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We present the detailed derivation of the longitudinal part of the three-gluon vertex from the Slavnov-
Taylor identities that it satisfies, by means of a nonperturbative implementation of the Ball-Chiu
construction; the latter, in its original form, involves the inverse gluon propagator, the ghost dressing
function, and certain form factors of the ghost-gluon kernel. The main conceptual subtlety that renders this
endeavor nontrivial is the infrared finiteness of the gluon propagator, and the resulting need to separate the
vertex into two pieces, one that is intimately connected with the emergence of a gluonic mass scale, and one
that satisfies the original set of Slavnov-Taylor identities, but with the inverse gluon propagator replaced by
its “kinetic” term. The longitudinal form factors obtained by this construction are presented for arbitrary
Euclidean momenta, as well as special kinematic configurations, parametrized by a single momentum. A
particularly preeminent feature of the components comprising the tree-level vertex is their considerable
suppression for momenta below 1 GeV, and the appearance of the characteristic “zero-crossing” in the
vicinity of 100–200 MeV. Special combinations of the form factors derived with this method are compared
with the results of recent large-volume lattice simulations, and are found to capture faithfully the rather
complicated curves formed by the data. A similar comparison with results obtained from Schwinger-Dyson
equations reveals a fair overall agreement, but with appreciable differences at intermediate energies. A
variety of issues related to the distribution of the pole terms responsible for the gluon mass generation are
discussed in detail, and their impact on the structure of the transverse parts is elucidated. In addition, a brief
account of several theoretical and phenomenological possibilities involving these newly acquired results is
presented.
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I. INTRODUCTION

The three-gluon vertex of QCD, to be denoted by IΓαμν, is
inseparably linked with the non-Abelian nature of the
theory [1], and is crucial for its most celebrated perturbative
property, namely asymptotic freedom [2,3]. In addition, in
recent years, the paramount importance of IΓαμν for a
plethora of nonperturbative phenomena has become increas-
ingly evident among practitioners, leading to a vigorous
activity for unraveling its infrared properties [4–29]. In
particular, distinct but equally remarkable aspects of the
three-gluon vertex are intimately associated with the emer-
gence of a gluonic mass scale [30–42], the masses and
properties of glueballs [43–46], and the potential formation
of hybrids and exotics states [47].

Perhaps the most intriguing nonperturbative aspect of the
three-gluon vertex in the Landau gauge is its so-called
“infrared suppression.” Specifically, the predominant form
factors of IΓαμν, which at tree level are equal to unity,
decrease gradually as the Euclidean momenta become
comparable to the fundamental QCD scale, and eventually
reverse their sign, displaying the characteristic “zero-cross-
ing” [14,15,18,25,28,48], finally diverging logarithmically
at the origin. These exceptional features have far-reaching
theoretical and phenomenological consequences. From the
theoretical point of view, the aforementioned behavior of
the vertex hinges on the subtle interplay between dynamical
effects originating from the two-point sector of the theory
[8,38,49–52]. In particular, while the gluon acquires
dynamically an effective mass, the ghost remains massless
even nonperturbatively; thus, loops containing gluons give
rise to “protected” logarithms, whilst loops containing
ghosts to divergent ones [18]. From the phenomenological
perspective, the infrared suppression of IΓαμν, and the overall
attenuation of the interaction strength that this causes to the
Bethe-Salpeter kernels [43,46], appears to be instrumental
for the formation of glueball states with masses compatible
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with those obtained from lattice simulations [53].Moreover,
the necessity of a considerable suppression has become
evident also in a recent study of the hybrid states, in the
framework of the Faddeev equations [47].
At the technical level, the nonperturbative study of the

three-gluon vertex is particularly challenging, mainly
because it is composed by 14 form factors, which are
complicated functions of three independent momenta
(q, r, and p) [54]. The knowledge of the full momentum
dependence of the form factors, in turn, may be crucial for
the phenomenological applicationsmentioned above, essen-
tially because IΓαμνðq; r; pÞ appears usually inside “loops,”
and the evaluation of its contribution to the effective strength
requires the integration over some of its momenta in the
entire range of values. In order to acquire this type of detailed
information, one has to turn to continuous approaches,
such as the Schwinger-Dyson equations (SDEs) [10,11,14–
17,55–59] or the functional renormalization group
[21,22,60]. Within these latter formalisms, the dynamical
equations governing the momentum evolution of the form
factors of IΓαμν (or selected subsets thereof) are projected out
and solved, usually resorting to certain physically motivated
assumptions and judiciously constructed Ansätze, in order
to reduce, to some extent, the vast complexity of such
undertakings.
In the present work we employ an alternative procedure,

which exploits the Slavnov-Taylor identities (STIs), and
amounts essentially to a contemporary application of the
time-honored method known as “gauge technique”
[61–64]. The central idea underlying this approach is to
reconstruct the nontransverse part1 of the vertex from the
quantities that enter in the STIs that IΓαμνðq; r; pÞ satisfies
[see Eq. (2.4)]. In particular, Ball and Chiu (BC) [54] cast
the gluon propagator in the form Δ−1ðqÞ ¼ q2JBCðqÞ, and
express the 10 longitudinal form factors in terms of JBCðqÞ,
the ghost dressing function, FðqÞ, and a subset of the
factors comprising the so-called “ghost-gluon scattering
kernel”, Hνμ. The nonperturbative structure of all these
quantities is in principle known: both ΔðqÞ and FðqÞ have
been the focal point of intense investigations in a multitude
of studies [33,67–83], while the form factors of Hνμ have
been computed in a recent work [84], using the one-loop
dressed approximation of the SDEs they satisfy.
It turns out, however, that the exercise at hand is

considerably more subtle then the simple substitution of
the aforementioned ingredients into the BC solution. The
first observation suggesting the need for a nonperturbative
“reinterpretation” of the BC construction stems from the
fact that the gluon propagator is infrared finite; then, if the

BC parametrization is taken at face value, one realizes
immediately that JBCðqÞ diverges at the origin as
Δ−1ð0Þ=q2. Thus, the “naive” use of the BC solution
[54] in the case of an infrared finite gluon propagator
would give rise to a longitudinal IΓαμν plagued with poles,
which would diverge in the corresponding kinematic limits.
At first sight, this observation alone may not be

considered as sufficient cause for readjusting the BC
construction; after all, as has been explained in a series
of works, the presence of massless poles in IΓαμνðq; r; pÞ is
needed precisely for obtaining an infrared finite solution
out of the gluon SDE [33,34,36–41]. The reader must note,
however, an important caveat, spelled out in all works cited
above: the massless poles contained in IΓαμν, comprising a
term to be denoted by Vαμν, must be of a very special type.
In particular, they must be “longitudinally coupled,” i.e.,
appear exclusively in the form qα=q2, rμ=r2, or pν=p2, or
products thereof [see Eq. (2.8)] [36–41]; and this is clearly
not the case for the poles induced from the naive use of
JBCðqÞ. In fact, while the former decouple from physical
amplitudes and lattice observables, the latter would, in
general, persist.
Instead, the self-consistent way to proceed may be

briefly described as follows.
(i) One starts by casting the gluon propagator in the

form [36,85]2 Δ−1ðqÞ ¼ q2JðqÞ þm2ðqÞ, where
Δ−1ð0Þ ¼ m2ð0Þ (Euclidean space). Evidently,
JBCðqÞ ≠ JðqÞ; in fact, while JBCðqÞ diverges as
1=q2 at the origin, JðqÞ diverges only logarithmi-
cally, precisely due to the presence of massless ghost
loops in its diagrammatic representation.

(ii) The STIs of IΓαμνðq; r; pÞ [see Eq. (2.4)] will be
realized in a very particular way. First, the above
form of Δ−1ðqÞ is substituted on their right-hand
side (r.h.s.) Then, on the left-hand side (l.h.s.),
IΓαμνðq; r; pÞ is written as the sum of the pole part,
Vαμν, and a remainder, denoted by Γαμν. At this
point, given that the origin of the terms m2ðqÞ is
inextricably connected to the existence of Vαμν, it is
natural to state that the divergence of Vαμν on the
l.h.s. is responsible for the appearance of the mass
terms m2ðqÞ on the r.h.s., while the divergence of
Γαμν accounts for the “kinetic” terms JðqÞ. Thus,
each original STI is decomposed into two “partial”
ones, one satisfied by Γαμν and one by Vαμν [see
Eqs. (2.10) and (2.11), respectively] [36–41,87].

(iii) This particular decomposition of the STIs converts
the original exercise into the following equivalent
task. The partial STIs satisfied by Γαμν are precisely
of the type appearing in the original BC construction

1In the original work by Ball and Chiu [54], this part is referred
to as “longitudinal”, whereas, in some of the more recent
literature, the alternative terms “gauge” [65], or “STI saturating”
[66] have been put forth as more accurate; throughout this work
we adhere to the initial term “longitudinal.”

2Note that, in contradistinction to the more familiar case of the
quark propagator, this particular decomposition into a “kinetic”
and a “mass” term is not mathematically unique [86].
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[54]; indeed, now, on their r.h.s. one has only terms
of the type q2JðqÞ, which, up to the aforementioned
logarithms, are well behaved in the infrared (have no
poles). Thus, the BC construction may be applied
mutatis mutandis for the determination of the longi-
tudinal part of Γαμν.

(iv) As for Vαμν, its form is completely determined from
the corresponding partial STIs that it satisfies,
together with the crucial requirement that it be
“longitudinally coupled.” Its detailed construction
and closed form have been worked out in [37]; see
also Eqs. (2.8) and (2.12) of the present article, and
the related discussion.

In this work we carry out in the construction described in
(i)–(iii), whose careful implementation furnishes the 10
longitudinal form factors of Γαμν, for general values of their
Euclidean momenta. The results obtained, in addition to
displaying the special features of general infrared suppres-
sion, zero crossing, and logarithmic divergence at the origin,
compare rather favorably with the lattice data of [25].
The article is organized as follows. In Sec. II we

introduce the notation and set up the theoretical framework.
We pay particular attention to the connection between
IΓabc

αμνðq; r; pÞ and the mechanism that endows the gluons
with a dynamical mass, and introduce the two basic
components, Γαμν and Vαμν, together with the “partial”
STIs that they satisfy. In Sec. III we present the BC solution
for the longitudinal form factors Xi of Γαμν, derived from
the aforementioned STIs, and comment on the constraints
imposed by Bose symmetry. Our main results are presented
in Sec. IV, where we explain the theoretical origin of the
inputs used in our analysis, present and discuss several three-
dimensional (3D) and two-dimensional (2D) plots for theXi,
and compare them with the results of one-loop calculations.
Next, in Sec. V we compare our findings with those of
previous works based on SDEs, as well as with the two
kinematic configurations obtained from recent lattice sim-
ulations. In Sec. VI we discuss a series of subtleties related
with the construction developed, paying particular attention
to the distribution and interpretation of themassless poles. In
Sec. VII we elaborate on the complications associated with
the “naive” implementation of the BC construction, discus-
sing the necessary adjustments required for its applicability.
Sec. VIII is dedicated to a summary of our results, and the
discussion of some possible future applications. Finally, in
Appendices A and B we present the one-loop results for the
form factors in the “totally symmetric” and “asymmetric”
configurations, and the transformation rules connecting the
BC and the naive bases.

II. GENERAL FRAMEWORK AND
THEORETICAL FOUNDATIONS

In this section we introduce the necessary notation
and definitions, review certain important relations, and

elaborate on the main conceptual issues associated with the
nonperturbative structure of the three-gluon vertex.
Throughout this article we work in the Landau gauge,

where the gluon propagator Δab
μνðqÞ ¼ δabΔμνðqÞ assumes

the completely transverse form,

ΔμνðqÞ¼−iΔðqÞPμνðqÞ; PμνðqÞ¼ gμν−
qμqν
q2

: ð2:1Þ

In addition, we introduce the ghost propagator, DabðqÞ ¼
δabDðqÞ, whose dressing function, FðqÞ, is given by

DðqÞ ¼ iFðqÞ
q2

: ð2:2Þ

The focal point of the present work is the three-gluon
vertex, to be denoted by IΓabc

αμνðq; r; pÞ ¼ gfabcIΓαμνðq; r; pÞ,
which is diagrammatically represented in Fig. 1; note
that all momenta are considered to be incoming, so that

qþpþr¼0. At tree level, IΓαμνðq;r;pÞ≔Γð0Þ
αμνðq;r;pÞ,

where

Γð0Þ
αμνðq; r; pÞ ¼ ðq − rÞνgαμ þ ðr − pÞαgμν þ ðp − qÞμgαν:

ð2:3Þ

The vertex IΓabc
αμνðq; r; pÞ displays full Bose symmetry,

i.e., it remains invariant under the exchange of all “indices”
associated with any two of its legs, such as, for example,
ða; α; qÞ ↔ ðb; μ; rÞ. This fundamental property, in turn,
imposes nontrivial constraints on the form factors com-
prising the three-gluon vertex [see Eqs. (3.7)–(3.9)].
The most important relations for the ensuing analysis are

the three STIs that IΓαμν satisfies when contracted by rμ, qα,
or pν, given by [54]

qαIΓαμνðq; r; pÞ ¼ FðqÞ½Δ−1ðpÞPα
νðpÞHαμðp; q; rÞ

− Δ−1ðrÞPα
μðrÞHανðr; q; pÞ�;

rμIΓαμνðq; r; pÞ ¼ FðrÞ½Δ−1ðqÞPμ
αðqÞHμνðq; r; pÞ

− Δ−1ðpÞPμ
νðpÞHμαðp; r; qÞ�;

pνIΓαμνðq; r; pÞ ¼ FðpÞ½Δ−1ðrÞPν
μðrÞHναðr; p; qÞ

− Δ−1ðqÞPν
αðqÞHνμðq; p; rÞ�: ð2:4Þ

FIG. 1. The full three-gluon vertex with all momenta entering.
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The Hνμðq; p; rÞ appearing in the above STIs stands for
the ghost-gluon scattering kernel, whose general Lorentz
decomposition is given by [54,88]

Hνμðq;p;rÞ¼ gμνA1þqμqνA2þrμrνA3þqμrνA4þrμqνA5;

ð2:5Þ

where the momentum dependence of the form factors,
Ai ≡ Aiðq; p; rÞ, has been suppressed for compactness.

Notice that, at tree level, Hð0Þ
νμ ðq; p; rÞ ¼ gμν, so that A

ð0Þ
1 ¼

1 and Að0Þ
i ¼ 0, for i ¼ 2;…; 5. The nonperturbative

structure of the form factors Ai is essential for the
construction at hand, and has been studied in detail in [84].
Turning now to the relevant dynamical issues, let us first

consider the gluon propagator. As has been firmly estab-
lished through a multitude of studies on the lattice [67–77]
and in the continuum [33,78–83], ΔðqÞ saturates in the
deep infrared at a finite nonvanishing value, i.e.,
Δ−1ð0Þ ¼ c ≠ 0, both in the Landau gauge as well as
away from it [89–95]. This characteristic property, in turn,
has been interpreted to signal the emergence of a mass scale
in the gauge sector of QCD. Motivated by this interpre-
tation, it is natural to cast ΔðqÞ in the form (Euclidean
space) [36,85]

Δ−1ðqÞ ¼ q2JðqÞ þm2ðqÞ; ð2:6Þ

where q2JðqÞ corresponds to the so-called “kinetic term”,
while m2ðqÞ to an effective (momentum-dependent) gluon
mass, with the property m2ð0Þ ¼ Δ−1ð0Þ.
The formalism obtained from the fusion of the pinch

technique [4,30,34,96–98] with the background field
method (PT-BFM) [99–106] is particularly suited for
addressing this fundamental question, by means of the
special SDE governing the dynamical evolution of ΔðqÞ.
Within this latter framework, the emergence of a nontrivial
m2ðqÞ (i.e., the existence of “massive” solutions) proceeds
through a non-Abelian realization of the Schwinger mecha-
nism [107,108], which, in the absence of fundamental
scalar fields, endows gauge bosons with masses. The
implementation of this mechanism, in turn, hinges crucially
on the presence of “longitudinally coupled”massless poles
in the vertex IΓαμνðq; r; pÞ, which constitutes a key ingre-
dient of the aforementioned gluon SDE [109–114]. In
particular, IΓαμνðq; r; pÞ is composed by two distinct terms,
namely

IΓαμνðq; r; pÞ ¼ Γαμνðq; r; pÞ þ Vαμνðq; r; pÞ; ð2:7Þ

where Vαμνðq; r; pÞ denotes the part associated with the
massless poles, while Γαμνðq; r; pÞ captures all remaining
contributions. In what follows we briefly summarize some
basic properties of Vαμνðq; r; pÞ, which is diagrammatically

represented in the Fig. 2; for further details, the reader is
referred to the related literature [36,37,40,41,87].

(i) The origin of the massless poles is dynamical rather
than kinematic, in the sense that, for sufficiently
strong binding, the mass of certain colored bound
states may be reduced to zero [109–114]. The actual
nonperturbative realization of this possibility within
a contemporary QCD framework has been demon-
strated in [36–41,87], where the homogeneous
Bethe-Salpeter equation (BSE) that controls the
formation of these bound states was investigated.

(ii) The term “longitudinally coupled” means that
Vαμνðq; r; pÞ assumes the very special form

Vαμνðq;r;pÞ¼
�
qα
q2

�
Aμνðq;r;pÞþ

�
rμ
r2

�
Bανðq;r;pÞ

þ
�
pν

p2

�
Cαμðq;r;pÞ; ð2:8Þ

and therefore, Vαμνðq; r; pÞ satisfies the crucial
relation

Pαα0 ðqÞPμμ0 ðrÞPνν0 ðpÞVαμνðq; r; pÞ ¼ 0: ð2:9Þ

(iii) We emphasize that the form of Vαμνðq; r; pÞ given in
Eq. (2.8) emerges automatically in the dynamical
framework put forth in the classic works of
[109–114], and its contemporary variations, studied
in [36–41]. In particular, the pole in the q-channel is
due to the propagation of a massless bound state
excitation [87], as shown in the diagram of the Fig. 2;
the poles in the other two channels are obtained
through the cyclic permutations imposed by the
Bose-symmetry of Vαμνðq; r; pÞ. We emphasize that,
within this scenario, Lorentz invariance alone forces
the saturation ofq by its ownLorentz indexα; in other

FIG. 2. The pole vertex Vαμνðq; r; pÞ is composed of three main
ingredients: the transition amplitude, IαðqÞ, which mixes the
gluon with a massless excitation, the propagator of the massless
excitation 1=q2, while Bμν (and Bρσ) denotes the proper vertex
that couples the massless excitation to a pair of gluons, and “c.p.”
stands for “cyclic permutations”.
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words, the special form of Eq. (2.8) is not assumed,
but, instead, emerges automatically.

(iv) Note, in addition, that the pivotal property of
Eq. (2.9) guarantees the decoupling of the massless
excitations from physical “on-shell” amplitudes, as
well as its vanishing from the transversely projected
version of IΓαμνðq; r; pÞ, which constitutes the
natural ingredient of lattice observables, such as
those considered in Sec. V B [see Eqs. (5.1) and
(5.2)].

(v) A crucial one-to-one correspondence betweenm2ðqÞ
andVαμνðq; r; pÞ is imposed by the need to evade, in a
STI preserving way, the so-called “seagull-identity”
[38,39,115]. Specifically, if one substitutes Eq. (2.7)
into the l.h.s and Δ−1ðqÞ ¼ q2JðqÞ −m2ðqÞ (Min-
kowski space) into the r.h.s. of Eq. (2.4), the full STI
must be realized as the sum of two specific pieces,
namely

qαΓαμνðq; r; pÞ ¼ FðqÞ½p2JðpÞPα
νðpÞHαμðp; q; rÞ

− r2JðrÞPα
μðrÞHανðr; q; pÞ�;

ð2:10Þ

and

qαVαμνðq; r; pÞ ¼ FðqÞ½m2ðrÞPα
μðrÞHανðr; q; pÞ

−m2ðpÞPα
νðpÞHαμðp; q; rÞ�:

ð2:11Þ

Evidently, two additional pairs of similar (cyclically
permuted) relations are obtained from the other two
STIs of Eq. (2.4).

(vi) It turns out that Eq. (2.9), together with Eq. (2.11)
and the other two cyclic relations, determine com-
pletely the form of Vαμνðq; r; pÞ [37]; in particular,

Aμνðq; r; pÞ ¼
Fðq2Þ
2

fm2ðr2ÞPρ
μðrÞ½gσν þ Pσ

νðpÞ�Hρσðr; q; pÞ−m2ðp2ÞPρ
νðpÞ½gσμ þ Pσ

μðrÞ�Hρσðp; q; rÞg;

Bανðq; r; pÞ ¼
Fðr2Þ
2

fm2ðp2ÞPρ
νðpÞ½gσα þ Pσ

αðqÞ�Hρσðp; r; qÞ−m2ðq2ÞPρ
αðqÞ½gσν þ Pσ

νðpÞ�Hρσðq; r; pÞg;

Cαμðq; r; pÞ ¼
Fðp2Þ
2

fm2ðq2ÞPρ
αðqÞ½gσμ þ Pσ

μðrÞ�Hρσðq; p; rÞ−m2ðr2ÞPρ
μðrÞ½gσα þ Pσ

αðqÞ�Hρσðr; p; qÞg: ð2:12Þ

Clearly, the substitution of the above terms into
Eq. (2.8) gives rise to a Vαμνðq; r; pÞ that is mani-
festly Bose-symmetric. Note that Vαμνðq; r; pÞ con-
tains single-, double-, and triple-pole terms, such as,
for example, qαgμνq2 , qαrμrνq2r2 , and

qαrμpν

q2r2p2 [37]. On the other

hand, terms having their momenta and Lorentz
indices “mismatched,” e.g., pαgμν

q2 or rαpμqν
q2r2p2, are absent.

After this brief review, we return to the central objective
of this work, namely the implementation of the BC solution
in order to reconstruct the longitudinal part of Γαμνðq; r; pÞ
from Eq. (2.10) and the other two similar STIs obtained
from the contraction by rμ and pν. However, before
embarking into the technical details of this construction,
it is important to clarify an essential point regarding the
central ingredient of the BC solution for Γαμνðq; r; pÞ,
namely the function JðqÞ, and, in particular, the way in
which it may be actually computed.
To that end, note that the special decomposition of the

IΓαμνðq; r; pÞ given in Eq. (2.7) leads to the separation of the
SDE for ΔðqÞ into two individual but coupled integral
equations, governing the evolution of JðqÞ and m2ðqÞ
[36,86]. It turns out that the components of the equation
that determines m2ðqÞ are considerably better known than
those entering in the equation for JðqÞ; in particular, the
four-gluon vertex drops practically out from the former, but

is present in the latter. Therefore, given these practical
limitations, one proceeds as follows. First, the equation for
m2ðqÞ is solved in isolation, using as input the lattice data
for ΔðqÞ, together with certain simplifying assumptions
related to multiplicative renormalization. Then, one
employs Eq. (2.6) once again, and obtains q2JðqÞ by
subtracting the solution for m2ðqÞ from the lattice data
for Δ−1ðqÞ [70]. A different, but theoretically equivalent
procedure, involves the derivation of a special BSE, whose
solution is identified with the first derivative of m2ðqÞ
[40,87]; then, numerical integration furnishes m2ðqÞ, and
its subtraction from Δ−1ðqÞ, exactly as before, furnishes
q2JðqÞ. In Sec. IV we will further elaborate on the structure
of JðqÞ, its characteristic properties, and the uncertainties in
its determination.

III. THE BALL-CHIU SOLUTION FOR Γαμνðq;r;pÞ
For the actual construction of the vertex Γαμνðq; r; pÞ, let

us cast it in the form

Γαμνðq; r; pÞ ¼ Γαμν
L ðq; r; pÞ þ Γαμν

T ðq; r; pÞ; ð3:1Þ

where the “longitudinal” part, Γαμν
L ðq; r; pÞ, saturates the

relevant STIs [Eq. (2.10) and c.p. thereof], while the totally
“transverse” part, Γαμν

T ðq; r; pÞ, satisfies
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qαΓ
αμν
T ðq;r;pÞ¼ rμΓ

αμν
T ðq;r;pÞ¼pνΓ

αμν
T ðq;r;pÞ¼ 0:

ð3:2Þ

For the explicit tensorial decomposition of Γαμν
L ðq; r; pÞ and

Γαμν
T ðq; r; pÞ we will employ the Bose symmetric basis

introduced in [54]. Specifically,

Γαμν
L ðq; r; pÞ ¼

X10
i¼1

Xiðq; r; pÞlαμν
i ; ð3:3Þ

where the tensors lαμν
i are given by

lαμν
1 ¼ ðq − rÞνgαμ; lαμν

2 ¼ −pνgαμ; lαμν
3 ¼ ðq − rÞν½qμrα − ðq · rÞgαμ�;

lαμν
4 ¼ ðr − pÞαgμν; lαμν

5 ¼ −qαgμν; lαμν
6 ¼ ðr − pÞα½rνpμ − ðr · pÞgμν�;

lαμν
7 ¼ ðp − qÞμgαν; lαμν

8 ¼ −rμgαν; lαμν
9 ¼ ðp − qÞμ½pαqν − ðp · qÞgαν�; lαμν

10 ¼ qνrαpμ þ qμrνpα; ð3:4Þ

and

Γαμν
T ðq; r; pÞ ¼

X4
i¼1

Yiðq; r; pÞtαμνi ; ð3:5Þ

with the tαμνi given by

tαμν1 ¼ ½ðq · rÞgαμ − qμrα�½ðr · pÞqν − ðq · pÞrν�;
tαμν2 ¼ ½ðr · pÞgμν − rνpμ�½ðp · qÞrα − ðr · qÞpα�;
tαμν3 ¼ ½ðp · qÞgνα − pαqν�½ðq · rÞpμ − ðp · rÞqμ�;
tαμν4 ¼ gμν½ðr · qÞpα − ðp · qÞrα� þ gνα½ðp · rÞqμ − ðq · rÞpμ� þ gαμ½ðq · pÞrν − ðr · pÞqν� þ rαpμqν − pαqμrν: ð3:6Þ

At tree level, the only nonvanishing form factors are

Xð0Þ
1 ðq; r; pÞ ¼ Xð0Þ

4 ðq; r; pÞ ¼ Xð0Þ
7 ðq; r; pÞ ¼ 1:

Bose symmetry with respect to the three legs requires that ΓL reverses sign under the interchange of the corresponding
Lorentz indices and momenta (remember that the color factor fabc has been factored out); this, in turn, imposes the
following relations under the exchange of arguments [54]

X1ðq; r; pÞ ¼ X1ðr; q; pÞ; X2ðq; r; pÞ ¼ −X2ðr; q; pÞ; X3ðq; r; pÞ ¼ X3ðr; q; pÞ;
X4ðq; r; pÞ ¼ X4ðq; p; rÞ; X5ðq; r; pÞ ¼ −X5ðq; p; rÞ; X6ðq; r; pÞ ¼ X6ðq; p; rÞ;
X7ðq; r; pÞ ¼ X7ðp; r; qÞ; X8ðq; r; pÞ ¼ −X8ðp; r; qÞ; X9ðq; r; pÞ ¼ X9ðp; r; qÞ;
X10ðq; r; pÞ ¼ −X10ðr; q; pÞ; X10ðq; r; pÞ ¼ −X10ðq; p; rÞ; X10ðq; r; pÞ ¼ −X10ðp; r; qÞ: ð3:7Þ

In addition, Bose symmetry furnishes the following relations between different form factors [54]

X4ðq; r; pÞ ¼ X1ðr; p; qÞ; X5ðq; r; pÞ ¼ X2ðr; p; qÞ; X6ðq; r; pÞ ¼ X3ðr; p; qÞ;
X7ðq; r; pÞ ¼ X1ðp; q; rÞ; X8ðq; r; pÞ ¼ X2ðp; q; rÞ; X9ðq; r; pÞ ¼ X3ðp; q; rÞ; ð3:8Þ

which reduce the number of independent form factors from the original ten to only four, namely X1, X2, X3, and X10. In
particular, if the dependence of X1, X2, X3 on ðq; r; pÞ could be cast in a closed functional form, then all other Xi would be
obtained from them through a simple interchange of the appropriate momenta, according to Eq. (3.8). However, in practice,
X1, X2, X3, and X10 are computed numerically, and the reconstruction of the remaining Xi requires a modest amount of
additional numerical effort; a concrete example of how to obtain X4 from X1 will be given in Sec. IV C.
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For the transverse part, Bose symmetry implies that [54]

Y1ðq; r; pÞ ¼ Y1ðr; q; pÞ; Y2ðq; r; pÞ ¼ Y2ðq; p; rÞ;
Y3ðq; r; pÞ ¼ Y3ðp; r; qÞ; ð3:9Þ

and

Y2ðq;r;pÞ¼Y1ðr;p;qÞ; Y3ðq;r;pÞ¼Y1ðp;q;rÞ:
ð3:10Þ

Therefore, there are only two independent transverse form
factors, Y1 and Y4.
The form factors Xi are fully determined in terms

of the Aj, FðqÞ, and JðqÞ by solving the system of linear
equations generated by the identity given in Eq. (2.10) and
its cyclic permutations. Specifically, the solutions for X1,
X2, X3, and X10, first obtained in Ref. [54], read

X1ðq;r;pÞ¼
1

4
½2ðapqrþaprqÞþp2ðbqrpþbrqpÞ

þ2ðq ·pdprqþ r ·pdpqrÞ
þðq2−r2Þðbrpqþbpqr−bqpr−bprqÞ�;

X2ðq;r;pÞ¼
1

4
½2ðaprq−apqrÞ− ðq2− r2ÞðbqrpþbrqpÞ

þ2ðq ·pdprq− r ·pdpqrÞ
þp2ðbprq−bpqrþbqpr−brpqÞ�;

X3ðq;r;pÞ¼
1

q2−r2
½arpq−aqprþ r ·pdqpr−q ·pdrpq�;

X10ðq;r;pÞ¼−
1

2
½bqrpþbrpqþbpqr−bqpr−brqp−bprq�;

ð3:11Þ
where we introduce the following compact notation

aqrp ≡ FðrÞJðpÞA1ðp; r; qÞ;
bqrp ≡ FðrÞJðpÞA3ðp; r; qÞ;
dqrp ≡ FðrÞJðpÞ½A4ðp; r; qÞ − A3ðp; r; qÞ�: ð3:12Þ

Clearly, these expressions satisfy the exchange sym-
metries of Eq. (3.7). The remaining sixXi may be computed
by permuting the arguments, according to Eq. (3.8).
Notice that if the contributions from the ghost sector are

turned off, by setting Hνμðq; p; rÞ ¼ gνμ and FðqÞ ¼ 1 into
Eqs. (3.11), we obtain the “Abelianized” form factors,
X̂iðq; r; pÞ (in Minkowski space),

X̂1ðq;r;pÞ¼
1

2
½JðrÞþJðqÞ�; X̂3ðq;r;pÞ¼

½JðqÞ−JðrÞ�
q2− r2

;

X̂2ðq;r;pÞ¼
1

2
½JðqÞ−JðrÞ�; X̂10ðq;r;pÞ¼ 0: ð3:13Þ

Evidently, the above expressions display the correct Bose
symmetry properties required by Eqs. (3.7) and (3.8). In
fact, this is exactly the result of the BC construction for a
vertex with three “background” gluons, which satisfies
“Abelian”Ward identities [4,6,9,12]; of course, in that case,
the additional replacement JðqÞ → JðqÞ½1þ GðqÞ�−2 must
be carried out, where the function 1þGðqÞ has been
studied extensively in the literature [33,34,52,116,117].
Let us finally emphasize that, as long as the quantities

appearing on the r.h.s. of Eq. (3.11) are properly renor-
malized, the resulting Xiðq; r; pÞ will be free of ultraviolet
divergences. This is indeed the case, given that FðqÞ,
JðqÞ, and the form factors Aiðq; p; rÞ have been duly
renormalized [84], using a particular version of the general
momentum subtraction (MOM) scheme, known as “Taylor
scheme” [118].
In particular, let the renormalization constants of the

gluon and ghost propagators and the ghost-gluon and three-
gluon vertices be defined as [17]

ΔRðqÞ ¼ Z−1
A ΔðqÞ;

FRðqÞ ¼ Z−1
c FðqÞ;

Γμ
Rðq; p; rÞ ¼ Z1Γμðq; p; rÞ;

Γαμν
R ðq; r; pÞ ¼ Z3Γαμνðq; r; pÞ; ð3:14Þ

where the subscript “R” denotes renormalized quantities.
In the Taylor scheme, the renormalization constants ZA

and Zc are defined by imposing tree-level values for the
propagators at μ, i.e., FðμÞ ¼ 1 and JðμÞ ¼ 1,3 while A1

assumes its tree-level value in the “soft-ghost” kinematics,
where Taylor’s theorem is valid (Landau gauge), and
therefore one sets Z1 ¼ 1 [119]. Then, the remaining
renormalization constant, Z3, is completely determined
by appealing to the STI of Eq. (2.4), which implies that

Z3 ¼ ZAZ1Z−1
c : ð3:15Þ

As a consequence of this particular choice, the results for
the three-gluon vertex will not match exactly those obtained
by renormalizing X1 in the “totally symmetric” configu-
ration, q2 ¼ p2 ¼ r2 ¼ μ2, often used in the literature.
Note, however, that, as has been explicitly shown in [84],
when X1 is renormalized in the Taylor scheme and
subsequently evaluated at the symmetric point, it departs
from unity only by about 3% (for μ ¼ 4.3 GeV).

3Strictly speaking, given the form of Δ−1ðqÞ in Eq. (2.6), at μ
one must impose the condition Δ−1ðμÞ ¼ μ2 þm2ðμÞ, which
yields JðμÞ ¼ 1; however, in practice, the same result emerges by
imposing simply Δ−1ðμÞ ¼ μ2, given that, at μ ¼ 4.3 GeV,
m2ðμÞ is negligible.
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IV. NUMERICAL ANALYSIS AND MAIN RESULTS

In this section we present the numerical analysis and
main results for the form factors X1, X2, X3, and X10,
defined by Eq. (3.11).

A. Inputs

As can be observed from Eq. (3.11), the numerical
evaluation of various Xi requires the knowledge of the
following additional quantities: (i) the ghost dressing
function, FðqÞ, (ii) the kinetic part of the gluon propagator,
JðqÞ, and (iii) the form factors A1, A3, and A4 of
Hνμðq; p; rÞ. It is important to emphasize that throughout
this work, the renormalization point will be fixed at
μ ¼ 4.3 GeV, and we will use αsðμÞ≡ g2=4π ¼ 0.22;
the determination of this value entails a subtle combination
of 4-loop perturbative results, nonperturbative information
included in the vacuum condensate of dimension two, and
the extraction of ΛQCD from lattice results of the ghost-
gluon vertex in the Taylor kinematics [118].
In what follows, we will specify the main characteristics

of FðqÞ, JðqÞ, and the Ai, which will be treated as external
inputs.

(i) For the ghost dressing function FðqÞ we employ a
physicallymotivated fit of the solution obtained from
the ghost SDE [17], which is in excellent agreement
with the lattice data of [70]. Specifically, the fit for
FðqÞ (in Euclidean space) is given by [84,120]

F−1ðqÞ ¼ 1þ 9CAαs
48π

½1þD expð−ρ4q2Þ�

× ln

�
q2 þ ρ3M2ðqÞ

μ2

�
; ð4:1Þ

where

M2ðqÞ ¼ m2

1þ q2=ρ22
; ð4:2Þ

and the fitting parameters are given by m2 ¼
0.16 GeV2, ρ22 ¼ 0.69 GeV2, ρ3 ¼ 0.89, ρ4 ¼
0.12 GeV−2 andD ¼ 2.36. In the left panel of Fig. 3,
we show the lattice data for FðqÞ together with its
corresponding fit given by Eq. (4.1). Clearly, we see
that Eq. (4.1) recovers the one-loop result forFðqÞ for
large values of q2.

(ii) The way how the quantity JðqÞ is obtained is
considerably more subtle. In particular, as already
mentioned at the end of Sec. II, the derivation of
JðqÞ is indirect, in the sense that one first obtains
m2ðq2Þ and then subtracts it from the lattice data for
Δ−1ðqÞ [70], shown in the inset of Fig. 3.

In fact, two different but theoretically equivalent
procedures [37] for obtaining the form of m2ðq2Þ
have been developed in the literature: (a) one begins
from the general SDE governing ΔðqÞ, and, through
a judicious separation of terms, derives an integral
equation for m2ðq2Þ [36,86], and (b) one solves the
BSE responsible for the formation of the bound-state
poles [40,87]; the corresponding wave function is
known to coincide with the first derivative ofm2ðq2Þ
[87], from which m2ðq2Þ may be computed through
simple numerical integration. In practice, due to the
approximations implemented [37,40], these two
methods yield very similar, but not identical results
for m2ðq2Þ; the common feature of all solutions is
that they are positive definite and monotonically
decreasing, displaying the characteristic power law
running in the ultraviolet.

In particular, the functional form ofm2ðq2Þ can be
accurately represented as [41]

m2ðq2Þ ¼ m2
0

1þ ðq2=ρ2mÞ1þγ ; ð4:3Þ

where m2
0 ¼ 0.147 GeV2 and the values of ρ2m and γ

vary depending on the truncations employed. For the
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FIG. 3. The fits for FðqÞ (left panel) andΔðqÞ (right panel) given by Eq. (4.1) and the combination of Eqs. (4.3) and (4.4), respectively
(blue continuous curves). In the inset we show the inverse of the gluon propagator, Δ−1ðqÞ. The lattice data are from [70].
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purposes of the present article, we will consider
that ρ2m ¼ 1.18 GeV2 and we will vary γ in the range
[0, 0.3].
In the left panel of Fig. 4, we plot Eq. (4.3) for

different values of γ in the range [0, 0.3], while in the
right panel, we show the corresponding JðqÞ,
obtained after subtracting the m2ðqÞ given by
Eq. (4.3) from the lattice data Δ−1ðqÞ, according
to Eq. (2.6). All curves for JðqÞmay be parametrized
by the same functional form

JðqÞ¼ 1þCAαs
4π

�
1þ τ1

q2þ τ2

�

×
�
2 ln

�
q2þρm2ðqÞ

μ2

�
þ1

6
ln
�
q2

μ2

��
; ð4:4Þ

where the γ dependence of ρ≡ ρðγÞ, τ1 ≡ τ1ðγÞ and
τ2 ≡ τ2ðγÞ has been suppressed for compactness.
For values of γ in the range [0, 0.3], these functions
can be represented by

ρðγÞ ¼ 100.8 − 82.21γ1.28;

τ1ðγÞ ¼ 9.87 − 6.96γ;

τ2ðγÞ ¼ 0.80þ 0.11 expð−10γÞ: ð4:5Þ

In Figs. 5, we show fits for the functions ρðγÞ,
τ1ðγÞ, and τ2ðγÞ; the values employed for obtaining
these curves are marked with stars.

In addition, notice that Eqs. (4.3) and (4.4) not
only reproduce, by construction, the curve for ΔðqÞ
shown in the right panel of Fig. 3, but also
incorporate the following crucial features [18]:
(a) the infrared finiteness of the gluon propagator;
(b) the presence of “protected” and “unprotected”
logarithms, i.e., lnðq2 þm2Þ and lnðq2Þ, originating,
respectively from the gluon and ghost loops of the
SDE for ΔðqÞ; (c) the massless ghost logarithms
force JðqÞ to reverse sign and diverge logarithmi-
cally in the infrared, with a zero-crossing around the
region of a few hundred MeV.

In the right panel of Fig. 4 one may appreciate that
the precise location of the zero-crossing, qJ0, depends
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FIG. 4. The dynamical gluon mass, m2ðqÞ given by Eq. (4.3) (left panel), and the corresponding kinetic term JðqÞ given by Eq. (4.4)
(right panel). The curves were obtained for values of γ in the range [0, 0.3].
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FIG. 5. The functions ρðγÞ (left), τ1ðγÞ (center), and τ2ðγÞ (right) appearing in the Eq. (4.4); their functional forms are given in
Eq. (4.5). The stars represent the following values for the set ½γ; ρ; τ1ðin GeV2Þ; τ2ðin GeV2Þ�: [0, 100.8, 9.87, 0.91] (blue stars), [0.1,
96.7, 9.15, 0.84] (red stars), [0.2, 90.3, 8.45, 0.81] (yellow stars), and [0.3, 83.5, 7.84, 0.80] (purple stars).
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on the power γ, which controls the functional form
of m2ðqÞ in Eq. (4.3). More specifically, we have
the following values for the pair ½γ; qJ0ðin MeVÞ�:
[0, 140] (blue continuous), [0.1, 166] (red dashed),
[0.2, 187] (yellow dotted), and [0.3, 202] (purple
dash-dotted).

(iii) The final ingredients needed for the evaluation of the
BC solution are the form factors A1, A3, and A4 of
the ghost-gluon kernel Hνμðq; p; rÞ, defined in
Eq. (2.5). Their nonperturbative evaluation for gen-
eral Euclidean momenta has been presented in [84],
where the one-loop dressed version of the SDE
satisfied byHνμðq; p; rÞ was employed. In Fig. 6 we
show a representative case for A1, A3, and A4, when
the angle between the momenta q and p is fixed at
ϕ ¼ 0. Note in particular that A1 is finite within the
entire range of its momenta, whereas A3 and A4

display a logarithmic divergence in the deep in-
frared.

B. The three-gluon form factors: General kinematics

With the inputs introduced in the previous subsection,
the form factors X1, X2, X3, and X10 may now be computed
from Eqs. (3.11).
The evaluation of Eqs. (3.11) is carried out for general

Euclidean kinematics; we will express the form factors as
functions of q2, r2, and the angle θ formed between q and r,
namely Xiðq; r; pÞ → Xiðq2; r2; θÞ. For the numerical com-
putation of the relevant integrals we use logarithmically
spaced grids for q2 and r2, with 96 values for each, in the
range ½5 × 10−5 GeV2; 104;GeV2�. The corresponding grid
for the angle θ is uniformly spaced, with 19 values
distributed within ½0; π�. Moreover, the required interpola-
tions of the results for A1, A3, and A4, obtained in [84], are
performed using tensor products of B-splines [121].
The results for X1ðq2; r2; θÞ, X2ðq2; r2; θÞ, X3ðq2; r2; θÞ,

and X10ðq2; r2; θÞ are shown in Figs. 7–10, respectively.

In each of these figures, we present the corresponding form
factor for three representative values of the angle: θ ¼ 0
(top left panels), θ ¼ π=3 (top right panels), and θ ¼ 2π=3
(bottom left panels). In addition, we provide a visual
impression of the impact that the ghost sector has on the
Xi by plotting the corresponding “Abelianized” quantities,
X̂i, in the bottom right panels; these latter quantities are
given by Eq. (3.13), and are independent of the angle θ.
Since X̂10 ¼ 0, we occupy its panel in Fig. 10 with one
additional configuration, namely X10ðq2; r2; θ ¼ π=2Þ.
The results exhibit the following features: (i) in the

infrared, X1, X2, and X3 depart considerably from their tree
level values (1, 0, and 0, respectively), while X10, even
though nonvanishing, is very suppressed; (ii) in the ultra-
violet, all form factors approach their expected perturbative
behavior; (iii) the patterns displayed by the Xi are rather
similar to those of the X̂i, but with small “oscillations”
distributed around their main structures, owing to the
contributions from the ghost sector; (iv) in general, they
display a mild dependence on the angle θ.
It is important to emphasize that, while the form factors

X1, X2, and X10 diverge at most logarithmically in the
infrared, under certain special kinematic circumstances X3

displays a pole divergence. This, in turn, is the reason for
employing double-log graphs for the surfaces shown
in Fig. 9.
To appreciate this point, note first that, due to the

presence of the factor ðq2 − r2Þ in the denominator of
Eq. (3.11), the computation of X3 in the limit q2 → r2 ≔
Q2 requires the use of a limiting procedure, which amounts
to taking appropriate total or partial derivatives. Note that
the equality q2 ¼ r2 may be realized for any value of the
angle θ; momentum conservation restricts p2 to satisfy

p2 ¼ 2Q2ð1þ cos θÞ; ð4:6Þ

with limiting cases p2 ¼ 0 and p2 ¼ 4Q2.

FIG. 6. The form factors of the ghost-gluon scattering kernel A1ðq2; p2;ϕÞ (first panel), A3ðq2; p2;ϕÞ (second panel), and
A4ðq2; p2;ϕÞ (third panel) for ϕ ¼ 0 and αs ¼ 0.22.
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In order to simplify the algebra without compromising
the essence, let us revert to the “Abelianized” form of X3

given in Eq. (3.13), and let q2 → r2 ≔ Q2. Then, one has
that in Euclidean space

X̂3ðQÞ ¼ −
dJðQÞ
dQ2

; ð4:7Þ

which, after employing the functional form for JðQÞ given
in Eq. (4.4), reads

X̂3ðQÞ¼−
CAαs
24π

�
1

Q2

�
1þ τ1

Q2þτ2

�
−

τ1
ðQ2þτ2Þ2

ln

�
Q2

μ2

��

þ���; ð4:8Þ

evidently, the above expression contains a simple pole
together with a subleading logarithmic divergence, while
the ellipses denote terms that are finite as Q2 → 0.
Regarding the behavior of X̂3ðQÞ observed above, the

following remarks are in order.
(a) Note that this particular divergence is not an artifact of

the BC basis, which in [54] was advocated to be free of
kinematic singularities. In fact, it should be clear that
the origin of the divergence is dynamical, stemming
from the presence of the “unprotected” logarithm, and
hence, from the nonperturbative masslessness of the
ghost. If for instance the aforementioned logarithm
had been omitted from the JðQÞ, the answer in
Eq. (4.8) would be perfectly finite; and the same

FIG. 7. X1ðq2; r2; θÞ for θ ¼ 0 (top left), π=3 (top right), and 2π=3 (bottom left), together with the “Abelianized” X̂1 (bottom right).
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would be true if the argument of the logarithm had
been saturated by a “ghost mass,” whose generation,
however, does not occur dynamically.

(b) The type of pole divergence found in Eq. (4.8) should
be clearly distinguished from those appearing in
Vαμνðq; r; pÞ. Note, in particular, that the pole 1=q2

(or any other) is explicitly present, and leads to a
divergence when q2 → 0, while r2 ¼ p2 ≠ 0. In fact,
unlike Vαμνðq; r; pÞ, the direct substitution of q2 ¼ 0

into the X̂3 of Eq. (3.13) yields simply X̂3ðr2Þ ¼
− ½JðrÞ−Jð0Þ�

r2 (in Euclidean space), which is only loga-
rithmically divergent [due to Jð0Þ] as long as r2 ≠ 0.

(c) The above arguments hold also for the full (non-
Abelian) X3ðq; r; pÞ, given that FðqÞ is completely
finite, while the Aiðq; p; rÞ are at most logarithmically
divergent in the infrared, as was found in [84].

(d) A concrete manifestation of the divergences captured
by Eq. (4.8) will be encountered shortly in Sec. IV D,
in the context of the “totally symmetric” and
“asymmetric” configurations, which fulfill the kin-
ematic circumstances described above, being both
special cases of Eq. (4.6), for θ ¼ 2π=3 and θ ¼ π,
respectively.

Let us next turn to X10; this particular form factor
vanishes identically at both tree and one-loop

FIG. 8. X2ðq2; r2; θÞ for θ ¼ 0 (top left), π=3 (top right), and 2π=3 (bottom left), together with the “Abelianized” X̂2 (bottom right).
Note that, in order to better visualize the surfaces, the q2 and r2 axes have been rotated by π=2 with respect to the
other 3D figures.
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levels [88]. As we can see in Fig. 10, X10ðq2; p2; θÞ does
not vanish nonperturbatively; note, however, that it is
extremely suppressed in comparison with the other Xi,
tending rapidly to zero whenever any of its momenta
becomes large.
We end this subsection by comparing the infrared

suppression of the nonperturbative X1 with that obtained
from a direct one-loop calculation. Specifically, in the
left panel of Fig. 11 we compare our result for
X1ðq2; r2; π=2Þ (colored surface) with the corresponding
one-loop expression, given by Eq. (A8) (cyan surface).
Evidently, the colored surface is considerably more

“tilted” toward the infrared region, due to the presence
of the zero crossing. It is also interesting to observe that
X1 reaches its maximum value along the curve projected
on the “diagonal” plane,4 where q2 ¼ r2, and then drops
in all directions. To appreciate this effect more clearly, in
the right panel of Fig. 11 we selected three additional
slices of the 3D plot; indeed, the symmetric limit
corresponds to the highest kinematic configuration
of X1ðq2; r2; π=2Þ.

FIG. 9. X3ðq2; r2; 0Þ for θ ¼ 0 (top left), π=3 (top right), and 2π=3 (bottom left), together with the “Abelianized”
X̂3 (bottom right).

4The one-loop expression for this slice is given by Eq. (A10).
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C. Evaluation of the remaining form factors:
An example

In principle, if the functional dependence of X1, X2, and
X3 on q, r, and p is known, the remaining Xi can be
obtained by invoking the Bose symmetry relations of
Eqs. (3.8); for instance, X4ðq; r; pÞ can be obtained by
permuting the arguments of X1ðq; r; pÞ to X1ðr; p; qÞ. In
practice, however, what one has is the values of X1ðq; r; pÞ
tabulated for a grid of points for q2, r2, and θ (the angle
between q and r), which we represent as X1ðq2; r2; θÞ. In

order to evaluate the data point X4ðq2;r2;θÞ¼X1ðr2;p2;φÞ,
where φ is the angle between r and p, one invokes
momentum conservation to relate p2 ¼ q2 þ r2 þ 2q · r.
Similarly, one finds for the angle

φ ¼ cos−1
�
r · p
jrjjpj

�
¼ cos−1

�
−

ðjrj þ jqj cos θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2 þ 2jqjjrj cos θ

p
�
:

ð4:9Þ

FIG. 10. X10ðq2; r2; θÞ for θ ¼ 0 (top left), π=3 (top right), 2π=3 (bottom left), and π=2 (bottom right).
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Then, one carries out a three-dimensional interpolation,
using, for example, tensor products of B-splines [121], and
obtains the value of X1 at ðr2; p2;φÞ.
In Fig. 12 we show the result of the exercise described

above for X4ðq2; r2; θÞ, for two representative values of θ;
notice that X4 is not symmetric under the exchange of q and
r, a fact that is clearly reflected in the shape of the surfaces
obtained.

D. Special kinematics limits

In this subsection we extract two special kinematic
configurations from the general solutions for Xi reported

above, and compare them with the corresponding one-loop
results, given in Appendix A.
(i) First we consider the totally symmetric limit, obtained

when

q2¼p2¼ r2¼Q2; q ·p¼ q · r¼p · r¼−
1

2
Q2;

θ¼ 2π=3; ð4:10Þ

the form factors in this configuration will be denoted
by XiðQÞ.
Recalling that X2 and X10 are antisymmetric under the

exchange of at least two of their arguments [see Eq. (3.7)],

0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5

FIG. 11. Comparison of the nonperturbative (colored surface) and the one-loop (cyan surface) results for X1ðq2; r2; π=2Þ (left panel).
Special kinematic limits of X1 for a fixed values of q2 when θ ¼ π=2 (right panel).

FIG. 12. The form factor X4ðq2; r2; θÞ for θ ¼ 0 (left) and 2π=3 (right) obtained from X1ðr2; p2;φÞ using the Eq. (4.9).
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it is clear that, in this particular configuration, they both
vanish identically. Therefore, we consider only X1ðQÞ and
X3ðQÞ, which may be obtained as a projection on the plane
q2 ¼ r2 of their 3D surfaces, shown on the bottom left sides
of Figs. 7 and 9, respectively.
In the left panel of Fig. 13, we can see thatX1ðQÞ displays

a notable discrepancy from its one-loop behavior [see
Eq. (A3)] in the window of momenta 0.5 GeV ≤ Q ≤
3.0 GeV. In that range, X1ðQÞ suffers an abrupt change
of curvature, which, at first sight, might be considered as a
numerical artifact. However, as we will see in Sec. V B, this
“bending” is crucial for reproducing a characteristic “knee”
that appears in the lattice data in the same region of
momenta.
In the same figure we also show a physically motivated

fit for X1ðQÞ (purple dotted line), which is in good
agreement with our nonperturbative result and recovers
the one-loop result in the ultraviolet. Specifically,

X1ðQÞ ¼ 1þ CAαs
96π

�
1þ κ1

1þ ðQ2=κ2Þ1þκ3

�

×

�
33 ln

�
Q2 þ ρlm2ðQ2Þ

μ2

�
þ ln

�
Q2

μ2

��

þ CAαs
16π

ð1 − IÞ; ð4:11Þ

where m2ðQ2Þ is given by Eq. (4.3) and the corresponding
value of γ should be used, while I is given in Eq. (A4). The
fitting parameters for the case where γ ¼ 0 are κ1 ¼ 135.3,
κ2 ¼ 0.086 GeV2, κ3 ¼ 0, and ρl ¼ 140.4.
As for X3ðQÞ, the present kinematic limit is precisely of

the type considered in Sec. IV B, leading to Eq. (4.8); note
that the substitution of θ ¼ 2π=3 into Eq. (4.6) yields
indeed p2 ¼ Q2. Given that both X3ðQÞ and its perturba-
tive counterpart [see Eq. (A3)] diverge as 1=Q2 in the
infrared, they are displayed in the log-log plot shown on the

right panel of Fig. 13. The coincidence with the perturba-
tive result is quite satisfactory in the ultraviolet, but a
considerable departure is observed as one moves toward the
infrared, where the two curves run nearly “parallel” to each
other, with the nonperturbative X3ðQÞ (blue curve) being
about a factor of 4-5 larger. Evidently, even though both
curves are dominated by the pole 1=Q2, the values of their
corresponding residues are rather different.
(ii) The asymmetric limit, defined when

p ¼ 0; r ¼ −q; θ ¼ π; ð4:12Þ

in what follows we will express our results for this
configuration in terms of the momentum q, i.e.,
Xiðq2; q2; πÞ. In this configuration, the tensorial structure
of Γαμν

L ðq; r; pÞ reduces to that given in Eq. (A6).
In Fig. 14 we show Xð1Þ

1 ðq2; q2; πÞ (left panel) and

Xð1Þ
3 ðq2; q2; πÞ (right panel), which are clearly very similar

to those obtained in the symmetric limit. More specifically,

Xð1Þ
1 ðq2; q2; πÞ deviates mildly from its one-loop behavior,

displaying the characteristic bending in the same range of

momenta, while Xð1Þ
3 ðq2; q2; πÞ diverges again as a pole,

corresponding to the case where, for θ ¼ π, Eq. (4.6) yields
p2 ¼ 0. As expected, in the ultraviolet regime both form
factors tend towards the behavior predicted by the one-loop
result given in Eq. (A7).

V. COMPARISON WITH PREVIOUS RESULTS

In this section we present a direct comparison between
our results and those obtained from (i) the SDE analysis of
[14,83], and (ii) the lattice simulation of [25].
For the purposes of this section, it is convenient to

introduce the following transversely projected counterparts

of IΓαμνðq; r; pÞ, Γαμνðq; r; pÞ, and Γð0Þ
αμνðq; r; pÞ, defined as
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FIG. 13. Comparison of the nonperturbative form factors X1ðQÞ (left panel) and X3ðQÞ (right panel) with their one-loop counterparts,
given by Eqs. (A3) (red dashed), in the totally symmetric limit. In the left panel we also plot the fit for X1ðQÞ given by Eq. (4.11) with
γ ¼ 0 (purple dotted).
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IΓαμνðq;r;pÞ≔Pα0αðqÞPμ0μðrÞPν0νðpÞIΓα0μ0ν0 ðq;r;pÞ;
Γ̄αμνðq;r;pÞ≔Pα0αðqÞPμ0μðrÞPν0νðpÞΓα0μ0ν0 ðq;r;pÞ;
Γ̄ð0Þ
αμνðq;r;pÞ≔Pα0αðqÞPμ0μðrÞPν0νðpÞΓð0Þα0μ0ν0 ðq;r;pÞ:

ð5:1Þ

Note that, by virtue of Eq. (2.9), we have the important
relation

IΓαμνðq; r; pÞ ¼ Γ̄αμνðq; r; pÞ: ð5:2Þ
Next we introduce the general projector Lðq; r; pÞ,

given by

Lðq; r; pÞ ¼ Wαμνðq; r; pÞIΓαμνðq; r; pÞ
Wαμνðq; r; pÞWαμνðq; r; pÞ

¼ Wαμνðq; r; pÞΓ̄αμνðq; r; pÞ
Wαμνðq; r; pÞWαμνðq; r; pÞ

; ð5:3Þ

where in the second step we have used Eq. (5.2). The
precise form of the tensor Wαμνðq; r; pÞ will depend on the
particular circumstances considered.

A. Comparison with SDE-derived results

Next, we compare our results with those in [14,83].
In that work, an approximate version of the SDE
governing the transversely projected three gluon vertex
was derived. To make contact, we consider the Lðq; r; pÞ
of Eq. (5.3), and carry our the substitutionWαμνðq; r; pÞ →
WSDE

αμν ðq; r; pÞ, where

WSDE
αμν ðq; r; pÞ ¼ Γ̄ð0Þ

αμνðq; r; pÞ; ð5:4Þ
denoting the resulting expression by LSDEðq; r; pÞ.
ExpandingΓαμνðq; r; pÞ in the basis of Eqs. (3.3) and (3.5)

and substituting intoEq. (5.3), onemay expressLSDEðq; r; pÞ
in terms of the various Xi and Yi. Here, we do not report the

general expression forLSDEðq; r; pÞ, but consider instead the
following representative kinematic limits:

(i) Totally symmetric configuration: Fixing the mo-
menta and the angle θ according to Eq. (4.10), one
obtains

LSDEðQÞ ¼ X1ðQÞ − 10

11
Q2X3ðQÞ þ 5

11
Q4Y1ðQÞ

−
4

11
Q2Y4ðQÞ: ð5:5Þ

(ii) Orthogonal-symmetric: In this configuration, the
momenta q and r are orthogonal and have equal
magnitudes, i.e., θ ¼ π=2 and q2 ¼ r2, which also
implies that p2 ¼ 2r2. In this case, the correspond-
ing projection yields

LSDEðr2; r2; π=2Þ

¼ 1

7
½X1ðr2; r2; π=2Þ þ 6X1ð2r2; r2; 3π=4Þ

− r2X3ðr2; r2; π=2Þ − 8r2X3ð2r2; r2; 3π=4Þ
þ r4Y1ðr2; r2; π=2Þ þ 4r4Y1ð2r2; r2; 3π=4Þ
− 3r2Y4ðr2; r2; π=2Þ�: ð5:6Þ

(iii) Asymmetric limit: Fixing the momenta according to
Eq. (4.12), we obtain

LSDEðqÞ ¼ X1ðq2; q2; πÞ − q2X3ðq2; q2; πÞ: ð5:7Þ

Note that the above kinematic configuration also
corresponds to the so-called “orthogonal soft” limit,
obtained in [14,83].5 To establish their equivalence,
first notice that Eq. (5.3), with the WSDE

αμν ðq; r; pÞ
given by Eq. (5.4), is symmetric under p ↔ q.
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FIG. 14. Comparison of the nonperturbative form factors Xð1Þ
1 ðq2; q2; πÞ (left panel) and Xð1Þ

3 ðq2; q2; πÞ (right panel) with their one-
loop counterparts given by Eqs. (A7) (red dashed) in the asymmetric limit.

5The orthogonal soft configuration defined in [14] corresponds
to the limit q → 0 and θ ¼ π=2.
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Therefore, the limits of vanishing p or q lead to the
same result. In addition, when q → 0, evidently
jqjjrj cos θ ¼ 0, and any dependence on the
angle θ is washed out. Thus, LSDEðq2;q2;πÞ¼
LSDEð0;r2;π=2Þ.

An interesting property of the asymmetric configuration
is the fact that LSDEðqÞ depends only on the Xi, while the
other two limits depend on both the Xi and the Yi. Since our
approach does not allow the determination of ΓTðq; r; pÞ,
in what follows we set Yi ¼ 0 in Eqs. (5.5) and (5.6).
Evidently, the omission of the transverse form factors Yi

in the evaluation of LSDEðQÞ and LSDEðr2; r2; π=2Þ intro-
duces an error, whose size in the infrared is difficult to
estimatewithout a concrete calculation.At this pointwemay
only report the perturbative behavior of the terms omitted
from Eq. (5.5), using the one-loop expressions for Y1ðQÞ
and Y4ðQÞ given in Eq. (A3). In particular, one finds that the
one-loop combination amounts only to a small constant,
namely

5

11
Q4Yð1Þ

1 ðQÞ − 4

11
Q2Yð1Þ

4 ðQÞ ¼ 0.039: ð5:8Þ
Unfortunately, the perturbative calculation for the trans-

verse terms omitted in Eq. (5.6) is more cumbersome, since
it mixes the Yi in two kinematic limits.

In order to compare our results with the SDE calculations
of [14], we first rescale the results appropriately, in order to
ensure that they are renormalized at the same point.
Specifically, we define a multiplicative renormalization
constant z3 for both sets of results, such that tree level value
is restored at the symmetric point, i.e., z3LSDEðμÞ ¼ 1;
subsequently, we rescaled LSDEðr2; r2; π=2Þ and LSDEðqÞ
by the same factor.
In Fig. 15, we compare our results for LSDEðQÞ (left

panel), LSDEðr2; r2; π=2Þ (right panel), and LSDEðqÞ (bot-
tom panel) with those obtained in [14,83]. The general
profiles of the curves are qualitatively similar, in the three
kinematic limits, although considerable differences are
observed at intermediate momenta. Interestingly enough,
the positions of the corresponding zero crossings practi-
cally coincide in all configurations.

B. Comparison with the lattice

Following the analysis presented in [25], we
consider two particular cases of the Lðq; r; pÞ defined
in Eq. (5.3).
First, for the symmetric configuration, we construct

LsymðQÞ by setting Wαμνðq; r; pÞ → Wsym
αμν ðq; r; pÞ, where
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FIG. 15. Comparison of our results for LSDE with those of [14,83] for three kinematics: (i) the totally symmetric LSDEðQÞ (top left
panel), (ii) the orthogonal-symmetric LSDEðr2; r2; π=2Þ (top right panel), and (iii) asymmetric LSDEðqÞ (bottom panel) configurations.
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Wsym
αμν ðq;r;pÞ¼ Γ̄ð0Þ

αμνðq;r;pÞþ 1

2r2
ðr−pÞαðp−qÞμðq− rÞν;

ð5:9Þ

implementing subsequently the limit of Eq. (4.10).
Second, for the asymmetric configuration, we evaluate

LasymðqÞ by replacing Wαμνðq; r; pÞ → Wasym
αμν ðq; r; pÞ,

where

Wasym
αμν ðq; r; pÞ ¼ 2qαPμνðqÞ; ð5:10Þ

taking finally the limit of Eq. (4.12).
Expanding again Γαμνðq; r; pÞ in the basis of Eqs. (3.3)

and (3.5), one finds that, in the symmetric configuration,
Eq. (5.3) reduces to

LsymðQÞ ¼ X1ðQÞ −Q2

2
X3ðQÞ þQ4

4
Y1ðQÞ −Q2

2
Y4ðQÞ;
ð5:11Þ

while for the asymmetric case,

LasymðqÞ ¼ X1ðq2; q2; πÞ − q2X3ðq2; q2; πÞ: ð5:12Þ
Thus, the combinations of form factors given in
Eqs. (5.11) and (5.12) are precisely those considered in
the lattice simulations of [25,28]. Notice that LasymðqÞ given
by Eq. (5.12) coincides with the projection LSDEðqÞ
of Eq. (5.7).
Since our approach furnishes no information on

ΓTðq; r; pÞ, we will consider the approximate version of
Eq. (5.11) where Yi ¼ 0, as was done in the previous
subsection. More specifically,

LsymðQÞ ¼ X1ðQÞ −Q2

2
X3ðQÞ; ð5:13Þ

which will be used in the comparison with the lattice data.
Let us simply mention that the one-loop evaluation of the
omitted terms gives rise to a small numerical constant,

Q4

4
Yð1Þ
1 ðQÞ −Q2

2
Yð1Þ
4 ðQÞ ¼ 0.08: ð5:14Þ

Note that, in order to perform a meaningful comparison,
one must take into account the fact that the lattice results of
[25] have been renormalized in a scheme which enforces
independently that LsymðμÞ ¼ 1 and LasymðμÞ ¼ 1 at the
renormalization point μ ¼ 4.3 GeV. Instead, we have
computed the Xi in the Taylor scheme, for both kinematic
limits [see discussion at the end of Sec. III]. To account for
the difference introduced by the use of two distinct
renormalization prescriptions, we rescale Eqs. (5.12) and
(5.13) by a finite renormalization constant, to be denoted by
z3, i.e.,

LsymðQÞ → zsym3 LsymðQÞ;
LasymðqÞ → zasym3 LasymðqÞ: ð5:15Þ

The numerical values of zsym3 and zasym3 are determined by
requiring that LsymðμÞ and LasymðμÞ reduce to tree level,
respectively. As expected on general grounds [122], the
discrepancy from unity is quite small; in particular, the
choices of zsym3 ¼ 0.95 and zasym3 ¼ 0.93 restore LsymðμÞ ¼
1 and LasymðμÞ ¼ 1, respectively.
In Fig. 16 we compare the lattice data of [25] with our

results for LsymðqÞ (left panel) and LasymðqÞ (right panel),
obtained for the different JðqÞ shown in Fig. 4; evidently, in
both cases the agreement is rather good. In fact, observe
that, in the symmetric case, the lattice data display a change
in the curvature (in the form of a “knee”) around
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FIG. 16. Comparison of our results for the LsymðQÞ (left panel) given by Eq. (5.13) and for LasymðqÞ (right panel) of Eq. (5.12)
with the lattice data [25] (circles). The curves were obtained by varying the exponent γ entering into the definition of the gluon mass
given by Eq. (4.3).
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Q ¼ 1 GeV. It is interesting to notice that, independently
of the JðqÞ employed, our results for LsymðqÞ always
exhibit this particular feature, which is clearly related to the
abrupt bending observed at the level of the X1ðQÞ in the
Fig. 13. Moreover, both the lattice data and our results
present the characteristic zero crossing, at momenta to be
denoted by qsym0 and qasym0 , respectively, whose positions are
located within the interval ½109; 237� MeV [see Table I].
Notice that, within our approach, the precise location of the
crossing q0 depends on the value of the parameter γ, which
controls the running of m2ðq2Þ in Eq. (4.3).
It is interesting to compute the amount by which qsym0

and qasym0 get shifted with respect to qJ0, shown in Fig. 4; in
Table I we collect these numbers, in order to facilitate a
direct comparison. As one may see, for all values of γ the
crossing of LsymðQÞ happens at a momentum about 23%
smaller than the value obtained from JðqÞ. In the case of the
LasymðqÞ, the change in the sign occurs at a momentum that
is located 17%–28% more toward the ultraviolet with
respect to qJ0.

VI. FURTHER CONSIDERATIONS AND
CLARIFICATIONS

In this section we comment on a number of subtleties
related with some of the concepts introduced, and provide
certain clarifications that we consider necessary.

(i) It should be evident that, while Γαμν has been
expanded in the BC basis, mainly in order to make
contact with the original BC construction, the term
Vαμν, given in Eqs. (2.8) and (2.12), is written in a

“naive” basis, whose elements, nαμνi , are listed in
Eq. (B2). From the transformation rules relating the
form factors of both bases, given in Eqs. (B3) and
(B4), it becomes clear that, in general, terms that
are “longitudinally coupled,” in the sense defined
in the context of Eq. (2.8), when written in the
BC basis formed by the tensors given in Eqs. (3.4)
and (3.6), may have nonvanishing longitudinal and
transverse components.6 For instance, to fix the
ideas, let us consider the term vαμν ¼ qαrμpν,
which is one of the elements appearing in
Vαμνðq; r; pÞ, multiplied by q−2p−2r−2; in the BC
basis, it may be decomposed into longitudinal and
transverse components, as shown in Eqs. (B6) and
(B7). It is interesting to note the proliferation of
terms needed for writing in the BC basis a term as
simple as vαμν.

(ii) The previous exercise indicates that, when the entire
Vαμνðq; r; pÞ of Eq. (2.8) is cast in the BC basis,
namely

Vαμνðq; r; pÞ ¼
X10
i¼1

X iðq; r; pÞlαμν
i ðq; r; pÞ þ

X4
i¼1

Yiðq; r; pÞtαμνi ðq; r; pÞ; ð6:1Þ

it will contain both longitudinal and transverse components. To appreciate this point in a simplified context, let us
consider the “Abelian” version of Vαμνðq; r; pÞ, denoted by V̂αμνðq; r; pÞ, obtained by setting F ¼ 1 and Hνμ ¼ gνμ
in Eq. (2.12), such that

Âμνðq; r; pÞ ¼
1

2
fm2ðr2ÞPσμðrÞ½gσν þ Pσ

νðpÞ� −m2ðp2ÞPσνðpÞ½gσμ þ Pσ
μðrÞ�g;

B̂ανðq; r; pÞ ¼
1

2
fm2ðp2ÞPσνðpÞ½gσα þ Pσ

αðqÞ� −m2ðq2ÞPσαðqÞ½gσν þ Pσ
νðpÞ�g;

Ĉαμðq; r; pÞ ¼
1

2
fm2ðq2ÞPσαðqÞ½gσμ þ Pσ

μðrÞ� −m2ðr2ÞPσμðrÞ½gσα þ Pσ
αðqÞ�g: ð6:2Þ

Then, expanding V̂αμνðq; r; pÞ in the BC basis, using the transformation formulas given in Appendix B,
we obtain

TABLE I. Comparison of the crossing positions qJ0 [JðqÞ],
qsym0 [LsymðQÞ], and qasym0 [LasymðqÞ].
γ qJ0 [in MeV] qsym0 [in MeV] qasym0 [in MeV]

0 140 109 180
0.1 166 128 204
0.2 187 143 221
0.3 202 155 237

6Note that the elements lαμν
2 , lαμν

5 , and lαμν
8 of the BC basis are both “longitudinal,” since they do not vanish when contracted by any

of the external momenta, and “longitudinally coupled,” because they satisfy Eq. (2.9).
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X̂1 ¼ −
m2ðq2Þ
2q2

−
m2ðr2Þ
2r2

; X̂2 ¼
1

2

�
m2ðr2Þ
r2

−
m2ðq2Þ
q2

�
; X̂3 ¼

q2m2ðr2Þ − r2m2ðq2Þ
q2r2ðq2 − r2Þ ;

X̂4 ¼ −
m2ðp2Þ
2p2

−
m2ðr2Þ
2r2

; X̂ 5 ¼
1

2

�
m2ðp2Þ
p2

−
m2ðr2Þ
r2

�
; X̂6 ¼

1

p2 − r2

�
m2ðr2Þ
r2

−
m2ðp2Þ
p2

�
;

X̂7 ¼ −
m2ðp2Þ
2p2

−
m2ðq2Þ
2q2

; X̂8 ¼
1

2

�
m2ðq2Þ
q2

−
m2ðp2Þ
p2

�
; X̂9 ¼

1

p2 − q2

�
m2ðq2Þ
q2

−
m2ðp2Þ
p2

�
;

X̂10 ¼ 0;

Ŷ1 ¼
q2½−m2ðp2Þ þm2ðq2Þ −m2ðr2Þ� þ r2½m2ðp2Þ þm2ðq2Þ −m2ðr2Þ�

p2q2r2ðq2 − r2Þ ;

Ŷ2 ¼
ðr2 − p2Þ½m2ðq2Þ −m2ðr2Þ� þ p2½m2ðp2Þ − 2m2ðr2Þ� þ r2m2ðp2Þ

p2q2r2ðp2 − r2Þ ;

Ŷ3 ¼ −
m2ðr2Þðp2 − q2Þ þ ½2ðq2 þ q · rÞ þ r2�½m2ðq2Þ −m2ðp2Þ�

p2q2r2ðp2 − q2Þ ;

Ŷ4 ¼
ðq · rÞ½−m2ðp2Þ þm2ðq2Þ þm2ðr2Þ� þ q2m2ðr2Þ þ r2m2ðq2Þ

p2q2r2
: ð6:3Þ

Evidently, since the Ŷ1 are nonvanishing, the transverse
part of V̂αμνðq; r; pÞ, and therefore that of the entire
(Abelianized) vertex ÎΓαμνðq; r; pÞ, contains massless poles.
The generalization of the above construction to the full

Vαμνðq; r; pÞ is straightforward but does not provide any
further conceptual insights; the resulting expressions for the
corresponding X i and Yi are quite lengthy, mainly due to
the complicated “intertwining” between the mass terms and
the Hνμ form factors, A1, A3, and A4, and will not be
reported here.
(iii) The main conclusion that one should draw from the

above construction is that the expansion into the BC
basis of the entire vertex IΓαμνðq; r; pÞ, i.e., the sum
of both Vαμνðq; r; pÞ and Γαμνðq; r; pÞ, is of no
practical usefulness, and may in fact be misleading.
In particular, let us suppose for a moment that
IΓαμνðq; r; pÞ [and not just Γαμνðq; r; pÞ as was done
throughout this work] was indeed written in the BC
basis. Then, the corresponding form factors, Xi and
Y i would be simply given by

Xi ¼ Xi þ X i; ð6:4Þ

Y i ¼ Yi þ Yi; ð6:5Þ

of course, given the intrinsic limitations of the
methodology employed in this work, we have no
access toYi, but only toYi. Evidently, due to the form
of theX i andYi, allXi and Y i would be infested with
massless poles; this, in turn, would be clearly
reflected in the typical 3D plots of any individual
Xi or Y i. However, any such representation would be
physically disingenuous, because the pole terms from

each Xi and Y i, when summed up, would eventually
organize themselves into a “longitudinally coupled”
contribution, namely none other than Eq. (2.8), and
would cancel from physical amplitudes or lattice
observables, such as theLðq; p; rÞ of Eq. (5.3). Note,
in particular, that, under these circumstances, it
would be erroneous to consider, as part of an
“approximation scheme,” only the longitudinal part
of the full IΓαμν, to be denoted by IΓαμν

L , because one
would then have,7

Pαα0 ðqÞPμμ0 ðrÞPνν0 ðpÞIΓαμν
L ðq; r; pÞ ≠ 0; ð6:6Þ

and the final (“approximate”) answer would be
afflicted by the presence of spurious divergences.

The way the above problems have been resolved in
the present work was simply by not expanding
Vαμνðq; r; pÞ in the BC basis, which has been used
exclusively for Γαμνðq; r; pÞ, in order for the BC-
solution to become directly applicable. Thus, the
approximation employed amounts to setting Yi ¼ 0,
but keeping the entireVαμνðq; r; pÞ, or, in the language
of the BC basis, bothX i andYi are present; and since
Eq. (2.9) remains intact,what one determines and plots
are the Xi, which contain no explicit massless poles.

(iv) The transverse form factors Yi of Γαμνðq; r; pÞ,
whose structures are undetermined by the present
gauge-technique-based approach, may, in principle,
contain divergent contributions, and, in particular,
their own poles (simple, or of higher order). At

7This quantity was not introduced in the previous sections,
precisely because of the subtleties associated with its nature.
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present, one may not exclude this possibility, and
further independent studies, based on direct SDE
approaches, may shed light on their structure. In
such a search, the lattice results for LsymðQÞ provide
an interesting constraint. Specifically, the nonob-
servability of pole divergences at the level of the
LsymðQÞ requires that, in the limit Q2 → 0,

Q4Y1ðQÞ − 2Q2Y4ðQÞ ¼ C; ð6:7Þ

where C is some arbitrary finite constant. Let us
further assume, for the sake of argument, that the pole
structure of Y1ðQÞ and Y4ðQÞ has the general form

Y1ðQÞ ¼
X∞
n¼1

an
Q2n ; Y4ðQÞ ¼

X∞
n¼1

bn
Q2n : ð6:8Þ

Then, Eq. (6.7) imposes the following constraints on
the coefficients bi and ci:

a1 ¼ undetermined;

a2 − 2b1 ¼ C;

an − 2bn−1 ¼ 0; n ¼ 3; 4;… ð6:9Þ

Evidently, the above constraints are trivially satisfied
when all an and bn vanish (in which case, C ¼ 0).

VII. ON THE “NAIVE” IMPLEMENTATION OF
THE BC SOLUTION

Finally, having provided a sufficient amount of back-
ground material, we may now revisit the central issue of the
BC construction mentioned in the Introduction, namely the
problems with using directly the term

JBCðqÞ ¼
Δ−1ðqÞ
q2

; ð7:1Þ

as ingredient in the BC solution. In particular, let us assume
that onewere to ignore the presence and function of the term
Vαμνðq; r; pÞ, and suppose that the BC solution of Eq. (3.11)
holds at the level of theXi, namely the full longitudinal form
factors. As explained in the Introduction, due to the finite-
ness of the gluon propagator, Δ−1ð0Þ ¼ m2ð0Þ, the various
JBCðqÞ contain massless poles, which, through Eq. (3.11),
will enter into the individual Xi; and the combination of all
such terms does not organize itself into a longitudinally
coupled contribution.
The consequences of this scenario are rather striking. To

appreciate this with one particular example, let us first
reduce the algebraic complexity by turning off the ghost
sector, and consider the “Abelianized” Xi, given by
Eq. (3.13), but now substitute JðqÞ → JBCðqÞ, to obtain

(Euclidean space), X̂1ðq; r; pÞ ¼ 1
2
½JBCðrÞ þ JBCðqÞ� and

X̂3ðq; r; pÞ ¼ ½JBCðqÞ−JBCðrÞ�
r2−q2 . Then, evaluate the lattice quan-

tity LsymðQÞ, now to be denoted by Lsym
BC ðQÞ, by substitut-

ing X̂1 and X̂3 into Eq. (5.11), and setting (temporarily)
Ŷ 1ðQÞ ¼ Ŷ 4ðQÞ ¼ 0, to obtain

Lsym
BC ðQÞ ¼ JBCðQ2Þ þQ2

2

�
dJBCðQÞ
dQ2

�

¼ 1

2

�
Δ−1ðQÞ
Q2

þ dΔ−1ðQÞ
dQ2

�
: ð7:2Þ

In the limitQ2 → 0, the first term is dominant, diverging as
a simple pole,

lim
Q2→0

Lsym
BC ðQÞ ¼ 1

2

m2ð0Þ
Q2

þ � � � ; ð7:3Þ

where the ellipses denote subdominant terms (remember, in
particular, that the derivative term diverges logarithmi-
cally). This pole term, in turn, is clearly visible when
contrasting the Lsym

BC ðQÞ with the lattice data, as shown in
Fig. 17; thus, due to the huge discrepancy observed, the use
of Eq. (7.1), at least under the assumptions leading to
Eq. (7.3), is plainly discarded. Note also that the restoration
of the ghost sector does not change the situation qualita-
tively; its inclusion simply increases the numerical value of
the residue of the pole, making the onset of the divergence
appear at higher values of Q2, as seen in Fig. 17.
It is clear that the only way to circumvent this discrep-

ancy and still use Eq. (7.1) is to relax the assumption that
Ŷ 1ðQÞ ¼ Ŷ 4ðQÞ ¼ 0; in fact, one ought to allow these

10-2 10-1 1 10

-1

0

1

2

3

4

FIG. 17. Comparison of the results for Lsym
BC ðQÞ given by

Eq. (7.2) (red dashed) with the lattice data of [25] (circles).
LsymðQÞ (black dotted curve) shows the impact of restoring the
ghost sector. Evidently, the use of Eq. (7.1) produces a positive
infrared divergence, which is incompatible with the lattice results.
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latter form factors to have poles, which would precisely
cancel the corresponding contribution in Eq. (7.3). Put in
other words, in the absence of a concrete connection
between the saturation of the gluon propagator and the
vertex under consideration, the BC construction may not
stand on its own, but requires the inclusion of transverse
pieces with a necessarily nontrivial pole content. In par-
ticular, let us assume that, in complete analogy to Eq. (6.8),
Ŷ 1ðQÞ and Ŷ 4ðQÞ are given by

Ŷ 1ðQÞ ¼
X∞
n¼1

αn
Q2n ; Ŷ 4ðQÞ ¼

X∞
n¼1

βn
Q2n : ð7:4Þ

Then, to accomplish the nonobservability of pole contribu-
tions in Lsym

BC ðQÞ, the constraints of Eq. (6.9) must hold
unchanged (an → αn, bn → βn), with the very crucial
exception of n ¼ 3, which must be now modified to

α3 − 2β2 ¼ −2m2ð0Þ; ð7:5Þ

evidently, the fulfillment of this last condition requires that at
least one of the α3 and β2 be nonvanishing.
Thus, in order for the “naive” BC construction to be

compatible with the lattice results, the transverse part of the
vertex must possess the minimal pole structure

Ŷmin
1 ðQÞ ¼ 2β2 − 2m2ð0Þ

Q6
; Ŷmin

4 ðQÞ ¼ β2
Q4

: ð7:6Þ

To make the final connection, turn to the expressions for
Ŷ1 and Ŷ4 given in (6.3), pass to Euclidean momenta, and
compute them in the symmetric limit; it is fairly straight-
forward to establish that

Ŷ1ðQÞ¼m2ðQÞ
Q6

−
2

Q4

dm2ðQÞ
dQ2

; Ŷ4ðQÞ¼3

2

m2ðQÞ
Q4

:

ð7:7Þ

If at this point one were to identify Ŷ1ðQÞ and Ŷ4ðQÞ
with Ŷ 1ðQÞ and Ŷ 4ðQÞ, respectively (which is tantamount
to using Eq. (6.5) with Yi ¼ 0), in the limit of Q2 → 0 one
would have

α3 ¼ m2ð0Þ; β2 ¼
3

2
m2ð0Þ; ð7:8Þ

which satisfy precisely the no-pole condition of Eq. (7.5).8

Thus, the pole structure contained in the Ŷ1 and Ŷ4ðQÞ is

identical to the minimal pole structure of Eq. (7.6), required
for the compatibility with the lattice data.
We end this discussion with a final comparison between

the “naive”BCversion, described in this section, and the one
presented in the main part of this work. Evidently, the
“naive” implementation of the BC construction in “isola-
tion” is physically incomplete, because it requires the a-
posteriori inclusion of very precise transverse contributions.
In particular, in the absence of lattice results, onewould have
no guiding principle on how to construct these terms, except
through the imposition of the additional requirement that the
combination Pαα0 ðqÞPμμ0 ðrÞPνν0 ðpÞIΓαμνðq; r; pÞ be finite,
which would lead essentially to the results of this section.
Note, however, that this last requirement alone, although
essentially correct, establishes no deeper connection with
the dynamics of the two-point sector of the theory. Instead,
the construction followed in this work adheres to the
theoretical principles that have been spelled out in a series
of articles, being intimately linked with the intricate dynam-
ics taking place at the level of the gluon propagator, and, in
particular, with the mass generating mechanism employed.
In this way, the results turn out to be naturally compatible
with the lattice, and no a-posteriori adjustments are
required.

VIII. CONCLUSIONS

In the present work we have carried out the nonpertur-
bative derivation of the longitudinal part of the three-gluon
vertex, IΓαμνðq; r; pÞ, from the set of STIs that it satisfies,
given in Eq. (2.4). The procedure followed is a variant of
the well-known BC construction [54], where certain key
adjustments have been implemented in order to account for
the fact that the gluon propagator appearing in the problem
is infrared finite. In particular, in the context of the PT-BFM
framework [34], the origin of the gluonic mass scale,
m2ðqÞ, is attributed to the activation of the Schwinger
mechanism by the longitudinally coupled massless poles,
which constitute a purely nonperturbative component of the
full vertex IΓαμνðq; r; pÞ, denoted by Vαμνðq; r; pÞ [see
Eq. (2.8)]. The inextricable link between Vαμνðq; r; pÞ and
m2ðqÞ leads to the partial STI given in Eq. (2.11)
[36,37,40,41,87], while the remainder of the vertex, denoted
by Γαμνðq; r; pÞ, satisfies the STI given in Eq. (2.10), which
involves the kinetic term JðqÞ, appearing in the decom-
position of Eq. (2.6). Given that Vαμνðq; r; pÞ is completely
fixed by the STI of Eq. (2.8) and the condition of Eq. (2.9)
[see Eq. (2.12)], the remaining task boiled down to the
application of theBCsolution at the level of theΓαμνðq; r; pÞ,
whose longitudinal form factors, Xi, may be thus obtained
from the STI in Eq. (2.10) and its permutations.
The main ingredient entering in the BC solution is the

function JðqÞ, whose form is determined indirectly,
through the subtraction of m2ðqÞ from Δ−1ðqÞ. The most
prominent feature of JðqÞ is the zero crossing, whose origin

8Since the first derivative of m2ðQÞ is finite at the
origin [40,87], the remaining nonvanishing coefficient α2 ¼
−½2dm2ðQÞ

dQ2 �Q2¼0 fixes simply the value of C through the second
relation of Eq. (6.9).
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may be traced back to the “unprotected” logarithms con-
tained in it. Note that the precise form of JðqÞ is affected by
the approximations implemented at the level of the dynami-
cal equation that determines m2ðqÞ, and in particular the
value of the coefficient γ in the fit of Eq. (4.3). This fact, in
turn, introduces minor uncertainties in the results for the
form factors, such as the location of the corresponding zero
crossings displayed by the Xi, but does not alter the main
qualitative and quantitative aspects of the answer.
The most prominent feature of the longitudinal form

factors is their distinct suppression at energies below 1 GeV.
This property is clearly visible both in the 3D plots of Fig. 7
and Fig. 12, where the size of two form factors becomes
inferior to unity (their tree-level value) for intermediate and
infrared momenta. This same trait is also captured in the 2D
plots, corresponding to the two special configurations
studied [left panels of Fig. 13 and Fig. 14]. It is important
to emphasize that, in addition to lattice simulations, this
suppression has also been observed in the studies carried out
using different approaches, such as the direct SDE-based
derivations of [14,83], shown in Fig. 15.
It is interesting to comment on the origin of the sup-

pression (and the zero-crossing) in the gauge-technique
(BC solution) and the SDE analyses. Evidently, in both
approaches the resulting suppression is the outcome of the
“competition” between the infrared finite contributions
originating from diagrams containing “massive” gluons
and the infrared divergent logarithms stemming from dia-
grams containing massless ghosts. As the momenta become
smaller, the “unprotected” logarithms take over, causing the
overall suppression, which culminates with a negative
logarithmic divergence at the origin. In the case of the
SDE analysis, where the corresponding integral equation for
Γαμνðq; r; pÞ is considered directly, the diagram responsible
for the suppression is the triangle ghost graph [Fig. 18, first
row of panel (a)]. Instead, in the case of the gauge-technique,

where the form factors of Γαμνðq; r; pÞ are built out of the
quantities appearing in the corresponding STIs, the ingre-
dient causing the suppression and the zero crossing is the
ghost loop that appears in the diagrammatic expansion of the
gluon propagator [Fig. 18, second row of panel (a)]. This
particular graph furnishes unprotected logarithms, which
eventually find their way into the structure of the function
JðqÞ. Evidently, the STIs relate these two graphs, as shown
schematically in Fig. 18, third row of panel (a).
The 3D results obtained for the Xi may be employed in a

variety of situations where the three-gluon vertex is
expected to play a significant role, and especially in
circumstances where integrations over the entire range of
momenta are required. In what follows we will mention a
few notable cases that belong to this general category.
The three-gluon vertex is instrumental for the SDE that

governs the momentum evolution of the gluon propagator,
entering in the diagrams shown in the panel (b) of Fig. 18.
After the implementation of the decompositions given in
Eqs. (2.6) and (2.7), the original SDE furnishes two integral
equations [36,86], which determine the quantities JðqÞ and
m2ðqÞ. The use of the 3D data obtained here for the Xi,
instead of approximate Ansätze, is expected to provide a
tighter control on the behavior of these two quantities.
As has been shown in [37,87], the formation of the

(colored) massless excitations contained in Vαμνðq; r; pÞ
hinges on the nonvanishing of the vertex function Bμν,
introduced in Fig. 2. This possibility, in turn, is determined
by the homogeneous BSE shown in panel (c) of Fig. 18,
where the “green ellipse” represents Bμν. Evidently, the
kernel of this BSE, and hence the type of solutions obtained,
depend crucially on the details of the product IΓIΓ; in the
early treatments cited above, this product was simply
approximated by its tree-level value, i.e., IΓIΓ → Γð0ÞΓð0Þ,
and nontrivial solutions were found that corroborate the
proposed mass generating mechanism. In fact, the solutions

(a)

(b)

(c)

FIG. 18. Panel (a): The SDE diagram of the three gluon vertex responsible for the suppression (first row), the one in the gauge-
technique approach (second row), and their schematic connection implemented by the STI (third row). Panel (b): The gluon self-energy
contributions containing the three gluon vertex. Panel (c): The homogeneous BSE which describes the formation of the (colored)
massless excitations contained in Vαμν, or one of the contributions entering in the glueball BSEs.
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obtained are intimately related with the first derivative of the
running gluonmass, dm2ðq2Þ=dq2 [87], fromwhichm2ðq2Þ
may be reconstructed [40]. The detailed knowledge of theXi
allows for a more sophisticated treatment of this problem,
achieving a higher degree of self-consistency between all the
ingredients involved.
The treatment of systems of BSEs is of central impor-

tance in the studies dedicated to the formation of glueballs.
The particular BSE shown in panel (c) of Fig. 18 is present
in all such analyses.9 Previous studies indicate that in order
to obtain masses compatible with lattice simulations, the
total integrated strength of the kernel must undergo a
considerable suppression [43,46]. A need for an analogous
attenuation has been also observed in the recent study of
hybrid mesons [47]; the required suppression has been
implemented by resorting to a simplified Ansatz for the
form factors associated with the tensors comprising

Γð0Þ
αμνðq; r; pÞ. Evidently, the results obtained here offer

the possibility of refining future studies in this direction,
furnishing ingredients that, despite the approximations
implemented in deriving them, can trace their origins to
the fundamental underlying theory.
An important limitation of the method employed in this

work is that the structure of the transverse form factors Yi of
the vertex Γαμνðq; r; pÞ [see Eqs. (3.5) and (6.5)] remains
completely undetermined. Of course, this particular draw-
back is typical to all gauge-technique based approaches,
even though, in some cases, such as the electron-photon or
the quark-gluon vertices, partial information on these form
factors may be extracted from the so-called “transverse”
Ward identities [123–128]. Note that the Yi may be numeri-
cally relevant in some of the problems mentioned earlier.
Moreover, their inclusion is important in situations where
Γαμνðq; r; pÞ forms part of an integral equation that must be
multiplicatively renormalized; a particularly relevant exam-
ple of such a case is again the SDE appearing in the panel
(b) of Fig. 18. A systematic way for obtaining approximate
expressions for these components could be developed at the
level of the SDE satisfied by Γαμνðq; r; pÞ, where the
tensorial structures associated with the Yi will have to be
appropriately projected out of the corresponding integral
equation. Calculations in that direction are already under-
way, and we hope to report on the results in the near future.
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APPENDIX A: ONE-LOOP RESULTS

In this Appendix we present the one-loop results for form
factors in the (i) totally symmetric, (ii) asymmetric, and
(iii) the general orthogonal configurations. All of them were
obtained by the direct evaluation of the one-loop diagrams
contributing to the three-gluon vertex. The relevant expres-
sions are obtained from [88] (Landau gauge), and are
renormalized in the Taylor scheme; this means that the
corresponding Ai are not renormalized atQ2 ¼ μ2, but rather
at the “soft-ghost” configuration, as discussed at the end of
Sec. III.
In particular, Z3 will be obtained directly from

Eq. (3.15), by setting

ZA ¼ 1þ CAαs
144π

�
78

�
2

ϵ
− γE þ lnð4πÞ

�
þ 97

�
;

Zc ¼ 1þ CAαs
16π

�
3

�
2

ϵ
− γE þ lnð4πÞ

�
þ 4

�
;

Z1 ¼ 1; ðA1Þ
where γE denotes the Euler-Mascheroni constant, and
ϵ ¼ 4 − d, with d being the dimension of spacetime in
dimensional regularization.
Substituting the results of Eqs. (A1) into the STI for the

renormalization constants given by (3.15), one finds

Z3 ¼ 1þ CAαs
144π

�
51

�
2

ϵ
− γE þ lnð4πÞ

�
þ 61

�
: ðA2Þ

Then, one may obtain ultraviolet finite (cutoff-independent)
one-loop results for the three-gluon vertex by performing
the renormalization as described above. In what follows we
will implement this procedure to obtain the corresponding
results for the symmetric and asymmetric configurations.
(1) Symmetric configuration The kinematics of this

configuration is defined in Eq. (4.10). Then, at
one-loop we have109The “green ellipse” in Fig. 18 represents now the correspond-

ing glueball amplitudes. Note also that the color structure of the
problem is different than that of the massless colored excitations
mentioned above.

10The corresponding two-loop calculation in the MS was
presented in [129].
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Xð1Þ
1 ðQÞ ¼ 1þ CAαs

48π

�
17 ln

�
Q2

μ2

�
þ 3 − 3I

�
;

Xð1Þ
2 ðQÞ ¼ 0;

Xð1Þ
3 ðQÞ ¼ −

CAαs
48πQ2

ð38 − 7IÞ; Xð1Þ
10 ðQÞ ¼ 0;

Yð1Þ
1 ðQÞ ¼ −

CAαs
432πQ4

ð587 − 193IÞ;

Yð1Þ
4 ðQÞ ¼ −

CAαs
864πQ2

ð365þ 179IÞ; ðA3Þ

with I defined as [122]

I ¼ 1

3

�
ψ1

�
1

3

�
− ψ1

�
2

3

��
¼ 2.34391; ðA4Þ

where ψ1ðzÞ is the trigamma function, related to
ΓðzÞ by

ψ1ðzÞ ¼
d2

dz2
ln½ΓðzÞ�: ðA5Þ

The form factors X2 and X10 vanish in the
symmetric configuration since they are antisymmet-
ric under the exchange of at least two arguments
[see Eq. (3.7)].

(2) Asymmetric configuration
In the asymmetric configuration, defined in

Eq. (4.12), the tensor structure of the three-gluon
vertex reduces to [88]

Γαμνðq;−q; 0Þ ¼ 2gαμqν½X1ðq;−q; 0Þ − q2X3ðq;−q; 0Þ� − 2qαqμqνX3ðq;−q; 0Þ
− ðqαgμν þ qμgανÞ½X1ð0; q;−qÞ − X2ð0; q;−qÞ�: ðA6Þ

Then, the corresponding form factors at one-loop read

Xð1Þ
1 ðq;−q; 0Þ ¼ 1þ 17CAαs

48π
ln

�
q2

μ2

�
;

Xð1Þ
3 ðq;−q; 0Þ ¼ −

37CAαs
96πq2

;

Xð1Þ
1 ð0; q;−qÞ − Xð1Þ

2 ð0; q;−qÞ ¼ Xð1Þ
1 ðq;−q; 0Þ: ðA7Þ

Notice that we cannot disentangle Xð1Þ
1 ð0; q;−qÞ and Xð1Þ

2 ð0; q;−qÞ.
One should also note that, due to our choice of the Taylor renormalization prescription, X1 reduces to its tree-level

value for q ¼ μ in the asymmetric configuration, Xð1Þ
1 ðμ;−μ; 0Þ ¼ 1, instead of satisfying this condition at the

symmetric point.
(3) General orthogonal configuration

In this configuration, the momenta q2 and r2 are independent, but the angle θ is fixed at θ ¼ π=2; therefore, one
has p2 ¼ q2 þ r2. In this case we have determined only X1, which is given by

X1ðq2; r2; π=2Þ ¼ 1þ CAαs
768πq2r2

�
2ð9q4 þ 128q2r2 þ 3r4Þ ln

�
q2

μ2

�
− 12ðq4 − 8q2r2 þ r4Þ

þ 2ð3q4 þ 128q2r2 þ 9r4Þ ln
�
r2

μ2

�
− 24ðq4 þ 10q2r2 þ r4Þ ln

�
q2 þ r2

μ2

�

− 3i
ðq2 þ r2Þ

qr
ðq2 − r2Þ2½Li2ð−zÞ − Li2ðzÞ þ Li2ðz−1Þ − Li2ð−z−1Þ�

�
; ðA8Þ

with q ¼ jqj, r ¼ jrj, z ¼ ðq − irÞ=ðqþ irÞ, and

Li2ðzÞ ¼ −
Z

z

0

lnð1 − tÞ
t

dt; ðA9Þ

is the dilogarithm (or Spence function). Note that the above expression is symmetric under q ↔ r.
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(4) Orthogonal symmetric configuration
This is a particular limit of Eq. (A8) where

q2 ¼ r2. We obtain

X1ðq2;q2;π=2Þ

¼ 1þCAαs
96π

�
34 ln

�
q2

μ2

�
−36 lnð2Þþ9

�
: ðA10Þ

APPENDIX B: THE BC AND NAIVE BASES

Let us consider an arbitrary tensor with three Lorentz
indices (α, μ, ν) and three momenta ðq; r; pÞ, to be denoted

by Sαμνðq; r; pÞ. We expand Sαμνðq; r; pÞ in two different
bases, the “naive” and the BC basis,

Sαμνðq;r;pÞ¼
X14
i¼1

Niðq;r;pÞnαμνi ;

¼
X10
i¼1

Liðq;r;pÞlαμν
i þ

X4
i¼1

Tiðq;r;pÞtαμνi ;

ðB1Þ

where the BC elements lαμν
i and tαμνi are given in

Eqs. (3.4) and (3.6), and we define the elements of the
naive basis to be

nαμν1 ¼ qαgμν; nαμν2 ¼ qαqμqν; nαμν3 ¼ qαqμrν; nαμν4 ¼ qαrμqν; nαμν5 ¼ qαrμrν;

nαμν6 ¼ rαgμν; nαμν7 ¼ rαqμqν; nαμν8 ¼ rαqμrν; nαμν9 ¼ rαrμqν; nαμν10 ¼ rαrμrν;

nαμν11 ¼ qμgνα; nαμν12 ¼ qνgμα; nαμν13 ¼ rμgνα; nαμν14 ¼ rνgμα: ðB2Þ

The form factors Ni can be written in terms of the form factors Li and Ti as

N1 ¼ L4 − L5 − ðp · rÞL6 þ ðp · rÞðq · rÞT2 − ðq · rÞT4;

N2 ¼ 2L9 þ r2T3;

N3 ¼ −L6 − L10 þ ðq · rÞT2 þ T4;

N4 ¼ L9 − ðq · rÞT3;

N5 ¼ −L6 þ ðq · rÞT2;

N6 ¼ 2L4 − 2ðp · rÞL6 − q2ðp · rÞT2 þ q2T4;

N7 ¼ L3 þ 2L9 − L10 − ðp · rÞT1 þ r2T3 − T4;

N8 ¼ −L3 − 2L6 − L10 þ ðp · qÞT1 − q2T2 þ T4;

N9 ¼ L9 − L10 − ðq · rÞT3 − T4;

N10 ¼ −2L6 − q2T2;

N11 ¼ −2L7 þ 2ðp · qÞL9 þ r2ðp · qÞT3 − r2T4;

N12 ¼ L1 þ L2 − ðq · rÞL3 þ ðp · rÞðq · rÞT1 − ðp · rÞT4;

N13 ¼ −L7 − L8 þ ðp · qÞL9 − ðp · qÞðq · rÞT3 þ ðq · rÞT4;

N14 ¼ −L1 þ L2 þ ðq · rÞL3 − ðp · qÞðq · rÞT1 þ ðp · qÞT4; ðB3Þ

where we have omitted the momenta dependence of the form factors.
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On the other hand, the change of basis can be inverted in order to obtain Li and Ti in terms of Ni,

L1 ¼
1

4
f2½ðq · rÞðN10 − N2 þ N3 þ N4 − N5 þ N7 − N8 − N9Þ þ N12 − N14�

þ ðp · qÞðN3 þ N4 − N5 − N9Þ þ ðp · rÞðN3 þ N4 − N5 − N9Þg;

L2 ¼
1

4
f2½ðq · rÞð−N10 − N2 − N3 þ N4 þ N5 þ N7 þ N8 − N9Þ þ N12 þ N14�

þ ðp · qÞð−N3 − N4 þ N5 þ N9Þ þ ðp · rÞðN3 þ N4 − N5 − N9Þg;

L3 ¼
ðp · rÞð−N10 − N3 þ N5 þ N8Þ þ ðp · qÞð−N2 þ N4 þ N7 − N9Þ

ðp · qÞ − ðp · rÞ ;

L4 ¼
1

4
f−2ðp · rÞN10 þ q2ð−N3 − N4 þ N5 þ N9Þ þ 2N6g;

L5 ¼
1

4
f2½−2N1 þ ðq · rÞð−N3 − N4 þ N5 þ N9Þ þ N6� − 2ðp · rÞðN10 − 2N5Þ þ q2ð−N3 − N4 þ N5 þ N9Þg;

L6 ¼ −
ðq · rÞN10 þ q2N5

q2 þ 2ðq · rÞ ;

L7 ¼
1

4
f−2N11 þ 2ðp · qÞN2 þ r2ð−N3 − N4 þ N5 þ N9Þg;

L8 ¼
1

4
f2N11 − 4N13 − 2ðp · qÞðN2 − 2N4Þ þ 2ðq · rÞðN3 þ N4 − N5 − N9Þ þ r2ðN3 þ N4 − N5 − N9Þg;

L9 ¼
ðq · rÞN2 þ r2N4

2ðq · rÞ þ r2
;

L10 ¼
1

2
ð−N3 þ N4 þ N5 − N9Þ;

T1 ¼
−N2 − N3 þ N4 þ N5 þ N7 þ N8 − N9 − N10

ðp · qÞ − ðp · rÞ ;

T2 ¼
2N5 − N10

q2 þ 2ðq · rÞ ;

T3 ¼
N2 − 2N4

2ðq · rÞ þ r2
;

T4 ¼
1

2
ðN3 þ N4 − N5 − N9Þ: ðB4Þ

As a concrete example, consider the vector vαμν ≡ qαrμpν, which can be written in the naive basis as

vαμν ¼ −nαμν4 − nαμν5 ; ðB5Þ
i.e., N4 ¼ N5 ¼ −1, while all the other form factors vanish. Using the transformation rules of Eq. (B4)
(and qþ pþ r ¼ 0), we can write this vector in the BC basis as

vαμν ¼ vαμνL þ vαμνT ; ðB6Þ
with

vαμνL ¼ −ðq · rÞlαμν
2 þ p2

p2 þ 2ðp · qÞl
αμν
3 − ðp · rÞlαμν

5 þ q2

q2 þ 2ðq · rÞl
αμν
6 − ðp · qÞlαμν

8 þ r2

r2 þ 2ðp · rÞl
αμν
9 − lαμν

10 ;

vαμνT ¼ −
2

p2 þ 2ðp · qÞ t
αμν
1 −

2

q2 þ 2ðq · rÞ t
αμν
2 −

2

r2 þ 2ðp · rÞ t
αμν
3 : ðB7Þ
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