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2Instituto de Física Teórica, Universidade Estadual Paulista,
Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II, 01140-070 São Paulo, SP, Brazil
3Departamento de Física Fundamental and IUFFyM, Universidad de Salamanca,

37008 Salamanca, Spain
4Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED),

Instituto de Investigación Sanitaria La Fe (IIS-La Fe)-Universitat de Valencia (UV) and IFIC (UV-CSIC),
46100 Valencia, Spain

(Received 5 February 2019; published 28 May 2019)

We investigate the production of exotic tetraquarks, QQq̄ q̄≡TQQ (Q ¼ c or b and q ¼ u or d), in
relativistic heavy-ion collisions using the quark coalescence model. The TQQ yield is given by the overlap
of the density matrix of the constituents in the emission source with the Wigner function of the produced
tetraquark. The tetraquark wave function is obtained from exact solutions of the four-body problem using
realistic constituent models. The production yields are typically one order of magnitude smaller than
previous estimations based on simplified wave functions for the tetraquarks. We also evaluate the
consequences of the partial restoration of chiral symmetry at the hadronization temperature on the
coalescence probability. Such effects, in addition to increasing the stability of the tetraquarks, lead to an
enhancement of the production yields, pointing towards an excellent discovery potential in forthcoming
experiments. We discuss further consequences of our findings for the search of exotic tetraquarks in central
Pbþ Pb collisions at the LHC.
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I. INTRODUCTION

There is a long-standing prediction that flavor-
exotic four-quark states with two units of heavy flavor,
QQq̄ q̄≡TQQ (Q ¼ c or b and q ¼ u or d), are stable
against decay into two Qq̄ mesons, the binding energy
increasing with the heavy-to-light quark-mass ratioMQ=mq

[1–3]. The critical value of MQ=mq for binding is some-
what model dependent, but there is nowadays a broad
theoretical consensus in the literature—see Ref. [4] for a
recent compendium—about the existence of a deeply
bound doubly bottom tetraquark, Tbb, with quantum
numbers ðIÞJP ¼ ð0Þ1þ, strong- and electromagnetic-
interaction stable with a binding energy that might be as
large as 100 MeVor more [4–13]. This exciting perspective
is further reinforced by recent calculations predicting the

stability of tetraquarks with distinguishable heavy quarks,
QQ0q̄ q̄≡TQQ0 [6,14,15].
Let us review the different recent theoretical studies

leading to the stability of the Tbb tetraquark. A novel lattice
QCD calculation [5] employing a nonrelativistic formu-
lation to simulate the bottom quark finds unambiguous
signals for a strong-interaction-stable ð0Þ1þ tetraquark, 189
(10) MeV below the corresponding two-meson threshold,
B̄B̄�. With such binding, the tetraquark will be stable also
with respect to electromagnetic decays. Reference [6] uses
the mass of the doubly charmed baryon Ξþþ

cc recently
discovered by the LHCb Collaboration [16] to calibrate the
binding energy of a QQ diquark. Assuming that the bb
diquark binding energy in a Tbb is the same as that of the cc
diquark in the Ξþþ

cc , the mass of the ð0Þ1þ doubly bottom
tetraquark is estimated to be 215 MeV below the strong
decay threshold B̄B̄�. Combining heavy-quark-symmetry
mass relations of heavy-light and doubly heavy-light
mesons and baryons with leading-order corrections for
finite heavy-quark mass, corresponding to hyperfine spin-
dependent terms and a kinetic energy shift that depends
only on the light degrees of freedom, Ref. [7] predicts that
the Tbb state is stable against strong decays. More specifi-
cally, using as input the masses of the doubly bottom
baryons (not yet experimentally measured) obtained by the
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model calculations of Ref. [8], Ref. [7] finds an axial-vector
tetraquark bound by 121 MeV. Reference [9] solves the
Schrödinger equation with a potential extracted from a
lattice QCD calculation for static heavy quarks. Using pion
masses of mπ ∼ 340 MeV they find evidence for an
isoscalar doubly bottom axial-vector stable tetraquark.
When extrapolated to physical pionmasses it has a binding

energy of 90þ43
−36 MeV. The robustness of these predictions

comes reinforced by detailed few-body calculations using
phenomenological constituent models based on quark-
quark Cornell-like interactions [4,10], which predict that
the isoscalar axial-vector doubly bottom tetraquark is strong-
and electromagnetic-interaction stablewith a binding energy
ranging between 144 and 214 MeV for different realistic
quark-quark potentials. Recent studies using a simple color-
magnetic model come to similar conclusions [11]. The QCD
sum rule analysis of Ref. [12] also points to the possibility of
a stable doubly bottom isoscalar axial-vector tetraquark.
Finally, the recent phenomenological analysis of Ref. [13]
also presents evidence in favor of the existence of a stableTbb
state. In summary, the theoretical evidence seems to be very
compelling and entices one to claim that the Tbb tetraquark is
an unavoidable hadron. On the other hand, the theoretical
evidence for the existence of a Tcc tetraquark is not so
convincing [4,17], the results depending on the dynami-
cal model.
Tetraquarks have the simplest multiquark configuration

among the exotic states reported by experiments up to now
[18]. The tetraquark picture was first introduced in the
light-quark sector [19] as an attempt to explain the inverted
mass spectrum (inverted in comparison to the simple quark-
antiquark structure favored by the naive quark model)
exhibited by the low-lying scalar mesons: a0ð980Þ,
f0ð980Þ, f0ð500Þ, and K�

0ð800Þ [20]. For the heavy
tetraquarks, all observed candidates fit to the substructure
QQ̄qq̄ (see Ref. [21] for a recent compendium). However,
there are not yet heavy tetraquarks with a QQq̄ q̄ configu-
ration reported by experiment. If such exotic states do exist,
producing and identifying them is an extraordinary exper-
imental challenge.Most of the discoveries of exotic hadrons
in the last decadeweremade in eþe− collisions, startingwith
the charmoniumlike stateXð3872Þ observed inB → Kπ�ψ 0
decays by the Belle Collaboration [22]. In recent years,
proton-proton collisions at the LHC have shown an enor-
mous potential by confirming some earlier discoveries and
also revealing new states. Note that a major difficulty in the
production of a TQQ state in eþe− collisions is that two
heavy-quark pairs, QQ̄, produced in hard scatterings must
rearrange intoQQ and Q̄ Q̄ diquarks, whichmakes it amuch
rarer event than the production of hadrons withQQ̄ content
[7,23]. Despite these difficulties, the recent estimates in
Ref. [24] for the production cross sections of Tbb and Tbc
tetraquarks based on Monte Carlo event generators point
towards an excellent discovery potential in ongoing and
forthcoming proton-proton collisions at the LHC.

An alternative that circumvents those rare rearrangement
processes is the production of quarks by coalescence in the
environment of the matter produced in heavy-ion collisions
at ultrarelativistic energies, the quark-gluon plasma (QGP),
since the number of heavy quarks available for producing
such structures is appreciable [23,25,26]. Along with the
large array of applications offered by relativistic heavy-ion
collisions [27], a search of exotic hadrons in the QGP is an
exciting new direction in our quest to understanding their
structure. In generic terms, the coalescence model is based
on an adiabatic approximation, in which the probability for
the production of, for example, a tetraquark from decon-
fined quarks is given by the overlap of the density matrix of
the quark distribution with the Wigner function of the
tetraquark. Reference [28] gives a review on applications of
the model to hadron formation from a QGP, in which the
underlying assumptions of the model and its successes in
reproducing hadron yields in relativistic heavy-ion colli-
sions are thoroughly discussed.
Within this perspective, in this work we intend to study

the production by coalescence of TQQ tetraquarks in central
Pbþ Pb collisions at the LHC at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV andffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV—
ffiffiffiffiffiffiffiffi
sNN

p
is the total collision energy per

nucleon-nucleon pair in the c.m. frame. We employ the
dynamical coalescence model extensively used in exotic-
hadron production reviewed recently in Ref. [29]. Previous
studies invariably make use of a single Gaussian for the
hadron wave functions which, although serving to obtain
simple expressions for the yields, are far from being
realistic and might be an important source of uncertainty.
We avoid such approximation and calculate the Wigner
function of the tetraquark employing the four-body wave
function obtained from constituent models that correctly
reproduce the low-lying meson and baryon spectra. In
particular, we use the chiral constituent quark model,
χCQM, of Ref. [30] and the Cornell-like interaction, AL1,
of Ref. [31]. Both, the χCQM and the AL1 models, predict a
binding energy for the Tbb tetraquark [4,10] comparable
to the recent heavy-quark symmetry and lattice QCD
estimates [5–7,9].
We also address the important question of how a partial

restoration of chiral symmetry affects the coalescence
process [28]. Since the coalescence happens at nonzero
temperature, at which the coalescing (light) constituent
quarks have properties different from those in vacuum, the
tetraquark wave function is expected to be modified. The
importance of such effects has already been investigated in
transport [32] and molecular-dynamics [33] descriptions of
hadron production. In the present context, this issue
becomes particularly relevant for the stability of the pro-
duced tetraquark against two-meson decays, as not only the
tetraquark mass is changed from its vacuum value, but the
threshold energy, which is given by the sum of the masses of
two mesons, is also modified. The in-medium stability of a
TQQ state is of central importance for assessing the effects of
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the interactions of the tetraquark with other particles
during the expansion of the system before kinetic
freeze-out [34].
The paper is organized as follows. In Sec. II we briefly

review the basic features of the coalescence model. In
Sec. III we discuss the structure of the tetraquark wave
function employed in this work and its use in the compu-
tation of the Wigner function. In Sec. IV we present and
discuss our results in comparison with previous estimates
in the literature. We will concentrate our discussion on the
most promising exotic tetraquark candidate, the isoscalar
doubly bottom axial-vector tetraquark Tbb. Finally, in
Sec. V we summarize the most important findings of
our work.

II. COALESCENCE OF TETRAQUARKS

According to the coalescence model, the probability of
producing tetraquark hadrons from quarks in the medium
formed in a QGP is given by the overlap of the Wigner
function of the produced hadron with the phase-space
distribution of the constituents in the medium. Here we
follow the developments in Refs. [25,26,29], in which the
coalescence model was employed to study the production
of exotic hadrons in heavy-ion collisions. The implemen-
tation of the coalescence model in those references is
particularly suitable for the present investigation since the
Wigner function of the produced exotic hadrons is moti-
vated by a nonrelativistic constituent quark model.
Explicitly, the number of TQQ hadrons is given by

NTQQ
¼ gTQQ

�Y4
j¼1

Nj

gj

�Z
dP

ð2πÞ3
R ðQ4

i¼1 dpidxie
−p2i⊥=2TmiÞρWP ðx1;…; x4; p1;…; p4ÞR Q
4
i¼1 dpidxie

−p2i⊥=2Tmi
; ð1Þ

where Nj is the total number of quarks of flavor j produced
in the collision and gj its degeneracy, pi⊥ is the transverse
momentum of a quark with flavor i, T is the hadronization
temperature, and ρWP ðx1;…; x4; p1;…; p4Þ is the Wigner
function of the tetraquark. P ¼ p1 þ p2 þ p3 þ p4 is the
c.m. momentum. Finally, gTQQ

is the degeneracy factor of
the tetraquark given by ð2JTQQ

þ 1Þð2ITQQ
þ 1Þ.1

Reference [29] reviews the details and discusses the
different hypotheses made in arriving to the expression of
NTQQ

. The most important ones are the following: neglect
of transverse flow of the produced matter, consideration of
only the central unit rapidity assuming uniform rapidity
quark distributions, use of nonrelativistic approximations,
and use of a Boltzmann distribution for the transverse quark
momenta for the phase-space distribution of the quarks. In
addition, it is further assumed that the time in which the
coalescence occurs after the collision is large compared
with the internal time scale of the hadron, which allows us
to omit the contribution from the longitudinal relative
momenta. It is worth noting that Ref. [36] has derived
an alternative implementation of the coalescence model for
the study of exotic hadrons overcoming some of the
approximations mentioned above, as it could be to consider
relativistic effects or finite-size effects of the produced
cluster relative to the emission source. However, it is
explicitly stated in Ref. [36] that the alternative imple-
mentation gives significantly different predictions for
exotic hadrons with nonzero orbital angular momentum,

which is not the case of the Tbb state of our interest. In all
other cases it gives results very close to the original
derivation of Refs. [25,26,29] that we follow in the present
work.
The integration over P in Eq. (1) can be done by

expressing the tetraquark wave function in terms of the
following Jacobi coordinates [37,38]:

R ¼ 1

M
ðm1x1 þm2x2 þm3x3 þm4x4Þ;

r1 ¼ x1 − x2;

r2 ¼ x3 − x4;

r3 ¼
m1x1 þm2x2
m1 þm2

−
m3x3 þm4x4
m3 þm4

; ð2Þ

where M ¼ P
4
i mi, with mi being the masses of the

constituent quarks. In terms of these coordinates, the
Wigner function is given by

ρWP ðx1; x2; x3; x4; p1; p2; p3; p4Þ
¼ ð2πÞ3δðP − p1 − p2 − p3 − p4Þ
× ρWintðr1; r2; r3; k1; k2; k3Þ; ð3Þ

where ρWintðr1; r2; r3; k1; k2; k3Þ is given in terms of the
tetraquark wave function ψðr1;…; r3Þ as

ρWintðr1;r2;r3;k1;k2;k3Þ

¼
Z �Y3

i

dr0ie
−iki·r0i

�
ψðr1þ r01=2;r2þ r02=2;r3þ r03=2Þ

×ψ�ðr1− r01=2;r2− r02=2;r3− r03=2Þ; ð4Þ

1We will be interested in an isoscalar axial-vector tetraquark;
thus, JTQQ

¼ 1 and ITQQ
¼ 0. The degeneracy factor gj of quarks

of flavor j would correspond to its color-spin degeneracy, i.e.,
(3 × 2) for each constituent [23,35].
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with ki being the conjugate momenta relative to ri.
Integrating over P and performing the phase-space integrals
in the denominator of Eq. (1), one obtains

NTQQ
¼ gTQQ

Q
4
j¼1 ðNj=gjÞQ

3
i¼1 ½Vð2πTμiÞ�

F TQQ
ðTÞ; ð5Þ

where V is the volume of the source and we have defined
the temperature-dependent overlap function F TQQ

ðTÞ:

F TQQ
ðTÞ ¼

Z �Y3
i¼1

dki⊥drie−k
2
i⊥=2Tμi

�

× ρWintðr1; r2; r3; k1; k2; k3Þ; ð6Þ

with the reduced masses μi given by

μ1 ¼
m1m2

m1 þm2

; μ2 ¼
m3m4

m3 þm4

;

μ3 ¼
ðm1 þm2Þðm3 þm4Þ

M
: ð7Þ

Note that in addition to the explicit T dependence due to
the presence of the Boltzmann distribution in Eq. (6),
F TQQ

ðTÞ might also acquire an implicit T dependence
through the parameters of the constituent model when
chiral symmetry restoration effects are taken into account,
as it is discussed in the forthcoming sections.

III. EVALUATION OF THE TETRAQUARK
WIGNER FUNCTION

We evaluate the tetraquark Wigner function with a four-
body wave function obtained from realistic constituent
quark models by means of a generalized Gaussian varia-
tional method. As mentioned in the Introduction, we will
present results for two different constituent quark models,
χCQM and AL1, to check the robustness of our predictions.
Chiral symmetry restoration effects will be addressed by
means of the χCQM model, which has already been used
for various studies of hadron masses and hadron-hadron
interactions in-medium [39,40].
Let us first of all briefly summarize the most important

features of the constituent quark models. The χCQM takes
into account short-distance perturbative QCD effects
through a one-gluon-exchange potential. In addition to
the masses for the constituent quarks, dynamical chiral
symmetry breaking generates (pseudo) Goldstone bosons,
introduced as explicit degrees of freedom via π and σ fields.
This aspect makes the model ideally suited to study the
effects of partial restoration of chiral symmetry. Quark
confinement is incorporated via an effective potential that
contains string-breaking effects. The charm or bottom and
light quarks interact only via one-gluon exchange and, of
course, are subject to the same confining potential—for a

detailed review of the model we refer the reader to
Ref. [30]. The quark-quark potential in the AL1 model
contains a chromoelectric part made of a Coulomb-plus-
linear interaction together with a chromomagnetic spin-
spin term described by a regularized Breit-Fermi interaction
with a smearing parameter that depends on the reduced
mass of the interacting quarks. Further details of the AL1
model are given in Ref. [31].
The tetraquark wave function is taken to be a sum

over all allowed channels with well-defined symmetry
properties [37,38]:

ψðr1; r2; r3Þ ¼
X6
κ¼1

χcsfκ Rκðr1; r2; r3Þ; ð8Þ

where χcsfκ are orthonormalized color-spin-flavor vectors
and Rκðr1; r2; r3Þ is the radial part of the wave function of
the κth channel. In order to get the appropriate symmetry
properties in configuration space, Rκðr1; r2; r3Þ is expressed
as the sum of four components,

Rκðr1; r2; r3Þ ¼
X4
r¼1

wðκ; rÞRr
κðr1; r2; r3Þ; ð9Þ

where wðk; rÞ ¼ �1. Finally, each Rr
κðr1; r2; r3Þ is

expanded in terms of n generalized Gaussians

Rr
κðr1;r2;r3Þ

¼
Xn
i¼1

ακi e
−aiκr21−b

i
κr22−c

i
κr23−d

i
κs1ðrÞr1·r2−eiκs2ðrÞr1·r3−fiκs3ðrÞr2·r3 ;

ð10Þ

where s1ðrÞ;…; s3ðrÞ are equal to �1 and aiκ;…; fiκ are
variational parameters. The latter are determined by min-
imizing the intrinsic energy of the tetraquark—see Ref. [38]
for further details about the wave function and the mini-
mization procedure.
The tetraquark will be stable under the strong interaction

if its total energy, ETQQ
, lies below all allowed two-meson

thresholds. Thus, one can define the difference between the
mass of the tetraquark, ETQQ

, and that of the lowest two-
meson threshold, EðM1;M2Þ, namely,

ΔETQQ
¼ ETQQ

− EðM1;M2Þ; ð11Þ

where EðM1;M2Þ is the sum of the masses of the mesons
M1 and M2. When ΔETQQ

< 0, all fall-apart decays are
forbidden and, therefore, a strong-interaction-stable state is
warranted. When ΔETQQ

≥ 0 one is simply dealing with a
state in the continuum. Another quantity of interest is the
root-mean-square (rms) radius of the tetraquark, RMSTQQ

,
given by [10]

FONTOURA, KREIN, VALCARCE, and VIJANDE PHYS. REV. D 99, 094037 (2019)

094037-4



RMSTQQ
¼

�P
4
i¼1mihðxi − RÞ2iP

4
i¼1mi

�
1=2

: ð12Þ

The Gaussian nature of the radial functions Rr
κðr1; r2; r3Þ

allows one to obtain an analytical expression for the
overlap function F TQQ

ðTÞ. Substituting Eq. (8) into
Eq. (4), the Wigner function ρWintðr1; r2; r3; k1; k2; k3Þ can
be written as

ρWintðr1;r2;r3;k1;k2;k3Þ¼
X6
κ¼1

X4
r;r0¼1

wðκ;rÞwðκ;r0Þ
X3
i;j¼1

ακiα
κ
j

×
Z �Y3

i¼1

dr0ie
−iki·r0i

�
e−EWðr�

1
;r�
2
;r�
3
Þ;

ð13Þ
where r�i ¼ ri � r0i=2 and

EWðr�1 ; r�2 ; r�3 Þ ¼ aikðrþ1 Þ2 þ bikðrþ2 Þ2 þ cikðrþ3 Þ2 þ ajkðr−1 Þ2
þ bjkðr−2 Þ2 þ cjkðr−3 Þ2 þ diks1ðrÞrþ1 · rþ2
þ eiks2ðrÞrþ1 · rþ3 þ fiks3ðrÞrþ2 · rþ3
þ djks1ðrÞr−1 · r−2 þ ejks2ðrÞr−1 · r−3

þ fjks3ðrÞr−2 · r−3 : ð14Þ

The overlap function F TQQ
ðTÞ is obtained by performing

the eight-dimensional integral over the variables ri, r0i,
and ki⊥. The integrals can be done analytically, most easily
using Cartesian coordinates, since all of them are of the
form,

Z
∞

−∞
dξe−aξ

2�bξ ¼
�
π

a

�
1=2

eb
2=4a; ð15Þ

with a real and b real or complex.
As we have discussed in the Introduction, we will

concentrate our discussion on the most promising exotic
tetraquark candidate, the isoscalar doubly bottom axial-
vector tetraquark Tbb, about whose existence there exists
a broad theoretical agreement [4–13]. In the lowest-lying
tetraquark configuration all four-quarks are in a relative S
wave. Thus, the tetraquark shows a separate dynamics for
the compact heavy quark in a color antitriplet (see Fig. 8
of Ref. [4] and Table II of Ref. [37]), and therefore due
to Fermi statistics spin 1, and the light antiquarks bound
to a color triplet to obtain a total color singlet. To satisfy
the Pauli principle, the flavor-antisymmetric light-anti-
quark pair must have spin 0 while the flavor symmetric
has spin 1. The one-gluon exchange is much more
attractive for the good antidiquark, a color triplet with
spin and isospin 0. Thus, the total spin and parity of the
unavoidable Tbb tetraquark are JP ¼ 1þ and its isospin is
I ¼ 0 [6,7].

IV. RESULTS

We present results forNTQQ
obtained with the χCQM and

the AL1 models. We also investigate the effects of a finite-
temperature partial chiral symmetry restoration on NTQQ

using the χCQM. Finite-temperature effects are incorpo-
rated in those parameters of the model related to the
dynamical breaking of chiral symmetry, namely, the masses
of the constituent quarks and of the σ and π mesons, and the
couplings of the light constituent quarks to that mesons. For
the temperature dependence of those parameters, we use
predictions of the Nambu–Jona-Lasinio model [41], follow-
ing the strategy set up in our work in Ref. [39], in which the
effects of a hot and dense medium on the binding energy of
hadronic molecules with open charm mesons were studied.
The parameters of the χCQM model are listed in Table I of
Ref. [40]—the mass of the b quark, not listed in that table,
being mb ¼ 5100 MeV. The parameters of the AL1 model
have been recently summarized in Eq. (32) of Ref. [4].
First, we analyze the impact of a finite-temperature

partial chiral symmetry restoration on the properties of
the tetraquarks. Although only the hadronization temper-
ature is of relevance for the coalescence study, it is
nevertheless insightful to explore the effects of a partial
chiral symmetry restoration as a function of T. For this
purpose, we have selected four representative values
close to the hadronization temperature adequate for
Pbþ Pb collisions at the LHC energies of

ffiffiffiffiffiffiffiffi
sNN

p ¼2.76
and 5.02 TeV [29]: T ¼ 100 MeV, T ¼ 120 MeV, T ¼
140 MeV, and T ¼ 156 MeV. The temperature depend-
ence of quark and meson masses and quark-meson cou-
plings are shown in Fig. 1 of Ref. [39]—for orientation, we
mention that at the highest temperature, while the pion
mass is essentially the same as in vacuum, because it is
protected by chiral symmetry, the masses of the light
constituent quarks and of the σ meson drop 30% with
respect to their vacuum values.
Table I displays results for the masses, ETQQ

, rms radii,
RMSTQQ

, and the binding energies, ΔETQQ
, of the ðIÞJP ¼

ð0Þ1þ Tbb and Tcc states in vacuum and for the selected

TABLE I. Tetraquark masses, ETQQ
, rms radii, RMSTQQ

, and
binding energies, ΔETQQ

, of the ðIÞJP ¼ ð0Þ1þ Tbb and Tcc

states. Energies and temperatures are listed in MeV and the rms
radii in fm.

Vacuum In-Medium

T ¼ 0 T ¼ 100 T ¼ 120 T ¼ 140 T ¼ 156

ETbb
10410 10402 10395 10378 10356

RMSTbb
0.22 0.22 0.22 0.21 0.21

ΔETbb
−202 −216 −224 −276 −348

ETcc
3877 3870 3864 3846 3824

RMSTcc
0.35 0.35 0.34 0.34 0.34

ΔETcc
−60 −70 −76 −120 −180
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temperatures. We note that the lowest two-meson threshold
for Tbb and Tcc corresponds to B̄B̄� and DD� in relative S
wave, respectively. It can be seen that the tetraquarks are
compact structures instead of molecular ones, with rms
radii much smaller than 1 fm, which remain almost constant
with T. With respect to their binding energies, the temper-
ature affects the stability of the tetraquarks making them
more stable as T increases. This is mainly due to a larger
threshold energy, as can be inferred from Fig. 2(a) of
Ref. [39], where the temperature dependence of the meson
masses has been evaluated. This latter feature is very
important: even when the tetraquark masses are almost
T independent, they become more stable as T increases,
indicating that chiral symmetry restoration has a larger
impact on the masses of D and B̄ mesons than on the
tetraquarks, TQQ. Clearly, the improved stability of the
tetraquarks at finite T is a welcome feature for their
formation in the matter produced in a heavy-ion collision;
because, as we discuss further ahead, once they have been
formed, the probability to be destroyed by subsequent
interactions with other hadrons (mainly pions) of the
medium is diminished.
Next, we present results for the tetraquark yields, NTQQ

,
given by Eq. (5). For this purpose, it is necessary to specify
the values of the hadronization temperature T, the volume
V, and the quark numbers Ni (i ¼ q, b, c) (the latter being
understood as being per unit of rapidity at midrapidity). We
use the values given in Ref. [29] which are suitable for
Pbþ Pb collisions at the LHC energies of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76
and 5.02 TeV: T ¼ 156 MeV, V ¼ 5380 fm3, Nq ¼ 700,
and Nb and Nc are given in Table II. Note that the heavy
quarks are produced by hard scatterings at the early stage of
the collisions and as such are

ffiffiffiffiffiffiffiffi
sNN

p
dependent. For

simplicity, for the RHIC energy of
ffiffiffiffiffiffiffiffi
sNN

p ¼ 0.2 TeV, we
use the same values for T and V. In addition, to assess a
possible enhancement in the number of produced tetra-
quarks by an increase of the collision energy

ffiffiffiffiffiffiffiffi
sNN

p
, we

have performed a linear extrapolation of the RHIC and
LHC data on Nb and Nc to

ffiffiffiffiffiffiffiffi
sNN

p ¼ 10 and 15 TeV. The
results of the extrapolation are shown in the last two
columns of Table II. It is important to emphasize that in a
comparison of the production cross section of Tbb states to
that of doubly bottom baryons, Ref. [24] finds that the latter

is 2.4 the former. This result represents an excellent
discovery potential of Tbb tetraquarks in the near future
in a dedicated search at the LCH at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 13 TeV, and
points to the necessity of obtaining predictions for the
yields in that range of energies.
Table III displays our predictions for the yields of the Tbb

and Tcc tetraquarks, NTbb
and NTcc

, for central Pbþ Pb
collisions at the LHC energies of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV andffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. Also shown are the predictions for the
higher extrapolated energies. We consider first the situation
when chiral symmetry restoration effects on the coales-
cence are ignored—the corresponding results appear in the
columns under “No chiral restoration.” Let us compare the
results with previous studies based on the coalescence
model. Reference [26] presents predictions for Tcc con-
sidering the situations that the Tcc is either a molecular state
or a compact multiquark. In the first situation hadron
coalescence is employed and for the latter quark coales-
cence. Different temperatures are used in each case, kinetic
freeze-out temperature of 125 MeV for hadron coalescence
and the hadronization temperature of 175 MeV for quark
coalescence. That reference employs a single Gaussian to
represent the hadron and molecular wave functions, with
different width parameters, of course. The results are in
the range 2.4 × 10−5 (hadron coalescence) to 4.0 × 10−5

(quark coalescence) for
ffiffiffiffiffiffiffiffi
sNN

p ¼ 0.2 TeV and 4.1 × 10−4

(hadron coalescence) to 6.6 × 10−4 (quark coalescence) forffiffiffiffiffiffiffiffi
sNN

p ¼ 5.5 TeV. The latter might be compared with our
result, 3.8 × 10−5 for

ffiffiffiffiffiffiffiffi
sNN

p ¼5.02TeV and T ¼ 156 MeV,
which is almost one order of magnitude smaller. As has
been discussed above, Ref. [34] finds essentially the same
numbers of Ref. [26]. In all cases, it is clear that the yield
from the coalescence model for compact multiquark states
is smaller than that for the usual quark configurations as a
result of the suppression, owing to the coalescence of
additional quarks.

TABLE II. Number of b and c quarks per unit rapidity at
midrapidity in 0%–10% central collision at RHIC and LHC taken
from Ref. [29]. In the last two columns, under Extrapolation, we
give the estimates for Nb and Nc at higher energies, obtained
from a linear extrapolation of the data at the three lower energies.

RHIC LHC Extrapolation

0.2 TeV 2.76 TeV 5.02 TeV 10 TeV 15 TeV

Nb 0.031 0.44 0.71 1.43 2.14
Nc 4.1 11 14 25 35

TABLE III. Tetraquark yields for central Pbþ Pb collisions at
LHC energies

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. Re-
sults in the two columns under Extrapolation are the estimates at
higher energies, using for Nb and Nc the corresponding values
shown in Table II. The temperature used in the Boltzmann
distribution and for the chiral symmetry restoration effects is
T ¼ 156 MeV.

LHC Extrapolation

2.76 TeV 5.02 TeV 10 TeV 15 TeV

No chiral restoration
NTbb 6.2 × 10−9 1.6 × 10−8 6.6 × 10−8 1.5 × 10−7

NTcc 2.4 × 10−5 3.8 × 10−5 1.2 × 10−4 2.4 × 10−4

Chiral restoration
NTbb 1.3 × 10−8 3.4 × 10−8 1.4 × 10−7 3.1 × 10−7

NTcc 4.0 × 10−5 6.5 × 10−5 2.1 × 10−4 4.1 × 10−4
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We have also obtained results with the AL1 quark model.
That model predicts a compact Tbb bound state with the
same rms radius predicted by the χCQM, 0.22 fm, although
with a binding energy 30% smaller. For the tetraquark
yields, the model predicts the following:NTbb

¼ 8.8 × 10−9

for
ffiffiffiffiffiffiffiffi
sNN

p ¼2.76TeV, and NTbb
¼3.3×10−8 for

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV. Although some very small differences can be
observed between the yields predicted by the two realistic
models, χCQM and AL1, the order of magnitude is the
same, being smaller than the simplistic approximation of
considering a single Gaussian for the tetraquark wave
function. It is reassuring that the results are stable with
respect to the difference in the binding energy.
When including effects due to partial chiral symmetry

restoration, Table III reveals that the yields increase roughly
by a factor 2. Such a modest influence is a consequence of
the small effect of partial chiral symmetry restoration on the
rms radii. Although those effects also modify the masses
mq entering the Boltzmann distribution, they essentially
cancel out in the expression forNTQQ

; see Eq. (1). However,
as already mentioned, the important feature of the partial
chiral symmetry restoration is the improved stability of the
tetraquark in-medium, due to the larger threshold for two-
meson decays.
The role played by hadronic effects, i.e., changes

occurred in the production rate due to the interaction with
other particles during the expansion of the medium, was
discussed for the case of Tcc states in Ref. [34]. The authors
conclude that these hadronic effects are negligible for the
case of compact states.We recall that the Tbbwave function,
Eq. (8), used in the present work is composed dominantly by
color configurations that are a color triplet for the light
quarks and a color antitriplet for the bottom quarks (see the
penultimate column in Table II of Ref. [37] and Fig. 8 of
Ref. [4]) which can be decomposed into bq̄ color-singlet
B̄1B̄�

1 and color-octect B̄8B̄�
8 states. This corresponds to a

compact state with a large hidden-color component that,
differently fromQQ̄qq̄ states, cannot be expressed in terms
of a single two-meson state—see Ref. [38] for detailed
discussions. Therefore, one can safely assume that the
abundance of Tbb calculated at the QGP phase will not
change significantly during the expansion of the hadronic
matter as a result of absorption by other hadrons in the
medium. The signal for the formation of such states would
be through the detection of their weak-decay products
with several Cabibbo allowed two- and three-body decay
channels [6,7]: T−

bb → Ξ0
bcp̄, T

−
bb → B−Dþπ−, or T−

bb →
B−Dþl−ν̄l, that offer enormous discovery potential
as they do not contain identical quarks or antiquarks,
which will induce a spin-statistic suppression. Recent flavor
SUð3Þ relations based on a chromomagnetic model [42]
confirm the adequacy of these channels to search for
doubly heavy tetraquark states at the LHCb and Belle II
experiments.

V. CONCLUSIONS AND PERSPECTIVES

The question on whether QQq̄ q̄≡TQQ hadrons can be
experimentally observed is of great contemporary interest.
The observation of such states will be of help in our quest to
understand the structure of the newly observed states with
quark compositions beyond the traditional quark-antiquark
and three-quark configurations. A major challenge in such
a program is the lack of experimental information on the
production of these exotic hadronic systems in-vacuum and
in-medium. With this motivation, we have investigated the
production of Tbb and Tcc tetraquarks in relativistic heavy-
ion collisions in central Pbþ Pb collisions at the LHC in
the framework of the quark coalescence model. To our
knowledge, this is the first study in which a four-quark
wave function obtained by solving exactly the four-body
problem using realistic constituent models was used to
calculate the hadron Wigner function. In addition, the
effects of a partial restoration of chiral symmetry on the
coalescence probability have been investigated. We have
found that the order of magnitude of the predictions for the
tetraquark yields is not modified when using different
realistic constituent models, either the χCQM or the
AL1. However, the obtained production yields are typically
one order of magnitude smaller than previous estimations
based on simplified wave functions for the tetraquarks.
Our results indicate that the ðIÞJP ¼ ð0Þ1þ Tbb tetra-

quark is a compact state. It becomes more stable in-
medium, when effects of a partial restoration of chiral
symmetry are taken into account, leading to an increase in
the production yields by a factor roughly equal to 2. The
improved in-medium stability of the tetraquarks implies a
smaller probability to be destroyed by subsequent inter-
actions with other hadrons (mainly pions) of the medium.
Therefore, the number of produced tetraquarks is given
essentially by that calculated at the QGP phase, which
essentially depends on the structure of the state. In short,
our results also suggest that measuring the Tbb tetraquark
from heavy-ion collisions would inform us about the nature
of its structure.
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