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A finite geometric model of space-time (which we call the bulk) is shown to emerge as a set of error
correcting codes. The bulk is encoding a set of messages located in a blow up of the Gibbons-Hoffman-
Wootters (GHW) discrete phase space for n-qubits (which we call the boundary). Our error correcting code
is a geometric subspace code known from network coding, and the correspondence map is the finite
geometric analogue of the Plücker map well-known from twistor theory. The n ¼ 2 case of the bulk-
boundary correspondence is precisely the twistor correspondence where the boundary is playing the role of
the twistor space and the bulk is a finite geometric version of compactified Minkowski space-time. For
n ≥ 3 the bulk is identified with the finite geometric version of the Brody-Hughston quantum space-time.
For special regions on both sides of the correspondence we associate certain collections of qubit
observables. On the boundary side this association gives rise to the well-known GHW quantum net
structure. In this picture the messages are complete sets of commuting observables associated to
Lagrangian subspaces giving a partition of the boundary. Incomplete subsets of observables corresponding
to subspaces of the Lagrangian ones are regarded as corrupted messages. Such a partition of the boundary is
represented on the bulk side as a special collection of space-time points. For a particular message residing
in the boundary, the set of possible errors is described by the fine details of the light-cone structure of its
representative space-time point in the bulk. The geometric arrangement of representative space-time points,
playing the role of the variety of codewords, encapsulates an algebraic algorithm for recovery from errors
on the boundary side.
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I. INTRODUCTION

Since the advent of holography [1,2] and the AdS/CFT
correspondence [3] physicists have realized that in order to
understand the properties of a physical system sometimes
one can find clues for achieving this goal within the realm
of another one of a wildly different kind. In mathematics, an
idea of a similar kind had already been followed by classical
geometers of the 19th century. The work of Plücker, Klein,
Grassmann and others has shown us that it is rewarding to
reformulate problems pertaining to geometrical structures of
a space in terms of ones of another space of a different kind.
The simplest instance of such a geometrical type of
rephrasing called the Klein correspondence [4] revealed
that the lines of the three dimensional (projective) space can
be parametrized by the points of a four dimensional one.Had

the physicists of that time beenmesmerized by philosophical
ideas on unification of space and time as a four dimensional
entity, they probablywould have regarded thismathematical
correspondence as a promising link between the geometry of
space-time and a space of one dimension less. A few decades
later the idea of unification of space, time, matter, and
gravity emerged in the form of a geometric theory of a four
dimensional continuum: Einstein’s general theory of rela-
tivity. However, the notion of relating this unified space-time
structure to a space of one dimension less occurred much
later in the 1960s when Roger Penrose created twistor
theory [5].
Twistor theory has given us a correspondence between

spaces of different geometries. Combining the ideas of
geometers of the 19th century in twistor theory the concept
of complexification linked with space-time structure has
become a key ingredient. Indeed, compactified and com-
plexified Minkowski space-time turned out to be the right
object to consider and real Minkowski space-time was
arising merely as a real slice of this complex space. In the
twistor correspondence [5–7] physical data of four (com-
plexified) dimensional space-time is to be expressed in
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terms of data of a three (complex) dimensional space:
twistor space. Then for example the causal structure of
space-time manifests itself on the twistor side of the
correspondence as data encoded in complex geometric
structures.
Following the insights of string theory dualities and the

spectacular success of the AdS/CFT correspondence (for an
introduction to these topics see [8]), the trick of relating
spaces of different dimensions and geometries has become
well known. In the meantime some new ideas have been
formulated within a different and rapidly evolving new
research field: quantum information theory (QIT) [9]. After
the discoveries of Deutsch [10], Shor [11], Grover [12] and
others it has become clear that quantum algorithms in
principle can be implemented on quantum computers,
objects that are capable of outperforming their classical
cousins for certain computational tasks. Parallel to these
developments it also turned out that QIT serves as an
effective new language capable of articulating basic notions
underlying quantum theory in a compelling way.
It is then not surprising that QIT, as a new technique of

elaboration, has been added to the plethora of stringy
dualities in 2006 when some correspondences between
QIT, string theory, and holography have been reported
[13–17]. The result of Ryu and Takayanagi [13,14] turned
out to be a breakthrough. The Ryu-Takayanagi proposal
based on the notion of holographic entanglement entropy
established a new method for exploring the meaning of the
so-called bulk-boundary correspondence. According to this
idea, a gravitational theory in the bulk is encoding quantum
information associated with degrees of freedom (d.o.f.)
residing in the boundary. As a consequence of this, the
recurring theme of regarding space-time as an emergent
entity showed up in a new fashion. In line with this proposal
for the nuts and bolts of space-time, boundary entangle-
ment manifesting itself in the bulk serves as a glue [18–20].
As far as the method of how this encoding supports the
emerging space-time structure, the language of error
correcting codes1 has been invoked [22–25].
The central idea underlying such error correcting

schemes is bulk reconstruction using boundary data [26].
This idea sheds some light on the important issue called
“subregion-subregion duality”. This notion suggests that a
region of the boundary should contain complete informa-
tion about a certain subregion of the bulk. More precisely,
according to this picture bulk operators in AdS can be
reconstructed as CFT operators in a subregion provided
they lie in a special region in the bulk [27,28]. For instance,
in their error correcting scheme the authors of Ref. [24]
choose a finite set of local bulk operators realized in the
CFT via the global representation of [26]. Then acting with

these operators on some fixed state and forming the linear
span produces a code subspace. Different choices for this
finite set of operators then yield different code subspaces.
Hence what we get by this procedure is not a single code
but rather a collection of error correcting codes. Hence in
the light of this concept bulk space-time is a collection of
error correcting codes of a very special kind. In particular,
studying the gauge-like d.o.f. manifesting itself in different
choices of codewords should be connected in an intricate
manner to the geometry of certain bulk domains. Finally in
this approach bulk effective field theory operators emerge
as a set of logical operators on various encoded subspaces
which are protected against local errors in the boun-
dary CFT.
In order to study some aspects of a concept similar to

subregion-subregion duality we would like to propose an
interesting finite geometric toy model in this paper. The
model connects two spaces, which we call “boundary” and
“bulk,” via a classical error correcting code. Moreover, we
reveal that this classical code is associated with a “quantum
net structure” in a natural manner. We find that a version of
this structure on the boundary side is already well known in
the literature as the quantum net associated to the Gibbons-
Hoffman-Wootters (GHW) discrete phase space [29,30].
On the other hand, on the bulk side the structure we find is a
finite geometric version of the Brody-Hughston “quantum
space-time” [31,32].
In our paper we will settle with some basic exposition of

our ideas with many details left to be explored for future
work. First of all we emphasize that at the present time we
are not attempting to tie the duality in question to any
discretization of the AdS/CFT correspondence, i.e., to
efforts showing up in studies like Refs. [19,23]. In fact
our model at this stage contains merely two levels of
elaboration. At one level it is a finite geometric illustration
of how geometric data of one type of a space (boundary)
determines the geometric data of the other (bulk) via an
error correcting code based on a simple and explicit map.
At the other level of progression, to special subregions of
either space we associate certain collections of elementary
quantum observables in a manner which is controlled
(though in an ambiguous manner) by the mathematical
form of our map.
The idea that a map of a simple kind is capable of

grasping certain characteristic features of complex physical
phenomena is well-known. Let us just refer to the fact that
some of the key aspects of the phenomenon of chaos in
dynamical systems can be grasped by chaotic maps like the
Arnold cat map. The map we elevate here to the status of an
object having some new physical meaning is the Plücker
map of Eq. (75). A special instance of this map is the one
responsible for the Klein correspondence (see Fig. 2.). This
is the map we already referred to in the beginning of this
Introduction by emphasizing its special role in connection
with twistor theory. The basic hint of our paper is coming

1For an early bird observation on the surprising relevance of
the Hamming code in understanding the mathematical structure
of the E7 symmetric black hole entropy formula, see Ref. [21].
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from an observation that this map can be used to associate
2n−1-qubit Pauli operators to n-qubit ones [33,34]. The new
ingredient amenable to a new physical interpretation of this
map is the fact that it also has an intimate connection with
geometric subspace codes [35–38].
Finally we would like to make some clarifying com-

ments on our terminology in this paper. Our reason for
calling the bulk part of the correspondence as some sort of
space-time is as follows. First of all, we will see that the use
of our map is just a generalization of a finite geometric
instance of the twistor correspondence of Penrose which is
hence featuring a finite geometric version of compactified
Minkowski space-time on one side of the correspondence.
Second, we will show that the incidence structure of
subspaces on the boundary side manifests itself on the
bulk side in a structure reminiscent of the usual causal
structure of ordinary space-time. Naturally, having a
causal-like structure by itself is not justifying our bulk
to be a representative of some sort of space-time. It could be
for instance a finite geometric analog of “kinematic space”
as defined in Ref. [20], which also has a causal structure
related to partial ordering of different boundary regions.
However, apart from some speculations presented in our
conclusions, we refrain from making a distinction between
these possibilities. We must also stress that since we are
working within a finite geometric context, our use of the
words “bulk” and “boundary” is of course lacking the usual
meaning as customary in AdS/CFT. These words are
mainly used here as useful abbreviations for the geomet-
rical objects we are intending to relate. We must add
however, that in spite of this, the results of Section IV. E
culminating in the appearance of our suggestive Fig. 9
gives some support for our nomenclature.
The organization of this paper is as follows. In Sec. II

we present the necessary finite geometric background.
Observables of n-qubits, their associated projective spaces,
Grassmannians and subspace codes are defined here. We
are aware that these somewhat abstract concepts are
probably not belonging to the conventional wisdom of
most of the readers. Hence we opted to include extensive
and detailed background material in five clarifying
Appendixes. Moreover, we devoted Sec. III to a detailed
elaboration of the simplest (two qubit) case.
In Sec. III, the reader is introduced to the basic concepts

of our paper through a set of very simple calculations that
are organized into a collection of subsections. In this case
all of the relevant finite geometric structures also have a
pictorial representation. The two-qubit case discussed here
is in complete analogy with Penrose’s twistor correspon-
dence. The bulk is the finite geometric analog of compac-
tified, complexified Minkowski space-time. It also turns out
that the boundary, which is the finite geometric version of
twistor space, is related to the GHW discrete phase space
for two qubits. For the messages residing in the boundary,
we choose elements of a fibration partitioning the boundary

into a set of lines. To the points of these message lines, one
can associate a maximal set of commuting observables.
A fibration to messages of that kind is reminiscent of a
particular slicing up of the boundary to Cauchy slices
known from the continuous case. The errors in this picture
are either points contained in the message lines, or planes
containing them. Then we study how the set of possible
errors is represented in the bulk. We regard the represent-
atives of the messages in the bulk as codewords. Then we
show that the possible set of errors in the boundary is
represented in the bulk by the light cone structure of the
codewords. This observation facilitates an algebraic
description of an error correction process with the recovery
from errors having an interesting physical interpretation.
In Sec. III. F we realize that one really should consider

not just a single copy of messages and their associated
codewords, but instead a whole collection of them inter-
twined in a special manner. This possible set of codes
corresponds to all possible slicings of the boundary into
lines carrying maximal commuting sets of observables. We
characterize this set of codes algebraically and discuss their
physical meaning in the twistor language. Next we notice
that by assigning a fixed state to a particular message line
we can associate states even to the remaining message lines
in a unique manner. This construction is then identified
with the rotationally covariant association of a quantum net
to the lines of the GHW phase space [39]. Then we initiate a
study for understanding our classical error correction code
in terms of the quantum states of the quantum net. We point
out that the observables associated with plane errors have a
clear-cut interpretation within the formalism of stabilizer
codes. We close this section with a study on how one can
relate the different codes and their associated states within
the total set of possible codes with the help of unitaries
decomposed in terms of elementary quantum gates. These
unitaries are encoding the entanglement properties of the
stabilizer states associated to the lines. We observe that
when changing our code to another one the uniqueness of
our association of quantum states to boundary lines is lost.
Section IV is devoted to generalizations for an arbitrary

number of n qubits. Here when necessary the n ¼ 3 case
is invoked as an illustration, with details found in
Appendix D. First in Sec. IV. A we discuss how the
boundary can be fibered in terms of messages. Then in
Sec. IV. B we relate the boundary to the GHW phase space
[29,30] of n-qubits. It turns out that our boundary is just the
blow up of the projectivization of this phase space. This
term refers to the fact that the GHW phase space is a space
with coordinates taken from the finite field GFð2nÞ
regarded as an extension of GFð2Þ ≃ Z2. Then the blowing
up process is effected by using the field reduction map for
taking the vector space of the GHW phase space to the
vector space underlying our boundary.
We show in Sec. IV. C that our bulk encoding n-qubit

messages is the Grassmannian image of the boundary under
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the Plücker map.We identify the bulk as the finite geometric
version of an object called the Brody-Hughston “quantum
space-time” [31,32]. The bulk is equipped with a “chrono-
metric form” [31,32,40] encoding the intersection properties
of the subspaces of different dimension of the boundary in
the causal structure of the bulk. Since our bulk is regarded as
the “hypertwistor” analog of the Klein quadric, which is
related to a complexification of Minkowski space-time with
the ordinary space-time being just a real slice,we then turn to
a characterization of the “real” slice of it. In Sec. IV. D we
identify such a real slice of the bulk as the image of the
Lagrangian Grassmannian under the Plücker map.We show
that in our finite geometric version, just like in the n ¼ 2
case, this real slice of the bulk for n ≥ 3 can be embedded
into a hyperbolic quadric residing in a projective space
PðVÞ. However, this time the underlying vector space V is a
one of dimension 2n taken over the finite field GFð2Þ,
equipped with a natural symplectic structure.
Since the boundary was amenable to a nice reinterpre-

tation in terms of a space (namely the GHWone) taken over
the field extension GFð2nÞ in Sec. IV. E, we present an
interesting reinterpretation along this line also valid for the
bulk. In order to cope with the 2n dimensional vector space
stucture of the previous section reminiscent of the space of
n-qubits (taken however, over finite fields), we introduce a
new term. Namely we abbreviate the term “a quantum bit
with amplitudes taken from a finite field” in short by the
one—a fibit. The basic idea we initiate in this section is the
one of gluing together the bulk from n-fibits. In Sec. IV. F
we find that there is a neat physical interpretation of the
space of codewords in the bulk representing our messages
of the boundary in terms of n-fibits over GFð2nÞ correlated
in a special manner via a twisted tensor product structure.
According to this idea, there is a minimalist representation
of the bulk as an object encoding boundary data summa-
rized in Fig. 9. In this representation the GHW phase space
can be regarded as a circle discretized into n-points. The
n-fibits are then represented by n such circles glued
together in a special manner via an application of the
Frobenius automorphism of our finite field. Section IV. G
is containing an adaptation of the main ideas of Ref. [37],
on the generalization of the error correction scheme we
presented in Secs. III. D–III. F. This section contains
merely the basic ideas, with the details needing further
technical elaboration, this remains a challenge we are
looking to take up in future work. Our conclusions and
some speculations are left to Sec. V. Our paper is
supplemented with five Appendixes containing technical
details and illustrations. They are included to help the
reader to navigate in the field of finite geometric concepts.

II. OBSERVABLES, PROJECTIVE SPACES, AND
SUBSPACE CODES

Let us consider the 2n-dimensional vector space V ≡
Vð2n; 2Þ over the field GFð2Þ≡ Z2 ¼ f0; 1g. In the

following we will refer to the dimension of a vector space
as its rank, hence V is of rank 2n. In the canonical basis eμ,
μ ¼ 0; 1; 2;…2n − 1 we arrange the components of a
vector v ∈ V in the form

v ↔ ðq0; q1;…; qn−1; p0; p1;…; pn−1Þ: ð1Þ

We represent n-qubit observables by vectors of V in the
following manner. Use the mapping

ð00Þ↔ I; ð01Þ↔X; ð11Þ↔Y; ð10Þ↔Z ð2Þ

where ðX; Y; ZÞ≡ ðσx; σy; σzÞ, i.e., they are the usual Pauli
spin matrices. Then for example in the n ¼ 3 case the array
ðq0; q1; q2; p0; p1; p2Þ of six numbers taken from Z2

encodes a three-qubit operator up to sign. For example

ð100110Þ ↔ �YXI ↔ �Y ⊗ X ⊗ I: ð3Þ

The leftmost qubit operator is the “zeroth”-one (Y) with
labels ðq0; p0Þ, the middle one is the “first” (X) with labels
ðq1; p1Þ and the rightmost one is the “second” (I) with
labels ðq2; p2Þ. As a result of this procedure we have a map

v ↦ �Ov ð4Þ

between vectors of V and n-qubit observablesO up to sign.
Note that since under multiplication the operators also pick
up multiplicative factors of �i, the space of observables is
not forming an algebra. In order to properly incorporate the
multiplicative structure the right object to consider is the
Pauli group [9] which is the set of operators of the form
f�Ov;�iOvg. Then one can show that the center of the
Pauli group is the group f�1;�ig, and its central quotient
is just the vector space V. Under this isomorphism vector
addition in V corresponds to multiplication of Pauli group
elements up to �1 and �i times the identity operator.
The vector space V is also equipped with a symplectic

form h·; ·i encoding the commutation properties of the
corresponding observables. Namely, for two vectors v, v0 ∈
V with components in the canonical basis

v ↔ ðq0; q1;…; qn−1; p0; p1;…; pn−1Þ;
v0 ↔ ðq00; q01;…; q0n−1; p

0
0; p

0
1;…; p0

n−1Þ ð5Þ

hv; v0i ¼
Xn−1
i¼0

ðqip0
i þ q0ipiÞ ∈ Z2: ð6Þ

In the symplectic vector space ðV; h·; ·iÞ we have hv; v0i ¼
0 or 1, referring to the cases when the corresponding
n-qubit observables are commuting or anticommuting:
½Ov;Ov0 � ¼ 0 or fOv;Ov0 g ¼ 0. Notice that over the
two element field GFð2Þ an alternating form like h·; ·i is
symmetric.
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Since V is even dimensional and the symplectic form is
nondegenerate, the invariance group of the symplectic form
is the symplectic group Spð2n;Z2Þ≡ Spð2n; 2Þ. This
group is acting on the row vectors of V via 2n × 2n
matrices M ∈ Spð2n; 2Þ from the right, leaving the matrix
J ¼ heμ; eνi of the symplectic form invariant

v ↦ vM; MJMt ¼ J: ð7Þ

It is known that Spð2n; 2Þ is generated by transvections
[41,42] Tw ∈ Spð2n; 2Þ, w ∈ V of the form

Tw∶V → V; v ↦ Twv ¼ vþ hv; wiw ð8Þ

and they are indeed symplectic, i.e.,

hTwv; Twv0i ¼ hv; v0i: ð9Þ

Given the symplectic form one can define a quadratic
form Q∶V → Z2 by the formula

QðvÞ≡Xn−1
i¼0

qipi ð10Þ

which is related to the symplectic form via

hv; v0i ¼ Qðvþ v0Þ þQðvÞ þQðv0Þ: ð11Þ

Generally quadratic forms which, by a convenient choice of
basis, can be given the (10) canonical form are called
hyperbolic [41,42]. In our special case the meaning of the
(10) quadratic form is clear: for n-qubit observables Ov
containing an even (odd) number of tensor product factors
of Y, the value of Q is zero (one). Hence the observables
which are symmetric under transposition are having
QðvÞ ¼ 0 and ones that are antisymmmetric under trans-
position are having QðvÞ ¼ 1.
In the following we will refer to the set of subspaces of

rank k ¼ 1; 2; 3;…; 2n − 1 of V as the Grassmannians:
Grðk; 2nÞ. For k¼ 1;2;3;…;2n−1 these spaces are arising
by considering the spans of one, two, three, etc., 2n − 1
linearly independent vectors v1; v2; v3;…; v2n−1 ∈ V.
These Grassmannians are just sets of lines, planes, spaces,
etc., and hyperplanes through the origin. Since we are over
GFð2Þ these are sets of the form faug, fauþ bvg,
fauþ bvþ cwg, etc., with a; b; c ∈ Z2, consisting of
one, three, seven, etc., 22n−1 − 1 nontrivial vectors. A line
faug through the origin (zero vector) is a ray. Over GFð2Þ
the number of rays equals the number of nonzero vectors
of V.
Regarding the set of rays as the set of points of a new

space of one dimension less, gives rise to the projective
space PðVÞ≡ PGð2n − 1; 2Þ. In this projective context
lines, planes, spaces etc., of V give rise to points,
lines, planes etc., of PðVÞ. Hence the collection of the

projectivization of the Grassmannians Gðk; 2nÞ denoted
by Gðk − 1; 2n − 1Þ forms the projective geometry of
PGð2n − 1; 2Þ. In the following the word dimension
will be used for the dimension of a projective subspace
PðSÞ, and rank will refer to the dimension of the corre-
sponding vector subspace S. Notice that according to
Eq. (4), the sets of projective subspaces (points, lines,
planes, etc., hyperplanes) of PGð2n − 1; 2Þ, i.e., the
Grassmannians Gð0;2n−1Þ;Gð1;2n−1Þ;Gð2;2n−1Þ;…
Gð2n−2;2n−1Þ, up to a sign correspond to the set of
nonzero observables, certain triples, seven-tuples, etc.,
22n−1 − 1-tuples of them.
For our quadratic form of Eq. (10) the points satisfy-

ing the equation QðvÞ ¼ 0 form a hyperbolic quadric
in PGð2n − 1; 2Þ, denoted by Qþð2n − 1; 2Þ. Hence sym-
metric n-qubit observables are represented by points on,
and antisymmetric ones off this hyperbolic quadric
in PGð2n − 1; 2Þ.
Since we have the (6) symplectic form at our disposal

one can specify further our projective subspaces and their
corresponding subsets of observables. A subspace of V is
called isotropic if there is a vector in it which is orthogonal
to the whole subspace. A subspace I is called totally
isotropic if for all points v and u of I we have hv; ui ¼ 0,
i.e., a totally isotropic subspace is orthogonal to itself.
Notice that in the case of rank one and two subspaces of V,
i.e., dimension zero and one subspaces (points and lines) of
PðVÞ the notions isotropic and totally isotropic coincide.
Due to Eq. (4) it is clear that a totally isotropic subspace is
represented by a set of mutually commuting observables.
Notice that the dimension of maximally totally isotropic
subspaces of PGð2n − 1; 2Þ is n − 1. These are called
Lagrangian subspaces. These are arising from totally
isotropic subspaces of rank n of the rank 2n vector space
ðV; h·; ·iÞ. The corresponding set of operators gives rise to a
maximal set of 2n − 1-tuples of commuting observables.
The incidence structure of the set of totally isotropic
subspaces of PGð2n − 1; 2Þ defines the symplectic polar
space Wð2n − 1; 2Þ. A projective subspace of maximal
dimension of Wð2n − 1; 2Þ is called its generator. The
projective dimension of a maximal subspace is called the
rank of the symplectic polar space. Hence in our case
the rank ofWð2n − 1; 2Þ is n.Wð2n − 1; 2Þmade its debut
to physics in connection with observables of n-qubits
in Ref. [43].
A subspace code [35–37] is a set of subspaces in V.

Alternatively one can regard it as a set of projective
subspaces in PðVÞ. Let us suppose that all of the subspaces
have the same dimension k − 1. Then the code is contained
in the Grassmannian Gðk; 2nÞ, or projectively in
Gðk − 1; 2n − 1Þ. These codes are called Grassmannian
codes. If two subspaces in V intersect only in the zero
vector then the corresponding subspaces in the projective
space are non intersecting. Then we will also call two
subspaces S1 and S2 of V nonintersecting as long as they
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only intersect in the zero vector. This idea motivates the
introduction of a natural distance between two subspaces
S1 and S2 given by the formula [35]

dðS1;S2Þ ¼ dimðS1 þ S2Þ − dimðS1 ∩ S2Þ
¼ dimðS1Þ þ dimðS2Þ − 2 dimðS1 ∩ S2Þ ð12Þ

It can be shown [35] that dð·; ·Þ satisfies the axioms of a
metric on PðVÞ. According to this metric two subspaces are
close to each other when their dimension of intersection is
large. For example in the case of Gð2; 4Þ the maximal
possible distance is 4. It is realized by pairwise noninter-
secting planes in Vð4; 2Þ, or alternatively for pairwise
nonintersecting lines in PGð3; 2Þ. Another example is
provided by Fig. 8. where we see a series of planes with
their distance decreasing as their dimension of intersection
increasing.
In the error correcting process a codeword as a subspace

is sent through a noisy channel. Then this message is
corrupted, hence instead of the code subspace another
subspace is received. The basic idea of code construction is
then to find a set of codewords, realized as subspaces in
Gðk; 2nÞ, in such a way to be “well separated” with respect
to dð·; ·Þ, so that unique decoding is possible. Moreover, it
is also desirable to come up with efficient decoding
algorithms.
In particular one would like to construct a code with

maximum possible distance and a maximum number of
elements. In order to do this one has to restrict the values
of k and n conveniently. This leads us to consider a set of
subspaces S, such that it partitions V. It means that there is
no vector in V such that it is not lying in an element of S.
As an extra constraint to be used, we demand that [38] any
two elements of S are nonintersecting if and only if k
divides 2n. Such sets are called spreads [44], and in this
paper we will be merely considering the special case of
k ¼ n. For example a spread of lines in PGð3; 2Þ (k ¼ 2,
and n ¼ 4) is a partition of the 15 element point set of
PGð3; 2Þ into a set of disjoint lines. Since over GFð2Þ each
line is featuring 3 points, in this way we obtain 5 lines to be
used as codewords of a subspace code. In the general case
we have n − 1 dimensional subspaces of PGð2n − 1; 2Þ
forming a spread. In this case the number of points of
PGð2n − 1; 2Þ is 22n − 1. Since an n − 1-subspace is
containing 2n − 1 points with a choice of spread one can
partition the point set of this projective space into 2n þ 1
such subspaces.
Let us now suppose that we have chosen a set of n − 1

dimensional subspaces of PGð2n − 1; 2Þ forming a spread
[38] for building up a subspace code. Then it is said that
this spread defines a ½2n; n; 2n þ 1; 2n�2 code.2 Here the

third entry is referring to the number jCj ¼ 2n þ 1 of
codewords, and the last to the distance D of the code
defined to be the minimum of dðCa; CbÞ where Ca and Cb
are any two different codewords. In our case according to
Eq. (12) D ¼ 2n.
If we have a symplectic structure on V one can specify

further our constant dimension subspace codes. A particu-
larly interesting case of this kind is arising if we ask for the
existence of spread codes with their codewords being
isotropic n − 1 subspaces. The reason for why these codes
are interesting is as follows. According to Eq. (4) we have a
mapping between subspaces of V and certain subsets of
n-qubit observables. It then follows that the codewords,
as special subspaces, will correspond to special sets of
operators with physical meaning. In particular isotropic
spreads, for k ¼ n, will correspond to 2n þ 1 maximal sets
of mutually commuting 2n − 1 tuples of observables
partitioning the total set of 22n − 1 nontrivial observables.
It is well known that such sets of observables give rise to
mutually unbiased bases systems used in quantum state
tomography and for the definition of Wigner functions over
a discrete phase space [29,30,45].

III. THE KLEIN CORRESPONDENCE AS A TOY
MODEL OF SPACE-TIME AS AN ERROR

CORRECTING CODE

In this section we work out the simplest case of encoding
two qubit observables (boundary observables) into a
special set of three qubit ones (bulk observables) via error
correction. Being very simple this case serves as an
excellent playing ground for showing our basic finite
geometric structures at work. Moreover, since the number
of qubits is merely two we are in a position of also having a
pictorial representation for many of the abstract concepts
introduced in the previous section. These detailed consid-
erations aim at helping the reader to visualize our basic
ideas, to be generalized later for an arbitrary number of
qubits.

A. The Klein correspondence and two-qubit
observables

For the two qubit case we use the three dimensional
projective space PðVÞ ¼ PGð3; 2Þ with the underlying
vector space of rank four: V ≡ Vð4; 2Þ. As we emphasized
V is equipped with a symplectic form, see Eq. (6) with
n ¼ 2. The 15 points of PGð3; 2Þ correspond to the 15
nontrivial two-qubit observables. We have altogether 35
lines of PGð3; 2Þ corresponding to triples of observables
with their product equals the identity (I ⊗ I ≡ II) modulo
factors of �1, �i. From the 35 lines 15 are isotropic and
20 are nonisotropic. At the level of observables an example
for the former is fXY; YZ; ZXg, and for the latter is
fIX; IY; IZg. The former defines a mutually commuting
set of three observables. The structure of the point-line

2Generally we have ½r; k;M;D�q codes where V is a vector
space of rank r over the finite field GFðqÞ, and M ¼ jCj is the
number of codewords.
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incidence structure of isotropic and nonisotropic lines is
shown inFig. 1. For the isotropic case the incidence structure
gives rise to Wð3; 2Þ. This structure happens to coincide
with the one of a generalized quadrangle: GQð2; 2Þ also
called the “doily”.3

In PGð3; 2Þ we also have 15 planes containing
7 points and 7 lines. The incidence structure of these 7
points and 7 lines defines a Fano plane (see the diagram
representing a plane in Fig. 2.). From the 7 lines 3 are
isotropic and 4 are nonisotropic. Representing a plane
by a set of observables we obtain seven-tuples like:
fXX; IX; XI; ZY; YZ; YY; ZZg. As we see one of the
observables (XX) of this plane enjoys a special status.
Indeed, XX is commuting with all of the remaining six
ones. At the level of V the corresponding vector (0011) is
orthogonal to the six vectors corresponding to the remain-
ing six observables. Hence the orthogonal complement
of this vector defines a subspace of V of rank three.
Projectively this corresponds to a hyperplane, i.e., projec-
tive subspace of dimension two, which is precisely
our plane. This plane is an isotropic, but not a totally
isotropic one. As an illustration we note that the isotropic
lines of our plane are represented by: the 3 triples
fXX; IX; XIg, fXX; ZY; YZg, fXX; YY; ZZg. On the
other hand the nonisotropic ones are represented by the
4 triples: fXI; ZY; YYg, fIX; ZY; ZZg, fXI; YZ; ZZg,
fIX; YY; YZg. For the physical meaning of these seven-
tuples of observables we mention that these define gener-
alized X-states [47]. For the convenience of the reader a

complete list of observables representing points, lines and
planes of PGð3; 2Þ can be found in Appendix A. The
collection of these objects defines the projective geometry
of our projective space PGð3; 2Þ.
Now we establish a correspondence between two qubit

observables and a special subset of three qubit ones. It
will then be used to establish an error correcting code,
featuring certain subsets of operators on both sides of the
correspondence. The mathematical basis of our corre-
spondence is the Klein correspondence which we now
discuss.
The Klein correspondence (see Fig. 2 and Appendix A)

establishes a mapping between the 15 points, 35 lines,
and 15 planes of the projective space PGð3; 2Þ (boun-
dary), and the 15α-planes, 35 lines, and 15β-planes of a
hyperbolic Klein quadric (bulk) embedded in PGð5; 2Þ.
Since according to Eq. (4) we have a mapping between
subspaces (defined by vectors) of projective spaces and
certain subsets of observables, this mathematical trick
connects sets of observables of very different kind on
both sides of the correspondence. Moreover, due to the
very nature of the Klein correspondence this correspon-
dence between observables will be inherently nonlocal.
We emphasize that at this stage our terminology of calling
the spaces featuring this correspondence as “boundary”
and “bulk” is dictated by mere convenience however, as
we will see later, a suggestive one.
As a first step recall that a line l in PðVÞ ¼ PGð3; 2Þ is

described by two linearly independent vectors v; v0 ∈ V.
Indeed, these vectors span a subspace of rank two (a plane)
in V, projectively a subspace of dimension one (a line) in
PðVÞ. A representative of l can be obtained by an
arrangement of the four components of v and v0 as two
row vectors as follows

FIG. 1. The doily [Wð3; 2Þ] labeled by the nontrivial two-qubit observables (left). The commuting triples of observables
correspond to its 15 isotropic lines. The structure of nontrivial two-qubit observables giving rise to 20 nonisotropic lines of
PGð3; 2Þ (right) is encapsulated in the Cayley-Salmon (½154; 203�) configuration. The isotropic and nonisotropic lines give altogether the
35 lines of PGð3; 2Þ. Notice that in PGð3; 2Þ there are seven lines incident with a point: three of them isotropic, and four of them
nonisotropic.

3For the definition of generalized quadrangles, their extensions
and their use in understanding the finite geometric aspects of form
theories of gravity see Ref. [46].
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ðQjP Þ≡
�
q0 q1 p0 p1

q00 q01 p0
0 p0

1

�
;

P ¼
�
p0 p1

p0
0 p0

1

�
; Q ¼

�
q0 q1
q00 q01

�
: ð13Þ

Clearly left multiplication of ðQjPÞ by any invertible 2 × 2
matrix with elements taken from Z2, i.e., GLð2;Z2Þ ¼
SLð2;Z2Þ is not changing the line, it only changes the
linearly independent vectors representing it. The set of lines
in PGð3; 2Þ forms the Grassmannian Gð1; 3Þ.
Now we introduce coordinates for our lines: the Plücker

coordinates. These are just the determinants of the six
possible 2 × 2 minors one can form from the (13) arrange-
ment. We will regard the Plücker coordinates as the six
components of a vector P taken in the canonical basis of a
vector space Vð6; 2Þ of rank six:

ðP01;P02;P03;P23;P13;P12Þ; P ∈ Vð6; 2Þ: ð14Þ

Clearly: P01 ¼ DetQ and P23 ¼ DetP. Moreover, since we
are over the two element field we have for example
P02 ¼ q0p0

0 þ p0q00. The Plücker coordinates are called
line coordinates since they are invariant under the left
action of SLð2;Z2Þ on ðPjQÞ, hence they are not depend-
ing on how we choose v and v0 representing the line.
Notice that P defines a point in PGð5; 2Þ with a special

property. Namely, one can check that

P01P23 þ P02P13 þ P03P12 ¼ 0: ð15Þ

The left-hand side is a quadratic combination of the (10)
form with n ¼ 3. Hence Eq. (15) defines a hyperbolic
quadric. This quadric lying inside PGð5; 2Þwill be denoted
by Qþð5; 2Þ. Hence our point P is lying on a hyperbolic
quadric in PGð5; 2Þ. In the following we refer to this
quadric as the Klein quadric. (See Fig. 2.)

The six-dimensional vector space Vð6; 2Þ can also be
identified with ∧2 V where V ≡ Vð4; 2Þ. In this represen-
tation P can be regarded as an element of ∧2 V which can
be written as

P ¼ P01e0 ∧ e1 þ � � � þ P23e2 ∧ e3 ¼ v ∧ v0: ð16Þ

Recall in this respect that P is satisfying the (15) Plücker
relations if and only if P ¼ u ∧ v for some u; v ∈ V, i.e.,
iff P is a separable bivector [4].
Since the left-hand side of Eq. (15) is precisely of the

(10) form with n ¼ 3, then to the corresponding quadratic
form one can associate the usual symplectic form of Eq. (6).
Explicitly we have

hP;P0i ¼ P01P0
23 þ P23P0

01 þ P02P0
13 þ P13P0

02

þ P03P0
12 þ P12P0

03: ð17Þ

Then using the (4) correspondence the symplectic vector
space ðVð6; 2Þ; h·; ·iÞ can be used4 as a one representing a
special class of nontrivial three-qubit observables as special
points of PGð5; 2Þ. Indeed, by virtue of (3), (14), and (15)
the points lying on the Klein quadric correspond to observ-
ables which are represented by symmetric 8 × 8 matrices.
The upshot of these considerations is that we have a bijective
correspondence between lines l of PGð3; 2Þ and points P
lying on Qþð5; 2Þ ⊂ PGð5; 2Þ. Moreover, at the level of
observables this implies that we have a correspondence
between 35 triples of two-qubit observables and the 35
nontrivial symmetric three-qubit ones.
For example a simple calculation featuring v ↔ ð0111Þ

and v0 ↔ ð1110Þ, l1 ↔ spanfv; v0g, P1 ¼ v ∧ v0 shows
that

FIG. 2. A pictorial representation of the Klein correspondence.

4For simplicity by an abuse of notation we denote the
symplectic forms on both spaces Vð4; 2Þ and Vð6; 2Þ by the
same symbol h·; ·i.
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ðOv;Ov0 ;Ovþv0 Þ ¼ ðXY; YZ; ZXÞ ↔ Ov∧v0 ¼ YYZ

or with u ↔ ð0001Þ and u0 ↔ ð0101Þ, l2 ↔ spanfu; u0g,
P2 ¼ u ∧ u0

ðOu;Ou0 ;Ouþu0 Þ ¼ ðIX; IY; IZÞ ↔ Ou∧u0 ¼ IXI

where l1 is an isotropic line and l2 is a nonisotropic one.
The corresponding observables OP1

and OP2
are symmet-

ric. The detailed dictionary can be found in Appendix A.
The lines represented in the ðQjPÞ form can be parti-

tioned into two classes depending on whether DetQ ¼ 1 or
0. An equivalent representative for lines of the first class
can be given the form: ðIjAÞ ¼ ðIjQ−1PÞ. Lines of the
second class will be called lines at infinity. The simplest
example of a line at infinity (called the distinguished line at
infinity) is the isotropic one with representative ð0jIÞ, which
corresponds to the mutually commuting triple of observ-
ables ðXI; IX; XXÞ. One can check that a line is at infinity
precisely when it has nonzero intersection with this dis-
tinguished one.
Using Eq. (17) one can check that for two lines in the

first class, i.e., ones of the form ðIjAÞ with Plücker
coordinates ð1; a21; a22;DetA; a12; a11Þ and ðIjA0Þ with
Plücker coordinates ð1; a021; a022;DetA0; a012; a

0
11Þ we have

hP;P0i ¼ DetðA − A0Þ: ð18Þ

One can also show that

P ∧ P0 ¼ hP;P0ie0 ∧ e1 ∧ e2 ∧ e3: ð19Þ

Note that being an element of the Klein quadric, we have
P ¼ u ∧ v for some linearly independent vectors u; v ∈ V
with l ↔ spanfu; vg. As a result of this P ∧ P0 ¼ 0 iff the
corresponding lines l and l0 are identical or intersecting in
a point. (See Fig. 2.) For P ∧ P0 ≠ 0 iff the lines are not
intersecting.
Notice now that for 2 × 2matrices with complex elements

satisfying the reality constraint A ¼ A† the right-hand
side of Eq. (18) gives rise to the Minkowski separation
of space-time events represented by two four-vectors
with coordinates ða0; a1; a2; a3Þ and ða00; a01; a02; a03Þ,
where a11 ¼ a0 þ a3, a12 ¼ a1 − ia2, a21 ¼ a1 þ ia2,
and a22 ¼ a0 − a3.
By analogy we call the points P and P0 on the Klein

quadric lightlike separated if the left-hand side of (18)
equals zero, and not lightlike separated when it equals one.
We adopt this terminology for all 35 points of the Klein
quadric which are representatives of the 35 lines of
PGð3; 2Þ. Then according to Eq. (18) for intersecting lines
l, l0 the corresponding points P, P0 are lightlike separated.
Non intersecting lines give rise to nonlightlike separation
(see Fig. 2). These observations hint at an analogy with a
finite geometric version of twistor theory. Indeed, this is the

analogy which will enable us to regard the Klein quadric as
a finite geometric model of space-time.

B. An analogy with twistor theory

In twistor theory [5] one works over the field of complex
numbers. The lines of the form ðIjAÞ also satisfying the
reality constraint A ¼ A†, via the Klein correspondence,
give rise to points of real Minkowski space-time. By
analogy when working over the field GFð2Þ, lines of the
form ðIjAÞ also satisfying the special constraint A ¼ AT

under the Klein correspondence give rise to the points of an
object that will be called as a “quantum space-time
structure” over GFð2Þ. This structure of course has nothing
to do with a discretized version of physical space-time. This
is just the GFð2Þ version of a structure which has already
appeared in the literature precisely under this name [31].
However, reversing the philosophy of twistor theory, in the
following we will regard this object as an emerging (bulk)
“space-time” structure.
The meaning of the A ¼ AT constraint is easy to clarify.

One can check that isotropic lines of the form ðPjQÞ are
precisely the ones satisfying the constraint PQT ¼ QPT ,
hence for lines belonging to the first class (having the form
ðIjAÞ) we have A ¼ AT . Since the PQT ¼ QPT constraint
also works for lines at infinity, it is worth adopting this as
a finite geometric analogue of the generalized reality con-
dition5 used in twistor theory [5]. Since in twistor theory
under the Klein correspondence inclusion of lines at
infinity corresponds to taking the conformal compactifi-
cation of Minkowski space-time, by analogy we arrive at
the interpretation: the isotropic lines of PGð3; 2Þ corre-
spond to points of a GFð2Þ analogue of conformally
compactified Minkowski space-time, living as a subset
inside the Klein quadric (see Fig. 3).
At the level of Plücker coordinates the meaning of this

constraint is as follows. Let us consider the (13) arrange-
ment taken together with the constraint PQT ¼ QPT . Then
a calculation of the Plücker coordinates shows that for
isotropic lines the relation

P02 ¼ P13 ð20Þ

holds. Using (14) we see that triples of commuting
operators on the boundary correspond to symmetric oper-
ators of the form ·Y· or ·I· in the bulk, i.e., three-qubit ones
for which the middle slot is either Y or I. The 15 isotropic
lines in PGð3; 2Þ form a special subset of the Grassmannian
of lines Gð1; 3Þ: the Lagrangian Grassmannian LGð1; 3Þ.

5Unlike in our finite geometric setting where we use a
symplectic polarity based on the symplectic form h·; ·i, in the
complex setting of twistor theory a Hermitian polarity is used
with the corresponding form having signature (2,2). Hence unlike
our constraint PQT ¼ QPT , in twistor theory its Hermitian
analogue (also featuring complex conjugation) is used [5].
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Under the Klein correpondence the lines of LGð1; 3Þ are
represented by those points of Qþð5; 2Þ which are also
lying on the (20) hyperplane in PGð5; 2Þ.
In the following we will refer to PGð3; 2Þ as the

boundary and Qþð5; 2Þ aka Klein quadric as the bulk. In
twistor theory language PGð3; 2Þ is the GFð2Þ-version of
projective twistor space [5,31]. In the next section we also
relate the boundary to the projectivization of the Gibbons-
Hoffman-Wotters’s (GHW) discretized phase space for
two-qubits [30]. The lines comprising the Lagrangian
Grassmannian living in the boundary, correspond to the
points of a GFð2Þ-analogue of conformally compactified
Minkowski space-time living in the bulk. This substructure
living inside the bulk is just a new copy of the doily (See
Fig. 3.). Moreover, precisely as in twistor theory: intersect-
ing lines in the boundary, correspond to lightlike separated
points in the bulk. However, unlike in twistor theory here
[thanks to the rule of Eq. (4)] there is also a correspondence
between two-qubit observables in the boundary and certain
three-qubit ones in the bulk. Notice, that the (4) rule works
merely up to sign. We will have something important to say
in connection with this later.
However, our bulk is more than a GFð2Þ-analogue of

conformally compactified Minkowski space-time. In the
following we argue that the bulk is a GFð2Þ-analogue of
conformally compactified complexified Minkowski space-
time of twistor theory.

As a first step seeing this note that in twistor theory [5]
one can regard the fully complexified version M� of
conformally compactified Minkowski spacetime M as
the Klein representation of lines in PGð3;CÞ. Moreover,
the complexified null lines ofM correspond to the points of
PGð3;CÞ. Geometrically the complexified null lines are
pairs of complex planes, one α-plane and one β-plane [5].
The operation of complex conjugation inM�, which leaves
the real space M invariant, in the PGð3;CÞ picture
corresponds to the action of a Hermitian polarity (See
footnote 5.) It is also known that this polarity corresponds
to [5] a point ↔ plane association in PGð3;CÞ.
One can easily demonstrate how the corresponding

structures show up in our GFð2Þ case. First of all, the
Klein quadric Qþð5; 2Þ indeed serves as the Klein
representation of lines in PGð3; 2Þ. A null line residing
inside the doily in the bulk is lying in the intersection
of an α and a β-plane. For example the null line
fZIZ; ZII; IIZg is lying at the intersection of the planes
fZZZ;IZZ;IZI;ZZI;ZIZ;ZII;IIZg and fZXZ; IXZ; IXI;
ZXI; ZIZ; ZII; IIZg. (See Appendix A.) However, instead
of the Hermitian polarity in our case we have the symplectic
polarity. Then the point ↔ plane association is the one that
works at the level of observables by associating to an
observable (point) the set of observables commuting with it
(plane). For example, under the operation of “conjugation”
the observable XX is associated to the set of observables

FIG. 3. Codewords and the Klein correspondence. Under this correspondence the 15 isotropic lines of PGð3; 2Þ are mapped bijectively
to 15 points, forming a subset, of the Klein quadric: Qþð5; 2Þ. The collection of these points is defined by the hyperplane section given
by Eq. (20), and has the interpretation as the GFð2Þ analogue of conformally compactified Minkowski space-time known from twistor
theory [5]. The totality of 35 points of the Klein quadric is the GFð2Þ version of complexified conformally compactified Minkowski
space-time, an object we refer to as the “bulk”. On the other hand PGð3; 2Þ is the GFð2Þ analogue of projective twistor space. It has the
physical interpretation as the blow up of the projectivization of the Gibbons-Hoffman-Wootters discrete phase space [30] for two qubits,
and will be referred to as the “boundary”. The 5 message wordsMa; a ¼ 1, 2, 3, 4, 5 are forming a special subset of 5 isotropic lines in
the boundary: an isotropic spread. These correspond to 5 special points associated with the 5 codewords Ca; a ¼ 1, 2, 3, 4, 5 encoding
the messages of the boundary. They are forming an ovoid in the bulk. The signs showing up in the figure are generated by
Eqs. (40) and (44).
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fXX; IX; XI; ZY; YZ; YY; ZZg. At the level of the bulk,
this conjugation gives rise to the exchange between the
observables associated with α-planes and β-planes. Since
these planes share an isotropic line (for an illustration of
this see Fig. 4), under conjugation this line is left invariant.
This invariant set of isotropic lines is precisely the
Lagrangian Grassmannian LGð1; 3Þ. Since being invariant
under conjugation means “real” in this context, for the
finite geometric analogue ofM what we get is the set of 15
isotropic lines on 15 points, i.e., the incidence structure of
the doily (Fig. 3). We remark that on the 35 symmetric
three-qubit observables one can explicitly construct the
action of an unitary operator, which is implementing this
operation of conjugation. For the details see Appendix A.
In summary, we have shown that one can reinterpret the

GFð2Þ-version of the Klein correspondence as a one
relating two qubit observables on one side with an under-
lying finite geometric structure (boundary), and a special
set of three-qubit ones with an underlying finite geometric
structure (bulk). The boundary is just the GFð2Þ version of
twistor space, and the bulk is the GFð2Þ analogue of
complexified conformally compactified Minkowski space-
time. In twistor theory physical data concerning space-time
are reformulated in terms of data of twistor space. In our
model this philosophy is reversed: from the data of the
GFð2Þ version of twistor space emerges the GFð2Þ version
of space-time data. In the next section we show that the
boundary data on observables is encoded into the bulk data
by an error correcting code: a geometric subspace code.

C. Encoding the boundary into the bulk

Our mapping of boundary observables into bulk ones can
be used to interpret the bulk as an emerging object imple-
menting naturally an error correcting code, with message

data residing at the boundary. In our very special case the
message “word” to be “sent” is an element of an initially
fixed spread of observables partitioning the 15 nontrivial
observables located at the boundary. By a spread of observ-
ables we mean a set of mutually commuting triples of
observables such that every observable belongs exactly to
one of such triples. This notion is coming from the finite
geometric one [44] of the spread of isotropic lines, which is a
collection of isotropic lines inPGð3; 2Þ such that every point
belongs exactly to one of such lines. In our case a spread of
observables is consistingof 5 triples.Aparticular spread to be
used below, highlighted by shaded lines inside the doily, is
depicted on the left hand side of Fig. 3. Spread codes have
been used as subspace codes for network coding [38]. In the
following we reinterpret them as a method for encoding
boundary observables into bulk ones.
Our spread of isotropic lines defines a set of constant

dimension subspaces in V, hence defines a subspace code.
The spread is consisting of 5 lines, these are the 5 possible
words containing the message. According to Eq. (12) this
spread of lines realizes the maximal possible distance
(i.e., 4) for the words. Now in terms of finite geometry:
the sent data is a line, the received data is a point (one error
down in dimension), or a plane (one error up in dimension).
In terms of observables: the sent data is a triple of
commuting observables, the received data is either just a
single observable, or a seven-tuple of observables commut-
ing with a fixed particular one (forming the building blocks
of a generalized X-state [47]).
The boundary message (a particular line of the spread) is

encoded into the bulk in the form of a bulk space-time point
as shown in Table I and Fig. 3. Notice that to a boundary
message a quantum state can be associated in a unique
manner. These states are stabilized by the corresponding
message observables. Using the notation

j0̄i ¼ 1ffiffiffi
2

p ðj0i þ j1iÞ; j1̄i ¼ 1ffiffiffi
2

p ðj0i − j1iÞ; ð21Þ

j0̃i ¼ 1ffiffiffi
2

p ðj0i þ ij1iÞ; j1̃i ¼ 1ffiffiffi
2

p ðj0i − ij1iÞ: ð22Þ

these stabilized states can be written in a simple manner as
can be seen in Table I.
For the 5 lines of the spread one can bijectively associate

5 points (the ones with red labels of Fig. 3). From these
labels one can immediately verify that the 5 bulk three-
qubit observables, corresponding to the 5 elements of the
boundary spread of observables, are pairwise anticommut-
ing, i.e., they form a five dimensional Clifford algebra. In
twistor geomerical terms: the 5 space-time points repre-
senting the boundary message words are pairwise non-
lightlike separated.
Notice also that in the bulk all the representatives of the

errors, namely points and planes in the boundary, are planes

FIG. 4. The intersection of α and β planes defines isotropic
lines in the bulk.
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(the α and β planes) that are isotropic with respect to the
bulk symplectic form. This can be checked by inspection
in Appendix A by observing that all such planes are labeled
by seven-tuples of mutually commuting observables.
Moreover, they are maximal totally isotropic subspaces of
the embedding spacePGð5; 2Þ equippedwith this simplectic
form. More importantly consulting Appendix A, one can
also verify that every maximal totally isotropic subspace
lying in the bulk contains precisely one point of the 5 special
space-time points encoding the boundary message. In finite
geometric terms our 5 bulk points form an ovoid [48]. This
ovoid propertymakes it possible to use the bulk spacetime as
an error correcting code in the following manner.

D. Error correction

Suppose that 5 message words of the boundary are
encoded into 5 codewords of the bulk by this method.
Hence we know in advance that the bulk codewords
correspond to the observables: YYX, YYZ, YIY, ZII, XII.
Suppose now that one of the message words fZI; IZ; ZZg is
sent, but due to error what we get is ZZ. There are three
possible isotropic lines containing ZZ: which one was the
message? As a first step we send the corrupted information
(a point corresponding toZZ) of the boundary to the bulk via
the Plücker map. What we get is the α-plane corresponding
to fZXZ; ZZX; IZX; IXZ; IYY; ZYY; ZIIg. By the ovoid
property of the codewords we know that precisely one of
them should show up in this α-plane. As a second step we
identify it: it isZII. Knowing that themethod of coding is the
Plücker map as the third step one identifies the inverse image
of this bulk point, namely the boundary triple fZI; IZ; ZZg,
which was the original message.
Dually, let us suppose that the same message

fZI; IZ; ZZg have been sent but due to an error what
we get is fXX; YY; XY; YX; IZ; ZI; ZZg. Note that this is
the plane dual to the point ZZ. The image of this error is the
β-plane fZZZ; ZXX; IXX; IZZ; IYY; ZYY; ZIIg. This is
the conjugate plane of the α plane of the previous para-
graph. Again: our β-plane contains precisely one codeword:
it is again ZII, which identifies the same message.
It is useful to illustrate the geometrical meaning of this

error correction process. Consider first the case when the
errors are points. In our example starting with the message
fIZ; ZI; ZZg, there are three different possible errors,

corresponding to the three points P1, P2, P3 ↔ IZ, ZI,
ZZ on the boundary. These points are represented by three
α-planes of the bulk. According to the results of the
previous subsection these planes represent complexified
light rays meeting in a point which is precisely our
codeword C5. In the boundary through each “error point”
there are seven lines, three of them are isotropic ones. One
of them is just the line corresponding to the message. Since
in the boundary they are intersecting in the same point, in
the bulk they constitute three points of a light ray going
through C5. For the three possible errors there are three such
light rays all of them going through C5. They are lying
inside the corresponding complexified light rays. Hence the
possible point errors of a message located in the boundary
are represented by the light cone of the corresponding
codeword in the bulk (Fig. 5.).
In the second case the errors are planes. Then we have

three possibilities for these planes intersecting in the
message line fIZ; ZI; ZZg. The error planes contain 3
isotropic and 4 nonisotropic lines (see the left-hand side of
Fig. 6). We emphasize that the light cone structure
corresponding to this situation in the bulk is the same as
it was in the case of point errors. However, the complexified
light cone structures are different. Indeed, for point errors
we obtain three α-planes P1, P2, P3 (see the right of Fig. 5)
and for plane errors three β-planes Π1, Π2, Π3 (see the right
of Fig. 6). As in Fig. 5 the planes Π1, Π2, Π3 of Fig. 6
(right) are intersecting in the same point. Since the α planes
are related to the β ones via conjugation their labels are
related by an X ↔ Z flip in the middle qubit. Recall, that in
the bulk, the intersections Pi ∩ Πi of the α-planes Pi and
the β-planes Πi for i ¼ 1, 2, 3 are the light rays through the
codeword C5, see also Fig. 4.

E. Algebraic description of the error correction process

In order to be able to generalize our considerations
for an arbitrary number of qubits, we also need an algebraic
characterization of our error correction method. In
Appendix A by calculating Plücker coordinates, we have
presented a detailed dictionary of observables on both sides
of the correspondence. This very explicit structure was
useful for illuminating the basic geometric structures
involved, but it is of limited value for generalization.
Luckily there is also a nice algebraic characterization of

TABLE I. Boundary-bulk encoding for two qubits. For an explanation for our choices of signs see Sec. III. G. and Eq. (44). For a
pictorial representation of an alternative, rotationally covariant encoding see Fig. 7.

Name Boundary message Stabilized state Name Bulk code

M1 IY; YI; YY jψ1i ¼ j0̃ 0̃i C1 YIY
M2 YZ; XY;−ZX jψ2i ¼ 1ffiffi

2
p ðj0̃0i − j1̃1iÞ C2 −YYZ

M3 YX; ZY;−XZ jψ3i ¼ 1ffiffi
2

p ðj00̃i − j11̃iÞ C3 YYX

M4 XI; XX; IX jψ4i ¼ j00i C4 XII
M5 IZ; ZZ; ZI jψ5i ¼ j00i C5 ZII
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the decoding process [37] without passing to Plücker
coordinates. In the following we reformulate and develop
the results of Ref. [37] convenient for our purposes.
First recall that isotropic lines in the boundary, correspond-

ing to message words, are encoded into codewords in the
bulk via the (20) constraint. This means that the symmetric
bulk observables encoding boundary messages are commut-
ing with the special antisymmetric observable IYI. This
reduces the number of 35 bulk observables to 15 ones. In
order to reduce this number to 5, picking out our codewords
fYIY; YYZ; YYX; XII; ZIIg, we need further restrictions.

One can notice that if we choose either of the antisym-
metric observables IZY, IXY as an extra one, these ones
will commute merely with our codewords. One can also
notice that the set fIYI; IZY; IXYg corresponds to a
nonisotropic line l� of PGð5; 2Þ off the bulk. Hence we
have a line l� which does not intersect the bulk. Let us now
consider the subspace l⊥� , where the orthogonal comple-
ment is meant with respect to the symplectic form h·; ·i of
PGð5; 2Þ. Physically this is the set of all three-qubit
observables, modeled by PGð5; 2Þ, commuting with the
triple fIYI; IZY; IXYg. Since from the triple only two

FIG. 6. Plane errors of a message located in the boundary represented by the light cone structure of the corresponding codeword in the
bulk. These plane errors Π1, Π2, Π3 (left) are intersecting in the message line. Each of them contains 3 isotropic lines (shaded in black)
and 4 nonisotropic ones. They are mapped to the seven points of the corresponding planes (right). We emphasize that the light cone
structure (right) is the same as the one in Fig. 5. However, the complexified light cones, the α planes P1, P2, P3 (right) of Fig. 5, and the
β-planes Π1, Π2, Π3 (right) of Fig. 6 are different. The difference manifests itself in different labels for the remaining points of these
planes. Notice that for the totally isotropic β-planes in the bulk we have chosen positive ones (see Sec. III. G). This accounts for the
negative signs showing up in Π3. However, as will be shown later, no consistent choices of signs on the right-hand side rendering all
β-planes corresponding to all of our codewords is possible.

FIG. 5. Point errors of a message located in the boundary represented by the light cone structure of the corresponding codeword in the
bulk. For illustrative purposes by an abuse of notation the objects corresponding to each other in the boundary (left) and in the bulk
(right) are denoted by the same letters. For example both the boundary message (left) and its bulk codeword (right) is denoted by the
same symbol: C5. Similarly the three error points (left), and their bulk representatives as planes are denoted by the same symbols: P1, P2,
P3. The isotropic lines Lj, j ¼ 1; 2;…6meeting in the error points (left), are corresponding to the points Lj constituting the light cone of
C5 (right). The slight distortion of planes on the right, represents the fact that they are really complexified light rays, containing the
ordinary ones.
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observables are independent, this means that we have
two constraints on the six component vectors taken from
Vð6; 2Þ, representing three-qubit observables. Hence l⊥� is
a rank four subspace, projectively a subspace of dimension
three, i.e., Δ≡ l⊥� is a copy of PGð3; 2Þ. This projective
subspace of dimension three is intersecting our bulk
quadric precisely in our five codewords:

fC1; C2; C3; C4; C5g ¼ Δ ∩ Qþð5; 2Þ: ð23Þ

Let us formalize this in terms of PGð5; 2Þ data. The
codewords are a collection of special points in PGð5; 2Þ.
Let us denote this collection of points collectively by the
homogeneous coordinates arranged in a column vector

CT ¼ ðξ0; ξ1; ξ2; η0; η1; η2Þ: ð24Þ

Let us also introduce two more vectors

ΓT ¼ð0;1;0;0;1;0Þ; RT ¼ðr0;r1;r2;s0;s1;s2Þ: ð25Þ

The first of these vectors corresponds to the three-qubit
observable IYI, and the second vector will be called the
recovery vector. In our special case of the codewords of
Table I RT ¼ ð0; 1; 1; 0; 0; 1ÞÞ corresponds to IZY.
However, since later we would like to describe a collection
of codes we regard R as a collection of vectors (to be
specified in the next subsection) rather than a particular
vector. Clearly for each of our special codewords showing
up in Table I we have

hΓ; Ci ¼ hR; Ci ¼ 0; hΓ;Ri ¼ 1;

l� ¼ fΓ;R;ΓþRg; QðCÞ ¼ 0 ð26Þ

summarizing the fact that l� is a nonisotropic line of
PGð5; 2Þ and C ∈ l⊥� ∩ Qþð5; 2Þ.
Now after these bulk related considerations consider the

boundary. Suppose we want to send the message M, for
example a one of Table I. Suppose further that this message
is corrupted by a point error, hence what is “transmitted” is

the fixed error vector ET ¼ ðq0; q1; p0; p1Þ. This point can
be on any of three possible isotropic lines. In order to find
the message line we have to find at least one extra point on
this line

χT ¼ ðx0; x1; y0; y1Þ: ð27Þ

The column vector χ refers to a collection of possible points
collinear with E. By calculating the Plücker coordinates6 of
the set of possible lines fE; χ; E þ χg then one gets a
collection of points in the bulk: PðE;χÞ. Now our geometric
method of bulk encoding of boundary messages says that
from the set of possible bulk points, the ones representing
messages are satisfying Eqs. (26).
The first constraint to be met in the bulk is Eq. (20), or

equivalently hΓ;PðE;χÞi ¼ 0, which in boundary terms is
just q0y0 þ q1y1 þ p0x0 þ p1x1 ¼ 0 i.e., hE; χi ¼ 0, the
condition of isotropy in the boundary. The second one will
be called the constraint of recovery. It is of the form:
hR;PðE;χÞi ¼ 0. Arranging the six components of R into a
4 × 4 “antisymmetric” matrix R over GFð2Þ, and also
introducing the matrix J of the symplectic form

R≡

0
BBB@

0 s0 s1 s2
s0 0 r2 r1
s1 r2 0 r0
s2 r1 r0 0

1
CCCA; J≡

0
BBB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCA ð28Þ

these constraints can be written as

ETJχ ¼ 0; ETRχ ¼ 0: ð29Þ

These two equations describe two distinct planes intersect-
ing in a line: precisely our message line. In projective
geometry the vectors

TABLE II. The six system of message words Sj; j ¼ 1; 2;…6 of the boundary. Finite geometrically they are isotropic spreads of lines
of PGð3; 2Þ. Each spread is containing 5 message words Mja; a ¼ 1;…5. A pictorial representation for five of these spreads can be
obtained by successive rotations by 72 degrees of the pattern of the spread S6 contained in the doily of the left-hand side of Fig. 3. The
remaining spread (S2) is just the one coming from the five diagonal lines of the doily.

Spread Mj0 Mj1 Mj2 Mj3 Mj4

S1 IY; YI; YY ZY; XX; YZ ZX; ZI; IX XY; YX; ZZ XI; IZ; XZ
S2 XY; YX; ZZ YI; IZ; YZ XI; IX; XX YY; XZ; ZX IY; ZY; ZI
S3 YY; XZ; ZX IZ; ZZ; ZI ZY; XX; YZ IY; XY; XI YX; YI; IX
S4 XY; ZX; YZ XX; YY; ZZ YX; YI; IX IY; ZY; ZI XI; IZ; XZ
S5 XZ; YX; ZY XX; YY; ZZ YI; IZ; YZ IX; ZI; ZX XI; IY; XY
S6 IY; YI; YY YZ; XY; ZX YX; ZY; XZ XI; XX; IX IZ; ZZ; ZI

6For example for the line spanfE; χg we have PðE;χÞ
02 ¼ q0y0þ

p0x0, etc.
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E� ¼ JE; F � ≡ RE ð30Þ

are the coordinates of the intersecting planes. Notice that in
these equations no Plücker coordinates show up. The only
bulk related quantity is the recovery matrix R, on the other
hand E and χ are boundary related.
For plane errors we can use projective duality between

points and planes. Note that a plane error is fixed by the
seven points of the plane, described by the vectors χ,
satisfying hE; χi ¼ 0. This plane is determined by the fixed
vector E. This equation is of course just the first one of
Eq. (29), which after introducing the dual vector E� gives
back the usual description of a plane in projective geom-
etry. Now in the case of point errors after recovery we
obtained the message line as a one characterized by the two
vectors: E� and F �, hence using duality in our new case of
plane errors we obtain the message line as the one
characterized by the two vectors E and F . Hence the
message line is

M ¼ fE;F ; E þ Fg; F ¼ JRE: ð31Þ

Notice that since the matrices R and RJR are symmetric,
and we are overGFð2Þ, the choice χ ≡ F ¼ JRE explicitly
solves Eqs. (29), characterizing the recovery process for
point errors. Hence the explicit (31) method for the
recovery from plane errors is universal. It can also be used
as a very simple algorithm for the recovery from errors of
both type. Indeed, in our setting, one merely has to take care
of recovery from one type of error. Recovery from the other
type is automatically taken into account by projective
duality and isotropicity of the message lines.
There is an ambiguity in this recovery process.

According to the third formula of Eqs. (26) we can also
use a new matrix R0 for recovery. Indeed, one can define R0
as the one with the same entries as R except for r01 ¼ r1 þ 1

and s01 ¼ s1 þ 1. Then we have JRþ JR0 ¼ 1 (4 × 4

identity matrix), hence F 0 ≡ JR0E ¼ E þ F . Hence this
ambiguity merely effects which of the two points on the
message line of Eq. (31) we obtain.
Appreciate the elegance of the mathematical representa-

tion of the (31) recovery process. The corrupted boundary
data E is linearly transformed into the message data, via the
calculation of the additional boundary data F ¼ JRE. The
recovery is due to the bulk related matrix R. However, the
relationship between the structure of R and our codewords
residing in the bulk needs further elaboration. Furthermore,
it would be also desirable to clarify the physical meaning of
the recovery matrix.

F. The meaning of the recovery matrix

In order to learn more about the role played by the
recovery matrix R of Eq. (28) in our story, it is worth
considering instead of a single error correcting code the set
of all possible codes. Since our code of Table I was based

on a special isotropic spread of PGð3; 2Þ, interpreted as a
system of message words built from boundary observables,
the set of all possible codes is just the set of all possible
isotropic spreads of the boundary. In our case it is known
that we have merely six isotropic spreads.
In Table II we listed all such spreads, not paying any

attention this time to the signs of the corresponding
observables. The reader can recognize that the distin-
guished spread of Table I, is the spread S6. A pictorial
representation for five of these spreads can be obtained by
successive rotations by 72 degrees of the pattern of
the spread S6 contained in the doily of the left-hand
side of Fig. 3. The remaining spread (S2) is just the one
coming from the five “diagonal lines” of the doily. The
readers can convince themselves that this is indeed the full
set of spreads, giving rise to our system of message
words Sj; j ¼ 1; 2;…6.
The system of message words is mapped to the system of

code words by the Plücker map. As we discussed, this
mapping is a one relating spreads of the boundary to ovoids
in the bulk. This “Grassmannian image” of the boundary
spreads in the bulk can elegantly be described by the lines
l� of Eqs. (26) off the bulk. In Table III. one can find the
system of code words, with the explicit structure of the
associated lines. One can realize that the set of recovery
vectors R in the fourth column forms a six-dimensional
Clifford algebra Cliffð6Þ, explicitly we have

ðΓ1;Γ2;Γ3;Γ4;Γ5;Γ6Þ≡ðYXI;YZX;YZZ;XXY;ZXY;IZYÞ;
fΓj;Γkg¼2δjk1: ð32Þ

In fact one can also take into account the fact that Γ≡ Γ7

anticommutes with all of these observables hence we have a
seven-dimensional Clifford algebra Cliffð7Þ. Similarly the
set of observables giving rise to the recovery vectors R0 in
the fourth column forms another copy of a Cliffð6Þ

TABLE III. The system of code words related to the system of
message words of Table II. Each spread is containing the 5
message words Mja; a ¼ 1;…5 of Table II. The sixth spread,
with its message and code words, coincides with the one of
Table I. The last three columns are featuring the points of the line
l�, off the bulk, defining the code via Eq. (23). They are featuring
the recovery vectorsR andR0 ≡Rþ Γ. Finite geometrically the
two sets of recovery vectors Rj, R0

j form a double-six. They are
two copies of six-dimensional Clifford algebras Cliffð6Þ inter-
changed by Γ.

Spread Bulk code words Cja Γ R Rþ Γ

S1 YIY; XYY; IIZ; ZYY; IIX IYI YXI YZI
S2 ZYY; ZIX; XII; YYI; ZIZ IYI XXY XZY
S3 YYI; ZII; XYY; XIX; XIZ IYI ZXY ZZY
S4 YYZ; IYY; XIZ; ZIZ; IIX IYI YZX YXX
S5 YYX; IYY; ZIX; IIZ; XIX IYI YZZ YXZ
S6 YIY; YYZ; YYX; XII; ZII IYI IZY IXY

FINITE GEOMETRIC TOY MODEL OF SPACETIME AS AN … PHYS. REV. D 99, 086015 (2019)

086015-15



ðiΓ17; iΓ27; iΓ37; iΓ47; iΓ57; iΓ67Þ
≡ ð−YZI;−YXX; YXZ;−XZY;−ZZY; IXYÞ; ð33Þ

where ΓI1I2I3…≡ΓI1ΓI2ΓI3 ���;1≤ I1<I3<I3<…≤7. This
configuration of two copies of six-dimensional Clifford
algebras interchanged by Γ in finite geometry is called a
“double six”.
Now one can observe that the set of codewords corre-

sponding to a particular line l� forms again a Clifford
algebra. This time a five-dimensional one. For example the
codewords corresponding to S6 can be described as

fC1;C2;C3;C4;C5;g¼fiΓ167; iΓ267; iΓ367; iΓ467; iΓ567g:
ð34Þ

One can easily check that in terms of the set of possible
recovery vectors

R ↔ Γj; j ¼ 1; 2;…6 ð35Þ

the codewords of the jth row of Table III are given (up to a
sign) by the formula

Ckj ¼ iΓkj7; j ¼ 1; 2;…6; k ≠ j: ð36Þ

In this formula fixing j amounts to fixing the row of
Table III, corresponding to choosing the jth code. On the
other hand for a fixed row (code), k is running through all
values from 1 to 6 except the fixed value of j, producing the
set of codewords within the particular code. Clearly for a
fixed j the observables as codewords are commuting with
the observables comprising the corresponding line l�.
Equation (36) gives an elegant characterization of code-

words of the bulk in terms of the possible set of (35)
recovery vectors. Equations (31), (32), (35), and (36) then
neatly summarize the boundary-bulk error correcting
picture.
Amusingly this error correcting picture is related to a

correspondence between commuting sets of two-qubit
boundary observables and anticommuting sets of three-
qubit bulk ones, based on the Klein correspondence. We
also emphasize that our formalism describes the relation-
ship between the boundary and the bulk as collection of
error correcting codes. Hence our finite geometric model
fits into the philosophy coming from the AdS/CFT corre-
spondence of regarding an asymptotically AdS space-time
as an error correcting code [22–25].
Finally let us try to clarify the physical meaning of the set

of recovery vectors showing up in (35). As we have shown,
the bulk is the GFð2Þ analogue of compactified complexi-
fied Minkowski space-time embedded in PGð5; 2Þ. We
have also seen that although our recovery vectors are living
off the bulk, their special (23), (26) relationship to the bulk

makes it possible to define the codewords in a natural
manner.
Notice that in conventional twistor theory where instead

of PGð5; 2Þ we have PGð5;CÞ similar structures are used
to define conformally flat spacetimes. For example in the
simplest nonflat example of a complex de-Sitter space the
analogue of the recovery vectorR is a vector I ∈ C6 off the
Klein quadric. Moreover, Penrose [49] even characterized
the conformal factor of Robertson-Walker type cosmologi-
cal models in terms of a pair of such vectors I and Ĩ .
Depending on the properties of this pair, namely whether
they are real or complex or lie on or off the quadric, we get
different types of models. In the case of complex de-Sitter
space quantities like IðXÞ≡ hI ; Xi describe the conformal
factor, where X is a point on and I is a one off the Klein
Quadric. In conformally flat space-times, characterized by
such “fields” IðXÞ, the zeroes and singularities of IðXÞ
correspond to notions like “infinity” and “singular points”
[7,32,49]. Clearly in our finite geometric context the
analogue of the pair ðI ; ĨÞ is ðΓ;R), with the correspond-
ing GFð2Þ-valued “fields” are quantities like ΓðXÞ≡
hΓ; Xi and RðXÞ≡ hR; Xi. We already know that the
zeroes of ΓðXÞ define the real section of the bulk. Now the
important point we would like to make is the one that
according to (26) the common zeroes of ΓðXÞ andRðXÞ are
precisely our code words. Moreover, in twistor theory
linear combinations like μI þ νĨ give rise to the hyper-
surfaces of homogenity of the space-time. Over GFð2Þ
such linear combinations are precisely the ones defining
our lines l� whose orthogonal complement defines the
codewords. Hence the six sets of codewords are just the
GFð2Þ analogues of such hypersurfaces.
We note in closing that one need not have to choose I off

the bulk in order to get structures of physical relevance via
imposing the constraint IðXÞ ¼ 0. Indeed, if we choose I
corresponding to the infinity twistor, then what we get is
conformal infinity [7]. In our GFð2Þ case the analogue of I
is the vector (000100) answering the bulk code word C4 ¼
XII (see Table I). Under the Klein correspondence C4 ¼ I
corresponds to the isotropic line ð0jIÞ answering the
boundary message word7: M4 ¼ fIX; XI; XXg. Since at
the boundary lines at infinity are precisely the ones having
nonzero intersection with this distinguished line, this means
that at the bulk these correspond to points lying on the light
cone of I . Since this constraint is precisely the condition of
IðXÞ ¼ 0, this means that the zero locus of this GFð2Þ field
is just the light cone at infinity. A pictorial representation of
this structure coincides with the one of Fig. 5. (with labels
suitably adjusted) where M4 is used in the left and C4 on
the right hand side. This is precisely the structure we used
for our representation of the error correction process.

7See the considerations before Eq. (18).
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G. States and signs

According to the theory of stabilizer codes certain sets of
mutually commuting observables uniquely determine states
[9,50]. Such states are stabilized by these observables. This
observation makes it possible to recast our error correction
picture in terms of states rather than observables. More
precisely, in order to define stabilizer states one has to leave
the realm of observables (objects of the form �O) in favor
of elements of the n-qubit Pauli group. The latter is
containing objects of the form Gn ≡ f�O;�iOg.
If S is a subgroup of Gn and HS is a subspace of the

n-qubit Hilbert space H such that every element of HS is
fixed by the action of elements taken from S then HS is
called the vector space stabilized by S. S is called the
stabilizer ofHS. The sufficient and necessary conditions to
be satisfied by S in order to stabilize a nontrivial HS are as
follows [9,50]. 1. the elements of S should commute and 2.
−1 ∉ S, where 1 ¼ I ⊗ I ⊗ � � � ⊗ I is the n-qubit identity
operator. Notice that the second condition implies that
�i1 ∉ S, hence the elements of S are taken from our set
�O of observables.
In the following we suppose that S is a stabilizer

subgroup of Gn. We write a presentation8 of S in terms
of its commuting generators in the following form:
S ¼ hO1;O2;…;On−ki. Then we have the following basic
result [9]: if S is given by a presentation as above thenHS is
a 2k dimensional vector subspace of the 2n dimensional
Hilbert space.
Now in the case of k ¼ 0 sets of n commuting observ-

ables generate a stabilizer group S ¼ hO1;O2;…;Oni.
This group determines a vector jψSi up to a phase, i.e.,
a state. The cardinality of S is 2n which is the number of
vectors in a rank n subspace W of Vð2n; 2Þ. Projectively
this means that PðWÞ is a subspace of projective dimension
n − 1, with the number of its points being 2n − 1.
Moreover, since PGð2n − 1; 2Þ comes equipped with a
symplectic form, 2n − 1-tuples of commuting observables
give rise to the set of maximally totally isotropic subspaces,
i.e., the set of totally isotropic (Lagrangian) n − 1-planes.
They are comprising the Lagrangian Grassmannian
LGðn − 1; 2n − 1Þ. Hence for k ¼ 0 a particular group S
can be used as a representative of an isotropic n − 1 plane.
Clearly by, playing with signs, for a particular isotropic
n − 1 plane one can associate 2n possible representatives S,
hence 2n representative states jψSi.
For example forn ¼ 2 choosingS ¼ hO1;O2iwithO1 ¼

YZ and O2 ¼ XY the group S is containing the 4 elements:
fII; XY; YZ;−ZXg. The three nontrivial observables
fXY; YZ;−ZXg represent an isotropic line in PGð3; 2Þ.
The state jψSi that one can uniquely associate to this triple of

observables is the state jψ2i of Table I, which is fixed by all
elements of S, e.g., for O3 ≡O1O2 ¼ −ZX we have
O3jψ2i ¼ jψ2i etc. However, one could have tried another
representative of this isotropic line as S0 ¼ hXY; ZXiwhich
is containing the 4 elements: fII; XY;−YZ; ZXg. In this
case the vector jψSi ¼ jψ2i is changing to jψS0 i ¼
1ffiffi
2

p ðj0̃1i þ j1̃0iÞ.
In the n-qubit case totally isotropic n − 1-spreads of

PGð2n − 1; 2Þ will be used to give rise to message words,
consisting of certain strings of observables. According to
our philosophy PGð2n − 1; 2Þ then will be called the
boundary. As in the n ¼ 2 case of Table I an isotropic
spread of the boundary is a partition of the ð2n − 1Þð2n þ 1Þ
points of PGð2n − 1; 2Þ to 2n þ 1 totally isotropic n − 1

planes. Each totally isotropic n − 1 plane is containing
2n − 1 points. A particular isotropic plane can be repre-
sented by 2n different strings of observables, differing only
in their distribution of signs. The different representatives of
a plane give rise to 2n different states fixed by the
corresponding strings of observables. These states form
the 2n basis states of the n-qubit Hilbert spaceH. Hence to a
totally isotropic n − 1 plane one can associate in a unique
manner a basis of H. It can be shown that for an isotropic
n − 1-spread the collection of 2n þ 1 basis systems can be
chosen such that each element of one basis is an equal
magnitude superposition of any of the other bases. Such
basis sets are said to satisfy the MUB property, i.e., they are
mutually unbiased [30,51]. Since a MUB can be used
effectively for determining an unknown mixed n-qubit state
via quantum state tomography [29], our choice of message
words of the boundary is intimately connected to a choice of
possible measurements one should perform during the
protocol of effective state determination. For example the
states showing up in Table I are members of the well-known
MUB set for two qubits [30]. They clearly satisfy the MUB
property for n ¼ 2 namely: jhψajψbij ¼ 1=

ffiffiffiffiffi
2n

p
with a ≠ b

and a; b ¼ 1;…5.
In Table I and the left hand side of Fig. 3 we have chosen

a particular distribution of signs which makes all of the
isotropic message lines of the spread S6 positive lines. This
notion means that if we multiply the commuting observ-
ables along the line then we get the identity with a positive
sign, hence the observables of the message lines form a
stabilizer S. To these lines one can associate states in a
unique manner. However, in order to achieve the same goal
for the other spreads Sj; j ¼ 1; 2;…5 of Table II. giving
rise to other message sets Mja, some other distribution of
signs is needed. In other words there is no distribution of
signs for the full set of observables which is compatible
with the set of all possible codes of Tables II and III. In
finite geometric terms: although it is possible to associate
states to the lines of an isotropic spread of lines, there is no
way of doing this consistently for all of the isotropic lines
of the boundary, PGð3; 2Þ.

8A presentation is given in terms of independent generators
of the group. In terms of our Vð2n; 2Þ representation of
observables this means that the corresponding vectors are linearly
independent.
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Recall that the set of isotropic lines on the 15 points of
PGð3; 2Þ is the doily. Now the reason for the incompat-
ibility of signs is a theorem which states that the number of
negative lines of the doily is always an odd number [46].
Hence one will always encounter at least one negative line.
Since for negative lines −1 ∈ S one cannot elevate an S,
corresponding to the observables of such a line, to the status
of a stabilizer, hence there is no possibility for associating
stabilizer states to all of the lines of the doily. Interestingly
the reason for this theorem to hold is the fact that the doily
is containing grids as geometric hyperplanes [52]. A grid is
a collection of 9 points in a rectangular arrangement having
6 lines, each line containing 3 points. This arrangement
labelled by qubit observables is known to physicists as a
Mermin square. A Mermin square [53,54] can be used for
proving (without the use of probabilities) that there are no
noncontextual local hidden variable theories compatible
with the predictions of quantum theory. The proof is based
on the simple observation that for a grid the number of
negative lines is always odd. Since the doily is containing
grids this proof can be carried through even for the doily.
For a study of the interplay between elementary contextual
configurations and finite geometry see Ref. [55].
In summary we have learnt that for a particular code one

can associate states to message lines. However, one cannot
do this to the set of all possible codes. Moreover, the reason
for this incompatibility of codes is the same as the one
responsible for the incompatibility of noncontextual local
hidden variable theories and quantum theory.

H. Error correction and states

Let us now have a look at our error correction process
from the perspective of stabilizer states. For a fixed code
one can associate states to the spread of lines, see Table I.
We have two types of errors connected by projective
duality: point errors and plane ones. For point errors
instead of an isotropic line (message) we get a point
(corrupted message). Notice now that in the boundary to
a message line a state, and to a corrupted message which is
a point, a two dimensional subspace of states is associated.9

Hence in this stabilizer picture the transition form a
message to a corrupted message corresponds to a transition
from a state to a subspace containing this state.
For example to the message lineM5 ≡ fIZ; ZI; ZZg the

ray of j00i denoted by HM5
is associated. Let us suppose

that we have a point error with the corrupted message being
the point P≡ fZZg. Since j00i and j11i are eigenvectors
of ZZ with eigenvalue þ1, the corrupted subspace is just
the span of these two vectors HP ¼ spanfj00i; j11ig.
Clearly HM4

⊂ HP.

In the bulk we have the codeword C5 ≡ fZIIg
encoding the message M5. In the stabilizer language this
determines a 4-dimensional subspace HC5¼spanfj000i;
j001i;j010i;j011ig. Hence a message state HM5

on
two-qubits is encoded into HC5 which is a subspace on
three-qubits. Now to point errors in the boundary correspond
the α-planes. Since these are totally isotropic planes, repre-
sented by commuting seven-tuples of three-qubit observ-
ables, in the stabilizer formalism to these seven-tuples one
can associate states. In our example10 the corresponding
α-plane is ΠðαÞ ¼ fZII; IXZ; ZXZ; IZX; ZZX; IYY; ZYYg
which gives rise to the stabilizer hZII; ZXZ; ZZXi stabiliz-
ing the ray HΠðαÞ ≡ f 1ffiffi

2
p ðj00̄0i þ j01̄1iÞg ⊂ HC5. The state

representing this ray is a biseparable three-qubit state
containing bipartite entanglement in its last two qubits. In
summary we have

HM5
⊂ HP; ðboundaryÞ ↔ HΠα ⊂ HC5 ðbulkÞ: ð37Þ

Notice that under a transition from the boundary to the bulk,
on the two sides of the ⊂ symbol the roles of message and
error subspaces are exchanged. Whilst in the boundary
messages, in the bulk errors correspond to states. And dually:
whilst in the boundary point errors, in the bulk (coded)
messages correspond to subspaces.
Let us now turn to a similar elaboration for plane errors.

On the boundary for representatives of plane errors we have
seven-tuples of observables. However, these 15 seven-
tuples of observables are not mutually commuting.
Luckily these 15 planes are dual to 15 points. Indeed, a
point labelled by an observable O is dual to a plane labeled
by the same observable. In this case the seven observables
of that plane are the ones commuting with this fixed O.
Moreover, we have already seen that the error correction
process is the same, no matter whether we have point or
plane errors. Hence one expects that to a plane labeled byO
one should associate the same two dimensional subspace
HO, which we associated to the point O.
In order to prove this notice that for a fixed message line

there are three possible plane errors. They correspond to the
three possible planes containing the same message line with
observables: O, O0, OO0, see Fig. 6 for an example. The
labels of the three possible error planes are just O, O0, and
OO0. Let us suppose that our message line is corrupted, and
the error plane arising is the one labelled by O. In this case
our message line is conveniently represented by the
stabilizer S ¼ hO;O0g, where O is the special observable
which is commuting with all observables of the error plane
ΠO. Clearly one can choose11 the seven observables of this
plane as: fO;O0;OO0; A; B; C;Dg where O0 is anticom-
muting with each member of the set fA;B;C;Dg. To our

9Recall that if the stabilizer is given by the presentation S ¼
hO1;O2;…;On−ki then HS is a 2k dimensional subspace. In our
special case of a point error: n ¼ 2, k ¼ 1.

10See Appendix A.
11For illustrations of this representation see Fig. 6 or

Appendix A.
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fixed message line as usual we associate the state jψSi.
Now using the stabilizer property O0jψSi ¼ jψSi and the
anticommutation, one can immediately see that all of the
states AjψSi, BjψSi, CjψSi, DjψSi, are orthogonal to jψSi.
However, since O is commuting with everybody, all of
these vectors are belonging to its eigensubspace with
eigenvalue þ1. Since this eigensubspace is two dimen-
sional, for example the set fjψSi; AjψSig can be chosen as
an orthonormal basis spanning this subspace. Hence
HΠO

¼ spanfjψSi; AjψSig. This is just the same subspace
we associated to point errors. This means that HΠO

¼ HO.
Hence point errors and plane ones are sharing the same
subspaces containing the message state jψSi.
An important consequence of these considerations is the

following. Plane errors are the ones containing the message
lines. The observables off the message line (i.e., A, B, C,D)
are the ones that are anticommuting with some of the
observables of the message (i.e.,O0 andOO0). Hence these
observables can be regarded as error operators. The action
of these operators on the stabilizer state has the effect of
moving this state to its orthogonal complement. This is just
like in the usual stabilizer formalism of error correction
[9,50]. Hence the physical interpretation of a plane error is
very similar to the conventional interpretation of errors in
the stabilizer formalism. Since plane errors are dual to point
errors, and the recovery process is the same for these errors,
we conclude that our observable based reinterpretation of
geometric subspace codes [37] is very similar to the one of
stabilizer codes [9,50].
There are however, some important differences to be

noticed. Indeed, we have not examined the bulk represen-
tation of plane errors yet. A boundary plane error ΠO is

represented by a totally isotropic β-plane ΠðβÞ
O in the bulk.

For example the message M5 of the boundary is encoded
into the bulk in the form of the codeword C5. According
to Fig. 6 to a plane error Π of this message its bulk
representative, namely the isotropic planeΠðβÞ ¼ fZII;IZZ;
ZZZ;IXX;ZXX;−IYY;−ZYYg, is associated. Then this
plane represented by the stabilizer hZII; ZZZ; ZXXi has
the ray HΠðβÞ ≡ f 1ffiffi

2
p ðj000i þ j011iÞg ⊂ HC5.

Hence although the process of error correction is the
same for point errors and plane ones, the states which are
representing the errors in the bulk are different. However,
the raysHΠðαÞ andHΠðβÞ are not independent. They are local
unitary equivalent states belonging to the same entangle-
ment class. Indeed, they are connected by a discrete Fourier
transformation in the second qubit, i.e., a transformation of
the form I ⊗ H ⊗ I. Recall also in this respect that in
twistor theory α and β planes are conjugate planes. In our
finite geometric setting it means that up to a sign their
observables are related by an interchange of an X with a Z
in the middle slot, leaving invariant the I and Y (see Figs. 5
and 6). If we would like to also respect the sign structure of
these planes, i.e., we demand that these planes should be
positive ones hence eligible to be interpreted as stabilizers,

their observables should correspond to each other via a
conjugation12 by I ⊗ H ⊗ I. This indeed effectively takes
care of the signs since: HYH ¼ −Y.

I. Transformations

We have seen that the bulk can be regarded as a
collection of error correcting codes, encoding a collection
of messages in the boundary. Now in closing this section
we would like to see how these error correcting codes and
their messages are related to each other.
First of all recall that for message lines one can

associate states, and these states belong to different
entanglement classes. Under the SLOCC group for two
qubits we have merely two entanglement classes: the
separable one and the entangled one. Their SLOCC
representatives are the state j00i and any of the Bell
states, e.g., the one 1ffiffi

2
p ðj00i þ j11iÞ. For the message lines

the associated states are shown in Table I. We see that the
states jψai are entangled for a ¼ 2, 3 and separable in the
remaining cases.
How can we relate these message words and their

associated states? Our message words are Ma where
a ¼ 1, 2, 3, 4, 5, see Table I. One can relate the Mk
where k ¼ 1, 2, 3 as follows. Define

C12 ≡ CNOT12; S12 ¼ SWAP12 ð38Þ

the controlled-not and swap operations acting on two
qubits. Let us define the unitary operator

D≡ C12S12 ¼ C21C12: ð39Þ

Now we have

Mk ¼D−kþ1M1Dk−1; jψki¼D−kþ1jψ1i; k¼ 1;2;3:

ð40Þ

The detailed action of this conjugation on the observables is

YY↦−ZX↦−XZ↦YY;

YI↦XY↦ZY↦YI; IY↦YZ↦YX↦ IY: ð41Þ

In other words conjugation by D−1 ¼ C12C21 cyclically
permutes the corresponding entries of Mk; k ¼ 1, 2, 3 of
the second column of Table I. The remaining messagesM4

and M5 are left invariant since under conjugation by D−1

we have

XI↦XX↦ IX↦XI; IZ↦ZZ↦ZI↦ IZ: ð42Þ

12As an example just compare the observables of the positive
planes HΠα and HΠβ .
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Notice also that due to the presence of the CNOT gate the
unitary transformation of (39) can change the entanglement
class of the stabilized states.
We can map the third order map D−1 ¼ C12C21 of

Eq. (40) acting by conjugation on message words in the
boundary, to a third order map D−1 acting by conjugation
on code words in the bulk. A calculation carried out in
Appendix B shows that this map is

D−1 ¼ I ⊗ UðMÞ;
UðMÞ ¼ iðH ⊗ IÞC12ðI ⊗ HÞC21ðX ⊗ XÞ: ð43Þ

Then we have

Ck ¼ D−kþ1C1Dk−1; k ¼ 1; 2; 3 ð44Þ

where the codewords are given by Table I depicted by
Fig. 3. The codewords C4 and C5 are left invariant.
Let us finally see how we can obtain other codes starting

from the special one of Table I. As we have seen this special
code corresponds to the spread S6 of Tables II and III. We
are in search of unitary operators acting by conjugation
connecting the message words of S6 to the remaining ones
of S1;…;S5. Based on our experience with Eqs. (40) and
(44) we are in search of unitary representations of certain
transformations of the group Spð4; 2Þ ≃ S6 generated by
transvections. Moreover in forming our representations, we
can use the trick of lifting transvections explained in
Appendix B.
Using the duad labeling of the doily of Appendix B one

can easily see that the cyclic permutation of spreads
ðS6;S4;S3Þ is implemented by the permutation ð123Þ ¼
ð12Þð23Þ generating a cyclic group of order three. This
generator is represented by the transvection T12T23. Now
under the (B3)–(B5) labeling ZY and XI in Fig. 1 corre-
sponds to the duads 12 and 23. Neglecting now the phase
factors of Eq. (B1) one can lift these transvections to the
unitaries

UðT12Þ ¼
1ffiffiffi
2

p ðI ⊗ I þ iZ ⊗ YÞ;

UðT23Þ ¼
1ffiffiffi
2

p ðI ⊗ I þ iX ⊗ IÞ: ð45Þ

Now UðT123Þ ¼ UðT12ÞUðT23Þ is acting on the
observables as

O ↦ UðT123ÞOU†ðT123Þ: ð46Þ
One can check that in terms of elementary quantum gates
this unitary can be written as

UðT123Þ¼C12ðI⊗HXÞC12ðPHP⊗ IÞ; P≡
�
1 0

0 i

�
:

ð47Þ

Here we see that UðT123Þ can be written in terms of the
CNOT (C12), the Hadamard (H), the phase (P), and the bit-
flip gate (X). An explicit form of the action is ðS6;S4;S3Þ

fIY; YI; YYg ↦ fIY;−ZI;−ZYg ð48Þ

fYZ; XY;−ZXg ↦ fIX;−YI;−YXg ð49Þ

fYX; ZY;−XZg ↦ f−IZ; XI;−XZg ð50Þ

fXI; IX; XXg ↦ f−YY; ZZ; XXg ð51Þ

fIZ; ZI; ZZg ↦ f−ZX; XY; YZg ð52Þ

The action of this unitary has two orbits on the space of
messages. They are of the form

ðS6;S4;S3Þ; ðS5;S1;S2Þ ð53Þ
where we have used the cycle notation, hence the entries are
permuted cyclically. Note that the transvections T12 and T23

are anticommuting hence according to Ref. [41] we have
ðT12T23Þ3 ¼ 1. Interestingly the unitary representative has
the property

UðT123Þ3 ¼ −I ⊗ I: ð54Þ

In order to reach each spread from our distinguished one
S6 we need an unitary relating the two orbits of (53). This
can be constructed for example from the lift of the
permutation (153). A similar construction then above yields

UðT153Þ ¼
1

2
ðI ⊗ I − iZ ⊗ IÞðI ⊗ I − iY ⊗ YÞ: ð55Þ

Its explicit action is

fIY; YI; YYg ↦ fIY;−XI;−XYg ð56Þ

fYZ; XY;−ZXg ↦ fIX;−ZI;−ZXg ð57Þ

fYX; ZY;−XZg ↦ f−IZ; YI;−YZg ð58Þ

fXI; IX; XXg ↦ f−ZY; XZ; YXg ð59Þ

fIZ; ZI; ZZg ↦ f−XX; YY; ZZg ð60Þ

hence according to Table II S6 is connected to S5. We note
that this unitary can be written in terms of elementary gates
(generating the Clifford group C2) in the following form

UðT153Þ ¼ ðP ⊗ IÞVðI ⊗ PHPÞV†;

V ¼ C21ðI ⊗ HÞC12ðI ⊗ HÞC12: ð61Þ

Looking at Eqs. (40) and (44) one notices that the
message words M4;5 and their corresponding codewords
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C4;5 seem to play a special role. Indeed, they are left
invariant by the corresponding transformations D and D,
and the remaining message and code words are cyclically
transformed into each other by the corresponding unitaries
of order three. Now the question arises can we find another
unitary transformation U, this time of order five, which is
treating all the five message words on an equal footing? An
answer to this question is yes, and to cap all this a unitary
(this time of order 2n þ 1) can be found for all values of n
[39]. We will have something more to say on the role U
playing in our story later, here we are content with giving its
explicit form in terms of elementary two-qubit gates. Some
calculational details for finding such an U for n ¼ 2 are
given at the end of Appendix B.
First let us define another unitary operator W given by

Eq. (B17). Then in terms of this unitary we have

U ¼ ðP ⊗ IÞðX ⊗ XÞWðP ⊗ IÞðX ⊗ XÞS12WS12;

U5 ¼ 1; ð62Þ

where for some definitions see (38). Now the action of
U on observables is just the usual one by conjugation:
O ↦ UOU†, and one can check that starting this time with
M4 under a sequence of conjugations we are completing a
cycle: ðM4;M0;M3;M1;M2Þ. For the detailed form of
this action see Eq. (B16) of Appendix B.
However, there is a subtlety here we have to point out.

We were unable to find a U which is compatible with our
choice of signs of Table I. Indeed, the best our U can do is
to reproduce the signs of each of our message words except
for the one M1. This means that under conjugation this
message word is reproduced as M0

1 ≡ fIY;−YI;−YYg

instead of the desired one M1 ¼ fIY; YI; YYg. However,
since both of the lines being positive they are amenable to a
stabilizer interpretation. This means that in Table I the
difference will manifest itself via the appearance of a
different stabilizer state. Namely instead of jψ1i of
Table I one has to use the new state

jψ 0
1i≡ 1ffiffiffi

2
p ðj0i þ ij1iÞ ⊗ 1ffiffiffi

2
p ðj0i − ij1iÞ ¼ j0̃ 1̃i ð63Þ

where the (22) definition has been used. Hence our U is
cyclically permuting the states, i.e., we have in permutation
notation ðψ5;ψ 0

1;ψ4;ψ2;ψ3Þ. Hence in this case by the
repeated application of U from the simple initial state
jψ5i ¼ j00i all the other stabilizer states can be generated
in a unique manner.
Hence we could have chosen either the message

set fM0
1;M2;M3;M4;M5g compatible with our

unitary U of order five, or the usual message set
fM1;M2;M3;M4;M5g of Table I compatible with
our unitary D of order three. The reason for we opted
for the latter one is the fact that the simple (39) expression of
D is straightforward to generalize [30] for arbitrary n, by
adding extra Cijs and Sijs according to a simple algorithm.
On the other hand one can also argue in favor of U, that
unlikeD it provides a rotationally covariant [39] assignment
of states to the lines of our boundary, starting from the state
j00i. Hence in this language our preferred choice of Table I,
though simple to handle, is not rotationally covariant.
For a rotationally covariant set one can define the new set

fm1;m2;m3;m4;m5g¼fM5;M0
1;M4;M2;M3g. On this

set the unitary of Eq. (B15) is acting in cyclic manner by
permuting the labels as (12345), see Eq. (B16). One can

FIG. 7. Left: A rotationally covariant set of messages in the boundary. The three different orbits of lines under U of Eq. (62) are
represented by colors. The five red (diagonal) message lines form a spread, with the corresponding triples of operators comprising a
stabilizer. Right: The real part of the bulk in a rotationally covariant labeling. The three different orbits under U of Eq. (64) are
represented by differently colored points. For a fixed set of messages in the boundary, the relative signs of different orbits in the bulk are
ambiguous. In the figure one particular choice can be seen where m1 and the vertical line going through c1 were chosen positive.
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also define the lift of this unitary acting on the correspond-
ing codewords fc1; c2; c3; c4; c5g ¼ fZII;−YIY; XII;
−YYZ;−YYXg in a cyclic manner. This unitary U is of
fifth order and of the form

U ¼ 1

2

0
BBB@

iY −Z iY Z

Z iY −Z iY

I −X −I −X
X I X −I

1
CCCA;

ca ¼ Ua−1c1U1−a; a ¼ 1;…5: ð64Þ
Since this 8 × 8 matrix is real it is rather to be called an
orthogonal transformation than a unitary one. This is in
accord with the fact that the observables featuring the Klein
quadric are all real. In Fig. 7 one can find the details of this
rotationally covariant encoding of boundary messages into
codewords of the real part of the bulk. Notice that in this
approach one can fix the boundary quantum net uniquely
however, there is a sign ambiguity still left for bulk
observables. In the figure one particular consistent choice
of signs is shown. This can be regarded as an approach for
also fixing the bulk quantum net provided we are already
given a fixed one for the boundary.

IV. GENERALIZATION FOR n-QUBITS

After this detailed exercise we can turn to the general
case of n-qubits. First we consider the boundary which is a
higher dimensional GFð2Þ generalization of projective
twistor space: PGð2n − 1; 2Þ. Then we show that the finite
geometric representative of the set of possible messages is
the set of totally isotropic n − 1-spreads of PGð2n − 1; 2Þ.
Next we consider the Gibbons-Hoffman-Wotters (GHW)
discrete phase space for n-qubits. It is mathematically
Vð2; 2nÞ a two dimensional vector space over the field
extension GFð2nÞ of GFð2Þ. This means that a point of
this discrete phase space is labeled by the pairs ðq; pÞwhere
the coordinates and momenta are elements of GFð2nÞ.
We will use the projectivization of this space which is
PGð1; 2nÞ. Applying field reduction to PGð1; 2nÞ we
obtain our boundary PGð2n − 1; 2Þ. In this manner we
can relate our boundary to a space of physical importance.
In particular it turns out that, in the terminology of
Ref. [30], our n ¼ 2 association of quantum states (or
signed observables) to the isotropic lines of PGð3; 2Þ of
Table I. is just an instance of assigning to the GHW phase
space a “quantum net”.
As a next step we start an investigation of the

Grassmannian image of these structures in the bulk. The
points of our bulk are just the images of the n − 1
dimensional subspaces of PGð2n − 1; 2Þ under the
Plücker map. What we get by this process as the bulk is
just the GFð2Þ version of the Brody-Hughston “quantum
space-time” [31]. In this picture the code words as points in
the bulk, are arising as the images of message words as

n − 1 subspaces in the boundary. We will see that the set of
2n þ 1 code words forms an algebraic variety in the bulk
which is the Grassmannian image of the 2n þ 1 message
words of the boundary. As a generalization of Eq. (23) the
variety of codewords corresponding to isotropic n − 1
subspaces is arising as the complete intersection of the
bulk with a suitable 2n − 1 dimensional space Δ, i.e., a
PGð2n − 1; 2Þ. The 2n þ 1 points residing in a real slice of
the bulk can be embedded into a quadric playing a similar
role in the general case than the Klein quadric for the n ¼ 2
one. The points corresponding to the codewords turn out to
form a complete set of partial ovoids on this quadric. Based
on these results and the ones of Ref. [37] these structures
then enable us an n-qubit generalization of the error
correcting picture as we developed in the previous section
in our n ¼ 2 special case.

A. Spreads as messages

Our boundary is the generalization of ðPGð3; 2Þ; h·; ·iÞ
which is ðPGð2n − 1; 2Þ; h·; ·iÞ. As message words we
choose a spread S of totally isotropic n − 1-subspaces
living in PGð2n − 1; 2Þ. We have 2n þ 1 such subspaces
partitioning the 22n − 1 element point set of PGð2n − 1; 2Þ.
Clearly each of such planes is containing 2n − 1 points.
They correspond to mutually commuting sets of 2n − 1
observables. For a fixed choice of signs (which is always
possible for spreads) one has a fixed set of stabilizer states
associated to our messages.
As an illustration for these results consult Table IV of

Appendix D where the n ¼ 3 case is elaborated. In this case
we have a collection of 9 totally isotropic planes consisting
of 7 points each. They are partitioning the 63 nontrivial
three-qubit observables, i.e., the point set of PGð5; 2Þ. For a
choice of signs and their associated stabilizer states see
Table IV of Appendix D.
A method for creating totally isotropic spreads is based

on the method presented in Refs. [44,56]. Note that finding
totally isotropic n − 1-spreads in PGð2n − 1; 2Þ is equiv-
alent to finding MUBs for n-qubits, a problem whose
solution is well known [45,57,58]. Here we present a very
brief finite geometrically motivated reformulation.
An n − 1-plane in PGð2n − 1; 2Þ is arising from a rank n

subspace of V ≡ Vð2n; 2Þ. Such subspaces are generated
by taking the linear span of n linearly independent vectors:
spanfv1; v2;…; vng≡ hv1; v2;…; vni. Following the pat-
tern of Eq. (13) of the n ¼ 2 case one can write the n
linearly independent vectors as a n × 2n matrix in the form
ðQjPÞ. In the coordinate patch where DetQ ≠ 0 one can
alternatively write a representative as: ð1jAÞ where 1 is the
n × n unit matrix. Now for the canonical choice of basis in
the general construction presented in Ref. [44] one can
present spreads in the form

ð1jAkÞ; ð0j1Þ; ð1j0Þ; k¼ 0;1;2;…2n−2 ð65Þ
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where the 2n − 1 n × n matrices Ak are symmetric,
invertible and also satisfying the constraint

DetðAk −Ak0 Þ ¼ 1; k ≠ k0: ð66Þ

In order to understand these constraints recall that ð1jAÞ for
A symmetric represents a totally isotropic plane. See the
discussion before Eq. (20). Moreover, the constraint of
Eq. (66) ensures that the corresponding planes are disjoint.
The constraint of invertibility is equivalent to the one that
also the special plane ð1j0Þ is disjoint from the ones ð1jAkÞ.
See also Eq. (18) in this respect. For an explicit set of 3 × 3
Ak matrices corresponding to plane spread in the three
qubit case see Eqs. (D2)–(D3) in Appendix D.
According to our philosophy an n − 1-subspace of a

particular totally isotropic spread represents a message
word. Corrupted messages of the first kind are just
transitions to n − 2; n − 3;… dimensional subspaces, ordi-
nary planes, and finally to points contained in our message
n − 1-subspace. Note that all these subspaces are totally
isotropic ones too. Hence after a particular choice of sign
distribution one can associate stabilizers to their corre-
sponding observables. Then at the level of stabilizers the
transition from messages to corrupted messages corre-
sponds to transitions from states (rays) to a nested sequence
of Hilbert subspaces of states of ever increasing dimension:
1; 2; 4… 2n−1. This process is the obvious generalization of
point errors of the n ¼ 2 case.
Message corruption of the second kind can also happen

by embedding our message planes into ever increasing
higher dimensional error subspaces (the analogue of plane
errors of the n ¼ 2 case). However, thanks to projective
duality we expect that one merely has to consider the errors
of the first kind. Errors of the second kind are closer to the
spirit of stabilizer codes, since in this case higher dimen-
sional subspaces containing our n − 1-dimensional message
subspaces will necessarily contain points mapped to observ-
ables anticommuting with the maximal set characterizing
our message plane. Hence in this case the anticommuting
operators of the error subspace will be moving the corre-
sponding stabilizer states to orthogonal subspaces
of the Hilbert space. Hence the net result will be again
the occurrence of a nested sequence of Hilbert subspaces
of states of ever increasing dimension: 1; 2; 4…2n−1.
Moreover, learning from the n ¼ 2 case we conjecture
that our error recovery process will be the same for errors
of both kind. Then errors of the first type are geometrically
more transparent, on the other hand errors of the second
kind are easier to put into the context of stabilizer codes
we are already familiar with. Anyway, since our message
subspaces are in the middle of the lattice of subspaces
of PGð2n − 1; 2Þ with distance smaller than n from the
possible error subspaces, our error correction picture
dualizes nicely. Hence we can regard both pictures as
equivalent descriptions.

B. Relating the boundary to the GHW phase space

The GHW discrete phase space [30] for n-qubits is
V ≡ Vð2; 2nÞ. It is a two dimensional vector space over
the field extension GFð2nÞ of GFð2Þ. (Some necessary
background information on GFð2nÞ is summarized in
Appendix C.) This means that a phase space point in
the canonical basis with basis vectors E and F is repre-
sented as

x¼ qEþpF∈V; x↔ ðq;pÞ; q;p∈GFð2nÞ: ð67Þ

We introduce a name for this two component quantity and
call it a fibit. It is the finite field analogue of a qubit.
Introducing it here will turn out to be of some value in
Sec. IV. E. Being a phase space V comes equipped with the
symplectic form

hx; x0i0 ¼ qp0 þ pq0 ∈ GFð2nÞ ð68Þ

i.e., we have hE;Fi0 ¼ hF;Ei0 ¼ 1 and the remaining
combinations are zero.
The projectivization of the GHW phase-space PðVÞ will

be denoted by PGð1; 2nÞ. This space is just the space of
lines through the origin of our phase space V. Alternatively
one can regard this space as the space of states (rays) of
fibits. Using our (68) symplectic form turns PGð1; 2nÞ to a
symplectic polar space. In order to reveal its physical
meaning we would like to obtain the boundary from the
GHW phase space. Mathematically this means that we
would like to obtain the symplectic polar space in
ðPGð2n − 1; 2Þ; h·; ·iÞ from the one ðPGð1; 2nÞ; h·; ·i0Þ.
This means that apart from doing field reduction, we also
have to relate the corresponding symplectic forms.
Since GFð2nÞ can be regarded as a vector space over

GFð2Þ using the trace map of Appendix C field reduction
means that we can write

q¼
Xn−1
k¼0

qkẽk; p¼
Xn−1
m¼0

pmem; TrðẽkemÞ¼ δkm: ð69Þ

Notice that a priori we need not have to choose the same
field basis for our coordinates and momenta. In (69) we
have chosen for the momenta a basis and for the coor-
dinates the dual basis. In this manner for an element x ∈ V
with coordinates ðq; pÞ ∈ GFð2nÞ ×GFð2nÞ one can asso-
ciate an element v ∈ V ¼ Vð2n; 2ÞwithGFð2Þ coordinates
arranged in the familiar (5) form. More importantly using
the conventions of (67) and (69) now we can relate the
symplectic forms of our spaces as follows

hv; v0i ¼ Trðhx; x0i0Þ: ð70Þ

Notice that this choice leads to a mathematically con-
sistent way of relating the relevant symplectic forms
[30,59,60]. However, this trick of relating the symplectic
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forms is not unique. Indeed for any nonzero λ ∈ GFð2nÞ
one can introduce the map

Lλ∶GFð2nÞ → GFð2Þ∶w ↦ TrðλwÞ: ð71Þ

Composing this map with an arbitrary form (quadratic,
symplectic) shows that any form on the GHWphase space is
nondegenerate if and only if the corresponding form on our
boundary is nondegenerate [59,60]. Clearly including a λ ≠
1 in our formula under the trace of Eq. (70) amounts to
changing, e.g., our dual basis ẽk to λẽk. For a careful
consideration of the physical meaning of this point
see Ref. [30].
Let us now consider a fixed point in PGð1; 2nÞ. In the V

perspective this corresponds to the set of vectors fcx∶c ∈
GFð2nÞg for a fixed vector x ∈ V. After field reduction this
set of vectors gives a rank n subspace in V, which gives rise
to an n − 1 dimensional subspace ofPGð2n − 1; 2Þ. Thanks
to our assignment of symplectic forms according to the rule
(70) this n − 1 dimensional subspace will be a totally
isotropic one in PGð2n − 1; 2Þ. This subspace will give
rise to a maximal set of 2n − 1 nontrivial mutually commut-
ing observables. There are 2n possible choices of sign
distributions for these observables yielding 2n possible
stabilizers. The stabilized vectors of these stabilizers corre-
spond to a particular member of a MUB for n-qubits. There
are 2n þ 1 points inPGð1; 2nÞ. They aremapped to then − 1
subspaces of a totally isotropic spread of PGð2n − 1; 2Þ.
For example for the n ¼ 2 case we have GFð4Þ with

its 4 elements: f0; 1;ω;ω2g, where ω2 þ ωþ 1 ¼ 0 and
ω3 ¼ 1. We expand

q ¼ q0 · 1þ q1 · ω2; p ¼ p0 · ωþ p1 · 1 ð72Þ

i.e., ðẽ0;ẽ1Þ¼ð1;ω2Þ and ðe0; e0Þ ¼ ðω; 1Þ, TrðλÞ≡ λþ λ2.
Now for the pair x¼ðq;pÞ¼ð1;ωÞ one has ðq0;q1;p0;p1Þ¼
ð1010Þ. The set fcx∶c ∈ GFð2nÞg consists of the vectors:
ð1;ωÞ; ðω;ω2Þ; ðω2; 1Þ. These correspond to the set of
vectors: (1010), (1111), (0101) in Vð4; 2Þ. Only two of
them are linearly independent, hence they define a sub-
space of rank 2, i.e., a 1-dimensional subspace (a line) in
PGð3; 2Þ. The mutually commuting set of nontrivial
observables in this case is ðYI; YY; IYÞ. The 4 possible
stabilizers in generator notation are: h�YI;�IYi. In the
notation of Eq. (22) they give rise to the four stabilized
states fj0̃ 0̃i; j0̃ 1̃i; j1̃ 0̃i; j1̃ 1̃ig, forming a particular
member of the well-known MUB for two-qubits [30].
There are 5 points in PGð1; 4Þ. These points are mapped
under the field reduction map to the 5 lines of the spread of
PGð3; 2Þ we used in Table I.
In the (65) representation of a spread two n − 1 sub-

spaces play a special role. They are the ones represented as
ð1j0Þ and ð0j1Þ. The first plane corresponds to mutually
commuting sets containing besides I only Z and the second
one containing merely X observables. Having for all of

them positive signs, their stabilizers single out the stabi-
lized states j00…0i and j0̄ 0̄…0̄i. Choosing a convenient
distribution of signs, as in Table I, to the remaining 2n − 1
elements of the spread one can associate stabilizers and
stabilized states in the following manner.
Let us choose any of these planes. For example the plane

ð1j1Þ will do. A convenient stabilizer corresponding to a
positive plane is generated as hII � � �Y;…; IY � � � I; YI � � � Ii.
The corresponding stabilized state is j0̃ 0̃ � � � 0̃i. In order to
find the remaining stabilizers and their stabilized states one
can proceed as follows [30]. Take the order 2n − 1 generators
of SLð2; 2nÞ of the form

Λω ≡
�
ω 0

0 ω−1

�
ð73Þ

where ω is a root of the primitive polynomial defining
GFð2nÞ. This matrix is acting on a column vector
ðq; pÞt. (In the language of quantum information it is a
SLOCC transformation [61] on our fibit.) According to our
field reduction procedure this transformation boils down
to an Spð2n; 2Þ transformation acting on the vector
ðq0; q1;…; p0; p1;…pn−1Þt. This transformation can be
decomposed into transvections, and we can lift these trans-
vections to unitary operators according to the method of
Appendix B. The result of this procedure is the unitary [30]

DðΛωÞ ¼
Yn
j¼2

ðCaj−1
1j ÞS1nS1n−1 � � � S12 ð74Þ

where the aj with j ¼ 0; 1; 2;…n − 1 are GFð2Þ elements
showingup in the (C1)primitive polynomial defining the field
GFð2nÞ. Note that this transformation is the generalization of
the n ¼ 2 one we used in Eq. (39). The unitary of (74) is of
order 2n − 1. Now as in Eq. (40), starting withM1 and jψ1i,
we can use the action of D by conjugation to generate all
of the remaining message words and stabilized states.
Via this procedure one can generate the message words
fM1;M2;…;M2n−1g, and their corresponding stabilized
states fjψ1i; jψ2i;…; jψ2n−1ig, the n-qubit analogues of the
first three columns of Table I.
However, based on the paper of Wootters and Sussman

[39] we can elaborate on this idea even better. The idea is to
generate cyclically all of our message words from the
reference one M2nþ1 with stabilized state j00 � � � 0i. This
idea is motivated by the desire to fix the GHW quantum net
uniquely by exploiting rotational covariance. In order to
achieve this task one has to construct the n-qubit analogue
of the unitary operator U of order 2n þ 1 we defined for
n ¼ 2 in Eq. (62). Unfortunately in the general n-qubit case
we were unable to construct U in a simple and instructive
manner. In any case employing such a U for the con-
struction of message words is related to a projective version
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of the Wootters Sussman construction.13 This amounts to
choosing a special point of PGð1; 2nÞ from the 2n þ 1
possible ones. Associate to this special point the state
j00 � � � 0i and then use the kth powers of U for k ¼
1; 2;…2n to assign states even to the remaining points
of PGð1; 2nÞ. In this way after field reduction one ends up
with our full set of message words in our boun-
dary PGð2n − 1; 2Þ.
The attractive feature of this technique is the cyclic

generation of message words. See the left-hand side of
Fig. 7 for an illustration. Notice also that since PGð1;RÞ is
the circle S1 the cyclic visualization of the points of
PGð1; 2nÞ gives a geometric intuition of some sort of
discretization of a circle based on the technique of using
GFð2nÞ instead of R. In this naive picture increasing the
number of qubits n, represents making the discretization
ever finer. Based on this observation in the following we
picture PGð1; 2nÞ as a collection of 2n þ 1 points arranged
on the perimeter of a circle. See Fig. 9 in this respect. Of
course we must bear in mind that what we are representing
in this manner is a projective version of a phase space, not a
configuration space. Hence though tempting to regard our
circle as some sort of discretized analogue of a “boundary
circle” analogous to the one showing up in asymptotically
AdS spaces in 2 ⊕ 1 dimensions, this analogy is mislead-
ing. However, as we will see in the next section, this picture
will turn out to be quite instructive for a visualization of our
finite geometric space PGð2n − 1; 2Þ as some sort of
boundary of a bulk.

C. The bulk as the Grassmannian image
of the boundary

Having clarified the physical meaning of our boundary
now we turn to a similar investigation for the bulk. Our
boundary is the twistor space PGð2n − 1; 2Þ. It can be
regarded as a space “fibered” by n − 1 dimensional totally
isotropic subspaces. This fibration corresponds to cutting
PGð2n − 1; 2Þ into 2n þ 1 disjoint slices (fibers). Each
fiber is containing 2n − 1 points of our twistor space giving
the total number of points 22n − 1. Clearly one particular
fibration corresponds to a choice of an isotropic spread.
Different fibrations of our twistor space correspond to
different choices of such spreads. As far as error correction
is concerned choosing a particular fibration corresponds
to a choice of messages in the boundary. As an example for
an n ¼ 2 fibration via the canonical spread see Fig. 3.
According to this philosophy a mental representation for
the totality of fibrations of our twistor space corresponds to
conceiving our boundary as a collection of messages in all
possible ways.
Alternatively one can think in terms of a familiar physical

picture as follows. A slice of the fibered boundary comes

naturally equipped with commuting sets of observables of
cardinality 2n − 1 differing only in their sign distribution.
The 2n possible sign distributions correspond to 2n stabi-
lizers of 2n states forming a basis in the n-qubit Hilbert
space. Hence to each slice of the fibration a basis of the n-
qubit Hilbert space is associated. In this picture a particular
collection of slices corresponds to a choice of MUB.
An n − 1-subspace of PGð2n − 1; 2Þ is represented by a

rank n-subspace of Vð2n; 2Þ of the form hv1; v2;…; vni≡
spanfv1; v2;…; vng. Now our finite geometric bulk-
boundary correspondence is simply the one provided by
the Plücker map which is of the form

π∶Gðn − 1; 2n − 1Þ → Pð∧n ðVÞÞ with

hv1; v2;…; vni ↦ v1 ∧ v2 ∧ … ∧ vn: ð75Þ

i.e., π is a map from the Grassmannian of n − 1-planes
in PGð2n − 1; 2Þ to the projectivization of the space of
n-vectors of V ¼ Vð2n; 2Þ. Since the dimension of the
vector space of n-vectors is N ¼ ð2nn Þ this is a map from a
Grassmannian to PGðN − 1; 2Þ.
Now an arbitrary element of ∧n V can be written in the

form

P¼
X

0≤k1<k2<…kn≤2n−1
Pk1k2…knek1 ∧ ek2 ∧ � � �∧ ekn: ð76Þ

However, the n-vectors we are interested in are merely
the separable ones. These are theP ∈ ∧n V ones such that
a representation of the form P ¼ v1 ∧ v2 ∧ … ∧ vn for
some v1; v2;…vn exists. P is separable if and only
if the Plücker relations hold [4]. These are quadratic
relations in terms of the components of P, whose explicit
form is not important for us. Clearly over GFð2Þ the image
of the Grassmannian Gðn − 1; 2n − 1Þ under π is the set
of nonzero separable n-vectors. This is an algebraic variety
in PGðN − 1; 2Þ. We will refer to this variety as “the
Grassmannian image”.
For the n ¼ 2 case of Sec. III. the Grassmannian image

was the Klein quadric. Indeed, in this special case the
Plücker relations boil down to just a single quadratic
relation coinciding with Eq. (15), the defining equation
of the Klein quadric. Since for our two qubit case we
referred to this object as the bulk in the following we extend
this terminology for arbitrary n. Hence from now on wewill
use the terms “Grassmannian image” and “bulk” as
synonyms. Hence in mathematical terms we have

BULK≡ fv1 ∧ v2 ∧ � � � ∧ vn ∈ Pð∧n VÞjv1; v2;…vn

∈ Vð2n; 2Þg; ð77Þ

where v1;…; vn are linearly independent. Our bulk is just
the GFð2Þ version of the Brody-Hughston quantum space-
time [31,32].

13For an alternative method for constructing U see also
Ref. [62].
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On the space ∧n V there is a nondegenerate symplectic
form h·; ·i generalizing Eq. (17). Namely, let

Ω ¼ f0; 1;…n − 1; n; nþ 1;…2n − 1g
¼ f0; 1;…; n − 1; 0̄; 1̄;…; n − 1g; ð78Þ

furthermore let us denote the n-subsets of Ω by Λ, Σ etc.
Moreover, for any n-subset Λ ¼ fi1; i2;…ing ⊂ Ω we
introduce the notation

eΛ ≡ ei1 ∧ ei2 ∧ � � � ∧ ein : ð79Þ

The complement of Λ in Ω will be denoted by Λ̄. Hence for
example for n ¼ 3, Λ ¼ f0; 2; 2̄g we have Λ̄ ¼ f0̄; 1; 1̄g.
Note that since we are over GFð2Þ when building up eΛ the
order of the eik showing up in eΛ is not important. Now our
symplectic form is defined as

heΛ; eΣi ¼ 0; if Λ ≠ Σ̄; heΛ; eΛ̄i ¼ 1: ð80Þ

Clearly the analogue of Eq. (19) holds, i.e., we have

P ∧ P0 ¼ hP;P0ie0 ∧ e1 ∧ � � � ∧ e2n−1: ð81Þ

Now if we represent an n − 1-plane A of the first class in
the (13) form ð1jAÞ then one can show that the n × nmatrix
version of Eq. (18) also holds, i.e., we have

hP;P0i ¼ DetðA −A0Þ: ð82Þ

The right-hand side of this equation gives rise to the
GFð2Þ version of the chronometric form introduced by
Brody and Hughston in Ref. [32]. As discussed in this
paper14 if we work over the field of complex numbers and

after employing the reality constraint A ¼ A† the chrono-
metric form can be regarded as the natural generalization of
the one which gives rise to the usual Minkowski line
element. Then the authors show that the Grassmannian
image of the set of n − 1-planes in the “hypertwistor space”
CP2n−1 forms a manifold of dimension n2. This space is
then identified as the complexified compactified version of
an object which is called by them the “quantum space-
time”. Clearly here we are faced with the GFð2Þ-version of
this construction yielding our bulk. Hence we see that our
bulk as the Grassmannian image of the set of n − 1-planes
in PGð2n − 1; 2Þ is just the finite geometric version of the
Brody-Hughston quantum space-time. Moreover, after
implementing the condition of isotropy on these n − 1-
planes the Grassmannian image yields the GFð2Þ analogue
of “real quantum space-time” [31,32] living inside the
“complex” one, an object that will be discussed in the next
subsection.
When two n − 1-planes of our boundary intersect then

the corresponding two points in the bulk have a degenerate
separation (see Fig. 8 for an illustration). These two points
are represented by the two separable n-vectors P and P0.
The degeneracy (r) of the separation, encapsulated in the
structure of Eq. (82), is just the rank of the separation
matrix A −A0. If we denote by δ the dimensionality15 of
the intersection of the two n − 1-planes, then we have
r ¼ n − 1 − δ. Hence for no intersection we have maximal
rank r ¼ n, and in this case DetðA −A0Þ ≠ 0. This is the
case we have for two elements of a particular spread
represented by ð1jAÞ and ð1jA0Þ. On the other hand the
different degrees of degeneracy are distinguished by the
possible values r ¼ 1; 2;…n − 1. In these cases
DetðA −A0Þ ¼ 0, i.e., the separation matrix is degenerate.
Clearly, unlike in the n ¼ 2Minkowski case where we have

FIG. 8. The intersection properties of n − 1 planes in the boundary for n ¼ 3 interpreted as different levels of degeneracy for the
separation of points in the bulk. We have r standing for the rank, and δ standing for the projective dimension of the intersection. We have
r ¼ n − 1 − δ. According to Eq. (12) for the corresponding vector subspaces A and A0 of rank three one can define a distance. This is
given in the last column.

14For the n ¼ 3 case see also the paper of Finkelstein [40].

15The dimension is understood projectively. Hence if we have
no intersection then δ ¼ −1.
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merely lightlike and nonlightlike separation, in the general
case we have an intricate structure of degenerate cases. This
is illustrated for n ¼ 3 in Fig. 8.

D. The real slice of the bulk

As we have seen the bulk is the Grassmannian image of
the boundary, which we can also regard as the image of a
space fibered by messages. There are many different ways
that the boundary can be fibered. In finite geometric terms
there are many possible spreads one can choose for the
twistor space PGð2n − 1; 2Þ. However, our choice for the
set of fibrations is special. Indeed, this set is the one of
isotropic spreads. The Grassmannian image of this set of
messages comprises a special subset of points in the bulk.
Now we would like to present a geometric characterization
of this subset of points.
According to our philosophy these points in the bulk are

comprising the codewords encoding the messages. For the
n ¼ 2 case Fig. 3 shows that the set of points corresponding
to the codewords gives an ovoid inside the doily. The set of
all possible such codewords is the set of ovoids covering all
the points of the doily. We have also seen that the doily
inside the bulk is just the finite geometric version of a real
slice of complexified compactified Minkowski space-time.
A particular set of codewords inside this real slice is
geometrically described by Eq. (23). In Sec. III. F we
elucidated the physical meaning of taking this code slice.
We have seen that taking this slice is the same technique by
which in twistor theory conformally flat spacetimes are
obtained. In the following wewould like to see how one can
achieve a generalization of these ideas for arbitrary n.
First of all we define the real slice of the bulk as

ℜðBULKÞ≡fv1 ∧ v2 ∧ � � �∧ vn ∈Pð∧n VÞjhvi;vji¼ 0g:
ð83Þ

This is the Grassmannian image of the space of maximal
totally isotropic (Lagrangian) subspaces of PGð2n − 1; 2Þ,
i.e., the image of the Lagrangian Grassmannian [63].
Since Lagrangian subspaces are (locally) represented by
the arrangement ð1jAÞ where A is symmetric, our real
slice is an algebraic subvariety of the bulk of dimension
nðnþ 1Þ=2. The number of real points in the bulk is [63]Q

n
i¼1ð1þ 2iÞ, i.e., for n ¼ 2, 3, 4 we have 15, 135, 2295

points.
Let us now introduce the map16 ∂k∶ ∧k V →∧k−2 V by

the formula [65]

∂kðv1 ∧ v2 ∧…∧ vkÞ
¼
X
i<j

hvi;vjiv1 ∧ � � �∧ v̂i ∧ � � �∧ v̂j ∧ � � �∧ vk ð84Þ

where as usual V ¼ ðVð2n; 2Þ; h·; ·iÞ, and hats refer to
omission of the corresponding factors. We extend this
action of ∂ linearly on elements of ∧k V. As an example
one can check that acting with ∂2 on P of Eq. (16) the
constraint ∂2P ¼ 0 gives rise to the one of Eq. (20). This
constraint is precisely the constraint of isotropy of a line of
the boundary PGð3; 2Þ, appearing at the level of Plücker
coordinates.
To see how this constraint works over GFð2Þ for n ≥ 3

let us define the 2-subsets B1;…Bn of Ω by Bi ≡ fiīg
where 0 ≤ i ≤ n − 1. Then if Λ is an n-set containing s ≥ 1
2-subsets Bi1 ;…Bis we have

∂ðvΛÞ ¼
Xs
j¼1

vΛ−Bij
; ð85Þ

where in the following we omit the subscript of ∂ when
from the context it is clear on which space it acts. One can
check [64] that since ∂ commutes with the action of
Spð2n; 2Þ the kernel of this map

W ≡ ker ð∂ ∩∧n VÞ ¼ fP ∈∧n Vj∂P ¼ 0g ð86Þ

forms a representation of Spð2n; 2Þ. One can also show
[63] that

ℜðBULKÞ ¼ BULK ∩ PðWÞ: ð87Þ

When the characteristic of the field is zero the module
W is known to be irreducible [64] however, over
GFð2Þ it is not. Indeed, over GFð2Þ we have ∂2 ¼ 0

and ∂ð∧nþ2 VÞ ⊂ W. Moreover [65], ∂ð∧nþ2 VÞ has codi-
mension 2n in W and the quotient W=∂ð∧nþ2 VÞ forms an
irreducible representation of Spð2n; 2Þ of dimension 2n.
A detailed illustration of these results for n ¼ 3 can be
found in Ref. [33]. Here we are content with a brief
illustration of this case.
Let S ∈∧5 V, where V ¼ Vð6; 2Þ

S ¼ ae011̄22̄ þ be100̄22̄ þ ce200̄11̄ þ αe0̄11̄22̄

þ βe1̄00̄22̄ þ γe2̄00̄11̄ ð88Þ

where e011̄22̄ ¼ e0 ∧ e1 ∧ � � � ∧ e2̄ etc. Now the action of ∂
is just omission of blocks like 11̄ hence

R≡ ∂S ¼ aðe011̄ þ e022̄Þ þ bðe100̄ þ e122̄Þ þ � � �
þ γðe2̄00̄ þ e2̄11̄Þ ¼ R011̄e011̄ þ � � � þ R2̄11̄e2̄11̄: ð89Þ

Now we see that ∂2 ¼ 0 and that R contains terms for
which

R011̄ ¼ R022̄ ¼ a; R100̄ ¼ R122̄ ¼ b; � � �
R2̄00̄ ¼ R2̄11̄ ¼ γ: ð90Þ

16This map is the standard one used in Ref. [64] on page 260.
However, over GFð2Þ no factors of ð−1Þiþj−1 are needed.
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As a next step writing out the expansion of P ∈∧3 V, one
can see that precisely the same constraints are arising from
∂P ¼ 0 for the 12 components of P having the same index
structure as the ones of R in (90). The remaining 8
components of P contain no blocks at all and they are
of the form

ðP012;P012;P0̄12̄;P012;P012;P0̄12;P01̄2;P012̄Þ; ð91Þ

where we arranged these 8 components in a (5) form also in
accordance with the structure of the (6), (80) symplec-
tic forms.
Now one can write

P ¼ Pψ þR;

Pψ ¼ P012e012 þ P012̄e012̄ þ � � � þ P012e012: ð92Þ

Here Pψ with 8 terms and with the index structure
reminiscent of a three-qubit state ψ

ðψ000;ψ001;…;ψ111Þ ↔ ðP012;P012̄;…;P012Þ ð93Þ

serves as a representative for the coset W=∂ð∧nþ2VÞ with
n ¼ 3. According to the results of Ref. [65] the left-hand
side of Eq. (92) is also valid for arbitrary n ≥ 3. This time ψ
is an n-qubit state with 2n components embedded into∧nV,
V ¼ Vð2n; 2Þ. On this 2n dimensional space Spð2n; 2Þ acts
irreducibly. In the literature the corresponding module is
called the spin module [48,65]. The embedding trick of n-
qubits into n-vectors of a 2n-dimensional vector space is
frequently used in quantum information [34,66–69].
The P ¼ Pψ þR representation of an element of W

where R ∈ ∂ð∧nþ2 VÞ is of great value when we connect
the N ¼ ð2nn Þ component vectors (N is an even number) of
Plücker coordinates to N=2-qubit observables. First of all
one can prove [65] that for Pψ þR and P0

ψ 0 þR0 we have
hR;R0i ¼ 0 meaning that ∂ð∧nþ2 VÞ is totally isotropic
with respect to our symplectic form. Since clearly
hPψ ;R0i ¼ hP0

ψ 0 ;Ri ¼ 0 we get

hP;P0i ¼ hPψ ;P0
ψ 0 i: ð94Þ

Hence using the dictionary of Eq. (4) the commutation
properties of the corresponding N=2-qubit observables are
entirely determined by the 2n−1-qubit observables encoded
in the 2n components of the Pψ part. However, according to
Eq. (82) the commutation properties of observables in the
bulk are encapsulating the causal structure of ℜðBULKÞ.
Then we conclude that the causal structure of ℜðBULKÞ is
determined by thePψ part encoding 2n−1-qubit observables.
One can define a quadratic form on ∧n V by setting

QðeΛÞ ¼ 0 for all n-subsets of Ω and letting h·; ·i of (80) be
the polarization of Q, i.e., a relationship between them
of the form of Eq. (11) should hold. The explicit form

of Q can then be given by the familiar (10) expression with
N ¼ ð2nn Þ used instead of n in that formula. This time the
q, p pairs showing up in Eq. (10) should be replaced by
pairs like PΛ, PΛ̄ where Λ and Λ̄ are covering all of the
N possible n-subsets of Ω. A structure of this kind is
exemplified by Eq. (15).
Then one can show [65] that for n ≥ 3 the quadratic form

Q is identically zero on ∂ð∧nþ2 VÞmoreover, ∂ð∧nþ2 VÞ is
the radical inW. As a result of this there is a nondegenerate
quadratic form Q̂ on the spin module W=∂ð∧nþ2 VÞ of
index 2n−1 invariant under Spð2n; 2Þ. This means that for a
decomposition of the (92) form we have QðRÞ ¼ 0. Hence

QðPÞ ¼ QðPψ þRÞ ¼ QðPψÞ þQðRÞ þ hPψ ;Ri
¼ QðPψÞ≡ Q̂ðPψ Þ: ð95Þ

Let us now show that for P ∈ ℜðBULKÞ one has
Q̂ðPψÞ ¼ 0. By virtue of Eq. (95) in order to show this
we have to verify that QðPÞ ¼ 0. Let us first recall that

�
2n
n

�
¼

Xn
k¼0

�
n
k

��
n

n − k

�
: ð96Þ

The cardinality of the set of all possible n-subsets Λ of Ω is
ð2nn Þ and Eq. (96) shows that we have a partition of this set
to n-subsets containing k ¼ 0; 1;…n overlined elements.
Let us now represent a point P of ℜðBULKÞ by an n − 1-
subspaceAwith its n × 2n matrix of the form ð1jAÞ. Label
the first n columns with the numbers f0; 1; 2;…; n − 1g
and the last n ones with their overlined versions. Consider
now the terms of QðPÞ of the form PΛPΛ̄ where the
n-subset Λ is containing k overlined elements from Ω. Let
us fix these k-numbers. Then there are ð n

n−kÞ possibilities to
remain for building up an n-subset Λ of that kind. Since
P ∈ ℜðBULKÞ then At ¼ A. Taking this into account and
using Laplace expansion for the calculation of the deter-
minant of A with respect to the fixed k-rows one can check
that the sum of the ð n

n−kÞ terms PΛPΛ̄ coincides with
DetðAÞ. Since one can choose the fixed k numbers in ðnkÞ
different ways what we get in this manner is the sum of ðnkÞ
terms all of them calculating DetðAÞ. NowQðPÞ is the sum
of ð2nn Þ=2 terms of the form PΛPΛ̄ where Λ is running
through all n-subsets containing k overlined elements of Ω
where k is running from 0; 1;…bn=2c. Note that for n even
in order to avoid double counting one has to take into
account the case of s ¼ n=2 only ð2ss Þ=2 times. Note in this
respect that for n ¼ 2s

Xs−1
k¼0

�
2s
k

�
þ 1

2

�
2s
s

�
¼ 2s: ð97Þ

The upshot of these considerations is that no matter
whether n is even or odd QðPÞ is calculating DetðAÞ in
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an even number of times. Since we are over GFð2Þ this
means that QðPÞ ¼ 0 as claimed.
We can conclude that the points of ℜðBULKÞ are lying

inside a hyperbolic quadric Qþð2n − 1; 2Þ. These points are
satisfying the constraint Q̂ðPψ Þ ¼ 0 where Pψ is defined by
then-qubit versionofEq. (92).Moreover, since the2n different
Plücker coordinates of Pψ are aligned in pairs according to
Eq. (5), these points correspond up to sign to symmetric 2n−1-
qubit observables. In summary we have the situation

ℜðBULKÞ⊆Qþð2n−1;2Þ
⊂BULK⊂PGðN−1;2Þ; n≥ 3: ð98Þ

where N ¼ ð2nn Þ and equality is obtained [33] for n ¼ 3.
Notice that the n ¼ 2 case is special, since in this case

ℜðBULKÞ ⊆ Qþð5; 2Þ≡ BULK ⊂ PGð5; 2Þ: ð99Þ

Let us summarize. Just like in the n ¼ 2 case even for
n ≥ 3 the real part of the bulk can be embedded into a
unique hyperbolic quadric [70]. As a result of this,
commuting 2n − 1-tuples of n-qubit observables (assigned
to Lagrangian subspaces of the boundary) are mapped to
symmetric 2n−1-qubit ones [assigned to the points of
ℜðBULKÞ]. There is an ambiguity in choosing the signs
of the observables on both sides of the correspondence.
However, the ambiguity in signs over the boundary can be
eliminated. In this case to a member of the fibration one can
associate a MUB system in a unique manner.17 Then the
remaining sign ambiguity on the ℜðBULKÞ side is man-
ifesting itself in the following problem: To a particular basis
of the boundary which eigensubspace of the corresponding
symmetric 2n−1-qubit observable one should associate?
A possible answer to this question in the n ¼ 2 case is
encapsulated in Fig. 7. However, in order to find a
satisfactory solution to the problem of fixing the quantum
net also for the bulk for n ≥ 3 further elaboration is needed.

E. Gluing up the real slice of the bulk from n fibits

We have seen in Sec. IV. B that the process of blowing up
the points of the projectivization of the GHW phase space
of n-qubits yields our boundary. In arriving at this picture
instead of using 2n component vectors overGFð2Þwewere
using two component ones over the field extension
GFð2nÞ. For such two component objects we coined the
term: fibit. Now we show that it is possible to give an
elegant characterization of the real slice of the bulk as an
n-fibit system glued together in a peculiar manner. This
trick also provides a neat way of characterizing our code-
words in the bulk as partial ovoids.

The main idea is to take n copies of the GHW phase
space V ≡ Vð2; 2nÞ equipped with the (68) symplectic
form and the natural tensor product action of n copies of the
group G ¼ Spð2; 2nÞ ¼ SLð2; 2nÞ. This action is the finite
geometric analogue of the action of the SLOCC group [61]
familiar from quantum information. Let us then consider
the rank 2n vector space Vn ¼ V ⊗ V ⊗ � � � ⊗ V over
GFð2nÞ. Starting from the h·; ·i0 symplectic form on V of
Eq. (68) one can define a symplectic form h·; ·in on Vn by
the linear extension of the formula

hx0 ⊗ x1⊗ � � �⊗ xn−1;y0⊗ y1⊗ � � �⊗ yn−1in¼
Yn−1
i¼0

hxi;yii0:

ð100Þ

One can associate a quadratic form Qn∶Vn → GFð2nÞ to
this symplectic form via the usual method, as explained in
the text showing up in the paragraph after Eq. (94). Now the
state space of n distinguishable fibits is formed by con-
sidering ðPðVnÞ; h·; ·inÞ where PðVnÞ ¼ PGð2n − 1; 2nÞ.
Inside this state space the space

Σ2;2;…;2≡PðVÞ×PðVÞ× � � �×PðVÞ
¼PGð1;2nÞ×PGð1;2nÞ× � � �×PGð1;2nÞ ð101Þ

describes the state space of n separable fibits. The
embedding of this space called Σ2;2;…;2 into the full state
space is called the Segre embedding [71,72]. On the right-
hand side of Eq. (101) we have n copies of the projectiv-
ization of the GHW phase space, i.e., up to the blowing up
process n copies of our boundary. If we represent an
element of V as in Eq. (67) then the left-hand side of
Eq. (101) can be represented by elements of the form
x0 ⊗ x1 ⊗ � � � ⊗ xn−1, defined up to multiplication by a
nonzero element of GFð2nÞ.
One can introduce correlation into this picture by

demanding that the fibits are indistinguishable. Since we
are over an extension of GFð2Þ the only way to do this
seems to be to considering “bosonic fibits” via restricting
attention to merely those elements of the left-hand side of
Eq. (101) that are of the form x ⊗ x ⊗ � � � ⊗ x. This
amounts to considering as components of a state the
combinations of the form qαpβ where αþ β ¼ n, i.e., the
coordinates aremonomials inq,p of degreen. Geometrically
this corresponds to using instead of the Segre variety the
Veronese variety [71,72] inside PGð2n − 1; 2nÞ.
However, for finite fields one also has the possibility of

forming twisted tensor products [73]. This trick introduces
a peculiar form of correlation into our system of fibits (see
Fig. 9). The idea is as follows. Unlike the case of the
Veronese embedding where we take merely the diagonal of
the Segre embedding let us consider instead elements of
PGð2n − 1; 2nÞ of the form

17Provided we follow the rotationally covariant method of
Ref. [39] for building up a quantum net.
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x ⊗ x2 ⊗ x4 ⊗ � � � ⊗ x2
n−1
;

xj ≡ qjEþ pjF; j ¼ 1; 2;…; 2n−1: ð102Þ
Let us elaborate on the rationale for doing this. Wewould

like to obtain an alternative characterization of the struc-
tures of the previous section [which are ones over GFð2Þ]
as subgeometries of ones over the extension GFð2nÞ. In the
case of the boundary this approach was fruitful because we
managed to relate the boundary to the GHW discrete phase
space. Now we would like to arrive at a similar level of
understanding for the codewords embedded in the real part
of the bulk. For a very brief reminder on subgeometries see
Appendix E.
Over finite fields we have the Frobenius automorphism

of the field extension ½GFð2nÞ∶GFð2Þ�. This is simply the
map ϕ∶λ ↦ λ2 of order n for an arbitrary element
λ ∈ GFð2nÞ. For an element of g ∈ G denote by gϕ

i
the

2 × 2 matrix with its entries raised to the 2ith power where
i ¼ 0; 1;…n − 1. Denoting by Vϕi

the representation space
on which gϕ

i
acts the twisted tensor product is defined as

the tensor product V ⊗ Vϕ ⊗ Vϕ2 ⊗ � � � ⊗ Vϕn−1
. Hence

we explicitly have the twisted action ϱ of G as

ϱ∶x0⊗ x1⊗ � � �⊗ xn−1↦ gx0⊗ gϕx1⊗ � � �⊗ gϕ
n−1
xn−1;

g∈G¼ Spð2;2nÞ: ð103Þ
Let us also define the map18 σ on Vn by

σðx0⊗x1⊗ � � �⊗xn−1Þ¼xϕn−1⊗xϕ0 ⊗ � � �⊗xϕn−2: ð104Þ

Then one can show the following set of results [48]. First of
all ϱ and σ commutes on Vn and as a result of this the set
W ≡ fw ∈ Vn∶σðwÞ ¼ wg is a GFð2Þ subspace of Vn
stabilized by ϱ. Then any vectors in W that are linearly
independent over GFð2Þ are linearly independent over
GFð2nÞ. W has dimension 2n over GFð2Þ and spans Vn
over GFð2nÞ. Now all of the vectors which are of the form
as the one on the left-hand side of Eq. (102) are fixed by σ
and hence are in W and these vectors span W.
These technical results ensure that one can choose 2n basis

states of the (102) form such that they represent thePψ part of
Eq. (92) of the previous section19 in the PGð2n − 1; 2nÞ
language. In particular one can show [48] that the Qn
quadratic form is nondegenerate and takes its values in
GFð2Þ on restriction to W. Hence the elements satisfying
QnðwÞ ¼ 0 for w ∈ W define a quadric in a PGð2n − 1; 2Þ
subgeometry ofPGð2n − 1; 2nÞ. The points of the real part of
ourbulk are forminga subset of the points of this quadric. This
gives an alternative characterization of the result of Eq. (98).

F. Characterizing the code variety in terms of fibits

Let us shed some light on the advantage of the viewpoint
provided by the trick of using the extension field GFð2nÞ.
Let us take a point x ∈ V represented by the pair ðq; pÞ.
Embed this vector into Vð2n; 2nÞ by forming a vector v as
follows

v↔ ðq;0;0;…;0;p;0;0;…;0Þ; q;p∈GFð2nÞ ð105Þ
where in the notation of Eq. (5) q is in the q0th and p is in
the p0th slot. In accord with this in the following we use a
labeling convention for the basis vectors of Vð2n; 2nÞ based
on the set Ω of Eq. (78). Apply now n − 1 times the map σ
on v according to the rule20

FIG. 9. A representation for the state space of n twisted fibits for
n ¼ 3. The blow up of the projectivization of the GHWphase space
PGð1; 2nÞ can be identified with our boundary. ThisPGð1; 2nÞ can
be represented as a collection of 2n þ 1 points arranged on the
outmost circle of the figure. Starting from the state j00…0i
associated toM2nþ1, via applying a unitaryUðRÞ, to the remaining
points of PGð1; 2nÞ quantum states can be associated in a unique
manner. The n copies of PGð1; 2nÞ s are arranged in an onion like
pattern reflecting the twisted tensor product structure of Eq. (102).
The hyperbolic quadric of Eq. (98) containing the real part of our
bulk is then created by a gluing up process of this pattern effected by
thePlückermap as explained at the endofSec. IV. F.Combinedwith
Table IVof Appendix D the colors and the numbers showing up in
the figure indicatewhich state jφaiwitha ¼ 1; 2;…9 ofEqs. (D7)–
(D9) is to be associated with the colored points.

18See Appendix E and Ref. [48] for some elaboration on the
meaning of this map.

19Recall that the Pψ part is residing in the subgeometry
PGð2n − 1; 2Þ.

20By an abuse of notation we use the same letter σ for the
map of Eq. (104) and a new one introduced here. However, the
former is acting on V ⊗ � � � ⊗ V and the latter on V ⊕ � � � ⊕ V.
Moreover, the basis states of the direct sum are labelled according
to the pattern of (78). However, since both of these maps are
acting via effecting a cyclic permutation and applying the
Frobenius automorphism, we used the same letter to refer
to them.
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vσ ¼ ð0; q2; 0;…; 0; 0; p2; 0;…; 0Þ;
vσ

2 ¼ ð0; 0; q4;…; 0; 0; 0; p4;…; 0Þ;
vσ

2n−1 ¼ ð0; 0; 0;…; q2
n−1
; 0; 0; 0;…; p2n−1Þ:

Now the vectors fixed by σ are precisely of the form

vþ vσ þ � � � þ vσ
2n−1 ∈ Vð2n; 2nÞ. Such vectors form a 2n

dimensional vector space V 0 ≃ Vð2n; 2Þ, i.e., a one over
GFð2Þ. Of course we are not pretending that V 0 and our
original vector space V of Sec. I are the same. The only
point we would like to emphasize here is that this
description based on V 0 gives rise to an alternative
characterization [70] of spreads of the associated PðV 0Þ.
Indeed, if we consider the n − 1 plane

ΠðvÞ≡ hv; vσ;…; vσ
2n−1 i ð106Þ

then the set

S ¼ fΠðvÞ∶v ∈ Vð2n; 2nÞg ð107Þ

where v assumes the peculiar (105) form, forms a spread of
the PðV 0Þ subgeometry [56,72].
We can represent the n − 1 plane ΠðvÞ in the (13) form

ðQjPÞwhere nowQ andP are n × n diagonal matrices with
entries of the form qj and pj with j ¼ 1; 2;…; 2n−1. Now
when calculating the Grassmannian image of this plane all
but 2n of the n × n submatrices have determinant zero.
These give rise to 2n nonvanishing Plücker coordinates of
our codewords. However, this time we are over GFð2nÞ.
Hence for neither q nor p zero the 2n coordinates are of the
form qαpβ ∈ GFð2nÞ where α; β ¼ 0; 1;…2n − 1 and
αþ β ¼ 1þ 2þ � � � þ 2n−1 ¼ 2n − 1. In the exceptional
cases of the rays of the points ð0; pÞ and ðq; 0Þ only one of
the Plücker coordinates is one and the remaining coordi-
nates are zero. Note that the pair ðq; pÞ of PGð1; 2nÞ is
defined merely up to multiplication with a nonzero
λ ∈ GFð2nÞ. However, ðλqÞαðλpÞβ ¼ðλÞ2n−1qαpβ ¼ qαpβ

hence our Plücker coordinates are defined merely up to
a GFð2Þ scalar multiple [the only scalar multiple is 1 over
GFð2Þ]. We have the same property for the exceptional
cases. This indicates that in spite of working over GFð2nÞ
our set of 2n þ 1 points with 2n such coordinates is
contained in a subgeometry [56] of PGð2n − 1; 2nÞ iso-
morphic to PGð2n − 1; 2Þ.
Introduce the notation Δ ¼ PGð2n − 1; 2Þ for this sub-

geometry. Then it is known that the set of points in
PGð2n − 1; 2nÞ with coordinates qαpβ with αþβ¼2n−1
is the algebraic variety [56,72]

V2;n ≡ Δ ∩ Σ2;2;…;2 ¼ Δ ∩ BULK ð108Þ

where Σ2;2;…;2 is defined in (101). This formula should
already be familiar from Eq. (23) in connection with the

n ¼ 2 case, where the Klein quadric Qþð5; 2Þ has been
identified as the BULK. There this formula defined the
codewords Ca arising as the Grassmannian image of the
message words Ma. In that case the codewords formed an
ovoid. Based on this observation in the following we will
argue that it is plausible to identify V2;n for n ≥ 3 as the code
variety.
In order to justify this notice that the 2n þ 1 points

arising as the Grassmannian image of a spread consisting of
2n þ 1 n − 1-planes are lying on a hyperbolic quadric
Qþð2n − 1; 2nÞ, and since they lie in a subgeometry
PGð2n − 1; 2Þ they further lie on a quadric Qþð2n −
1; 2Þ in that subgeometry [48]. Indeed this is an alternative
construction of the quadric Q we are already familiar with
from Eq. (95) of the previous section. Now a partial ovoid
of a quadric Q is a pointset O of the quadric which has at
most one point in common with each maximal totally
isotropic subspace of Q. In particular an ovoid is arising
when each maximal isotropic subspace of the quadric has
exactly one point in common withO. For n ¼ 3 it is known
that the Grassmannian image of our spread in the boundary
is an ovoid in the bulk [48]. However, for n > 3we have no
ovoids on our hyperbolic quadrics. What we have are
partial ovoids showing up as pairwise nonorthogonal
points. A partial ovoid is said to be complete if it is
maximal with respect to set theoretic inclusion. There is an
upper bound for the size of a partial ovoid of a classical
polar space [74]. In our special case it turns out that
this bound is precisely 2n þ 1. According to this result for
n ≥ 2 our set of codewords residing on our hyperbolic
quadric form a complete partial ovoid attaining this
bound [48]. Interestingly according to Remark 3.7 of
Ref. [70] the quadric on which Spð2n; 2Þ acts via its spin
representation can be recovered from the knowledge of a
complete partial ovoid, i.e., a collection of codewords.
Hence the code variety V2;n andQ related to the real part of
our bulk are intimately connected. However, the precise
mathematical relationship between these objects needs
further clarification.
Let us give the explicit form of the elements of V2;n in

fibit notation. An n-fibit state can be written as

ψ ¼ψ00…0E⊗E⊗ � � �⊗Eþψ10…0F⊗E⊗ � � �Eþ�� �
þψ11…1F⊗F⊗ � � �⊗F ð109Þ

see Eq. (67) for definitions. It is better to write such
expressions in decimal notation using reversed binary
labeling. By this we mean that after introducing the basis
vectors fε0; ε1;…; ε2n−1g where

ε0 ¼ E ⊗ E ⊗ � � � ⊗ E; ε1 ¼ F ⊗ E ⊗ � � � ⊗ E;

ε2 ¼ E ⊗ F ⊗ � � � ⊗ E;… ð110Þ

for q ≠ 0 and p ≠ 0 an element of V2;n can be written as
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ψ ¼ x ⊗ x2 ⊗ � � � ⊗ x2
n−1

¼ ψ0ε0 þ ψ1ε1 þ � � � þ ψ2n−1ε2n−1 ≡ ψαεα;

ψα ¼ q2
n−α−1pα ð111Þ

where summation for repeated indices of α in the range
0; 1;…2n − 1 is understood. Clearly if neither q nor p is
zero then we always have ψ0 ¼ ψ2n−1 ¼ 1. For elements of
the form ðq; 0Þ we have ψ0 ¼ 1 and the remaining
components are zero. Likewise for elements of the form
ð0; pÞ we have ψ2n−1 ¼ 1 and the remaining ones are zero.
Let us denote these special n-fibit states as follows

ψ ½2n� ≡ ε2n−1; ψ ½2n−1� ≡ ε0: ð112Þ

Now if neither q nor p is zero then for an element
x ↔ ðq; pÞ representing an equivalence class of PGð1; 2nÞ
can be represented in the form ð1;ωkÞ for some
k¼0;1;…2n−2. Hence in these cases we get further 2n−2
states of the form

ψ ½k�≡ωαkεα; α¼0;1;…2n−1; k¼0;1;…2n−2; ð113Þ

i.e., ψ ½k�
α ≡ ωαk and we have summation for α. Finally what

we get is a collection of 2n þ 1 separable n-fibit states.
Since the n-fibit states are separable they are elements of
the Segre variety Σ2;2;…;2. Moreover, each fibit has 2n

coordinates taken from GFð2nÞ with a special form. These
give rise to coordinates of 2n þ 1 points in the subgeometry
Δ ¼ PGð2n − 1; 2Þ of PGð2n − 1; 2nÞ. This reasoning
clarifies the meaning of the first equality of Eq. (108).
We emphasize that although our n-fibit states are

separable, hence they contain no entanglement however,
they are correlated. For example had we chosen the
constraint ψα ¼ qn−αpα we would have obtained a corre-
lated bosonic n-fibit state. Correlation in this picture would
have come from regarding the fibits indistinguishable.
Likewise in our case the twisted tensor product structure
introduces a new type of correlation characteristic merely
of fibit systems. This correlation manifests itself in the
constraint of choosing amplitudes in the nontrivial cases in
the form: ψα ¼ q2

n−α−1pα.
From the paragraph following Eq. (93) we know that the

space of separable n-fibit states inside V ⊗ V ⊗ � � � ⊗ V
can be embedded into ∧n ðV ⊕ V ⊕ � � � ⊕ VÞ as the
space of separable n-vectors. Moreover, this embedding
is respecting the SLOCC group action. The space of
separable n-vectors forms the Grassmannian image of
the space of n − 1-subspaces in PGð2n − 1; 2nÞ. In our
special case when we have separable n-vectors of the form
x∧x2∧ ���∧x2

n−1
it turns out that they are embedded into

the Grassmannian image of the set of n − 1-subspaces of
PGð2n − 1; 2Þ. This image is precisely our bulk. This
clarifies the meaning of our second equality sign
in Eq. (108).

Let us now consider the symplectic form of Eq. (100)
on V ⊗ V ⊗ � � � ⊗ V. This induces a corresponding sym-
plectic form on ∧n ðV ⊕ V ⊕ � � � ⊕ VÞ which is a gen-
eralization of the (82) symplectic form we have used in
Eq. (94). Using this form let us demonstrate that the 2n þ 1
points are pairwise noncollinear hence they form a partial
ovoid. Write ψ ¼ ψαεα and φ ¼ φβεβ. Then using (100) we
have

hψ ;φin ¼
X2n−1−1
α¼0

ðψαφ2n−1−α þ φαψ2n−1−αÞ: ð114Þ

Now we fix two numbers k > k0 taken from the set
f0; 1; 2;…; 2n − 2g. Define ξ≡ ωk−k0 and use ω2n−1 ¼ 1
to calculate

hψ ½k�;ψ ½k0�in ¼
X2n−1
α¼0

ωkαω2n−1−k0α¼
X2n−1
α¼0

ξα¼ 1þξþ�� �þ ξ2
n−1

¼ ξ2
n −1

ξ−1
¼ 1: ð115Þ

Since this quantity for k ≠ k0 is not zero, then the points
represented by the n-fibit states ψ ½k� and ψ ½k0� are not
collinear in the bulk. Moreover, we have

hψ ½2n�;ψ ½2n−1�in ¼hψ ½2n�;ψ ½k�in ¼hψ ½2n−1�;ψ ½k�in ¼ 1 ð116Þ
then their bulk representatives are also noncollinear. Since
the bound of Refs. [48,74] is also attained then the 2n þ 1
points corresponding to our codewords are forming a
complete partial ovoid.
Let us also demonstrate that our codewords are indeed

lying on the hyperbolic quadric defined as the zero locus of
Qn. The explicit form of the quadric related to the
symplectic form as in Eq. (11) is given by the formula

QnðψÞ ¼
X2n−1−1
α¼0

ψαψ2n−1−α: ð117Þ

Clearly for the states of Eq. (112) we haveQðψÞ ¼ 0 hence
the corresponding points are lying on the quadric.
Moreover, the states ψ ½k� are also lying on the quadric
since ωαkωð2n−1−αÞk ¼ 1 and we have an even number of
terms in the sum. Then we also have Qnðψ ½k�Þ ¼ 0 for
all k ¼ 0; 1;…2n − 2.
Let us finally have a look at Fig. 9. It summarizes the

twisted tensor product structure associated with a collection
of specially correlated n-fibit separable states for n ¼ 3.
Consider a particular fibit x encoding a message. Then the
state ψ¼x⊗x2⊗ ���⊗x2

n−1
is of that specially correlated

kind. Alternatively one can consider Pψ¼x∧x2∧���∧x2
n−1

which represents a single point in the bulk: a codeword. As
x is running through all the points in PGð1; 2nÞ we are
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exploring the 2n þ 1 points of the outer circle of Figure 9.
The blow up of these points gives the message words of the
boundary.When running through these points then-fibit state
ψ changes accordingly. Then Pψ is running through 2n þ 1

of our bulk points representing codewords, i.e., through the
points of thevarietyV2;n inside the bulk.However, one cannot
associate any of these bulk points to a point of the onionlike
structure of Fig. 9 due to the correlated nature ofPψ . In order
to have a pictorial representation of the situation the best we
can do is to distribute these points along a radial direction. In
this picture proceeding deeper in this direction is associated
with taking higher and higher powers21 of the Frobenius
automorphism ϕ.
On the other hand, proceeding along cyclically on the

boundary circle PðVÞ ¼ PGð1; 2nÞ amounts to applying
the transformation R of order 2n þ 1

R¼L2n−1¼
�

1 1

b−1 b−1þ1

�
; L¼

�
1 b

1 0

�
ð118Þ

to a fibit x of V. This transformation takes circles to
circles in V centered at the origin. It is based on the
existence of a primitive polynomial for GFð2nÞ of the form
z2 þ zþ b ¼ 0. Such a transformation [39] defines circles
in V of the form q2 þ qpþ bp2 ¼ c. Notice that for λ ≠ 0
the transformation ðq; pÞ ↦ ðq0; p0Þ ¼ λðq; pÞ produces a
line through the origin, hence a point in PGð1; 2nÞ. For the
points on this ray the equation of the circle for the primed
coordinates is of the same form except for the radius is
scaled as c ↦ λ2c. This shows that one can partition the
nonzero elements of V into 2n − 1 circles centered in
the origin. Each of these circles projects to the boundary
circle PðVÞ. For the n ¼ 3 case shown in Fig. 9 we have
the matrix

R ¼
�

1 1

ω6 ω4

�
: ð119Þ

In this case using Table IV of Appendix D one can check
that the choice b ¼ ω gives rise to the cyclic permutation of
the points in the outer circle in the form (162783459).
Moreover, the reader can identify the precise form of the
partitioning of the 63 observables to seven circles with their
radii corresponding to the seven nonzero values of c. These
results give some support for calling the blow up of
PGð1; 2nÞ as some sort of boundary of our bulk.

G. Error correction for n ≥ 3

In our error correction scheme we have a set of messages
S ¼ fM1;…;M2nþ1g which is a set of totally isotropic
n − 1 subspaces forming a partition of the boundary. S is

encoding a collection of maximal sets of mutually com-
muting n-qubit observables, alternatively a set of states
taken from a particular MUB. See for example Eqs. (D4)–
(D9) of Appendix D. The Grassmannian image of this
collection of messages is a set O ¼ fC1;…; C2nþ1g of
codewords which is a set of points in the real part of our
bulk. O is encoding a collection of 2n−1-qubit observables
defined up to sign. For an example of such observables see
the bold faced parts of Eqs. (D13)–(D15) of Appendix D.
The set of codewordsO forms an algebraic variety in the

bulk. The code variety is given in terms of Eq. (108) as the
complete intersection of the bulk with a projective space
Δ ¼ PGð2n − 1; 2Þ. Hence an algebraic characterization of
Δ fixes our set of codewords. A characterization of this
kind is encapsulated in Eqs. (111)–(113), where the 2n

coordinates of our 2n þ 1 codewords are given in terms of
the amplitudes of a separable but correlated n-fibit state.
Let us now generalize the results of Sec. III. E. By error

correction we mean the following process. Suppose that we
are intending to send a messageM, but instead a corrupted
one E is received which is a subspace such that
dimðEÞ ≤ n − 1. We suppose that this corrupted subspace
satisfies dðM; EÞ < n where for the definition of our
metric see Eq. (12). Let ΩðEÞ, with elements denoted by
χ, be the space of subspaces of dimension n − 1 with
nonzero intersection with E, i.e., dimðχ ∩ EÞ ≥ 0. ΩðEÞ is
called a Schubert variety [4]. It is known [4] that its
Grassmannian image is given by a linear section of the bulk
with a projective subspace Σ. Then by calculating ð2nn Þ − 2n

linear equations with coefficients taken from the vectors
spanning E we calculate Σ ∩ Δ. Only one of the vectors
contained in Σ ∩ Δwill be separable, i.e., an element of our
bulk. This will be our codeword C. The corresponding
message word of the boundary then will be M. Since our
message words are located in the middle of the lattice of
subspaces of our boundary this error correction procedure
dualizes nicely. The result of this is that we can use the
same algorithm for recovery also from errors with
dimðEÞ > n − 1 [37].
Let us clarify these abstract results via recapitulating

some features of the n ¼ 2 case. The messageM to be sent
is a projective line with dimension one, corresponding to a
vector subspace of rank two. For point errors we have the
corrupted message E which is projectively a point of
dimension zero, corresponding to a vector subspace of
rank one. Hence we have dimðEÞ ¼ 0 < 1 ¼ n − 1, and
dðM; EÞ ¼ 2þ 1 − 2 · 1 ¼ 1 ≤ n. Now ΩðEÞ consists of
all those lines which go through the point E. As we know
there are seven such lines with their Grassmannian images
as seven points in the bulk forming an α-plane. Hence one
of the α-planes on the right-hand side of Fig. 5 is the
Grassmannian image of the Schubert variety ΩðEÞ.
Physically it is the finite geometric analogue of a com-
plexified light ray. Notice that the set of lines going through
the point E located in the boundary is represented by the set

21Recall that an alternative presentation for ψ is Pψ ¼ xϕ
0 ∧

xϕ
1 ∧ � � � ∧ xϕ

n−1
.
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of bulk points PðE;χÞ, where χ with changing coordinates is
representing the other point of the line. PðE;χÞ with the
coordinates of χ running, span the linear subspace Σ.
Notice that the n ¼ 2 case is very special since Σ is
contained in the bulk, which is not true for n arbitrary.
Let us now recall the first two expressions on the left-hand
side of Eq. (26). These give rise to two constraints PðE;χÞ

should satisfy. These give rise to the ð4
2
Þ − 22 linear

equations for finding the unique point C in Σ ∩ Δ. As
we demonstrated in Sec. III. E the explicit solution of these
equations in the form of Eq. (29) then determines M
completing the error correction process.
Notice that had we chosen in the boundary merely the

three isotropic lines going through the point E (see Fig. 4),
we would have obtained three points in the bulk with
lightlike separation, i.e., an ordinary light ray. Generally we
could have defined Ω0ðEÞ as the space of totally isotropic
subspaces of dimension n − 1 with nonzero intersection
with E as a generalized Schubert variety. Hence for point
errors, in the n ¼ 2 case, the Grassmannian image of this
object is a light ray. In Sec. III. E for the n ¼ 2 case we have
demonstrated that the error correction process works no
matter whether it is based on lines or isotropic lines, i.e.,
whether for the representation of errors we use ΩðEÞ or
Ω0ðEÞ. According to the results of Ref. [37] the error
correcting process based on the use of the image of ΩðEÞ
generalizes for n > 2. We conjecture that it also works in
the case of errors represented by Ω0ðEÞ. An argument in
favor of our conjecture is supported by the fact that the
explicit error correction algorithms of Ref. [37] are
designed to decode any subspace code whose Plücker
coordinates give an algebraic variety of the Plücker
embedding of the Grassmannian. Since according to
Eq. (83) the Lagrangian Grassmannian of totally isotropic
n − 1 planes is mapped to the real part of the bulk which is
an algebraic variety [63], this generalization should work.
However, further elaboration on this point is still needed.
It would be interesting to understand better the causal

structure of points in the bulk representing all types of
errors in the boundary. For this one should explore the
properties of Grassmannian images of the Schubert vari-
eties Ω0ðEÞ for all types of errors E. Due to projective
duality it would be enough to consider merely errors with
dimðEÞ ≤ n − 1. In order to highlight the new structures
present in the general case in the following we elaborate on
the n ¼ 3 case.
For n ¼ 3 we have partitions of the boundary by totally

isotropic (Lagrangian) planes. The set of such planes is of
cardinality 135. It is also known [75] that we have 960 such
partitions of the boundary. One of such partitions is the one
given by Eqs. (D4)–(D9) with each partition containing 9
message words. The Grassmannian image of the set of
messages comprises the set of codewords. They are points
of the quadric Q which is a hyperbolic one Qþð7; 2Þ. This
object for n ¼ 3 coincides with the real part of the bulk.

Since the number of points of this quadric is 135, one can
map bijectively the set of messages to the set of points of
the real part of the bulk [33]. Now in our case we have two
types of nontrivial errors: point errors and line errors.
Let us first have a point error. At the end of Appendix D

the reader can find a detailed investigation for the point
error E corresponding to the observable YXZ. This point is
featuring the message plane M4. Since Spð6; 2Þ acts
transitively on the set of Lagrange planes this example
can be used to show that for an arbitrary M and its point
error E there are altogether 15 Lagrangian planes to be
considered for ΩðEÞ. Such planes are intersecting in either
the point E, or in a line containing this point. In order to
understand the finite geometric structures associated with
ΩðEÞ one can proceed as follows.
The image of these 15 planes gives 15 points in the real

part of the bulk. All of these points are lightlike separated,
forming the light cone ofM. However, this light cone also
has an interesting substructure. Indeed, it turns out that this
set of 15 points can be given the incidence structure of a
doily. Collinearity for this doily is defined when three
commuting four-qubit observables produce the identity up
to a sign. This situation is the Grassmannian image of the
case when the corresponding boundary planes are inter-
secting in a line.
It is easy to identify why this happens by noticing that the

fifteen planes comprising ΩðEÞ are also forming the inci-
dence structure of a doily. This time incidence is defined
when triples of planes are intersecting in special lines. We
have 15 such triples producing 15 special lines. The special-
ity of such lines is that they have a common point: E.
A special case for the complementary situation occurs
when a set of five planes is intersecting just in the common
error point. In the language of incidence in the doily this case
corresponds to having five disjoint lines forming a partition
(a spread) of the doily. It turns out that the Grassmannian
image of this spread forms an ovoid of the bulk doily.
Hence surprisingly for the n ¼ 3 case we have found at the
level of a single point error of M the same structure as we
have found for the n ¼ 2 case for the full collection of
messages (see Fig. 3). See Appendix D for more details.
Let us then have a line error such that this line is fully

contained in one of the messages say M. For a line error E
of this kind in the boundary we have three isotropic planes
containing it one of them being M itself. The image of
Ω0ðEÞ in the bulk is a line which is just the usual light ray of
C consisting of the three points. When we consider ΩðEÞ
instead, it turns out that its image in the bulk will be a 3-
dimensional subspace in the bulk. This is the analogue of a
complexified light ray containing our ordinary one.22 Then

22Generally, the set of n − 1 dimensional projective subspaces
of PGð2n − 1; 2Þ intersecting in a fixed n − 2 dimensional
projective subspace, corresponds to the points of an n-dimen-
sional projective subspace of the bulk. For a proof see Lemma 6.
of Ref. [37].

PÉTER LÉVAY and FRÉDÉRIC HOLWECK PHYS. REV. D 99, 086015 (2019)

086015-34



unique decoding is clearly possible. However, one can also
have the situation when the error line is intersecting with a
message plane M merely in a point, a situation which can
also happen for point errors. It is easy to see (Appendix D)
that due to this intricacy there is no possibility for a unique
decoding for the case dimðM ∩ EÞ ¼ 0. Indeed, the gen-
eral statement for n odd is [38]: that a unique decoding is
only possible for dimðM ∩ EÞ ≥ ðn − 1Þ=2.
One can try to evade this subtlety by restricting the set of

possible errors on physical grounds to ones that are living
entirely inside a message word. For example in the n ¼ 3
case this would mean that we should only allow such point
and line errors that are lying within a message plane. Since
a message is associated with a complete set of 2n − 1
nontrivial commuting observables, then an error of this
restricted type would encapsulate the notion of transmitting
incomplete subsets of a particular complete set of observ-
ables to the receiver. In this picture the physical represen-
tative of the lack of unique decoding of the previous
paragraph is our inability to reconstruct the complete set of
observables in a unique manner from the data provided by
the transmitted commuting subset. The reason for this is
clear: we also have observables in this set anticommuting
with some elements of the message set. In the example of
Appendix D the transmitted incomplete commuting set is
fYXZ; XIY; ZXXg with each of its three observables is
featuring merely one from the three messages M2;4;5.
Hence the remaining two ones are acting like error
operations transforming the ray of the stabilizer states
jφ2;4;5i to different subspaces of the Hilbert space.
Note however, that having anticommuting error oper-

ators is not tantamount to failure of error correction. Indeed,
in Sec. III. H. we have seen that the effect of dualization of
errors, is to have larger dimensional subspaces than the
message ones. This happens for instance in the n ¼ 3 case
when for a plane-message we have a space-error which is
containing the message. In this case we necessarily have
new observables that are anticommuting with our maximal
set. However, being dual to correctable line errors, these
space errors can also be corrected [37].
Clearly apart form the exploration of the bulk causal

structure of errors there are many more interesting issues
amenable for elaboration. For example: can we find a nice
algebraic generalization of the explicit error correcting
algorithm culminating in the appearance of Eq. (31)? How
to characterize algebraically the space of possible messages
(totally isotropic spreads) of the boundary? For n ¼ 2, 3
these spaces are of cardinality 6 and 960. Although an
explicit construction is given for them in Sec. III. F and in
Ref. [75], but a unified treatment for n > 3 is not known to
us. We must bear in mind that this is a central question,
since according to the basic philosophy we adopted here
and also in AdS/CFT space-time is a collection of error
correcting codes. Hence one should consider not merely
one particular geometric subspace code, but a collection of

such codes. This is an unusual way of looking at error
correction via subspace codes.
Finally, Sec. III. H we initiated a study of error correction

as a topic related to properties of quantum nets. An
interesting project would be the exploration of the physical
meaning and the possible generalizations the ideas culmi-
nating in Eq. (37) imply. Though in our conclusions we
would like to share with the reader some speculations on
such issues, at this point we stop and postpone the
exploration of many interesting pathways for a future work.

V. CONCLUSIONS

A. Summary of results

According to the idea of holography, bulk space-time
structure is encoded into d.o.f. residing in the boundary.
In the AdS/CFT literature it has been suggested that this
encoding is accomplished by the bulk-boundary correspon-
dence functioning as a collection of error correcting codes.
In this paper we investigated a finite geometric toy model
illustrating how this might be realized.
In a minimalist representation (see Fig. 9.) our finite

geometric model of the boundary is the projectivization
of the GHW phase space for n-qubits. Equivalently we
can regard this space as the space of states of a single
fibit, a two component quantity with elements taken
from the field extension GFð2nÞ of GFð2Þ. The space of
states of a fibit is equipped with a symplectic form
inherited from the symplectic structure of the GHW
phase space. Taking n-copies of this space and gluing
them together in a specially correlated fashion creates a
minimalist representation for our bulk. This coarse
grained representation of the bulk is that of a state
space of n-indistinguishable fibits based on the twisted
tensor product structure of Eq. (103).
Doing field reduction however, reveals an intricate

fine-structure of Fig. 9. This blowing up process gen-
erates from the space of states for a fibit, PGð1; 2nÞ, our
boundary which is PGð2n − 1; 2Þ. Under field reduction
the set of points of PGð1; 2nÞ is mapped to a set of
Lagrangian n − 1-subspaces of PGð2n − 1; 2Þ partition-
ing the point set of the boundary. Such a partitioning or
fibration of the boundary is called a spread of n − 1-
subspaces. We regarded this set of n − 1-subspaces of
cardinality 2n þ 1 as a set of message words for a
subspace code, a spread code [38].
The next item in the elaboration of the fine structure

of Fig. 9 is the identification of the bulk and the
correspondence map relating the bulk to the boundary.
In this paper we have chosen as our correspondence map
the (75) Plücker map. The bulk then is simply the image
of the set of n − 1-subspaces of the boundary under this
map. We called the bulk image of the set of message
words of the boundary, codewords. The codewords form
a special set of 2n þ 1 points (a partial ovoid) in the
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bulk. We called this collection of special points as the
code variety with its explicit algebraic description given
by Eq. (108). The code variety has an elegant physical
interpretation in terms of a collection of 2n þ 1 separable
but correlated n-fibit states with explicit form given by
Eqs. (111)–(113).
The n ¼ 2 case of our correspondence is just a finite

geometric analog of the twistor correspondence. In this
case the bulk is the GFð2Þ version of complexified and
compactified Minkowski space-time, the boundary
PGð3; 2Þ playing the role of the twistor space. The fibration
of the boundary with messages here, corresponds to the so-
called twistor fibration of CP3 to complex lines, CP1 s,
Riemann spheres. In the n ≥ 3 cases the boundary
PGð2n − 1; 2Þ provides a finite geometric version of
hypertwistor space. Now the bulk corresponds to the
Brody-Hughston quantum space-time structure23 equipped
with the chronometric form of Eq. (82).
Using the simple map of Eq. (4) one can associate

observables to the points of both the boundary and the
bulk. However, these associations are plagued by sign
ambiguities. We pointed out that these ambiguities are
related to the existence of Mermin squarelike configurations
[46,53–55]. As a result of this, there is no way of having a
unique assignment of observables to the points of our spaces
featuring the correspondence. However, there is a unique
association of observables to their isotropic spreads. In
particular there is a unique association of observables to the
message n − 1-subspaces of our boundary. We have shown
that the possibility of carrying out this unique assignment of
observables is ensured by the existence of a unique rota-
tionally covariant construction of the GHW quantum net
[39]. Physically this process of creating the quantum net is
equivalent to constructing mutually unbiased basis systems
(MUBs) starting from a distinguished basis. This construc-
tion is effected by conjugating the mutually commuting set
of observables related to this basis by a suitable unitary
transformation of order 2n þ 1. As a result, to a particular
collection of message n − 1-subspaces one can associate
a collection of stabilizers, and a collection of (generally
entangled) stabilized states in a unique manner. For an
illustration for n ¼ 3 of such a collection see Eqs. (D4)–
(D9). In the minimalist representation of our bulk the states
assigned to the messages, are also associated to the points
of the concentric circles representing the bulk in Fig. 9.
The precise form of this association is controlled by the
Frobenius automorphism of the field extension.
The error correction process relating the bulk and the

boundary is based on a geometric subspace code [37]. This
term means that unlike in conventional discussions con-
cerning subspace codes [38], in order to facilitate efficient
decoding the Grassmannian image of the codewords is also

considered. In this paper we have made a somewhat
unusual twist to the usual nomenclature of subspace codes.
Indeed in our interpretation the message words belonging
to a spread are residing in the boundary and the codewords
are residing in the bulk.24 This is in accord with the
conception of regarding the bulk as a higher dimensional
code space encoding messages located in the lower dimen-
sional boundary. For example in the n ¼ 2 case the
message words are rank two subspaces of Vð4; 2Þ and
the codewords are rank one subspaces of Vð6; 2Þ. The
reader should compare this with the situation in, e.g., the
classical Hamming code [9] where the message words are
vectors of Vð4; 2Þ and the codewords are vectors of Vð7; 2Þ.
In the language of subspace codes the E errors are

subspaces of the boundary of different dimension with
nontrivial intersection with one of the message subspaces
M1;…;M2nþ1. The aim is to ensure a unique recovery,
meaning to find conditions and an explicit decoding
algorithm for identifying M from the above list for a
given E. In order to complete this task one has to identify
the bulk image of the space of n − 1-subspaces with
nonzero intersection with E. In the case of successful
recovery this image is connected to the light-cone (causal)
structure of a unique codeword M. In the n ¼ 2 case we
have given a detailed analysis of the error structure
corresponding to point errors and plane errors. We studied
the bulk image of different types of errors. These images
indeed turned out to be connected to the light cone (causal)
structure of the codewords representing the messages
subjected to certain errors (see Figs. 5 and 6). For the
n ¼ 3 case we revealed a fine structure of point errors, and
some subtleties obstructing unique error correction. In this
case a unique decoding is only possible for M and E
intersecting at least in a line. The condition for unique
decoding for n odd is [38] dimðM ∩ EÞ ≥ ðn − 1Þ=2.
Based on our detailed study of Secs. III. D–III. E in

Sec. IV. G we sketched the n ≥ 3 error correction process.
We conjectured that a straightforward version of the
decoding algorithm applied to spread codes of Ref. [37]
should be valid for arbitrary n, when adapted to our
situation where the messages are isotropic spreads. In this
case the challenge is to find the n-qubit generalization of
the explicit algebraic decoding formula of Eq. (31) we have
found for n ¼ 2. Notice that this formula of the form
F ¼ JRE, with M ¼ fE;F ; E þ Fg being the recon-
structed message line, is universal in two respects. First,
the codeword structure is hidden inside the structure of the
R recovery matrix for a whole collection of codes. These
are connected to the six possible ovoids of the bulk
representing the six possible isotropic spreads of the
boundary. The set of codewords in all of the six possible
cases and their corresponding R matrices are explicitly
given by Eqs. (35)–(36). Second, this formula can be used

23Note that the adjective “quantum” in this context could be
misleading. For the original meaning see Refs. [31,32]. 24In Ref. [38] the codewords are belonging to a spread.
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for recovery from both point and plane errors, i.e., for all
types of errors. Notice also that the quantities likeM, E, F
are boundary and the ones J, R are bulk related.
Interestingly, according to Eq. (35) the data which uniquely
specifies the recovery matrix R is given in terms of
observables forming a six dimensional Clifford algebra.
However, these observables are off the Klein quadric, hence
they are not related to any of the boundary observables in
an explicit way. We mention that according to Sec. IV. F the
codewords for arbitrary n are forming a partial ovoid of
the bulk. This means that the observables corresponding to
the 2n þ 1 partial ovoid points are comprising 2n þ 1
pairwise anticommuting observables. This indicates that
a characterization of our codewords in terms of observables
off the quadric Q̂ showing up at the end of Sec. IV. D, also
forming a Clifford algebra might be possible. A result of
that kind could pave the way for an elegant algebraic
characterization of the decoding algorithm for arbitrary n.
We emphasize that the error correction code featuring

our investigations is a classical subspace code. However,
the existence of the quantum net structure on the boundary
side indicates that some sort of quantum generalization of
our considerations might be feasible. In Sec. III. H. we
already have given few hints on this possibility. The key
observation in this respect is encapsulated in Eq. (37).
Namely, if we restrict the possibility of errors to subspace
errors that are contained entirely inside a particularmessage,
then one can consider a flag which is a nested sequence of
subspaces with decreasing dimension. For a fixed quantum
net structure when choosing a fixed message plane one can
consider its associated stabilizer state. Then for a flag for a
sequence of errors what we would get is set of subspaces
with increasing dimension of the n-qubit Hilbert space, i.e.,
a nested set of stabilizer subspaces, containing the stabilizer
state. It would be interesting to study the Grassmannian
image of the associated bulk quantum net. However, herewe
are bogged down due to our sign ambiguities. Indeed, the
Plücker map by itself is not telling us anything on how to
associate stabilizer states to spreads in the bulk given a
quantum net in the boundary. In any case Eq. (37) indicates
that a “quantum version of the Plücker” map seem to be
reversing the order of the embedding of the corresponding
subspaces in the bulk Hilbert space. Hence in the boundary
we are having a sequence Hilbert subspaces of increasing
and in the bulk of decreasing dimension. Further exploration
on this point would be desirable.
Finally we would like to add some clarifying comments

on the physical meaning of our error correction process.
One can imagine the sender (receiver) of the message
residing in the boundary (bulk) respectively. By studying
the finite geometry of the bulk the receiver is supposed to
be capable of extracting information on boundary mes-
sages. The receiver can perform this task by having access
to a special subset of space-time points (codewords). This
subset corresponds to the boundary messages through a
precise correspondence (encoding). This correspondence is

supposed to be fixed and agreed in advance by the sender
and the receiver. In the boundary a message is a complete
set of mutually commuting observables. This message is
corrupted if to the sender (due to some yet unspecified
boundary error dynamics) merely an incomplete subset of
these observables is available. The corrupted message for
the receiver appears as a “light ray.” In the n ¼ 2 case it is a
finite geometric version of a usual light ray, however in the
n ≥ 3 cases this light ray has a substructure reflecting the
hierarchy of possible boundary errors. As a next step the
receiver refers this light ray to her preassigned subset of
space-time points. Operationally this simply means check-
ing which space-time event from this subset is incident with
the received light ray. In the n ¼ 2 case this amounts to
checking which is the point the light ray is “going through”.
Due to the partial ovoid property of her subset of space-
time points, by using the fixed and agreed bulk/boundary
correspondence, recovery of the boundary message is
effected in a unique manner.
Since the approach proposed in our paper is a purely

kinematical one, this protocol of error correction is not
complete. In order to remedy this shortcoming a boundary
(error) dynamics should be specified. Since the full power of
the AdS/CFT correspondence is that it relates strong and
weak coupling regimes, such a dynamical upgrading of our
toymodel is of utmost importance.Wewish to report on such
developments in a forthcoming work.

B. Comments and speculations

The final point we would like to briefly discuss is
concerning the issue of entanglement. Indeed, in the
AdS/CFT dictionary for bulk reconstruction, boundary
entanglement serves as a glue. In our finite geometric
considerations boundary entanglement seems to be not
playing any role at all. Nevertheless, boundary entangle-
ment is hidden in the structure of the stabilizer states that
we associate to the fibration of the boundary. In fact such
multipartite correlations in mutually unbiased bases have
already been investigated [76]. The point where boundary
entanglement should connect to error correction rests on the
fact that our boundary can be regarded as a collection of
messages, giving rise to a collection of bulk codewords.
In order to see this let us associate states to the set of

messages in the following manner. Choose the system of
MUBs based on the state j00…0i. This state is belonging to
the set of eigenstates of the complete set of n-qubit
observables containing only combinations of the Z and I
Pauli operators. Then the rotationally covariant generation
of MUBs is effected with the help of our unitary operator of
order 2n þ 1 generalizing the one of the n ¼ 2 case we
presented in Eq. (62). Acting with different powers of this
operator on the initially fully separable state j00…0i we
obtain the 2n þ 1 states of our quantum net. Clearly the
entanglement properties of such 2n þ 1 states are hidden in
the explicit structure of the different powers of this operator.
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This unitary can be regarded as some sort of discretized time
evolution operator relating the different slices of the
boundary. At the level of Fig. 9 these time evolution
steps are the ones which cyclically rotate the states
associated to the 2n þ 1 points of the boundary circle.
Now in this picture changing the sets of messages
amounts to switching from one spread to another one.
This can be effected by repeating our construction based
on some other state different from j00…0i. According to
the illustrative calculations of Sec. III. I these changes in
the spreads are accompanied by changes in the stabilizer
states with the assistance of unitaries acting as quantum
gates. These are in turn again changing the entanglement
types, of the states assigned to the points of the
boundary circle of Fig. 9. Unfortunately it is not at
all obvious how this boundary entanglement of the
MUBs should manifest itself in the bulk codewords.
In order to have some progress on this issue one should
be able to define a quantum net, similar to the GHW
one, in a consistent manner for the full bulk.
In our approach the issue of what do we mean by

subsystems is also unclear. Since the boundary is associated
with an n-qubit system then the possible subsystems should
arise naturally from taking different partitions of the set
f1; 2;…; ng of qubits. This is the natural approach of the
previous paragraph, and also the one followed by Ref. [76].
In this spirit one can define measures of multipartite
quantum correlations based on classical correlations in
our MUBs. However, according to the spirit of AdS/CFTan
approach where subsystems correspond to subregions of
the boundary would be more desirable. In order to have an
approach of this kind one can regard our boundary as the
spacePðVÞ showing up in Eq. (101). One can then consider
as subregions of the boundary certain subsets of the 2n þ 1
points of the outer circle of Fig. 9. Let us suppose that we
have already fixed the quantum net structure. This means
that we have a fixed set of messages, i.e., a fixed set of
MUBs assigned to these points. Denote the basis vectors of

these MUBs as jφðjÞ
a i with a ¼ 1; 2;…; 2n þ 1 and

j ¼ 1; 2…; 2n. Then for an arbitrary n-qubit state ψ one

can calculate the probabilities paj ¼ jhψ jφðjÞ
a ij2. Consider

now the Rényi entropies SðaÞ≡−log2ð
P

jp
2
ajÞ quantifying

our inability to predict the outcome of the ath measure-
ment. For a collection of points forming a subregion I
where I ⊂ f1; 2;…; 2n þ 1g one can consider hSiI, i.e., the
average of the SðaÞ for a ∈ I. Obviously one can also regard
I ⊂ PðVÞ. It is known that for I covering the whole
boundary we have [77]

hSiPðVÞ ¼
1

2n þ 1

X
a

SðaÞ ≥ log2ð2n þ 1Þ − 1: ð120Þ

Recall now that for rotationally invariant states [39] the SðaÞ
are equal for all a. As a result of this such states minimize

the average Rényi entropy, hence in this sense they are of
minimum uncertainty. In this sense such states are like
coherent states approximating classical ones. Such states
are the eigenstates of the unitary operator [39] of order
2n þ 1 generating cyclic evolution on the boundary.
We note that relations similar to (120) have also been

shown featuring the Shannon entropy [78]. These results
show that for a given quantum state one can associate
entropic quantities to subregions of PðVÞ. We emphasize
that the inequality of (120) gives an example of an entropic
uncertainty relation. It is known that such relations provide
an alternative means for quantifying multipartite correla-
tions of ψ . Indeed, quantum correlated states exhibit strong
classical correlations in the measurement outcomes of local
complementary observables. This is the basic idea how
MUBs can be used to define new measures of quantum
entanglement [76]. This also shows that the two notions
based on entanglement between particles (qubits) and
entanglement between subregions (modes) are inter-
linked in a nontrivial manner. The situation we are
given here is reminiscent of the one when in holography
apart from the usual spacial splittings of the boundary
region into two regions one is also forced to consider
splittings of more general kind. This is the situation one
is faced with in field theories with holographic duals
having (internal) gauge symmetries. Note that the sym-
metries that show up for systems of n indistinguishable
systems can be regarded of that kind [79]. Recall in this
respect the n-fold twisted tensor product structure we
have found in Sec. IV. F. In holography these subtleties
boil down to the presence of correlations of unusual kind
culminating in the phenomenon called entwinement [80],
which can be regarded as some sort of generalization of
the traditional notion of entanglement. In order to
embark in an exploration of the viability of this analogy
further insight is needed.
In Ads/CFT local symmetries in the bulk are mapped to

the global symmetries of the boundary. In our toy model the
GHW phase space related to the boundary has a discrete
global SLð2; 2nÞ group action. On the other hand according
to Sec. IV. E we can regard the bulk as an object arising from
an n-fold tensor product structure. If we restrict attention to a
class of observables acting on a particular fixed tensor
product factor, thenwe can regard them as local observables.
Then the twisted tensor product action SLð2; 2nÞ of
Eq. (103) seems to give an example of a discrete gauge
symmetry operating differently on each tensor product slot.
Then the factorization of the n-fold tensor product structure
via a twisted group action reminds us of orbifoldization used
in CFT. In order to proceed a deeper understanding of these
issues would be desirable for us.
Moreover, in AdS/CFT bulk operators source operators

on the boundary. In this spirit in the n ¼ 2 case three-qubit
operators (bulk) reduce to two-qubit ones (boundary).
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Indeed, Fig. 3 shows that the real part of the bulk is just the
boundary, provided we omit the middle qubit operators.
This reduction process is effected by noticing that in the
middle position the identity “I” or “Y” is standing depend-
ing on whether the remaining observables are symmetric or
antisymmetric under transposition. In the n ¼ 3 case the
real part of the bulk is consisting of 135 observables and 63
of them can naturally be identified with the boundary ones
by a similar reduction process by having this I or Y
structure in one of the four slots corresponding to
the tensor product factors for the four qubits. Such
construction is described in Eq. (6.30) of an earlier paper
of one of us [33]. Can this observation reveal a universal
pattern for reduction from the restricted set of symmetric
observables of N ¼ 2n−1 qubits (real part of the bulk), to
arbitrary observables for n-qubits (boundary)? This pattern
seems to be not easy to reveal. The reason for this is the fact
that the gap between the numbers 22n − 1 (the number of
nontrivial n-qubit observables of the boundary), andQ

n
j¼1ð1þ 2jÞ [the number of real points of the bulk see

Eq. (83)] is increasing. Hence this reduction process via the
I and Y trick has to effect more and more qubits. At the
moment no simple algorithm for this reduction is known
to us.
In this paper we subscribed to the view of regarding our

bulk as some sort of finite geometric version of a space-
time structure. This need not be the case. In the following
paragraphs we comment on the possibility of an alternative
interpretation of the bulk.
Recall that the space-time interpretation was supported

by the occurrence of the chronometric form on the bulk side
of our correspondence. In the very special n ¼ 2 case this
form boiled down to the Minkowski line element. The
representation of correctable errors as the causal structure
of the closest codewords was motivated by having lightlike
or nonlightlike separation for bulk points with respect to
this chronometric form. However, we also pointed out that
the errors have an intricate fine structure manifesting itself
in the fine structure of the light cone.
This fine structure has made its appearance due to the

fact that locally the n × n matrix underlying the chrono-
metric form can have different ranks, see Eq. (82) and
Fig. 8 for illustrations. In fact, Eq. (82) can be regarded as a
basic formula relating a metric structure of the boundary
and the bulk. On the right hand side we have information
coming from intersection properties of n − 1-planesM and
N represented by n × 2n matrices. This is translated to the
information on the special relationship between points
PðMÞ and PðN Þ in the bulk. Hence for the special case
of two n − 1-subspaces the PðMÞ ∧ PðN Þ ¼ 0 constraint
means that the corresponding subspaces have nontrivial
intersection. The properties of the intersection are classified
by the rank structure of a 2n × 2n matrix coming from the
two n × 2n ones [38]. For arbitrary subspaces on the

boundary side this information is to be combined with
the one provided by the (12) metric dðM;N Þ.
Now it is known that this metric represents the distance

of a geodesic [81] between M and N in the undirected
Hasse graph representing the lattice of subspaces of
Vð2n; 2Þ partially ordered by inclusion. This notion means
that M ≼ N if and only if M is a subspace of N . In this
graph the vertices correspond to the elements of our
boundary PGð2n − 1; 2Þ and an edge joins a subspace
M with a subspace N if and only if j dimðMÞ −
dimðN Þj ¼ 1 and either M ⊂ N or N ⊂ M. Clearly this
structure is mapped into a dual metric structure in the bulk
expressed in terms ofPðMÞ andPðN Þ. On the boundary side
we have basically a metric structure describing which
subspaces contain which other subspaces related to geo-
desics with respect to the metric of Eq. (12). Hence how the
PðMÞ is related to the one PðN Þ causally, translates to how
the boundary subspaces are organised with respect to one
another.
This observation resonates with the one of Ref. [20]

observed in the context of integral geometry and
AdS3=CFT2. In their investigation the authors introduce
the concept of kinematic space which acts as an interme-
diary translator between the languages of the boundary and
the bulk. The kinematic space organizes the data about
subsets of the Hilbert space associated with the boundary
quantum field theory. At the classical level this data of
Hilbert space subsets is related to which interval in the
boundary contains which other intervals. In this approach
the points in the kinematic space are associated with
intervals in the boundary. Since the intervals are having
a partial ordering, this renders the kinematic space partially
ordered too. In some sense the causal structure of kinematic
space encodes the containment relation for boundary
intervals. In the special case of when considering the static
slice of AdS3 the kinematic space is a de Sitter space [20].
Notice now that our finite geometric setting resonates

with these findings. Using this observation one also has a
possibility of interpreting the image of the boundary under
the Plücker map as some sort of finite geometric version of
kinematic space. Amusingly according to Eq. (108) the
code variety is obtained as a slice of this version of
kinematic space precisely in the same way as de Sitter
space is obtained in twistor theory.25 Of course adopting
this interpretation the question left to be answered is what
kind of a space should then play the role of space-time in
our finite geometric toy model?
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APPENDIX A: DETAILS OF THE KLEIN
CORRESPONDENCE

In PGð3; 2Þ we have 15 points, 35 lines, and 15 planes.
Since in our setting the underlying vector space Vð4; 2Þ of
PGð3; 2Þ is equipped with a symplectic form, the 35 lines
can be split into 15 isotropic and 20 nonisotropic ones. In
the following lists one can easily check that through a
particular point there are 7 lines, 3 of them are isotropic and
4 are nonisotropic. Dually a particular plane consisting of
7 points and 7 lines, is containing 3 isotropic and 4
nonisotropic lines.
The 15 isotropic lines taken together with the 15 points

of PGð3; 2Þ form a point-line incidence structure of a

generalized quadrangle GQð2; 2Þ, the doily. The structure
of the doily with its isotropic lines and a sketch of the
structure of nonisotropic ones, in two-qubit observable
labeling, can be seen in Fig. 1.
The Klein correspondence relates the geometric

objects of PGð3; 2Þ and certain geometric objects of a
hyperbolic (Klein) quadric Qþð5; 2Þ in PGð5; 2Þ. For the
definition of a hyperbolic quadric recall the form of
Eq. (10). There are 35 points and 30 planes lying
entirely in the Klein quadric. It turns out that the planes
can be partitioned into two classes, with cardinalities
15-15 each. One class of planes is called α-planes the
other β-planes.
Now, the objects and their cardinalities featuring the

Klein correspondence are as follows (see Fig. 2):

15 points ↔ 15 α-planes

35 lines ↔ 35 points

15 planes ↔ 15 β-planes:

In terms of 2 and 3-qubit Pauli operators the explicit form
of the correspondence for the 20 nonisotropic lines is

IX; IY; IZ ↔ IXI; XX; XY; IZ ↔ IXX; ZZ; ZY; IX ↔ IXZ;

XZ; XY; IX ↔ XXI; XX; XZ; IY ↔ XXX; YY; YZ; IX ↔ XXZ;

ZX; ZY; IZ ↔ ZXI; YY; YX; IZ ↔ ZXX; ZZ; ZX; IY ↔ ZXZ;

XI; YI; ZI ↔ IZI; ZZ; YZ; XI ↔ IZX; XX; YX; ZI ↔ IZZ;

ZX; YX; XI ↔ XZI; YY; ZY; XI ↔ XZX; XX; ZX; YI ↔ XZZ;

XZ; YZ; ZI ↔ ZZI; ZZ; XZ; YI ↔ ZZX; YY; XY; ZI ↔ ZZZ;

YZ; YX; IY ↔ YXY; ZY; XY; YI ↔ YZY:

For the 15 isotropic lines we have

IY;XY;XI ↔ XIX; IY;YI;YY ↔ YIY; IY;ZY;ZI ↔ ZIZ;

XI; IZ;XZ ↔ IIX; XI; IX;XX ↔ XII; ZI; IZ;ZZ ↔ ZII;

ZX;ZI; IX ↔ IIZ; YY;ZZ;XX ↔ IYY; YY;XZ;ZX ↔ YYI;

YX;YI; IX ↔ XIZ; YI; IZ;YZ ↔ ZIX; ZY;XX;YZ ↔ XYY;

XZ;YX;ZY ↔ YYX; XY;YX;ZZ ↔ ZYY; XY;ZX;YZ ↔ YYZ:

In PGð3; 2Þ we have 7 lines through each point and 7 lines contained in each plane. (Lines through a point, and lines
on a plane.) Under the Klein correspondence the 7 lines of the former type are mapped to 7 points of the Klein quadric.
These points are forming an α-plane. The lines of the latter type are mapped to 7 points of the Klein quadric
comprising the β-planes. In terms of 2 and 3-qubit Pauli operators, this observation gives rise to the explicit
correspondence
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XX ↔ IZZ; XZZ; IXX;XXX; IYY;XYY;XII

YY ↔ XXZ; XZX; ZXX; ZZZ; IYY;YYI;YIY

ZZ ↔ ZXZ; ZZX; IZX; IXZ; IYY;ZYY;ZII

IX ↔ XXZ; IXZ; XXI; IXI; IIZ;XIZ;XII

XI ↔ XZX; IZX; IZI; XZI;XII;XIX; IIX

IZ ↔ IXX; ZXX; ZXI; IXI;ZIX;ZII; IIX

ZI ↔ IZZ; ZZZ; ZZI; IZI;ZIZ; IIZ;ZII

IY ↔ XXX; ZXZ; YXY; IXI;YIY;ZIZ;XIX

YI ↔ XZZ; ZZX; YZY; IZI;XIZ;YIY;ZIX

XZ ↔ XXX; ZZX; XXI; ZZI;YYX;YYI; IIX

ZX ↔ XZZ; ZXZ;XZI; ZXI;YYI; IIZ;YYZ

XY ↔ IXX; ZZZ; YZY; XXI;ZYY;XIX;YYZ

YX ↔ IZZ; ZXX; XZI; YXY;XIZ;YYX;ZYY

ZY ↔ XZX; IXZ; ZXI; YZY;XYY;YYX;ZIZ

YZ ↔ IZX; XXZ; ZZI; YXY;XYY;ZIX;YYZ

where the boldface triples represent isotropic lines.
The explicit form of the dual correspondence relating the 15 planes with the β planes is

ZZ; XX; YY; XY; YX; ZI; IZ ↔ IXX; ZXX; IZZ; ZZZ; IYY;ZYY;ZII

YY; XX; ZZ; IY; YI; ZX; XZ ↔ ZZX; ZXZ; XZZ; XXX; IYY;YYI;YIY

XX; YY; ZZ; IX; XI; ZY; YZ ↔ XZX; XXZ; IXZ; IZX; IYY;XYY;XII

IZZ; ZI; ZZ; XI; YI; XZ; YZ ↔ ZZX; IZX; ZZI; IZI; IIX;ZIX;ZII

ZI; IZ; ZZ; IX; IY; ZX; ZY ↔ ZXZ; IXZ; IXI; ZXI;ZII; ZIZ; IIZ

IX; XI; XX; ZI; YI; ZX; YX ↔ IZZ; XZZ; XZI; IXI;XIZ;XII; IIZ

XI; IX; XX; IZ; IY; XZ; XY ↔ IXX;XXX;XXI; IXI;XIX; IIX;XII

IY; YI; YY; XI; ZI; XY; ZY ↔ ZZZ; XZX; YZY; IZI;YIY;XIX;ZIZ

YI; IY; YY; IX; IZ; YX; YZ ↔ ZXX; XXZ; YXY; IXI;ZIX;YIY;XIZ

ZX; XZ; YY; XY; YZ; IX; ZI ↔ ZZZ; XXZ; ZZI; XXI;YYZ; YYI; IIZ

XZ; ZX; YY; YX; ZY; XI; IZ ↔ ZXX; XZX; ZXI; XZI;YYI; IIX;YYX

ZY; YX; XX; XZ; YZ; IY; ZI ↔ IZZ; XXX; YXY; ZZI;XYY;ZIZ;YYX

YZ; ZY; XX; ZX; ZY; YI; IZ ↔ IXX;XZZ; ZXI; YZY;ZIX;YYZ;XYY

XY; YX; ZZ; ZX; YZ; XI; IY ↔ ZXZ; IZX; XZI; YXY;ZYY;YYZ;XIX

YX; XY; ZZ; XZ; ZY; IX; YI ↔ IXZ; ZZX; XXI; YZY;ZYY;XIZ;YYX:

Notice that in each row of this correspondence the
boldfaced observables on the left-hand side are commuting
with the remaining six accompanying ones. On the right the
observables are mutually commuting. This illustrates the

fact that the planes in the left are isotropic, and in the right
are totally isotropic.
In our 3-qubit Pauli operator labeling of the 35 points of

the Klein quadric, the middle qubit plays a special role.
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Indeed, there are the 15 bold faced 3-qubit operators which
are featuring either I or Y in the middle position, while the
remaining 20 ones are featuringX orZ. According to Eqs. (2)
and (14) this can be traced back to our considerations about
isotropic lines resulting in the constraint of Eq. (20). The 15
bold-faced 3-qubit Pauli operators are special. They form a
new copy of a doily. This time it is living inside the Klein
quadric (see Fig. 3). The 15 triples showing up as lines inside
both α and β-planes (see Fig. 4) are giving rise to a new set of
15 isotropic lines of this new doily. One can easily character-
ize this 35 ¼ 15þ 20 split in an algebraic manner.
For this notice that the 15 observables from this split are

commuting, and the 20 ones are anticommuting with the
special one Γ≡ IYI coming from the vector w with
components (010010). Thevectorwgenerates a transvection
Tw acting on an arbitrary v ∈ Vð4; 2Þ as v ↦ vþ hv; wiw.
One can lift this transvection to a unitary action by con-
jugation on our observables as follows [41]

Ov↦UðTwÞOvU†ðTwÞ; UðTwÞ¼I⊗
1ffiffiffi
2

p ðIþiYÞ⊗I:

ðA1Þ
This unitary operator is leaving invariant the 15 bold face
observables and changing the X in the middle slot (10
observables) to aZ (10 observables) andZ to−X. Hence the
squared action of this operation is minus the identity. Then
UðTwÞ is acting like a conjugation by leaving invariant the
15 doily observables and exchanging a 10 element set of
points with its conjugate 10 element set. Hence this copy of
the doily living inside the Klein quadric can be regarded as a
finite geometric analogue of the real part of the complexified
and compactified Minkowski space-time familiar from
twistor theory [5].

APPENDIX B: LINKING TRANSVECTIONS
TO QUANTUM GATES

As was explained in Sec. II the symplectic group
Spð2n; 2Þ is generated by transvections. These transvec-
tions can be lifted to unitary operators acting on the
observables of the n-qubit Hilbert space via conjugation.
To a vector v ∈ Vð2n; 2Þ one can associate a transvection
Tv, and an observable Ov up to sign. Furthermore,
according to the prescription of Ref. [41] to a transvection
one can associate an unitary UðTvÞ≡ UðOvÞ with the
explicit form26

UðOvÞ≡η
1ffiffiffi
2

p ð1þ iOvÞ; η¼ 1ffiffiffi
2

p ð1þ iÞ¼ eiπ=4: ðB1Þ

The action of this unitary via conjugation is as follows [41]

UðOvÞO0
wUðOvÞ† ¼

�
O0

w; if ½Ov;O0
w� ¼ 0;

iOvO0
w; if fOv;O0

wg ¼ 0;
ðB2Þ

where in the second case f·; ·g is the anticommutator.
Notice that in this definition based on observables there
is a sign ambiguity since the mapping v ↦ Ov is merely up
to sign. However, for a fixed spread of totally isotropic
n − 1-planes one can always find a set of signs such that
the collection of such n − 1-planes is positive. Fixing the
signs in this way means that the corresponding set of
2n − 1 commuting observables forms a stabilizer for a
unique state.
In the special case of n ¼ 2we have 16 observables up to

sign, and Spð4; 2Þ ≃ S6, where S6 is the symmetric group
on six letters. Now it is well-known that Wð3; 2Þ (doily)
can be labeled by duads. The isotropic lines in this picture
are formed by triples of duads like (12, 34, 56). For a
labeling of the doily in terms of duads we use the con-
ventions of Fig. 1 of Ref. [46]. Let us now adopt the sign
convention of Table I, meaning we use the sign convention
of our canonical spread of lines. Hence all of the observables
should be takenwith a positive sign except for the ones−XZ
and−ZX takenwith a negative sign. Then all of the five lines
of our spread are positive ones. Now we explicitly have

IX ↔ 14; XI ↔ 23; XX ↔ 56;

IZ ↔ 16; ZI ↔ 35; ZZ ↔ 24 ðB3Þ

IY ↔ 46; YI ↔ 25; YY ↔ 13;

XY ↔ 15; YZ ↔ 34; −ZX ↔ 26 ðB4Þ

YX ↔ 36; ZY ↔ 12; − XZ ↔ 45: ðB5Þ

Now it is easy to check that transvectionTv corresponding to
the observableOv generates a transposition of the form ðjkÞ.
For example Tð1101Þ ¼ TZY ¼ Tð12Þ. In this language the
isomorphism Spð4; 2Þ ≃ S6 translates to the fact that any
permutation can be represented as a sequence of trans-
positions. For more details on this point see Ref. [41].
Now according to our (B3)–(B5) dictionary and the

(B1) prescription one can prove that the permutations
(14)(26)(35) and (16)(23)(45) can be lifted to the unitaries

UðZIÞUðIXÞUð−ZXÞ ¼ −C12;

UðIZÞUðXIÞUð−XZÞ ¼ −C21; ðB6Þ

i.e., up to a sign they are the controlled CNOT gates.
A similar calculation for the permutation (13)(24)(56)
shows that

B≡ UðXXÞUðYYÞUðZZÞ ¼ −S12; ðB7Þ
26We have slightly changed the definition of Ref. [41] which

employs the phase factor e−iπ=4. For convenience we rather use
the phase factor eiπ=4.
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which up to a sign is the SWAP gate. Hence the unitary
operator D−1 ¼ C21C12 ¼ C12S12 of Eq. (40) cyclically
permuting the entries of the messagewordsMk, k ¼ 0, 1, 2
is arising from the lifts of a sequence of transvections
based on the permutation: ð13Þð24Þð56Þð14Þð26Þð35Þ ¼
ð125Þð364Þ. From this form it is easy to find the explicit
element of Spð4; 2Þ corresponding to the inverse of this
permutation (152)(346). It is

D≡

0
BBBB@

1 1 0 0

1 0 0 0

0 0 0 1

0 0 1 1

1
CCCCA∈ Spð4;2Þ; D ≡ UðDÞ; ðB8Þ

where the second equation shows that the lift ofD is just the
unitary operator D ¼ S12C12. Similarly we have

B≡

0
BBBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCCCA ∈ Spð4; 2Þ; B≡ UðBÞ: ðB9Þ

One can check that the pair ðB;DÞ generates a copy of the
symmetric group on three letters, i.e., we have the presen-
tation

S3 ≡ hB;DjD3 ¼ B2 ¼ ðBDÞ2i ⊂ S6 ≃ Spð4; 2Þ: ðB10Þ

The operators ðB;DÞ ¼ ð−S12; S12C12Þ serving as quantum
gates are forming a representation of this S3.
Having a representation of the symplectic group on V ≡

Vð4; 2Þ on the boundary defines a corresponding action of
the same group on the bulk. Indeed, for n ¼ 2 we have the
Plücker map spanfv; ug ↦ v ∧ u. Hence having an action
v ↦ Mv for v ∈ V and M ∈ Spð4; 2Þ we have a corre-
sponding Spð4; 2Þ action on ∧2 V via calculating Mv ∧
Mu and writing it in terms of the six Plücker coordinates.
For example for M ¼ D−1 under v ∧ u ↦ D−1v ∧ D−1u
we get the map

ðP12; P13; P14; P34; P24; P23Þ
↦ ðP12; P23 þ P24; P23; P34; P23 þ P13; P13

þ P24 þ P23 þ P14Þ: ðB11Þ

Under this map the constraint (20) is left invariant hence
this is a transformation leaving the doily inside the Klein
quadric invariant (see Fig. 3). Moreover, using the con-
vention of Eq. (1) we see that under this transformation the
first qubit is left invariant. The second and third qubits are
transformed by the matrix

M ¼

0
BBBB@

0 0 1 1

0 0 0 1

1 0 0 1

1 1 1 1

1
CCCCA¼

0
BBBB@

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1
CCCCA

0
BBBB@

0 0 1 1

1 1 1 1

1 0 0 1

0 0 0 1

1
CCCCA:

ðB12Þ

The latter two matrices are the ones of the transvections TIY
and TYZ. Lifting these transvections gives

UðMÞ¼UðIYÞUð−YZÞ¼ iðH⊗ IÞC12ðI⊗HÞC21ðX⊗XÞ:
ðB13Þ

After defining

D≡ I ⊗ U†ðMÞ ðB14Þ

we get back to the transformation rule of Eq. (44).
Let us consider now the following lift of the

permutation (another automorphism of the doily) ð56421Þ¼
ð56Þð45Þð25Þð15Þ. Using again the (B1) definition and the
(B3)–(B5) dictionary a lift of this permutation is the unitary

U ≡ Uð−XXÞUðXZÞUðYIÞUð−XYÞ

¼ 1

2

0
BBBB@

i 1 −i 1

−1 −i −1 i

1 i −1 i

i 1 i −1

1
CCCCA; U5 ¼ 1: ðB15Þ

One can then show that conjugate action of this unitary is
permuting the message words of the boundary in the
following way

ðfZZ; IZ; ZIg; fIY;−YI;−YYg; fXX; IX; XIg;
fXY;−ZX; YZg; fZY;−XZ; YXgÞ: ðB16Þ

It is understood that the cycle notation ð·; ·; ·; ·; ·Þmeans that
the first, second, and third entries of the corresponding
f·; ·; ·g s are permuted by the permutation of order five.
Hence for example ZZ ↦ IY ↦ XX ↦ … etc. The reader
must notice that this set is not precisely the same message
set we used in Table I. Indeed, instead of the message
word fIY; YI; YYg the one with the sign combination
fIY;−YI;−YYg shows up. As a result the corresponding
stabilizer state of Table I has to be changed. As explained
at the end of Sec. III. I U generates all of the message
words by conjugation starting from the one: fZZ; IZ; ZIg.
Alternatively repeated action of U on the initial stabilizer
state j00i generates all of the corresponding stabilizers of the
message words.
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Let us now define

W≡C21P12ðX⊗ IÞðH⊗HÞ; P12¼ðI⊗HÞC12ðI⊗HÞ;
ðB17Þ

where P12 the controlled phase gate P12¼diagf1;1;1;−1g.
Then we have

Uð−XXÞUðXZÞ ¼ ðP ⊗ IÞðX ⊗ XÞWðP ⊗ IÞðX ⊗ XÞ;
UðYIÞUð−XYÞ ¼ S12WS12 ðB18Þ

where the SWAP gate can be expressed in terms of CNOT
gates if desired as S12 ¼ C12C21C12. These results give the
(62) explicit form of Sec. III. I for our unitary U in terms of
the basic gates: X, P, H and Cij.

APPENDIX C: THE FIELD GF(2n)

Elements of the field extension GFð2nÞ of GFð2Þ can
be thought of as degree n − 1 polynomials with binary
(GFð2Þ) coefficients. Multiplying two such polynomials of
GFð2nÞ is defined modulo a primitive polynomial πnðxÞ of
order n which we write in the form

πnðxÞ ¼ a0 þ a1xþ a2x2 þ � � � þ an−1xn−1 þ xn: ðC1Þ

πnðxÞ is an irreducible polynomial, i.e., one which cannot
be factored in GFð2Þ. For example the polynomial x2 þ
xþ 1 cannot be factored over GFð2Þ. Some primitive
polynomials of GFð2nÞ for n ¼ 2, 3, 4 are

π2ðxÞ ¼ x2 þ xþ 1; π3ðxÞ ¼ x3 þ x2 þ 1;

π4ðxÞ ¼ x4 þ xþ 1: ðC2Þ

The extension to GFð2nÞ is effected by adjoining to the
two elements of GFð2Þ, i.e., 0 and 1, a new element ω
which by definition satisfies the primitive polynomial
πnðωÞ ¼ 0. It then turns out that the product structure in
GFð2nÞ is such that after excluding the zero element the
powers of ω form a cyclic group of order 2n − 1. Hence a
list of all the elements of GFð2nÞ can be written as

f0;1;ω;ω2;…;ω2n−2g; ω2n−1¼ 1; πnðωÞ¼ 0: ðC3Þ

Clearly the requirement of closedness also under addition
forces other elements like ωþ 1 into existence. The
primitive polynomial then can be used to relate these extra
elements to the powers of ω. For example using π3, for
n ¼ 3 the (C3) list of 8 elements can be written in the form

f0;1;ω;ω2;ω3;ω4;ω5;ω6g
¼f0;1;ω;ω2;1þω2;1þωþω2;1þω;ωþω2g ðC4Þ

i.e., all of them are polynomials with degree at most
n − 1 ¼ 2.
The upshot of these considerations is that an arbitrary

element of GFð2nÞ can be written in the form

x ¼
Xn−1
k¼0

xkek ðC5Þ

where we say that fe1; e2;…; en−1g, as a collection of
GFð2nÞ elements, forms a field basis. Here the expansion
coefficients xk are elements of GFð2Þ. Hence GFð2nÞ can
be regarded as a rank n vector space over GFð2Þ.
For any element of x of GFð2nÞ one can introduce its

trace by the formula

TrðxÞ ¼ xþ x2 þ x2
2 þ x2

3 þ � � � þ x2
n−1
: ðC6Þ

The trace operation is linear, and takes values inGFð2Þ. For
example for n ¼ 3 we have

Trðω4Þ ¼ ω4 þ ω8 þ ω16 ¼ ω4 þ ωþ ω2

¼ ð1þ ωþ ω2Þ þ ωþ ω2 ¼ 1

Using the trace for a field basis fe0; e1; e2;…; en−1g one
can define its dual fẽ0; ẽ1; ẽ2;…; ẽn−1g by the formula
TrðẽjekÞ ¼ δjk. For example in the n ¼ 3 case for the basis
fe0;e1;e2g¼f1;ω;ω2g its dual is fẽ0;ẽ1;ẽ2g¼fω4;ω3;ω5g
since for example Trðẽ1e1Þ ¼ Trðω4Þ ¼ 1 etc.
The points of the GHW discrete phase space are para-

metrized by pairs of numbers ðq; pÞ where q; p ∈ GFð2nÞ.
However, for reasons explained in the text q is expanded
with respect to the dual field basis, and p is expanded in the
field basis. Hence for n ¼ 3 we have the expansions

q ¼
X2
j¼0

qjẽj ¼ q0 · ω4 þ q1 · ω3 þ q2 · ω5;

p ¼
X2
j¼0

pjej ¼ p0 · 1þ p1 · ωþ p2 · ω2: ðC7Þ

According to the method of field reduction any such pair
can be regarded as a 2n component vector overGFð2Þ. As a
result of this, for example for the pair ðω;ω4Þ we have

ðq; pÞ ¼ ðω;ω4Þ ¼ ðω3 þ ω4; 1þ ωþ ω2Þ
↔ ð110; 111Þ ↔ �YYX ðC8Þ

where the last of the arrows illustrates the ambiguous
association of observables to phase space points.
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APPENDIX D: THE CASE OF THREE-QUBITS

In order to describe the a set of message words for three
qubit systems (a totally isotropic plane-spread) we use the
method of Sec. IV. A for partitioning the 63 points of our
boundaryPGð5; 2Þ into 9 planes, with 7 points each. This is
equivalent to finding a MUB for three-qubits. A plane in
PGð5; 2Þ is arising from a rank 3 subspace of V ≡ Vð6; 2Þ.
Such subspaces are generated by taking the linear span of
three linearly independent vectors: hu; v; wi. Following the
pattern of Eq. (13) of the n ¼ 2 case we write the three
linearly independent vectors as a 3 × 6 matrix in the form
ðQjPÞ. In the coordinate patch where DetQ ≠ 0 one can
alternatively write a representative as: ð1jAÞ where 1 is the
3 × 3 unit matrix. Now we would like to present our spread
corresponding to our choice of message words in the form

ð1jAkÞ; ð0j1Þ; ð1j0Þ; k ¼ 1; 2;…; 7 ðD1Þ

where the seven 3 × 3 matrices Ak are symmetric, invert-
ible and also satisfying the constraint of Eq. (66).
Let us choose

A1¼

0
B@
1 0 1

0 0 1

1 1 1

1
CA; A2¼

0
B@
0 0 1

0 1 0

1 0 1

1
CA; A3¼

0
B@
0 1 0

1 0 0

0 0 1

1
CA;

ðD2Þ

A4¼

0
B@
1 0 0

0 1 1

0 1 0

1
CA; A5¼

0
B@
0 1 1

1 1 0

1 0 0

1
CA;

A6¼

0
B@
1 1 0

1 1 1

0 1 1

1
CA; A7¼

0
B@
1 1 1

1 0 1

1 1 0

1
CA: ðD3Þ

Using the pattern ð1jAkÞ for converting this code to
observables and choosing the signs appropriately a set of
Sa, a ¼ 1; 2;…9 stabilizers is

S1 ¼ hYIX; IZX; XXYi; S2 ¼ h−ZIX;−IYI; XIYi;
S3 ¼ hZXI; XZI; IIYi; ðD4Þ

S4 ¼ h−YII; IYX;−IXZi; S5 ¼ hZXX; XYI; XIZi;
S6 ¼ hYXI; XYX;−IXYi; ðD5Þ

S7 ¼ hYXX;−XZX; XXZi; S8 ¼ hXII; IXI; IIXi;
S9 ¼ hZII; IZI; IIZi; ðD6Þ

where the last two stabilizers correspond to the planes ð0j1Þ
and ð1j0Þ.

Using the notation of Eqs. (21)–(22) one can check that
the states stabilized by the corresponding stabilizers are

jφ7i¼
1ffiffiffi
2

p ðj00̃ 1̃iþ ij11̃ 0̃iÞ;

jφ1i¼
1ffiffiffi
2

p ðj0̃00̄iþ j1̃11̄iÞ; jφ2i¼
1ffiffiffi
2

p ðj01̃ 1̄iþ ij11̃ 0̄iÞ;

ðD7Þ

jφ3i¼
1ffiffiffi
2

p ðj00̄ 0̃iþ j11̄ 0̃iÞ; jφ4i¼
1ffiffiffi
2

p ð1̃00̃iÞ− j1̃11̃iÞ;

jφ5i¼
1

2
ðj000̃iþ j101̃iþ ij011̃iþ ij110̃iÞ; ðD8Þ

jφ6i ¼
1

2
ðj00̃0i þ j1̃01̃i þ j01̃1i − j11̃0iÞ;

jφ8i ¼ j000i; jφ9i ¼ j000i: ðD9Þ

Notice that jφ2i, jφ3i and jφ4i are biseparable of type 2(13),
(12)3 and 1(23), jφ8i and jφ9i are separable. The remaining
four states belong to the GHZ-class.
In our error correcting scheme the fSag; a ¼ 1;…9

correspond to a collection of messages fMag. For example
M7¼fYZZ;ZYI;−ZIY;−XZX;YXX;XXZ;−IYYg gives
rise to a positive totally isotropic plane in PGð5; 2Þ. This
means that if we multiply together all of the commuting
observables ofM7 one getsþIII. This is the generalization
of the notion of positive lines familiar from studies
concerning Mermin squarelike configurations [53–55].
Moreover, all the isotropic lines contained in our plane
are in turn positive. Indeed, several positive lines of that
type are fXXZ;−IYY;−XZXg, f−IYY; YXX; YZZg etc.
Hence in this case if M7 is the message plane, a corrupted
message can be the first of these lines, or merely a point,
e.g., XXZ on this line. Alternatively one can say that
starting from the corresponding stabilizer state jφ7i in the
first case one gets a two dimensional, in the second case a
four dimensional corrupted subspace of the Hilbert space.
Let us now use the results of Appendix C to build up the

GHW phase space. The points of this space are para-
metrized by pairs ðq; pÞwhere q; p ∈ GFð8Þ. We adopt the
convention that the coordinates are expanded according to
the dual field basis, and the momenta according to the field
basis. Hence for n ¼ 3 we have the expansions of Eq. (C7).
According to the pattern of Eq. (C8) using field reduction
each pair ðq; pÞ can be converted to an observable up to
sign. In this way to each of the 64 points of the GHW phase
space we can assign an observable up to sign. There are
different possibilities for fixing the signs of these observ-
ables. A possible choice of signs compatible with our
choice of stabilizers of Eqs. (D4)–(D6) can be seen in
Table IV. Notice that there is a unitary transformation D of
order seven acting by conjugation that can be used to get all
of the seven stabilizers Sk starting from S1.
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This unitary is of the form as Eq. (18) of Ref. [82]:

D ¼ C12C21C12C31C23C12C31 ðD10Þ

with its action on the messages

Mk ¼ Dk−1M1D1−k; k ¼ 1; 2;…7: ðD11Þ

In terms of the GHW phase space coordinates the seven
orbits are described as qp ¼ ωk−1. Notice also that D is an
unitary representation on the 3-qubit Hilbert space, of the
SLð2; 8Þ transformation acting on the points of the GHW
phase space as

�
q

p

�
↦

�
ω4 0

0 ω3

��
q

p

�
ðD12Þ

alternatively instead of D one can choose the unitary
C13S13S12 calculated in Ref. [30]. This unitary fits into
the general scheme valid for arbitrary n as can be seen from
Eqs. (73)–(74).
Now we look at the Grassmannian image of the

Lagrangian planes arising from the stabilizers Sa where
a ¼ 1; 2;…9.Wehave already seen that they encapsulate the
messagesMa providing a fibration (spread) of the boundary.
In the level of the GHW discrete phase space they provide
striations [30] of this space. For three qubits we have N ¼
ð6
3
Þ ¼ 20 Plücker coordinates.We arrange them according to

the pattern of Eq. (5). Then the Grassmannian image of the
messages provides 9 points in the real part of the bulk. These
will be the codewords Ca. They form an ovoid in
ℜðBULKÞ ¼ Qþð7; 2Þ [see Eq. (98)]. Following the pat-
terns suggested by Eqs. (91)–(92) we have:

S1↦ C1¼YYIXYXZYXZ;

S2↦ C2¼YZYXIYIIYI; S3↦ C3¼YIIYIIYIIY

ðD13Þ

S4↦ C4¼YYXZYIIYII; S5↦ C5¼YIYZZYXZYX;

S6↦ C6¼YXYXYZYYZY ðD14Þ

S7↦ C7¼YYZZXYYXYY; S8↦ C8 ¼XIIIIIIIII;

S9↦ C9¼ZIIIIIIIII ðD15Þ

This correspondence can be visualized by associating to the
differently coloured striations (message words) of the boun-
dary showing up in Table IV differently colored points (code
words) in the bulk. The bold faced part of the codewords
describes thePψ part (the 4-qubit part) and the remaining six
qubits refer to the R part. Notice that the doubled pattern
of the latter part is in accord with Eqs. (90). The bold faced
parts and the remaining six-qubit part are both symmetric
observables. This fact is in accordance with the results
Q̂ðPψÞ ¼ QðRÞ ¼ 0. Hence the Pψ parts of the 9 points
are lying on the hyperbolic quadric Qþð7; 2Þ which is the
zero locus of the quadratic form Q̂ as it has to be. Notice that
the bold faced (4-qubit) parts and the full set Ca forms a nine
dimensional Clifford algebra, i.e., we have fCa; Cbg ¼ 2δab.
The pairwise anticommuting nature is in accord with the
ovoid property, which says that no three points from this 9
points are collinear. However the ovoid property also says
that every maximal totally isotropic 3-subspace contains
precisely one point from this set of 9 points. Indeed, it is
known that the quadricQþð7; 2Þ is doubly ruled by two set of
generators, i.e., it is of the formPGð3; 2Þ × PGð3; 2Þ. Notice
also that due to the fact ℜðBULKÞ ¼ Qþð7; 2Þ this case is
very special. Indeed in this case the number of Lagrangian
subspaces of the boundary coincides with the number of
points ofQþð7; 2Þ which is 135. For the explicit form of the

TABLE IV. An association of observables to the points of the GHW discrete phase space for three-qubits. This association corresponds
to our choice of stabilizers of Eqs. (D4)–(D6). The elements of the stabilizers S8 and S9 correspond to the horizontal and vertical lines.
The seven nontrivial elements of the remaining stabilizers correspond to the points belonging to lines passing through the origin
satisfying an equation of the form p ¼ ωkq where k ∈ f1; 2; 3; 4; 5; 6; 7g is fixed. This choice of stabilizers corresponds to a quantum
net, i.e., an association of states to the lines of the GHW phase space. In particular to the lines through the origin we can associate the
states of Eqs. (D7)–(D9).

0 1 ω ω2 ω3 ω4 ω5 ω6

q=p 000 100 010 001 101 111 110 011

0 000 III XII IXI IIX XIX XXX XXI IXX
1 111 ZZZ YZZ ZYZ ZZY −YZY YYY −YYZ ZYY
ω 110 ZZI YZI ZYI ZZX −YZX −YYX −YYI ZYX
ω2 101 ZIZ YIZ ZXZ −ZIY −YIY YXY YXZ ZXY
ω3 010 IZI XZI −IYI IZX −XZX XYX XYI IYX
ω4 100 ZII −YII ZXI −ZIX YIX YXX YXI ZXX
ω5 001 IIZ XIZ −IXZ IIY XIY XXY XXZ −IXY
ω6 011 IZZ −XZZ IYZ IZY XZY −XYY −XYZ −IYY
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bijection between the points of the quadric and the 135
Lagrangian planes see Ref. [33].
Let us finally give a simple description of the set of

Lagrangian planes in terms of generators of a seven
dimensional Clifford algebra [33]. Define

fΓ1;Γ2;Γ3;Γ4;Γ5;Γ6;Γ7g
¼ fIIY; ZYX; YIX; YZZ; XYX; IYZ; YXZg: ðD16Þ

Introduce the notation

fkg≡ Γk fkmg≡ iΓkΓm;

fkmlg≡ iΓkΓmΓl; 1 ≤ k < m < l ≤ 7:

Then for example up to sign the observables of M4

corresponding to the stabilizer S4 can be written as
M4 ¼ f7; 16; 25; 34; 167; 257; 347g. Since the structure
of this arrangement is determined by the first four entries
we use the abbreviation as:M4 ¼ f7; 16; 25; 34g. Then the
full set of message words in this notation is

M1 ¼ f3; 24; 15; 67g; M2 ¼ f2; 13; 47; 56g;
M3 ¼ f1; 27; 36; 45g; M4 ¼ f7; 16; 25; 34g
M5 ¼ f6; 57; 14; 23g; M6 ¼ f5; 46; 37; 12g;
M7 ¼ f4; 35; 26; 17g;
M8 ¼ f124; 235; 346; 457; 156; 267; 137g;
M9 ¼ f126; 237; 134; 245; 356; 467; 157g: ðD17Þ

Notice that the last two messages are simply generated by a
cyclic shift of the combination 124 and 126 followed by
normal ordering. Moreover, one can get all of the remaining
seven message words from a reversed cyclic shift of the
first. Now it is easy to generate 105 of the 135 Lagrangian
planes [33].
Indeed, from this notation it is clear that one can generate

altogether 15 planes intersecting at least in a point. For
example choosing this point to be the one represented
by f7g we get a list of such planes where the first entry is
fixed to 7 and the remaining three ones are consisting
of all possible triples of duads of the form: f12; 34; 56g,
f13; 26; 45g;… etc. These are the ones that make a
partition of the full set f1; 2; 3; 4; 5; 6g to triples of duads.
Notice that the structure of M4 is of this form. Hence if
E ¼ f7g is representing a point error then the Schubert
variety ΩðEÞ is consisting of 15 planes where the message
word M4 is one of them. Notice now that the incidence
structure of such triples of duads is just the one of the doily,
which is shown on the left-hand side of Fig. 1. The 15
duads correspond to its points and the 15 triples to its lines.
Since the doily is self dual one can also label its points with
triples of duads and its lines with the duads. When we take
the Grassmannian image of these 15 planes to the real part

of the bulk what we get is a collection of 15 points, with
their corresponding 10-qubit observables mutually com-
muting. However, for labeling what we really need is
merely their four-qubit part. [For an example see the bold
faced part of (D13)–(D15).]
Now this set of 15 points in the real part of the bulk

labeled by 4-qubit observables can be equipped with an
incidence structure according to whether the corresponding
points are collinear or not. At the level of observables
collinearity is defined when the product of triples of our
commuting observables give the identity up to sign. It is
easy to check that this incidence structure is again that of
the doily. Collinear points in the bulk represent planes
intersecting in a line in the boundary, and noncollinear ones
represent ones intersecting merely in a point. Since all of
these 15 points are lightlike separated in the bulk, this extra
incidence structure gives rise to the fine structure of the
“light cone” referred to in Sec. IV. G. Notice that taking a
spread in the duad labeling of the doily in this set of 15
boundary planes, gives rise to an ovoid in the bulk doily.
For example, taking M4 as one of the planes we have a
triple of duads of the form f16; 25; 34g. Choosing the
remaining four triples as f12; 35; 48g, f13; 26; 45g,
f15; 24; 36g, and f14; 23; 56g we have a spread of the
doily taken from five planes. Clearly these planes are
intersecting merely in the error point f7g. The image of
these planes in the bulk is five noncollinear points such that
every isotropic line of this bulk doily contains one such
point. This means that these points form an ovoid.
On the other hand if any of our triples of duads contains a

common duad, then it means that the corresponding three
planes are intersecting in a line, hence their image in the
bulk doily is just three collinear points. An example for this
is: f16; 25; 34g, f16; 23; 45g. In this case the correspond-
ing planes are intersecting in the boundary line labeled by
the triple (7,16,167).
Take now the error line E ¼ f56; 567; 7g. It is easy to

check that this line is intersecting with three message planes
namely:M2,M4,M5 in a point. Hence a unique recovery
from this type of error is not possible. However, if we are
restricting the range of possible errors to point and line
errors living entirely inside of some message word, then
recovery from point errors is also possible. As advertised in
the text these types of errors are compatible with the
quantum net structure related to our association of states to
planes and subspaces of ever increasing dimension to lines
and planes living inside our messages.
We remark in closing, that now it is easy to generate 105

of the 135 Lagrangian planes. Just take the 15 planes
intersecting the M4 one in f7g Then rotate cyclically the
labels of the corresponding planes. The result is 7 × 15 ¼
105 planes. For the cyclic generation of the missing 28
planes from four seed ones see Ref. [33]. Clearly these
14þ 14 planes are the ones which are intersecting with the
remaining message planes M8 and M9 at least in a point.
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The latter 15þ 15 special planes, featuring symmetric
three-qubit observables, are of course the α and β-planes
living on the Klein quadric.

APPENDIX E: SUBGEOMETRIES

Let us consider Σ¼PGð2n−1;2Þ and Σ�¼PGð2n−1;2nÞ
as the geometries corresponding to their lattices of their
subspaces. SinceGFð2Þ is a subfield ofGFð2nÞwe say that
the former is the canonical subgeometry of the latter. For
each subspace S� of Σ� the set S ¼ S� ∩ Σ is a subspace of
Σ whose rank is at most equal to the rank of S�. We say that
a subspace S� of Σ� is a subspace of Σ whenever S and S�
have the same rank [56].
In our special case used in the text we use further

definitions. A linear map σ between two vector spaces over
GFð2nÞ is called a semilinear map if σðλvÞ ¼ λ2σðvÞ. This
means that our map is linear up to a twist generated by a
field automorphism, which is in our case the Frobenius

automorphism. By a collineation we mean a bijective map
between projective spaces such that the images of collinear
points (i.e., the ones lying on the same line) are themselves
collinear.
There is a fundamental lemma which is proved in

Ref. [56] which is implicitly used in our considerations
of Sec. IV.
LEMMA: If σ is a semilinear collineation of Σ� having as

fixed points exactly the ones of Σ, then S� is a subspace of Σ
if and only if S� is fixed by σ.
An explicit example for a map of that kind is the one

used in the text satisfying σðλv1 ⊗ v2 ⊗ � � � ⊗ vnÞ ¼
λ2σðvn ⊗ v1 ⊗ � � � ⊗ vn−1Þ, whenever each of vj with j ¼
1; 2;…n is taken from the set of basis vectors fE;Fg of the
vector space V and λ ∈ GFð2nÞ of Eq. (67). If for an x ∈ V
written in the form of Eq. (67) we write xϕ as in Eq. (102)
with j ¼ 2 then from the definition of σ it follows
that σðx1 ⊗ x2 ⊗ � � � ⊗ xnÞ ¼ xϕn ⊗ xϕ1 ⊗ � � � ⊗ xϕn−1.
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[21] P. Lévay, Attractors black holes and multiqubit entangle-
ment, in The Attractor Mechanism, edited by S. Bellucci,
Proceedings of the INFN-Laboratori Nazionali di Frascati
School, 2007 (Springer-Verlag, Berlin-Heidelberg, 2010),
p. 85.

[22] E. Verlinde and H. Verlinde, J. High Energy Phys. 10 (2013)
107.

[23] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, J. High
Energy Phys. 06 (2015) 149.

[24] A. Almheiri, X. Dong, and D. Harlow, J. High Energy Phys.
04 (2015) 163.

[25] X. Dong, D. Harlow, and A. C. Wall, Phys. Rev. Lett. 117,
021601 (2016).

[26] A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe,
Phys. Rev. D 74, 066009 (2006).

[27] V. E. Hubeny and M. Rangamani, J. High Energy Phys. 06
(2012) 114.

[28] B. Czech, J. L. Karczmarek, F. Noguiera, and M. van
Raamsdonk, Classical Quantum Gravity 29, 155009 (2012).

[29] W. K. Wootters, IBM J. Res. Dev. 48, 99 (2004).
[30] K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, Phys.

Rev. A 70, 062101 (2004).
[31] D. C. Brody and L. P. Hughston, Proc. R. Soc. A 461, 2679

(2005).
[32] D. C. Brody and L. P. Hughston, AIP Conf. Proc. 767, 57

(2005).
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