
 

Where is the stable pentaquark?
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We systematically analyze the flavor color spin structure of the pentaquark q4Q̄ system in a constituent
quark model based on the chromomagnetic interaction in both the SU(3) flavor symmetric and SU(3) flavor
broken case with and without charm quarks. We show that the originally proposed pentaquark state Q̄sqqq
by Gignoux et al. and by Lipkin indeed belongs to the most stable pentaquark configuration, but that when
charm quark mass correction based on recent experiments are taken into account, a doubly charmed
antistrange pentaquark configuration Pcc (udccs̄) could be the most attractive flavor exotic configuration
that could be stable and realistically searched for at present through the Pcc → ΛcKþK−πþ final states. The
proposed final state is just reconstructing Kþ instead of πþ in the measurement of Ξþþ

cc → ΛcK−πþπþ

reported by the LHCb collaboration and hence measurable immediately.
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I. INTRODUCTION

The possible existence of mutiquark hadrons beyond the
ordinary hadronswas first discussed for the tetraquark states
in Refs. [1,2] and for the H-dibaryon in Ref. [3]. Later,
possible stable pentaquark configurations Q̄sqqq were
proposed in Ref. [4] and in Ref. [5]. The long experimental
search for the H-dibaryon has not been successful so far but
is still planned at JPARC [6]. The search by Fermilab E791
[7] for the proposed pentaquark state also failed to find any
significant signal for the exotic configurations.
On the other hand, starting from theXð3872Þ [8], possible

exotic meson configurationsXYZ and the pentaquarkPc [9]
were recently found. These states are not flavor exotic but
are known to contain c̄c quarks. Heavy quarks were for
many years considered to be stable color sources that would
allow for a stable multiquark configuration that does not
fall into usual hadrons. In particular, with the recent
experimental confirmation of the doubly charmed baryon
[10–12], there is new excitement in the physics of exotics in
general and in hiterto unobserved flavor exotic states with
more than one heavy quarks [13–17].

In this work, we systematically analyze the color flavor
spin structure of the pentaquark configuration within a
constituent quark model based on chromomagnetic inter-
action. We show that the originally proposed pentaquark
state Q̄sqqq indeed belongs to the most stable pentaquark
configuration, but that when charm quark mass correction
based on recent experiments is taken into account, a doubly
charmed antistrange pentaquark configuration Pcc (udccs̄)
could be the most attractive flavor exotic configuration that
could be stable and realistically searched for at present.
It is useful to view the classification in terms of SUð4ÞF,

which deserves a full analysis in our approach in the
future. It can be shown that the most stable configuration
that we find belongs to a 140 multiplet in such a scheme
[18]. Here, we are restricting our discussion to categoriz-
ing the four quark structure in terms of the light flavors.
This is so because the color spin interaction effects are
suppressed when a heavy quark is involved. Hence, for a
first order estimate, our analysis should be a valid
starting point.

II. SYSTEMATIC ANALYSIS OF q4Q̄

We first discuss the classification of the flavor, color and
spin wave function for the ground state of the pentaquark
composed ofq4 light quarks and one heavy antiquarkQ (c̄ or
b̄) assuming that the spatial parts of thewave function for all
quarks are in the s-wave. We categorize them into the flavor
states in SUð3ÞF, and then examine the color⊗ spin states.
The flavor states for q4 can be decomposed into the

direct sum of the irreducible representation of SUð3ÞF as
follows:
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3F⊗3F⊗3F⊗3F¼15⊕3×150⊕3×3⊕2× 6̄: ð1Þ

Here, the SUð3ÞF multiplets can be represented by the
corresponding Young diagrams; 15 multiplet corresponds
to Young diagram [4], 150 multiplet to Young diagram
[31], 3 multiplet to Young diagram ½212�, and 6̄ to Young
diagram ½22�.
The 7776 dimensional color⊗ spin states of q4Q̄ can be

classified as the direct sum of the irreducible representa-
tions of SUð6ÞCS as follows:

ð6CS ⊗ 6CS ⊗ 6CS ⊗ 6CS ⊗ 6̄CSÞ½7776�
¼ ð½514� ⊕ ½3�Þ½4� ⊕ 2ð½3213� ⊕ ½21�Þ½22�

⊕ 3ð½4213� ⊕ ½3� ⊕ ½21�Þ½31� ⊕ ð½241� ⊕ ½13�Þ½14�
⊕ 3ð½32212� ⊕ ½21� ⊕ ½13�Þ½212�: ð2Þ

The direct sum in the right-hand side has been divided by
large brackets according to the SUð6ÞCS representation for
the light quark sector q4, with the subscript indicating the
corresponding Young diagram.
The SUð6ÞCS representation is made up of the sum of

SUð3ÞC ⊗ SUð2ÞS multiplets, represented here by [color
state, spin state]. To select out physical states, among all the
SUð6ÞCS representations in Eq. (2) we have identified the
SUð6ÞCS representation that contains color singlet states 1C
with certain spin S ¼ 1=2, 3=2, 5=2. The second column in
Table I shows the SUð6ÞCS representation that contains the
allowed color singlet states with the possible spin states,
denoted by ½1C; S� in the first column.
Therefore, since theSUð6ÞCS representation ofq4Q̄ aswell

as those of q4 are given in Eq. (2), we can construct the flavor
⊗ color ⊗ spin states with color singlet, by using the fully
antisymmetric property together with the conjugate relation
between the flavor in Eq. (1) and the SUð6ÞCS representation
in Eq. (2) among the four light quarks. Such a combination
will finally determine the allowed flavor and spin content of
the pentaquarks in the flavor SU(3) symmetric limit.

III. COLOR SPIN INTERACTION FOR THE
PENTAQUARK SYSTEM

In the constituent quark model based on the color spin
interaction, the stability of a pentaquark depends critically
on the expectation value of the interaction. Therefore, we
derive the following elegant formula of the chromomagnetic

interaction relevant for the pentaquark configuration, which
is similar to that of a tetraquark inRef. [2], by introducing the
quadratic Casimir operator of SUð6ÞCS, which is denoted
by C6:

−
X5

i<j

λci λ
c
j σ⃗i · σ⃗j ¼ 4C6

5 − 8C6
4 − 2C3

5 þ 4C3
4

−
4

3
ðS⃗ · S⃗Þ5 þ

8

3
ðS⃗ · S⃗Þ4 þ 24I: ð3Þ

Here, C6
5 (C

6
4) is the quadratic Casimir operator of SUð6ÞCS

for the pentaquark (the four light quarks), C3
5 (C3

4) is the
quadratic Casimir operator of SUð3ÞC for the pentaquark (the
four light quarks), ðS⃗ · S⃗Þ5 [ðS⃗ · S⃗Þ4] the spin operator for the
pentaquark (the four light quarks), and I the identity operator.

A. Spin= 3=2

Let us discuss in detail the flavor 150 case with S ¼ 3=2.
Here, there are two flavor ⊗ color ⊗ spin states that are
orthonormal to each other. There are two methods to obtain
these states.
In one approach based on the coupling scheme, the first

(second) state comes from the coupling scheme of the color
⊗ spin state in which the spin among the four quarks is one
(two), as given in Eq. (26) [Eq. (32)] in [19]. The fully
antisymmetric orthonormal flavor⊗ color⊗ spin states for
S ¼ 3=2 among the four quarks can be obtained by
multiplying the color⊗ spin state by their conjugate flavor
150 state represented by Young diagram [31]. The fully
antisymmetric orthonormal flavor⊗ color⊗ spin states for
S ¼ 3=2 among the four quarks are given by

ð4Þ
where the superscript of S denotes the spin state among the
four quark, and subscript F stands for flavor state, which is
represented by Young-Yammanuochi bases of Young dia-
gram [31]. Here, it should be noted that the Young-
Yammanuochi bases in both jψ1i and jψ2i in Eq. (4) belong
to themultiplets of SUð6ÞCS for four quarks corresponding to
Young diagram ½212�. This means that these states are the

TABLE I. The SUð6ÞCS representations containing the ½1C; S�
multiplet.

SUð3ÞC ⊗ SUð2ÞS state SUð6ÞCS representation

½1C; 1=2� ½241�, ½32212�, [21], ½4213�
½1C; 3=2� ½13�, ½32212�, ½3213�, ½4213�
½1C; 5=2� ½32212�
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eigenstates of the quadratic Casimir operator of SUð6ÞCS for
four quarks, C6

4, with 26=3 being their eigenvalue.
In the other approach, the two states can be directly

obtained from Eq. (2). As we can see in Eq. (2) and Table I,
both the ½32212� and the ½13� SUð6ÞCS representations have
the state of the color singlet and S ¼ 3=2. Also, these states
involve the ½212� multiplets in the SUð6ÞCS representation
among the four quarks, which are conjugate to the flavor
150 states, so that the two fully antisymmetric orthonormal
flavor ⊗ color ⊗ spin states can be constructed from the
SUð6ÞCS representation ½32212� and ½13�,

ð5Þ

where the superscript of S indicates the total spin of
½32212�ð½13�Þ of SUð6ÞCS representation. Unlike Eq. (4),
we did not add subscripts in the CS part of the Young-
Yamanouchi bases in Eq. (5) as the total spins for the four
quarks are not determined. It should be noted that jΨ1i
(jΨ2i) in Eq. (5) not only shows the symmetry property with
respect to the four quarks, but also the explicit dependence
on the multiplet ½32212�ð½13�Þ of SUð6ÞCS representation for
the pentaquark. This means that the color spin parts of jΨ1i
(jΨ2i) in Eq. (5) are the eigenstates of the quadratic Casimir
operator, C6

5, with 49=4 (21=4) being its eigenvalue.
From the SUð6ÞCS representation point of view, we can

infer that the linear sum of two fully antisymmetric flavor
⊗ color ⊗ spin states coming from the coupling scheme
must belong to either the ½32212� state or ½13� state. We find
that the coefficients of the linear sum can be calculated
from the condition that these are the eigenstates of the
Casimir operator of SUð6ÞCS, given by

jΨ1i ¼
ffiffiffi
5

p
ffiffiffi
7

p jψ1i þ
ffiffiffi
2

p
ffiffiffi
7

p jψ2i;

jΨ2i ¼ −
ffiffiffi
2

p
ffiffiffi
7

p jψ1i þ
ffiffiffi
5

p
ffiffiffi
7

p jψ2i: ð6Þ

The emphasis here is that jΨ1i and jΨ2i are both eigen-
states of the quadratic Casimir operator C6

5 of the SUð6ÞCS
because jΨ1i and jΨ2i are themselves the eigenstates. The
eigenvalue can be calculated using the following formula:

C6
5 ¼ −

1

4

X4

i¼1

λci λ
c
5σ⃗i · σ⃗5 þ C6

4 þ
1

2
C3
5 −

1

2
C3
4

þ 1

3
ðS⃗ · S⃗Þ5 −

1

3
ðS⃗ · S⃗Þ4 þ 2I: ð7Þ

We can verify from Eqs. (6) and (7) that the following
eigenvalue equation holds for the Casimir operator C6

5 of
the SUð6ÞCS:

ð8Þ

From Eq. (6), the multiplets of ½32212�ð½13�Þ of SUð6ÞCS
representation in Eq. (5) become the eigenstates of the
quadratic Casimir operator of SUð6ÞCS for four quarks, C6

4,
having 26=3 as its eigenvalue, as follows:

ð9Þ
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Also, this eigenvalue equation of C6
4 is true of the Young-

Yamanouchi bases in ½13� multiplets.
Therefore, we can calculate the matrix element of Eq. (3)

in terms of jΨ1i and jΨ2i given in Eq. (5), by using
Eqs. (9), (6), and (8).
Following the same procedure, one can construct the

flavor ⊗ color ⊗ spin states for the remaining flavor cases
for S ¼ 3=2, which satisfy the antisymmetry property
among four quarks. The number of independent color spin
states can be obtained by noting that for the pentaquark,
there are three independent color singlet states. Hence
multiplying this to the spin degeneracy gives the total
number of independent states for a given spin state. From
the result, it is found that there are all together 12 color ⊗
spin states that are both color singlet and S ¼ 3=2. These
are expressed by the Young-Yamanouchi bases of the
SUð6ÞCS representation among the four quarks, together
with the SUð6ÞCS Young diagram for the full q4Q̄ penta-
quark state,

ð10Þ

B. Other spin states

In analogy to the S ¼ 3=2 case, we can apply the same
procedure to the S ¼ 1=2 case. In this case, there are all
together 15 color ⊗ spin states that are both color singlet
and S ¼ 1=2, and that are expressed by the Young-
Yamanouchi bases of the SUð6ÞCS representation among
the four quarks, like Eq. (10),

ð11Þ

Finally, in the S ¼ 5=2 case, there exists only one
color ⊗ spin state coming from the ½32212� representation
in Table I,

ð12Þ

It is straightforward to calculate the expectation value of
λc1λ

c
2σ⃗1 · σ⃗2 and λc4λ

c
5σ⃗4 · σ⃗5 with respect to the 12 color ⊗

spin states for S ¼ 3=2 given in Eq. (10) in a 12 by 12
matrix from. Then, by applying the permutation operator
on either λc1λ

c
2σ⃗1 · σ⃗2 or λc4λ

c
5σ⃗4 · σ⃗5, one can obtain all the

expectation values in the 12 by 12 matrix from. Here, we
use the formula given by

ðijÞλc1λci σ⃗1 · σ⃗iðijÞ ¼ λc1λ
c
j σ⃗1 · σ⃗j; ð13Þ

where ðijÞ is a permutation operator of finite group, S4,
which acts on the color ⊗ spin states in Eq. (10) as well as
on the Young-Yamanouchi states corresponding to the
Young diagram of q4. The ðijÞ operator can be expressed
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using the generator of SUð3ÞC and SUð2ÞS, given by
ð1=3I þ 1=2λci λ

c
jÞ × ð1=2I þ 1=2σ⃗i · σ⃗jÞ [20] acting on

the color and spin space. Furthermore, it is also block
diagonal in both spaces in a 12 by 12 matrix form. In the
sameway, we can calculate the expectation value of λci λ

c
j σ⃗i ·

σ⃗j with respect to the 15 color ⊗ spin states for S ¼ 1=2
given in Eq. (11) in a 15 by 15 matrix from.
By using the flavor ⊗ color ⊗ spin states for S ¼ 1=2,

S ¼ 3=2, and S ¼ 5=2, the expectation values of Eq. (3)
can be calculated, as given in Table II. In Table II, below

each matrix element, we also show the relevant SUð6ÞCS
representations for the pentaquark state as well as the
eigenvalue of Eq. (3). As can be seen in the table, the most
attractive channel is given by the 2 × 2 matrix valued
ðF; SÞ ¼ ð3; 1=2Þ state. Upon diagonalizing the matrix in
the m5 → ∞ one finds the eigenvalues (−16, −40=3),
where the lowest one corresponds to the most attractive
pentaquark state discussed in Refs. [4,5]. It should be noted
that the factor −16 in this case can also be naively obtained
by assuming two diquarks ðud; usÞ in the udusc̄

TABLE II. The expectation value of −
P

5
i<j

1
mimj

λci λ
c
j σ⃗i · σ⃗j of q4Q̄ in SUð3ÞF limit, which means

m4 ¼ m3 ¼ m2 ¼ m1. The eigenvalue indicates the value of Eq. (3) when m5 ¼ m1.

ðF; SÞ −hP5
i<j

1
mimj

λci λ
c
j σ⃗i · σ⃗ji

(15, 1=2) 56
3m1

2 þ 32
3m1m5

SUð6ÞCS ½241�
Eigenvalue 88

3

(15, 3=2) 56
3m1

2 − 16
3m1m5

SUð6ÞCS ½13�
Eigenvalue 40

3

(150, 1=2) ð 4
3m1

2 − 20
3m1m5

4
3m1

2 þ 4
3m1m5

4
3m1

2 þ 4
3m1m5

4
3m1

2 þ 28
3m1m5

Þ
SUð6ÞCS ½21�, ½32212�
Eigenvalue − 8

3
ð ffiffiffiffiffi

10
p

− 1Þ, 8
3
ð ffiffiffiffiffi

10
p þ 1Þ

(150, 3=2) ð 88
21m1

2 þ 172
21m1m5

16
ffiffiffiffi
10

p
21m1

2 þ 16
ffiffiffiffi
10

p
21m1m5

16
ffiffiffiffi
10

p
21m1

2 þ 16
ffiffiffiffi
10

p
21m1m5

136
21m1

2 − 368
21m1m5

Þ
SUð6ÞCS ½32212�, ½13�
Eigenvalue −12, 40

3

(150, 5=2) 8
m1

2 þ 16
3m1m5

SUð6ÞCS ½32212�
Eigenvalue 40

3

(3, 1=2) ð− 14
m1

2 − 22
m1m5

− 2ffiffi
3

p
m1

2 − 2ffiffi
3

p
m1m5

− 2ffiffi
3

p
m1

2 − 2ffiffi
3

p
m1m5

− 46
3m1

2 þ 26
3m1m5

Þ
SUð6ÞCS ½21� ½4213�
Eigenvalue − 8

3
ð ffiffiffiffiffi

31
p þ 8Þ, 8

3
ð ffiffiffiffiffi

31
p

− 8Þ
(3, 3=2) − 40

3m1
2 þ 20

3m1m5

SUð6ÞCS ½4213�
Eigenvalue − 20

3

(6̄, 1=2) − 16
3m1

2 − 40
3m1m5

SUð6ÞCS ½21�
Eigenvalue − 56

3

(6̄, 3=2) − 16
3m1

2 þ 20
3m1m5

SUð6ÞCS ½3213�
Eigenvalue 4

3
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pentaquark. However, as noted from the case of H
dibaryon, SU(3) breaking effects together with the addi-
tional attraction from the strong charm quarks are important
to the realistic estimate of the stability: The color spin
interaction from themJ=ψ −mηc is much stronger than from
naively scaling the color spin splitting in the light quark
sector by the charm quark mass [14].

IV. PENTAQUARK BINDING IN THE
SUð3ÞF BROKEN CASE

To analyze the stability of the pentaquarks against the
lowest threshold, we introduce a simplified form for the
matrix element of the hyperfine potential term, where we
approximate the spatial overlap factors by constants that
depend only on the constituent quark masses of the two
quarks involved,

Hhyp ¼ −
X5

i<j

Cmimj
λci λ

c
j σ⃗i · σ⃗j: ð14Þ

We then assume that the difference between the pentaquark
energy and the lowest threshold baryon meson states arises
only from the hyperfine energy difference [21]. This is
because other potential terms are linear in the number of
quarks involved so that assuming that all hadrons occupy
the same size, the differences of their contribution to the
pentaquark and baryon meson cancel. For the color-color
two body force, one notes

X
λcjλ

c
i ¼ −

1

2
Nλ2q; ð15Þ

where N ¼ Nq þ Nq̄ is the sum of quark and antiquarks in
the configuration and λ2q ¼ 16

3
for both the quark and

antiquark. In a full constituent quark model calculation,
the spatial size will be different for all quark pairs involved.
However, we believe that the dominant repulsion and
attraction at short distance will be dominated by the color
spin interaction as this force will be proportional to the sizes
of thewave functionwhile the others are to the differences in
the sizes. In fact, it was shown that the short-range nuclear
force in different channels can bewell understood in terms of
Pauli principle and color spin interaction along the line of
arguments given in the present work [22].
To evaluate the binding energy of the pentaquark

in terms of Eq. (14), we extract the Cmimj
values from the

relevant mass differences between baryons and between
mesons when involving one antiquark. The relations are
given by

Δ − N ¼ 16Cuu;

Σ� − Σþ Ξ� − Ξ ¼ 32Cus;

Ω�
c −Ωc ¼ 16Csc; Σ�

c − Σc ¼ 16Cuc;

2Ωþ Δ − ð2Ξ� þ ΞÞ ¼ 8Css þ 8Cuu: ð16Þ

We show the value of Cmimj
in Table III, and for Ccc we

take it to be 1=2Ccc̄. It is important to extract the numbers
from experimental mass difference rather than assessing
the mass dependence through the naive relation
Cmimj

∝ 1
mimj

. For example, the mass difference between

the J=ψ and ηc, which is around 113 MeV and comes
dominantly from the color spin interaction, is much larger
than that between ρ and π, which is around 640 MeV,
multiplied by the ratios in the constituent quark
masses m2

u=m2
c ∼ 1=25, which gives a mass difference of

26 MeV only. Therefore, although Table II is used to
highlight the coefficients multiplying each mass
dependent term, in actual calculation, the mass effect in
the color spin interaction should be extracted from a more
realistic calculation taking into account the wave function
or from the observed mass difference originating from the
color spin interaction, which is the approach taken in
this work.

V. ISOSPIN BASIS

We now investigate the stability of the pentaquark with
respect to isospin (I) and spin (S), and allow the antiquark
of the pentaquark to be either s̄, c̄ or b̄. When considering
the SUð3ÞF broken case, one can use the Young-
Yamanuchi basis for q4 in the SUð6ÞCS representation
for the pentaquark given in Eqs. (10)–(12) together with the
permutation operators to find the flavor ⊗ color ⊗ spin
states suitable for a certain symmetry, which is allowed by
the Pauli principle. Since there are several flavor⊗ color⊗
spin states possible, we denote the number of those
possible states by the multiplicity as given in Tables IV
and V. By using those flavor ⊗ color ⊗ spin states, the
value of Eq. (14) for the pentaquark is obtained from
diagonalizing the matrix element of the hyperfine potential
energy. Then, we calculate the binding energy, denoted by
ΔE, by taking the difference of the hyperfine potential
energy given in Eq. (14) between the pentaquark and its
lowest threshold, which is given in Tables IVand V for each
pentaquark.
We need to characterize isospin states of q4 in order to

classify the pentaquark with respect to I. As can be seen in
[23], the iospin states to q4 can be decomposed in the
following way: I ¼ 0 with Young diagram ½22� consisting
of uudd component, I ¼ 1 with Young diagram ½31�
consisting of uuud component, and I ¼ 2 with Young
diagram ½4� consisting of uuuu.

TABLE III. The value of Cmimj
(unit MeV).

Cuu Cus Css Csc Cuc Cus̄

18.25 12.87 6.55 4.43 4.12 18.65
Css̄ Csc̄ Cuc̄ Ccc̄ Cub̄ Csb̄
13.49 6.75 6.65 5.29 2.15 2.25
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VI. RESULT AND SUMMARY

The result for the binding energy defined as the differ-
ence between the hyperfine interaction of the pentaquark
against its lowest threshold values is given in Tables IV
and V. As can be seen in Tables IV and V, it is found
that the most attractive pentaquark states are those with
ðI; SÞ ¼ ð0; 1=2Þ, apart from udccc̄, as well as the uudsc̄
with ðI; SÞ ¼ ð1=2; 1=2Þ. To understand the reason why
these particles could be bound states, we need to analyze
the expectation matrix value of Eq. (14) in terms of a
dominant color ⊗ spin state among the possible states. For
these states, the dominant color ⊗ spin state comes from
the SUð6ÞCS representation [21] having the Young diagram

[31] for the four quarks,1 for which the expectation value of
Eq. (3) is−36, as can be seen in ðF ¼ 3; S ¼ 1=2Þ sector of
Table II whenm1 ¼ m5. In fact, the SUð6ÞCS representation
[21] state with S ¼ 1=2 gives the most attractive contri-
bution to the expectation value of Eq. (3) than any other
state, and both the I ¼ 0 and I ¼ 1=2 comes from the
breaking of the flavor 3 state of this representation.
In Table VI, we show the expectation value of Eq. (14) in

terms of only a color⊗ spin state coming from the SUð6ÞCS
representation [21] as well as the corresponding binding

TABLE IV. The quark configurations of I ¼ 1=2 and I ¼ 3=2 pentaquark states with their lowest threshold hadron components and
their binding energies, ΔE, in units of MeV. The numbers in the brackets show the multiplicities of the flavor ⊗ color ⊗ spin states.

Quark Config.

I ¼ 1=2

S ¼ 1=2 S ¼ 3=2 S ¼ 5=2

ΔE State ΔE State ΔE State

uudsb̄ −77 NBsð5Þ −45 NB�
sð4Þ −4 Σ�B�ð1Þ

uudsc̄ −99 NDsð5Þ −39 ND�
sð4Þ −4 Σ�D�ð1Þ

uudcs̄ 17 ΛcKð5Þ −88 Σ�
cKð4Þ −1 Σ�

cK�ð1Þ
uudcc̄ −34 Nηcð5Þ −15 NJ=ψð4Þ −9 Σ�

cD�ð1Þ
sssuc̄ 133 ΞDsð3Þ −17 ΞD�

sð3Þ −34 Ξ�D�
sð1Þ

sssub̄ 87 ΞBsð3Þ 73 ΞB�
sð3Þ −34 Ξ�B�

sð1Þ

Quark Config.

I ¼ 3=2
S ¼ 1=2 S ¼ 3=2 S ¼ 5=2

ΔE State ΔE State ΔE State
uuusc̄ 214 ΣDð3Þ −42 ΔDsð3Þ 0 ΔD�

sð1Þ
uuusb̄ 170 ΣBð3Þ 142 ΣB�ð3Þ 0 ΔB�

sð1Þ
uuucs̄ 274 ΣcKð3Þ 186 Σ�

cKð3Þ 0 ΔD�
sð1Þ

uuucc̄ 191 ΣcDð3Þ −20 Δηcð3Þ 0 ΔJ=ψð1Þ

TABLE V. The quark configurations of I ¼ 0 and I ¼ 1 pentaquark states with the lowest threshold hadron components and their
binding energies, ΔE, in units of MeV. The numbers in the brackets show the multiplicities of the flavor ⊗ color ⊗ spin states.

Quark Config.

I ¼ 0 I ¼ 1

S ¼ 1=2 S ¼ 3=2 S ¼ 5=2 S ¼ 1=2 S ¼ 3=2 S ¼ 5=2

ΔE State ΔE State ΔE State ΔE State ΔE State ΔE State

udscc̄ −124 Ληcð7Þ −43 ΛJ=ψð5Þ −12 Ξ�
cD�ð1Þ −46 Σηcð8Þ −31 ΣJ=ψð7Þ −44 Σ�J=ψð2Þ

udssc̄ −117 ΛDsð4Þ −62 ΛD�
sð3Þ −7 Ξ�D�ð1Þ 54 ΣDsð4Þ 1 ΣD�

sð4Þ −17 Σ�D�
sð1Þ

udccs̄ −135 ΞccKð4Þ −94 Ξ�
ccKð3Þ −3 Ξ�

ccK�ð1Þ 133 ΞccKð4Þ 85 Ξ�
ccKð4Þ 6 Ξ�

ccK�ð1Þ
udccc̄ −38 Λcηcð4Þ −43 ΛcJ=ψð3Þ −17 Ξ�

ccD�ð1Þ 14 Σcηcð4Þ −31 Σ�
cηcð4Þ 0 Σ�

cJ=ψð1Þ
udssb̄ −92 ΛBsð4Þ −67 ΛB�

sð3Þ −7 Ξ�B�ð1Þ 24 ΣBsð4Þ 20 ΣB�
sð4Þ −17 Σ�B�

sð1Þ
uudds̄ 98 NKð1Þ 74 NK�ð1Þ
uuddc̄ 66 NDð1Þ 58 ND�ð1Þ
uuddb̄ 54 NBð1Þ 52 NB�ð1Þ
uuuds̄ 337 NKð2Þ −74 ΔKð2Þ 0 ΔK�ð1Þ
uuudc̄ 223 NDð2Þ 79 ND�ð2Þ 0 ΔD�ð1Þ
uuudb̄ 175 NBð2Þ 172 NB�ð2Þ 0 ΔB�ð1Þ

1This state corresponds to the most stable Pc̄s state discussed in
Ref. [5].
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energy against its threshold represented in the third row for
each state. It should be noted that Hhyp for each state
reduces to −36Cmimj

when the Cmimj
’s are taken to be a

quark mass independent constant. It should be noted that all
these possible stable states are related to the attractive
pentaquark states discussed in Ref. [4,5] in the flavor SU(3)
symmetric limit. However, it should also be pointed out that
when the charm quark is also included, together with its
hyperfine contribution, it is the Pccðudccs̄Þ pentaquark
configuration that is most attractive. This state has also
been discussed recently in Ref. [24]. The next attractive
state is udscc̄, which could also be stable.

It should be noted that for the pentaquark to be stable
against strong decay, the respective attraction obtained in
Table V should be large enough to overcome the additional
kinetic energy needed to bring the pentaquark into a compact
configuration. This additional repulsive energy can be
estimated in a constituent quark model by comparing the
total kinetic energy of a separated baryon meson configu-
ration to that of the corresponding compact pentaquark
configuration. The energy is related to p2

rel=2μ, where prel is
the relative momentum and thus the inverse size of the
compact configuration while μ is the reduced mass of
the lowest threshold baryon meson system [19]. For the
Pccðudccs̄Þ state, this is typically of order 100MeV. Hence,
the proposed pentaquark state could be a weakly stable
pentaquark or a resonance state slightly above the lowest
threshold, which is Ξcc þ K for this state.
The Pccðudccs̄Þ could also be easily observed with the

present detection limits. Noting that Ξcc has been recently
discovered, one can just add an additional kaon to look for
this possible resonance state. If the state is strongly bound,
one could look at the Pccðudccs̄Þ → ΛcKþK−πþ decay or
any hadronic decay mode similar to those of ΛcDþ

s . The
proposed final state is just reconstructing Kþ instead of πþ
in the measurement of Ξþþ

cc → ΛcK−πþπþ reported in
Ref. [10] and hence measurable immediately. Such a
measurement would be the first confirmation of a flavor
exotic pentaquark state.
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