luminosity, one would
expect all neutrino-Majoron couplings larger than the
respective lower bound of the constraints to be excluded.
However, our results show that upper bounds on the
constraints exist, i.e., larger values of coupling constants
are not excluded due to SN data. This can be traced back to
the decay factor D in the calculation of the deleptonization
and luminosity constraints: If the neutrino-Majoron cou-
pling is too large, the Majoron decays back to neutrinos
before it leaves the core and no exotic energy depletion
occurs.
The deleptonization constraints are comparably weak

and suffer from the not well understood explosion process.
However, including the Majoron in SN simulations could
improve the deleptonization constraints. As discussed
above and in [17], the luminosity constraints could allow
to exclude a region up to jgj ≈ 10−13 in the case of the
observation of a future nearby SN. The luminosity con-
straints are discussed in more detail in Sec. VI.

4We neglect the effect of the volume emission from the
“Majoron sphere,” the sphere in which the Majorons are trapped.
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In [17], the impact of the effective potentials is neglected.
For mJ ≥ 1 keV, their impact on the constraints is mar-
ginal, i.e., our constraints hardly differ from those pre-
sented in [17]. However, for mJ ≤ 1 keV, the decay width
depends significantly on the effective potentials, which
should be included in the constraints presented in [17].
For completeness, note that in the case of a massless

Majoron, the neutrino decay ν → ν̄J is kinematically
allowed, i.e., the contribution of this process should be
included in the calculation of the luminosity and the
deleptonization constraints. Therefore, our constraints are
only valid for the massive Majoron and in the limitmJ → 0,
they do not need to be compatible with constraints on the
couplings of a massless Majoron to neutrinos, as calculated
for example in [13–15].

V. NEUTRINOLESS DOUBLE BETA DECAY
WITH MAJORON EMISSION

Double beta decay [38–44] is a rare nuclear process. It has
half-lives of order 1020 years or longer and can occur if a
single beta decay of the parent nucleus is either energetically
forbidden or strongly suppressed due to a large difference in
angular momentum. The decay mode first discussed [45] is
the two-neutrino double beta decay (2νββ)

ðZ; AÞ → ðZ þ 2; AÞ þ 2e− þ 2ν̄e; ð5:1Þ
which can be seen as two successive beta decays via virtual
intermediate states, where the ordering number Z changes
by two units and the atomic mass A remains the same. It is
allowed in the SM, independently of the nature of the
neutrinos, and is of second order Fermi theory.
Another mode is the neutrinoless double beta decay

(0νββ) [46]

ðZ; AÞ → ðZ þ 2; AÞ þ 2e−; ð5:2Þ
which violates lepton number by two units and is thus
forbidden in the SM. This decay can only occur if the
neutrino is a Majorana particle. Moreover, in order to allow
for the helicity matching, the neutrino has to be massive.
In the presence of neutrino-Majoron couplings, another

possible 0νββ-mode is the neutrinoless double beta decay
with Majoron emission, 0νββJ [8],

ðZ; AÞ → ðZ þ 2; AÞ þ 2e− þ J: ð5:3Þ
This mode has been discussed for the case of the massless
Majoron (see for example [9,16,47]). The case of the
massive Majoron has so far only been discussed in [19] for
the massive vector Majoron and recently in [18] for the
singlet Majoron model.

A. Constraints from 0νββJ

In this section, constraints on the effective neutrino-
Majoron coupling jgeej are derived, based on the

nonobservation of 0νββJ. Our analysis follows closely
the approach of [18], where constraints on jgeej for the
massive Majoron are derived from limits on jgeej for the
massless Majoron by taking into account the effect of
the mass on the phase space and the signal-to-root-
background ratio.
Since theQ-value of the nucleus determines the Majoron

mass which can be probed, data from experiments
with high Q-values are preferred. The highest Q-value
comes from NEMO-3 using 48Ca [48], however, stronger
constraints come from NEMO-3 using 100Mo [49] and
150Nd [50] as from EXO-200 using 136Xe [51].5 Data from
experiments using isotopes such as 76Ge [53,54] and 82Se
[55] are not included in the analysis since they provide
comparably weak limits and smallQ-values. The measured
Q-values and the limits on jgeej for the massless Majoron
can be found in Table I.
The decay rate for 0νββJ is given by [42]

ΓJ ¼ GJðQ;ZÞjgeej2jMJj2; ð5:4Þ

where gee is the effective coupling constant of the Majoron
to neutrinos,

gee ¼
X
i;j

gijUeiUej: ð5:5Þ

The phase space integral is given by [39],

GJ∝
Z

Ei−Ef−me

me

dϵ1FðZ;ϵ1Þp1ϵ1

Z
Ei−Ef−ϵ1

me

dϵ2FðZ;ϵ2Þp2ϵ2

×
Z

dϵJpJδðEi−Ef−ϵJ−ϵ1−ϵ2Þ; ð5:6Þ

where pJðϵJÞ is the momentum (energy) of the emitted
Majoron, Ei and Ef are the energies of the initial and final
state nucleus, respectively, and ϵ1;2ðp1;2Þ are the energies
(momenta) of the electrons and ν1;2 are the energies of the

TABLE I. Q-values and limits on the neutrino-Majoron cou-
pling jgeej at 90% CL in the case of a massless Majoron.

Element Q=MeV jgeeðmJ ¼ 0Þj
48Ca 4.27 ð1.0–4.3Þ × 10−4 [48]
100Mo 3.03 ð1.6–4.1Þ × 10−5 [49]
150Nd 3.37 ð3.3–14.4Þ × 10−5 [50]
136Xe 2.5 ð0.8–1.7Þ × 10−5 [51]
76Ge 2.04 ð3.4–8.7Þ × 10−5 [53]
82Se 3.00 ð3.2–8Þ × 10−5 [55]

5In [18], instead of data from EXO-200, data from
KamLAND-Zen using 136Xe [52] was included in the analysis.
Moreover, in [18], data from NEMO-3 using 48Ca [48] was not
part of the analysis.
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neutrinos in the final state. The Fermi function FðZ; ϵiÞ
takes into account the effect of the Coulomb field of the
daughter nucleus ðZ; AÞ on the wave functions of the
emitted electrons.
Using Q ≔ Ei − Ef − 2me and the Primakov-Rosen

approximation of the Fermi function [42,56],

FðZ; ϵiÞ ¼
ϵi
pi

2παZ
1 − expð−2παZÞ ; ð5:7Þ

the electron sum spectrum can be written as

dGJ

dT
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ − TÞ2 −m2

J

q
ð30m4

eT þ 60m3
eT2 þ 40m2

eT3

þ 10meT4 þ T5Þ; ð5:8Þ
where T ¼ ϵ1 þ ϵ2 − 2me is the sum of the kinetic energies
of the electrons in the final state. The decay rate for 2νββ
can be written as [42]

Γ2ν ¼ G2νðQ;ZÞjM2νj2; ð5:9Þ

and the respective electron sum spectrum is given by

dG2ν

dT
∝ ðQ − TÞ5ð30m4

eT þ 60m3
eT2

þ 40m2
eT3 þ 10meT4 þ T5Þ: ð5:10Þ

1. Phase space suppression

The phase space GJðmJÞ in Eq. (5.8) can be written as

GJðmJÞ ¼
Z

Q−mJ

0

dGJðmJÞ
dT

dT: ð5:11Þ

Due to the Majoron mass, the phase space decreases,

and the phase space suppression is calculated as GðmJÞ
Gð0Þ [18].

The normalized ratio GðmJÞ
Gð0Þ is plotted in Fig. 2. We find

GJðmJÞ → 0 as mJ → Q, thus the decay width is

significantly reduced compared to the case of a massless
Majoron, resulting in weaker limits on jgeeðmJÞj.

2. Signal-to-root-background ratio

Next, the decrease of the signal-to-root-background ratio
is considered, where 0νββJ is the signal and 2νββ is the
background. The 100Mo electron sum spectra are plotted in
Fig. 3 for various values ofmJ. Note that the normalizations
of 2νββ and 0νββJðmJ ¼ 0Þ are arbitrary while the
0νββJðmJ ≠ 0Þ distributions are normalized with respect
to 0νββJðmJ ¼ 0Þ.6 With increasing Majoron mass,
the relative amplitude and the maximal summed
electron energy Tmax decrease, shifting the spectrum of
0νββJðmJ ≠ 0Þ to the left with respect to the spectrum of
0νββJðmJ ¼ 0Þ. Consequently, the overlap with the irre-
ducible SM-2νββ spectrum increases, resulting in a smaller
signal (0νββJ) to background (2νββ) ratio.
For a proper analysis, experiment-dependent sources of

background should be incorporated in the analysis.
However, as a rough approximation, following [18], it
is assumed that the impact of the Majoron mass on
the spectrum can be taken into account by calculating
max½s�ffiffi

b
p , which is normalized with respect to max½s�ffiffi

b
p ðmJ ¼ 0Þ.

As can be seen in 4, the signal-to-root-background

ratio max½s�ffiffi
b

p decreases significantly with increasing

Majoron mass.

3. Half-life limit

The decreasing signal-to-root-background ratio sffiffi
b

p dete-
riorates the limit on the half life T1

2
as

T1
2
ðmJÞ ¼

max½s�ffiffi
b

p ðmJÞ
max½s�ffiffi

b
p ð0Þ

T1
2
ð0Þ: ð5:12Þ

1 2 3 4

mJ

MeV

0.2

0.4

0.6

0.8

1.0

G mJ

G 0

48Ca

136Xe

100Mo

150Nd

FIG. 2. Phase space suppression as a function of mJ in the
Primakov-Rosen approximation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

T
MeV

0.2

0.4

0.6

0.8

1.0

1.2
a.u.

0 J, mJ 0

0 J, mJ me

0 J, mJ 2me

0 J, mJ 3me

0 J, mJ 4me

2

FIG. 3. Normalized spectrum of 100Mo for 2νββ and 0νββJ for
different Majoron masses mJ .

6Our spectra differ from those presented in [18]. Blum et al.
confirmed a mistake in the relativistic approximation which
changes the spectra, however, the effect on the limits presented
in [18] is marginal.
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Accordingly, the bound on the effective coupling jgeej of
electron neutrinos to the Majoron can be obtained from

jgeeðmJÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð0Þ
GðmJÞ

max½s�ffiffi
b

p ð0Þ
max½s�ffiffi

b
p ðmJÞ

vuuut jgeeð0Þj; ð5:13Þ

where

T−1
1
2

ðmJÞ ¼ GðmJÞjMJj2jgeeðmJÞj2: ð5:14Þ

Here we assumed the nuclear matrix element MJ does not
depend on mJ. The constraints on jgeej for the kinemat-
ically allowed Majoron mass range are plotted in Fig. 5.
We stress that in contrast to Fig. 1, the regions above the
bands are excluded in Fig. 5 by the respective experiment.
The widths of the bands represent the uncertainties
on jgeeð0Þj placed by the collaborations. Therefore, for
mJ ≈Oð1 MeVÞ, a large range of neutrino-Majoron cou-
plings jgeej is excluded. Our approach allows us to derive
constraints on jgeej for Majorons in the MeV mass range
from the constraints on jgeeð0Þj provided by the collabo-
rations using 48Ca and 150Nd. We explored the deterioration

of the limits based on the decrease of max½s�ffiffi
b

p , using only 2νββ

as background. For mJ > 0, additional sources of back-
ground, depending on the respective experiment, should be
included, thus we assume to undervalue the uncertainties
at mJ > 0.

VI. COMPARISON OF THE CONSTRAINTS

In Fig. 6, the constraints on jgeej derived in Sec. IVA
from the SN luminosity argument are compared to the
0νββJ-constraint, discussed in Sec. V. The colored regions
are experimentally excluded. For illustrative reasons, only
the constraints on jgeej from NEMO-3 using 48Ca [48]
[Fig. 6(a)] and from EXO-200 using 136Xe [51] [Fig. 6(b)]
are shown. The width of the lighter colored band represents
the uncertainties on jgeeð0Þj placed by NEMO-3 [48] and
EXO-200 [51], respectively. Since 0νββJ allows us to
derive constraints only on jgeej, we do not show the
luminosity or trapping constraints on jgeαj; ðα ¼ μ; τÞ
and jgααj; ðα ¼ μ; τÞ. Moreover, the deleptonization con-
straints on jgeej are not shown since they do not improve

0.2 0.5 1.0 2.0

mJ

MeV
10 6

10 5

10 4

0.001

0.01

0.1

gee

48Ca
136Xe
100Mo
150Nd

FIG. 5. Limits on jgeej from 0νββJ where the region above
the bands is excluded by the respective experiment. The widths of
the bands represent the uncertainties on jgeeð0Þj placed by the
collaborations. The vertical line corresponds to mJ ¼ 2.8 MeV,
i.e., the mass where the Majoron can account for DM.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
mJ
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0.01
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0.05

0.10

0.20
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b
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136Xe

100Mo

150Nd

FIG. 4. Signal-to-root-background ratio as a function of mJ .
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gee Trapping
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136Xe gee Luminosity gee Trapping

FIG. 6. Comparison of the constraints on jgeej from SN data and from 0νββJ. The colored regions are excluded. The vertical line
corresponds to mJ ¼ 2.8 MeV, i.e., the mass where the Majoron can account for DM. The width of the lighter colored band represents
the uncertainties on jgeeð0Þj placed by the collaborations.
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upon the luminosity constraints on jgeej. The vertical line
corresponds to mJ ¼ 2.8 MeV, i.e., the mass where the
Majoron can account for DM.
The combination of constraints from SN data and

0νββJ data from NEMO-3 [48] excludes a large range
of neutrino-Majoron couplings jgeej for 0.1 MeV≲mJ ≲
5 MeV and therefore, the constraints are also viable for
mJ ≈Oð1 MeVÞ, i.e., they provide constraints on Majoron
DM produced via freeze-in considered in this work,
even though the constraints do not improve upon the
already existing constraints from DM stability and CMB
anisotropy spectrum. For the sake of completeness, we
want to point to the existence of constraints on neutrino
couplings to a massive scalar from big bang nucleosyn-
thesis [57]. These bounds apply independent of the
neutrino flavour for sub-MeV scalar masses and constrain
the coupling to be smaller than Oð10−8Þ. Note that the
value of the DM mass is an approximation and an upper
bound, assuming the Majoron is the only DM particle.
Moreover, other mechanisms to generate a DM relic
denstiy with Majorons exist.
Data from EXO-200 using 136Xe [51] provides the

strongest constraints regarding 0νββJ. Therefore, in the
case of a massive Majoron, 0νββJ data excludes Majoron
trapping up to a Majoron mass of mJ ≈ 0.3 MeV.
The 0νββJ half-life limit T1

2
depends on the sensitivity of

the double beta decay experiment, which is expected to be
increased in future experiments. Nonobservation of 0νββJ
and the sensitivity improvement in the future would trans-
late to increasing half-life limits. Therefore, future 0νββJ
experiments could probe smaller couplings jgeej, leading to
more stringent limits. It will be particularly interesting if the
sensitivity of future 0νββJ experiments would allow to
close the gap between the luminosity constraints on jgeej.
Moreover, we only gave a crude estimate on the varying
signal-to-root-background ratio for a massive Majoron.
An analysis of the effect of a massive Majoron on the
signal-to-root-background ratio performed by the respec-
tive collaborations could significantly improve the con-
straints on jgeej.
Our calculation of the luminosity constraints relies on the

poor experimental data from SN1987A. The detection of a
future SN at a distance of order of 1 kpc would lead to a
significant improvement. In [17], the estimated numbers of
detected neutrino events in the Super-Kamiokande and
IceCube experiments are 105 and 108, respectively, which
would allow us to probe couplings jgαβj down to 10−13.
Consequently, a detected future SN and improved 0νββJ
experiments could exclude neutrino-Majoron couplings
jgeej down to 10−13 for mJ ≈Oð1 MeVÞ.

VII. CONCLUSION

In this work, we considered a singlet Majoron model,
where a pseudo-Goldstone boson, the Majoron, arises at the

seesaw-scale due to spontaneous violation of baryon-lepton
number Uð1ÞB−L. The couplings of the Majoron to the SM
fermions are highly suppressed, rendering it stable on
cosmological time scales and thus allowing the Majoron to
be aDMcandidate. If theMajoronhas amassmJ ≈ 2.8 MeV,
the observed DM relic density can be produced by means of
the Majoron via the freeze-in mechanism. In this work,
constraints on neutrino-Majoron couplings for a Majoron
withmJ ≈Oð1 MeVÞ from SN data and neutrinoless double
beta decay have been discussed.
Neutrinos play an important role in the dynamics of SN

explosions, allowing us to derive two bounds on neutrino-
Majoron couplings from SN cooling. First, the energy
loss of the SN core due to the Majoron emission has to be
small compared to the energy emission by neutrinos in
order to explain the neutrino signal observed from
SN1987A. Second, a large depletion of electron lepton
number during the infall stage can prevent a successful
explosion. For a mJ ≈ 0.1 MeV − 1 GeV, a large region
of neutrino-Majoron couplings is excluded (see Fig. 1).
Additionally, we find that Majoron trapping does not affect
our constraints. We stress that including the Majoron in SN
simulations or the observation of a nearby SN explosion
could improve or reinforce our constraints.
Moreover the couplings of neutrinos to the Majoron can

allow for neutrinoless double beta decay with Majoron
emission. If kinematically allowed, i.e., mJ < Q, the non-
observation of 0νββJ translates to constraints on jgeej (see
Fig. 5). The analysis was based on the depletion of the
phase space factor GðmJÞ and the reduction of the signal-
to-root background ratio, sffiffi

b
p , due to the Majoron mass mJ.

We stress that we did not properly include the background
formJ > 0 and urge the collaborations to explore the limits
on the massive Majoron model in more detail. Future
0νββJ experiments with an improved sensitivity could
exclude larger regions of neutrino-Majoron couplings and
would therefore strengthen the constraints on the Majoron
model. If the increasing sensitivity would allow to close the
gap between 0νββJ constraints and SN constraints, the
electron neutrino-Majoron coupling would be strongly
constrained, jgeej≲ 10−11 for mJ ≈Oð1 MeVÞ. If a
neutrino signal of a future galactic SN would be observed,
even stronger limits could be obtained, jgeej≲ 10−13 for
mJ ≈Oð1 MeVÞ.
The constraints derived from SN data and neutrinoless

double beta decay are not yet in the scope of the constraints
from DM stability and CMB anisotropy spectrum, i.e.,
g < 10−20. However, the gap between the constraint from
Majoron DM and astrophysical and laboratory constraints
encourages future experimental efforts and complements
the already existing constraints.
To summarize, the constraints from SN cooling and

neutrinoless double beta decay with Majoron emission
exclude a large space of couplings of a Majoron with a
mass in the MeV range to neutrinos.
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APPENDIX: NEUTRINO-MAJORON
INTERACTIONS IN MATTER

We write the total Hamiltonian in matter as [58]

H ¼ H0 þHmed; ðA1Þ

where H0 is the vacuum Hamiltonian obeying

H0jνii ¼ Eijνii ðA2Þ

with energy eigenvalues

Ei ≈ pþm2
i

2p
; p ≔ jp⃗j ðA3Þ

in the relativistic approximation. Moreover, Hmed takes the
interaction with the medium into account. The flavor states
are eigenstates of the medium Hamiltonian,

Hmed ¼ VðhÞ
α jνðhÞα i; ðA4Þ

with matter potentials VðhÞ
α , defined in (2.5) and (2.6).

Neutrino flavor eigenstates jναi are connected to neutrino
mass eigenstates jνii via

jναi ¼ U�
αijνii ðA5Þ

and, assuming neutrinos are of the Majorana type, we adopt
the convention to call Majorana neutrinos with negative
helicity neutrinos and Majorana neutrinos with positive
helicity antineutrinos:

jνðhÞi ¼
� jνi; h ¼ −1;
jν̄i; h ¼ þ1:

ðA6Þ

In the mass basis, the Schrödinger equation can be written
as [14,15]

i∂tjνðhÞi i ¼ ðEiδij þUαiVαU�
αjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕ H̃m
ij

jνðhÞj i; ðA7Þ

where in matrix form, H̃m ¼ Eþ UVU† is nondiagonal,
i.e., jνii is indeed not an eigenstate of the Hamiltonian in
matter (A1). Introducing a matrix ŨðθðhÞÞ that diagonalizes

H̃m, H̃m
diag ¼ Ũ†ðθðhÞÞH̃mŨðθðhÞÞ, results in the relation

jν̃ðhÞi i ¼ ŨijðθðhÞÞjνðhÞj i between medium states jν̃ðhÞi i and

mass states jνðhÞj i, where θðhÞ is the effective mixing angle in
matter.
In the flavor basis, the Schrödinger equation is given by

i∂tjνðhÞα i ¼ ðU�
αiEiUiβ þ VαδαβÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕ H̃w
αβ

jνðhÞβ i; ðA8Þ

and in the ultrarelativistic approximation, the relations

p ≫ m2
i

2p and VðhÞ
α j ≫ m2

i
2p, hold. Using (A3), the medium

Hamiltonian in the weak basis is approximately diagonal,

H̃wjνðhÞα i ≈ ðpþ VðhÞ
α ÞjνðhÞα i; ðA9Þ

with medium energy eigenvalues

EðhÞ ¼ pþ VðhÞ
α : ðA10Þ

Therefore, the weak states can be approximated as the
medium eigenstates,7

jν̃ii ≈ jναi: ðA11Þ

In order to discuss the impact of a background medium
on the neutrino-Majoron couplings, the Hamiltonian (A1)
is extended by a term

HJ ¼
X
i;j

X
hi;hj

gijν̄
ðhiÞ
i γ5ν

ðhjÞ
j J; ðA12Þ

which takes the neutrino-Majoron interactions into
account. In vacuum, the Majoron coupling to the mass
eigenstates is diagonal, i.e., gij ¼ gijδij. Inserting (A5)
yields the nondiagonal coupling matrix in the medium basis

g̃fm ¼ gαβ ¼ UαigijUβj: ðA13Þ

Thus, in medium, the Majoron couples to the neutrino
flavor eigenstates.

7Since the potential V commutes with U23, another choice of
medium eigenstate would be jν̃ii ≈ U23jναi, with the same
medium energy eigenvalues (A10). The rotation around U23

results in easier expressions for the mixing matrix in medium
ŨðθðhÞÞ. However, a relation between medium and flavor eigen-
states is sufficient for our discussion, thus we will stick to the
approximation jν̃ii ≈ jναi.

TIM BRUNE and HEINRICH PÄS PHYS. REV. D 99, 096005 (2019)

096005-10



[1] Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett.
89, 011301 (2002).

[2] K. Eguchi et al. (KamLAND Collaboration), Phys. Rev.
Lett. 90, 021802 (2003).

[3] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys.
Rev. Lett. 81, 1562 (1998).

[4] P. Minkowski, Phys. Lett. B 67, 421 (1977).
[5] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys.

Lett. 98B, 265 (1981).
[6] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 774 (1982).
[7] G. B. Gelmini and M. Roncadelli, Phys. Lett. 99B, 411

(1981).
[8] H. M. Georgi, S. L. Glashow, and S. Nussinov, Nucl. Phys.

B193, 297 (1981).
[9] Z. Berezhiani, A. Smirnov, and J. Valle, Phys. Lett. B 291,

99 (1992).
[10] V. Berezinsky and J. W. F. Valle, Phys. Lett. B 318, 360

(1993).
[11] I. Z. Rothstein, K. S. Babu, and D. Seckel, Nucl. Phys.

B403, 725 (1993).
[12] C. Garcia-Cely and J. Heeck, J. High Energy Phys. 05

(2017) 102.
[13] Y. Farzan, Phys. Rev. D 67, 073015 (2003).
[14] M. Kachelriess, R. Tomas, and J. W. F. Valle, Phys. Rev. D

62, 023004 (2000).
[15] R. Tomas, H. Päs, and J. W. F. Valle, Phys. Rev. D 64,

095005 (2001).
[16] C. Burgess and J. Cline, Phys. Lett. B 298, 141 (1993).
[17] L. Heurtier and Y. Zhang, J. Cosmol. Astropart. Phys. 02

(2017) 042.
[18] K. Blum, Y. Nir, and M. Shavit, Phys. Lett. B 785, 354

(2018).
[19] C. D. Carone, Phys. Lett. B 308, 85 (1993).
[20] M. Frigerio, T. Hambye, and E. Masso, Phys. Rev. X 1,

021026 (2011).
[21] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, J.

High Energy Phys. 03 (2010) 080.
[22] J. M. Cline, K. Kainulainen, P. Scott, and C. Weniger, Phys.

Rev. D 88, 055025 (2013); 92, 039906(E) (2015).
[23] M. Lattanzi and J. W. F. Valle, Phys. Rev. Lett. 99, 121301

(2007).
[24] M. Lattanzi, S. Riemer-Sorensen, M. Tortola, and J. W. F.

Valle, Phys. Rev. D 88, 063528 (2013).
[25] A. Burrows and J. M. Lattimer, Astrophys. J. 307, 178

(1986).
[26] K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987).
[27] K. S. Hirata et al., Phys. Rev. D 38, 448 (1988).
[28] E. N. Alekseev, L. N. Alekseeva, I. V. Krivosheina, and V. I.

Volchenko, Phys. Lett. B 205, 209 (1988).

[29] E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V.
Krivosheina, JETP Lett. 45, 589 (1987).

[30] R. M. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987).
[31] K. Choi and A. Santamaria, Phys. Rev. D 42, 293 (1990).
[32] J. B. Dent, F. Ferrer, and L. M. Krauss, arXiv:1201.2683.
[33] S.W. Bruenn, Astrophys. J. Suppl. Ser. 58, 771 (1985).
[34] E. Baron, H. A. Bethe, G. E. Brown, J. Cooperstein, and S.

Kahana, Phys. Rev. Lett. 59, 736 (1987).
[35] Z. G. Berezhiani and A. Yu. Smirnov, Phys. Lett. B 220, 279

(1989).
[36] G. F. Giudice, A. Notari, M. Raidal, A. Riotto, and A.

Strumia, Nucl. Phys. B685, 89 (2004).
[37] E. Baron, H. A. Bethe, G. E. Brown, J. Cooperstein, and S.

Kahana, Phys. Rev. Lett. 59, 736 (1987).
[38] K. Zuber, Neutrino Physics, 2nd ed (CRC Press, Boca

Raton, Florida, 2012).
[39] H. V. Klapdor-Kleingrothaus, J. Phys. G 17, S129 (1991).
[40] W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011).
[41] M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys.

Suppl. 83, 1 (1985).
[42] M. Doi, T. Kotani, and E. Takasugi, Phys. Rev. D 37, 2575

(1988).
[43] H. Päs and W. Rodejohann, New J. Phys. 17, 115010

(2015).
[44] F. F. Deppisch, M. Hirsch, and H. Pas, J. Phys. G 39,

124007 (2012).
[45] M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935).
[46] W. H. Furry, Phys. Rev. 56, 1184 (1939).
[47] M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko,

and H. Pas, Phys. Lett. B 372, 8 (1996).
[48] R. Arnold et al. (NEMO-3 Collaboration), Phys. Rev. D 93,

112008 (2016).
[49] R. Arnold et al. (NEMO-3 Collaboration), Phys. Rev. D 89,

111101 (2014).
[50] R. Arnold et al. (NEMO-3 Collaboration), Phys. Rev. D 94,

072003 (2016).
[51] J. B. Albert et al. (EXO-200 Collaboration), Phys. Rev. D

90, 092004 (2014).
[52] A. Gando et al. (KamLAND-Zen Collaboration), Phys. Rev.

C 86, 021601 (2012).
[53] M. Agostini et al., Eur. Phys. J. C 75, 416 (2015).
[54] M. Günther et al., Phys. Rev. D 54, 3641 (1996).
[55] R. Arnold et al., Eur. Phys. J. C 78, 821 (2018).
[56] H. Primakoff and S. P. Rosen, Rep. Prog. Phys. 22, 121

(1959).
[57] G.-y. Huang, T. Ohlsson, and S. Zhou, Phys. Rev. D 97,

075009 (2018).
[58] C. Giunti and C.W. Kim, Fundamentals of Neutrino

Physics and Astrophysics (Oxford, New York, 2007).

MASSIVE MAJORONS AND CONSTRAINTS ON THE ... PHYS. REV. D 99, 096005 (2019)

096005-11

https://doi.org/10.1103/PhysRevLett.89.011301
https://doi.org/10.1103/PhysRevLett.89.011301
https://doi.org/10.1103/PhysRevLett.90.021802
https://doi.org/10.1103/PhysRevLett.90.021802
https://doi.org/10.1103/PhysRevLett.81.1562
https://doi.org/10.1103/PhysRevLett.81.1562
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1016/0370-2693(81)90011-3
https://doi.org/10.1016/0370-2693(81)90011-3
https://doi.org/10.1103/PhysRevD.25.774
https://doi.org/10.1016/0370-2693(81)90559-1
https://doi.org/10.1016/0370-2693(81)90559-1
https://doi.org/10.1016/0550-3213(81)90336-9
https://doi.org/10.1016/0550-3213(81)90336-9
https://doi.org/10.1016/0370-2693(92)90126-O
https://doi.org/10.1016/0370-2693(92)90126-O
https://doi.org/10.1016/0370-2693(93)90140-D
https://doi.org/10.1016/0370-2693(93)90140-D
https://doi.org/10.1016/0550-3213(93)90368-Y
https://doi.org/10.1016/0550-3213(93)90368-Y
https://doi.org/10.1007/JHEP05(2017)102
https://doi.org/10.1007/JHEP05(2017)102
https://doi.org/10.1103/PhysRevD.67.073015
https://doi.org/10.1103/PhysRevD.62.023004
https://doi.org/10.1103/PhysRevD.62.023004
https://doi.org/10.1103/PhysRevD.64.095005
https://doi.org/10.1103/PhysRevD.64.095005
https://doi.org/10.1016/0370-2693(93)91720-8
https://doi.org/10.1088/1475-7516/2017/02/042
https://doi.org/10.1088/1475-7516/2017/02/042
https://doi.org/10.1016/j.physletb.2018.08.022
https://doi.org/10.1016/j.physletb.2018.08.022
https://doi.org/10.1016/0370-2693(93)90605-H
https://doi.org/10.1103/PhysRevX.1.021026
https://doi.org/10.1103/PhysRevX.1.021026
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1103/PhysRevD.88.055025
https://doi.org/10.1103/PhysRevD.88.055025
https://doi.org/10.1103/PhysRevD.92.039906
https://doi.org/10.1103/PhysRevLett.99.121301
https://doi.org/10.1103/PhysRevLett.99.121301
https://doi.org/10.1103/PhysRevD.88.063528
https://doi.org/10.1086/164405
https://doi.org/10.1086/164405
https://doi.org/10.1103/PhysRevLett.58.1490
https://doi.org/10.1103/PhysRevD.38.448
https://doi.org/10.1016/0370-2693(88)91651-6
https://doi.org/10.1103/PhysRevLett.58.1494
https://doi.org/10.1103/PhysRevD.42.293
http://arXiv.org/abs/1201.2683
https://doi.org/10.1086/191056
https://doi.org/10.1103/PhysRevLett.59.736
https://doi.org/10.1016/0370-2693(89)90052-X
https://doi.org/10.1016/0370-2693(89)90052-X
https://doi.org/10.1016/j.nuclphysb.2004.02.019
https://doi.org/10.1103/PhysRevLett.59.736
https://doi.org/10.1088/0954-3899/17/S/013
https://doi.org/10.1142/S0218301311020186
https://doi.org/10.1143/PTPS.83.1
https://doi.org/10.1143/PTPS.83.1
https://doi.org/10.1103/PhysRevD.37.2575
https://doi.org/10.1103/PhysRevD.37.2575
https://doi.org/10.1088/1367-2630/17/11/115010
https://doi.org/10.1088/1367-2630/17/11/115010
https://doi.org/10.1088/0954-3899/39/12/124007
https://doi.org/10.1088/0954-3899/39/12/124007
https://doi.org/10.1103/PhysRev.48.512
https://doi.org/10.1103/PhysRev.56.1184
https://doi.org/10.1016/0370-2693(96)00038-X
https://doi.org/10.1103/PhysRevD.93.112008
https://doi.org/10.1103/PhysRevD.93.112008
https://doi.org/10.1103/PhysRevD.89.111101
https://doi.org/10.1103/PhysRevD.89.111101
https://doi.org/10.1103/PhysRevD.94.072003
https://doi.org/10.1103/PhysRevD.94.072003
https://doi.org/10.1103/PhysRevD.90.092004
https://doi.org/10.1103/PhysRevD.90.092004
https://doi.org/10.1103/PhysRevC.86.021601
https://doi.org/10.1103/PhysRevC.86.021601
https://doi.org/10.1140/epjc/s10052-015-3627-y
https://doi.org/10.1103/PhysRevD.54.3641
https://doi.org/10.1140/epjc/s10052-018-6295-x
https://doi.org/10.1088/0034-4885/22/1/305
https://doi.org/10.1088/0034-4885/22/1/305
https://doi.org/10.1103/PhysRevD.97.075009
https://doi.org/10.1103/PhysRevD.97.075009

