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The effect of gravitational fluctuations on the quantum effective potential for scalar fields is a key
ingredient for predictions of the mass of the Higgs boson, understanding the gauge hierarchy problem, and
a possible explanation of an—asymptotically—vanishing cosmological constant. We find that the quartic
self-interaction of the Higgs scalar field is an irrelevant coupling at the asymptotically safe ultraviolet fixed
point of quantum gravity. This renders the ratio between the masses of the Higgs boson and top quark
predictable. If the flow of couplings below the Planck scale is approximated by the Standard Model, this
prediction is consistent with the observed value. The quadratic term in the Higgs potential is irrelevant if the
strength of gravity at short distances exceeds a bound that is determined here as a function of the particle
content. In this event, a tiny value of the ratio between the Fermi scale and the Planck scale is predicted.
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I. INTRODUCTION

The quantum effective potential for the Higgs field is the
central quantity for understanding the electroweak sym-
metry breaking in the Standard Model of particle physics
(SM). The vacuum expectation value of the Higgs field ϕ0

is determined by the location of the minimum of the
potential. It defines the Fermi scale. For given gauge
couplings and Yukawa couplings, it sets the mass of W
and Z bosons as well as of quarks and charged leptons.
In turn, the vacuum expectation value depends on two
renormalizable couplings, the mass parameter m2

H and the
quartic scalar coupling λH. The observable mass of Higgs
boson obeys MH ¼ ffiffiffiffiffiffiffiffi

2λH
p jϕ0j.

The renormalizable couplings of the SM can be extrapo-
lated to momenta much larger than the Fermi scale. In
renormalization group (RG) improved perturbation theory,
their running is computed with an expansion in loops. Let
us now assume that the SM is part of an “effective low-
energy theory” model for scales below some transition
scale kt where gravitational fluctuations decouple.
Typically, kt is close to the Planck mass. In the absence
of gravitational fluctuations for momenta smaller than kt,
all couplings are small and in the perturbative regime. For a

given model, the “initial values” of m2
HðktÞ and λHðktÞ can

be extrapolated perturbatively to momenta of the order
of the Fermi scale where they determine the observable
quantities.
For possible predictions of the Fermi scale and the mass

of the Higgs boson, the decisive question is the predict-
ability of m2

HðktÞ and λHðktÞ. For this issue, gravitational
fluctuations become important. For the flow of couplings
at momenta larger than kt, the gravitational fluctuations
strongly influence the running of m2

H and λH. It has been
argued that the gravitational fluctuations drive λH to a
fixed-point value close to zero, such that λHðktÞ has a tiny
value. The extrapolation to low momenta within the SM as
effective low-energy theory has predicted [1] the mass of
the Higgs particle in accordance with later observation.
We aim here for a systematic investigation of the effects

of gravitational fluctuations on the shape of the effective
scalar potential. Beyond the Higgs sector of the SM, this is
relevant for other theories with scalars, such as grand
unified theories. For cosmology, gravitational fluctuations
play an important role for the shape of scalar potentials
responsible for the inflationary epoch or dynamical dark
energy. Since gravity is not perturbatively renormalizable,
any investigation of the role of gravitational fluctuations at
momentum scales larger than kt has to employ some
suitable nonperturbative method.
In the present work, we use the functional renormaliza-

tion group (FRG) for the effective average action [2].
The FRG has proven to be a successful nonperturbative
method for various systems in both condensed matter and
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elementary particle physics. A central object within its
formulation is the scale-dependent quantum effective
action or effective average action Γk, which includes all
effects of quantum fluctuations with momenta larger than
an IR cutoff k. The scale dependence of Γk obeys an exact
flow equation [2].
The FRG is capable of understanding quantitatively

asymptotically safe renormalizable quantum field theories,
which is crucial for studying gravitational fluctuations near
and beyond the Planck scale. For asymptotically safe
theories, the interactions do not vanish at the UV fixed
point, such that perturbative renormalizability is often not
given. Well-studied examples for nonperturbative asymp-
totic safety are the Wilson-Fischer fixed point for three-
dimensional scalar theories or four-dimensional theories
with four-fermion interactions, for which FRG has proven
quantitative reliability. Quantum gravity presumably
belongs to this class of asymptotically safe theories. For
the quantitative study of this work, we assume asymptotic
safety [3,4] as a working hypothesis, leaving the fixed-
point value of the dimensionless Planck mass as a not yet
fully quantitatively determined parameter. This is sufficient
to obtain rather robust results for the effect of gravitational
fluctuations on the effective scalar potential.
The asymptotic-safety hypothesis for quantum gravity

has found support by many investigations [4–12]. It is
crucial for this scenario that the system has a nontrivial UV
fixed point, the Reuter fixed point, at which the UV
complete action is defined. Using the FRG, the existence
of such a fixed point has been investigated in pure gravity
as well as for gravity coupled to elementary particles.
The methods of approximations to the functional flow
equation include the background field approximation
[4,13–39], the vertex expansion [40–53], the geometrical
approach [54–56], and the bimetric method [57,58]. Also, a
gauge invariant flow equation for quantum gravity has been
proposed [59].
Quantum gravity coupled to elementary particles reveals

a new predictive power for particle properties. This is
connected to the number of relevant parameters at the fixed
point, which may be smaller than the number of renorma-
lizable couplings in the SM. This entails that certain
relations among the SM couplings become, in principle,
computable. Initial values of running couplings become
fixed at the Planck scale if they correspond to irrelevant
parameters at the fixed point. This allows a computation of
observable quantities such as the Higgs-boson mass and the
top-quark mass in the low-energy regime [1,60–63]. The
fixed-point structure and the RG flow could also determine
the potential of scalar fields of which the time evolution
characterizes the history of our Universe [64–67].
In this paper, we investigate quantum gravity effects on

the effective scalar potential in asymptotically safe gravity.
Taking proper account of gauge symmetries, in our case
diffeomorphism symmetry, is crucial for quantitative

reliability. For this purpose, we concentrate on a “physical
gauge fixing,” which purely acts on the gauge modes
among the metric fluctuations, leaving the physical fluc-
tuations untouched [59]. We employ the physical metric
decomposition [68], where the metric fluctuations are split
into physical modes consisting of the traceless-transverse
tensor (graviton) and a scalar, and the gauge modes, which
comprise a transverse vector and a scalar. Employing the
physical gauge fixing, the two-point function becomes
block diagonal in the physical and gauge modes. A simple
relation between ghost and gauge modes allows us to
combine their contributions to a universal measure factor,
which does not depend on the value of the scalar field [59].
Our paper can also be seen as a first application of the

gauge invariant flow equation employing only one macro-
scopic metric field [59]. In fact, at the level of truncation
employed here, there is no difference between the back-
ground formalism with physical gauge fixing and the gauge
invariant flow equation. The proposed universal measure
contribution [59] comes out directly in our approximation
for the background formalism. The flow equation for the
effective potential is the same for the truncated background
formalism and the gauge invariant flow equation. The
contribution to the gauge invariant flow equation from
physical fluctuations involves formally nonlocal projec-
tions. This projection is implicitly performed in the back-
ground field formalism by the inversion of the second
functional derivative of the effective action in the presence
of the physical gauge fixing term. The relevant projected
differential operators for the graviton and the physical
scalar metric fluctuations are second-order differential
operators. No nonlocality is encountered explicitly.
The propagator and interactions for the physicalmodes are

derived here from a gauge invariant effective action. In the
background formalism, this is an approximation, while for
the gauge invariant flow equation, this is a genuine property.
We also compute the flow of the mass term and quartic
coupling by taking derivatives of the flow equation for the
effective potential. In the truncated background formalism,
this is an approximation, while for the gauge invariant flow
equation, this is an exact property. Here, we do not enter into
the discussion of whether the employed one-loop form of the
gauge invariant flow equation is itself an approximation or
whether it can be made exact by a suitable definition of the
macroscopic field [59].
Our main results for the effects of gravitational fluctua-

tions on the scalar effective potential are the following:
(i) A UV fixed point for the cosmological constant

(value of scalar potential at its minimum) exists,
provided the dimensionless squared Planck mass
M̃2

p ¼ M2
p=k2 is above a minimal value M̃2

p;c. This
value depends on the number N of particle degrees
of freedom (d.o.f.), as shown in Fig. 1.

(ii) The quartic scalar coupling λH of the Higgs boson is
an irrelevant coupling at the UV fixed point. For
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large k2, the gravitational fluctuations drive it very
close to zero, enforcing an initial value for the low
energy effective theory λHðktÞ ≈ 0. For a given low-
energy theory at momentum scales below the Planck
mass and a given observed mass of the top quark, the
mass of the Higgs bosonMH becomes predictable. If
the low-energy theory is the SM, the predicted value
[1] isMH ¼ 126 GeV with a few giga-electron-volts
uncertainty. For a higher-loop computation and
dependence on the top mass, see Refs. [69,70].

(iii) For small enough M̃2
p (red region in Fig. 1), the

quadratic term in the scalar potential is also an
irrelevant parameter. Then, the model is predicted
to be located on the critical phase-transition surface of
the vacuum electroweak phase transition, realizing
self-organized criticality. The gauge hierarchy [71,72]
of a tiny ratio between the Fermi scale and Planck
scale could then be explained by the resurgence
mechanism [73].

First indications that a quartic scalar coupling
could be an irrelevant parameter can be found in
Refs. [13,14,17,18,74,75]. At the time of the prediction
[1] of the Higgs-boson mass, important uncertainties about
the sign and magnitude of the anomalous dimension for the
quartic coupling of the Higgs scalar persisted, however.
Emphasis on the dominant role of the graviton fluctuations
(“graviton approximation”) has shown [76] the positive
sign of the anomalous dimension A and estimated its
magnitude to be of the order 1. These are precisely the
requirements for the prediction of the mass of the Higgs
boson [1]. In the present paper, we confirm the graviton
domination by an explicit computation of the contribution

of all other fluctuations, including the universal measure
term for a physical gauge fixing. This allows for a
quantitative comparison with the dominant graviton con-
tribution. We also show that extensions of the truncation do
not alter the main conclusion that quartic scalar couplings
are irrelevant parameters at the UV fixed point for asymp-
totic safety.
The quantitative precision of the present approach allows

for the first time an estimate under which circumstances the
scalar mass term can be an irrelevant coupling [73].
Typically, this occurs for A > 2. The size of A depends
strongly on the fixed-point value of the dimensionless
Planck mass. This value depends, in turn, on the precise
particle content of the model and requires a computation of
the flow equation with similar detail as the one for the
effective potential investigated here. Only once this task is
accomplished, a definite statement on the predictive power of
asymptotic safety for the gauge hierarchy will be possible.
This paper is organized as follows. In the next section,

we present the flow equation for the scalar potential. The
technical aspects are given in the Appendix. In Sec. III, we
analyze the fixed-point structure and the critical exponent
for the cosmological constant. Section IV investigates the
critical exponents for the scalar mass term and the quartic
interaction of the scalar field. We address here the pre-
dictive power of quantum gravity for properties of the
Higgs scalar. Section V discusses the robustness of our
results by extending the truncation and varying the cutoff
function. Section VI is devoted to summarizing our results
and to discussing their robustness and remaining quanti-
tative uncertainty.

II. FLOW OF THE SCALAR POTENTIAL

The flow equation for the effective scalar potential is
extracted from the exact flow equation for the effective
average action by taking space- and time-independent field
values for the scalar field configuration. The flow is
evaluated for a flat spacetime geometry that we take here
to be Euclidean. The crucial quantity for the flow equation
is the inverse propagator, which is given by the matrix of
second functional derivatives Γð2Þ

k of the effective action,
evaluated for the given scalar and metric fluctuation.
Precision and robustness of results depend on the validity

of the approximations used for Γð2Þ
k . Gravity is a local gauge

theory, with gauge transformations associated to diffeo-
morphism or general coordinate transformations. It is a
crucial issue to take the gauge symmetry properly into
account. The fluctuations around any given metric con-
figuration can be split into gauge fluctuations or gauge
modes and physical fluctuations or modes. The gauge
modes correspond to the infinitesimal changes of the given
metric induced by an infinitesimal gauge transformation.
We follow the standard treatment of functional integrals

for gauge theories, implementing gauge fixing and the

FIG. 1. Existence of the UV fixed point and sign of the critical
exponent of the scalar mass term, as a function of the fixed-point
value M̃p for the running dimensionless Planck mass and the
number of effective particle d.o.f. N ¼ NS þ 2NV − 2NF. The
grey line is the critical value of the Planck mass M̃p;c. In the red-
colored region, the critical exponent of the scalar mass term
becomes negative, i.e., this coupling is irrelevant, while it is
relevant in the blue-colored region. The quartic scalar coupling is
irrelevant whenever a fixed point exists.
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associated Faddeev-Popov determinant. We impose a
particular physical gauge fixing [59]. A physical gauge
fixing acts only on the gauge modes. Choosing a decom-
position of the metric fluctuations into physical modes and
gauge modes [68], the physical gauge-fixing term renders

Γð2Þ
k effectively block diagonal, with separate blocks for the

physical modes and the gauge modes. Furthermore, impos-
ing the physical gauge constraint on the fields in the
effective action leaves a gauge invariant effective action
[59]. We can therefore employ an ansatz where the effective
action consists of a gauge invariant part Γ̄k plus a gauge-

fixing part. For the inverse propagator Γð2Þ
k , the block for

the physical modes is given by the second functional
derivative of Γ̄k. This is an important advantage, since
gauge symmetry severely restricts the form of Γ̄k.
We find that the contribution of the gauge modes,

together with the contribution from the Faddeev-Popov
determinant or the corresponding ghosts, results in a simple
universal contribution to the flow equation. This “measure
contribution” depends on the metric but not on the values of
scalar fields. For the flow of the effective potential, it only
concerns an overall constant but not the field dependence.
What remains to be done is an effective approximation

for the physical inverse propagator Γ̄ð2Þ
k . This is done by

making an ansatz for the gauge invariant effective action
Γ̄k. We approximate the gravitational part of Γ̄k by the
Einstein-Hilbert action, with coefficient of the curvature
scalar given by the running or scale-dependent squared
Planck massM2

pðkÞ. The cosmological constant is included
as part of the effective scalar potential, namely, its value at
the minimum. We discuss in the conclusions how this
ansatz can also incorporate effects of higher-derivative
invariants in Γ̄k, as R2 or RμνRμν. This is done by an
adaptation of the definition of M2

pðkÞ.
According to our assumption of asymptotic safety, the

running Planck mass has to scale at and near the UV fixed
point proportional to k,

M2
pðkÞ ¼ M̃2

p�k2: ð1Þ

The fixed-point value M̃2
p� depends on the particular model.

For the purpose of this paper, we treat it as an unknown
parameter. Some of the predictions depend on the precise
value of this parameter, while others such as the quartic
coupling λH being an irrelevant parameter are independent
of the precise value.
We first consider a single real scalar field ϕ coupled to

gravity. The detailed steps of the computation along the
lines sketched above are displayed in Appendix. We obtain
for the flow of the effective potential UðρÞ at fixed ρ ¼
ϕ2=2 a differential equation with a rather simple form,

∂tU ¼ k∂kU ¼ π̃2 þ π̃0 þ η̃: ð2Þ

Here, π̃2 is the contribution of the graviton fluctuations
corresponding to the traceless-transverse metric fluctua-
tions; the term π̃0 combines the physical scalar fluctuations,
both from ϕ and the physical scalar mode in the metric
fluctuations. Finally, η̃ is the measure contribution.
Employing a Litim-type cutoff function [77], the terms
are given by

π̃2 ¼
5

24π2

�
1 −

ηg
8

�
k4

1 − v
;

π̃0 ¼
1

24π4

��
1 −

ηg
8

�
ð1þ Ũ0 þ 2ρ̃Ũ00Þ

þ 3

4

�
1 −

ηϕ
6

��
1 −

v
4

��

×
k4

½ð1 − v=4Þð1þ Ũ0 þ 2ρ̃Ũ00Þ þ 3ρ̃Ũ02=M̃2
p�
;

η̃ ¼ −
k4

8π2
: ð3Þ

Here, we have defined the dimensionless quantities,

Ũðρ̃Þ ¼ UðρÞ=k4; ρ̃ ¼ Zϕρ=k2; ð4Þ

with Zϕ the coefficient of the scalar kinetic term and primes
denoting derivatives with respect to ρ̃. The dimensionless
ratio

vðρÞ ¼ 2UðρÞ
M2

pk2
¼ 2ŨðρÞ

M̃2
p

ð5Þ

depends on ρ. The poles at v ¼ 1 and v ¼ 4 correspond to
tachyonic instabilities in the graviton and the scalar mode
of metric fluctuation propagator, respectively. They are
not reached by the flow. We furthermore define ηg ¼
−∂t ln M̃2

p ¼ 2 − ∂t lnM2
p and the anomalous dimension

of the scalar field, ηϕ ¼ −∂t lnZϕ.
We will see that at the fixed point the minimum of UðρÞ

occurs for ρ ¼ 0. In the vicinity of this point, we can
neglect the term 3ρ̃Ũ2=M̃2

p in the denominator of (3), such
that also the effect of scalar fluctuations becomes block
diagonal,

π̃0 ≃ π̃0;g þ π̃0;ϕ; ð6Þ

with

π̃0;g ¼
1

24π2

�
1 −

ηg
8

�
k4

1 − v=4
;

π̃0;ϕ ¼ 1

32π2

�
1 −

ηϕ
6

�
k4

1þ Ũ0 þ 2ρ̃Ũ00 : ð7Þ
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The first contribution π̃0;g arises from the scalar mode in the
metric, while the second term π̃0;ϕ is the standard flow
contribution from scalar fields in flat space [2].
The flow equation (2) holds at constant ρ. For a

discussion of a fixed point and the behavior close to the
fixed point, we have to translate to the flow at constant ρ̃.
Furthermore, we are interested in the flow of the dimen-
sionless scalar potential Ũðρ̃Þ. Generalizing to N real
scalars with OðNÞ symmetry and employing the approxi-
mation (6), we obtain the beta function or flow generator
for Ũ as

∂tŨ ¼ −4Ũ þ ð2þ ηϕÞρ̃Ũ0

þ 1

24π2

�
1 −

ηg
8

��
5

1 − v
þ 1

1 − v=4

�
þ ΔN − 4

32π2

þ 1

32π2

�
1 −

ηϕ
6

��
1

1þ Ũ0 þ 2ρ̃Ũ00 þ
N − 1

1þ Ũ0

�
: ð8Þ

The dependence of the gravitational contributions on ρ̃
arises through the quantity v ¼ vðρ̃Þ. Also, the dimension-
less Planck mass enters in (8) only through v. The first two
terms on the right-hand side of (8) are the canonical scaling
of the effective potential.

We have extended the scalar sector to N scalars with SO
(N) symmetry. For scalar theories with SOðNÞ symmetry,
the term proportional to N − 1 arises from the fluctuations
in the Goldstone directions. For the Higgs doublet, one has
N ¼ 4. Furthermore, we have included in (8) the contri-
bution of fluctuations beyond the gravitational d.o.f. and
the Higgs sector. For massless particles, as gauge bosons or
chiral fermions, they contribute to ∂tU a field-independent
term ΔN=ð32π2Þ, where

ΔN ¼ ΔNS þ 2NV − 2NF; ð9Þ

with ΔNS the number of additional scalars, NV the number
of gauge bosons (with two physical d.o.f. each), andNF the
number of Weyl fermions. For the SM-matter content,
this number is ΔNSM ¼ −66; for a grand unified gauge
theory based on SO(10), one has ΔNGUT ¼ NS þ 10 with
NS the total number of real scalars beyond a complex
10-representation.
Around the origin at ρ̃ ¼ 0, we expand

Ũ ¼ Ṽ þ m̃2
Hρ̃þ

λ̃H
2
ρ̃2 þ � � � : ð10Þ

Inserting into (8) yields the beta function for each
coupling,

∂tṼ ¼ −4Ṽ þ 1

24π2

�
1 −

ηg
8

��
5

1 − v0
þ 1

1 − v0=4

�
þ N
32π2

�
1 −

ηϕ
6

�
1

1þ m̃2
H
þ ΔN − 4

32π2
; ð11Þ

∂tm̃2
H ¼ ð−2þ ηϕÞm̃2

H þ m̃2
H

48π2M̃2
p

�
1 −

ηg
8

��
20

ð1 − v0Þ2
þ 1

ð1 − v0=4Þ2
�
−
ðN þ 2Þλ̃H

32π2

�
1 −

ηϕ
6

�
1

ð1þ m̃2
HÞ2

; ð12Þ

∂tλ̃H ¼ 2ηϕλ̃H þ λ̃H
48π2M̃2

p

�
1 −

ηg
8

��
20

ð1 − v0Þ2
þ 1

ð1 − v0=4Þ2
�

þ m̃4
H

48π2M̃4
p

�
1 −

ηg
8

��
80

ð1 − v0Þ3
þ 1

ð1 − v0=4Þ3
�
þ ðN þ 8Þλ̃2H

16π2

�
1 −

ηϕ
6

�
1

ð1þ m̃2
HÞ3

: ð13Þ

Here, we have defined the dimensionless renormalized
parameters as Ṽ ¼ Uðρ ¼ 0Þ=k4, m̃2

H ¼ m2
H=ðZϕk2Þ,

λ̃H ¼ λH=Z2
ϕ, and v0 ¼ 2Ṽ=M̃2

p. In general, Eqs. (11)–(13)
receive contributions from the term 3ρ̃Ũ02=M̃2

p in (3),
neglected in (7) and (8). These contributions are propor-
tional to higher orders of the coupling constants, e.g., m̃4

H or
m̃2

H λ̃H. If the fixed point of matter interactions occurs for
m̃2

H� ¼ λ̃H� ¼ 0, these terms do not contribute to the critical
exponents defined below; see (16).

The effects of Yukawa couplings or gauge couplings to
the Higgs sector correspond to the standard perturbative
contributions to the beta functions. These effects are small
and are not included in our discussion of the UV fixed
point. In the present approximation, the additional particles
only influence the flow of Ṽ, with no direct influence on
(12) and (13).
We observe that for m̃2

H ¼ 0, as appropriate for the UV
fixed point, and ηϕ ¼ 0 the fluctuations of the Higgs scalar
(N ¼ 4) cancel the measure contribution, π̃0;ϕ þ η̃ ¼ 0.
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The two last terms in (11) can then be collected into
ΔN=ð32π2Þ.
Instead of the cosmological constant Ṽ, it is useful to

introduce the beta function of the dimensionless quantity
v0 ¼ 2Ṽ=M̃2

p, which reads

∂tv0 ¼ ð−4þ ηgÞv0
þ 1

12π2M̃2
p

�
1 −

ηg
8

��
5

1 − v0
þ 1

1 − v0=4

�

þ N

16π2M̃2
p

�
1 −

ηϕ
6

�
1

1þ m̃2
H
þ ΔN − 4

16π2M̃2
p
: ð14Þ

Equations (12)–(14) constitute a system of three coupled
nonlinear differential equations. They are solved numeri-
cally. We employ ηg ¼ 0 as appropriate for the UV fixed
point and also neglect the presumably small scalar anoma-
lous dimension ηϕ, which arises from the flow of the kinetic
term for ϕ. The result of the numerical solution is shown in
Fig. 1. For the purpose of this figure, we define an effective
N ¼ ΔN þ 4. For M̃p� outside the grey region, we find
indeed a UV fixed point. For N ≥ −4, our assumption of
asymptotic safety holds only if gravity is not too strong,
such that M̃p� remains above the lower bound indicated by
the grey line in Fig. 1.

III. FIXED POINT AND CRITICAL EXPONENTS
FOR THE SCALAR POTENTIAL

Let us now investigate the fixed-point structure and the
critical exponents for the scalar potential U. To this end,
we need the dimensionless Planck mass M̃p, which enters
directly in (12) and (13) and indirectly through v0 ¼
2Ṽ=M̃2

p. In order to close the system, the beta function
for M̃p would be needed. The latter depends on the particle
content of the theory. Its computation is also influenced by
the truncations of the system, and the choices of gauge
parameters, and the regulator. We assume here only that a
fixed point of the Planck mass exists and treat M̃p as a free
constant parameter. Since the Newton coupling is defined
as GN ¼ 1=ð8πM2

pÞ, a small value of the Planck mass
corresponds to a strong interaction of gravity. A constant
M̃p results in ηg ¼ 0.
We also assume that the system has a Gaussian-matter

fixed point, namely, that a nontrivial fixed point is present
in the gravity sector, while gauge and Yukawa couplings in
the matter sector vanish at the fixed point. We will discuss
in Sec. VI the possibility that the matter interactions have a
nontrivial fixed point and their effects on the critical
exponents. We neglect the small [33] anomalous dimension
ηϕ. With these assumptions, we obtain the fixed points and
the critical exponents as functions of M̃p.

A. Critical exponents

Before discussing the structure of the beta functions, we
briefly recall the definition of the critical exponents. We
denote the renormalized couplings that span the theory
space by g ¼ fg1;…; gi;…g. The RG equations are gen-
erally given by

∂tg̃i ¼ βiðg̃Þ ¼ −dig̃i þ fiðg̃Þ; ð15Þ

where g̃i ¼ gik−di is a dimensionless coupling and di is the
mass dimension of gi. The first term on the right-hand side
reflects the canonical scaling, whereas the second one is the
fluctuation contribution obtained from the flow equation.
Suppose that there exists a nontrivial fixed point g̃i�. The
critical exponents characterize the RG flow in the vicinity
of the fixed point. We therefore linearly expand the RG
equation (15)

∂tg̃i ¼
X
j

∂βi
∂g̃j
����
g̃¼g̃�

ðg̃j − g̃j�Þ ¼ −Tijðg̃j − g̃j�Þ: ð16Þ

The matrix T is the stability matrix, and its eigenvalues,
denoted by θl, are the critical exponents. The solution to
(16) is

g̃i ¼ g̃i� þ
X
l

ClVl
i

�
k
μ

�
−θl

; ð17Þ

where Vl
i is the matrix that diagonalizes the stability matrix

and Cl are constant coefficients given at a reference scale μ.
Positive critical exponents correspond to relevant cou-
plings, whereas the irrelevant couplings have negative
critical exponent. As k is lowered, the irrelevant couplings
flow toward their fixed-point values. Defining a theory at
some UV fixed point, the irrelevant couplings take their
fixed-point values, setting Cl ¼ 0 for all l with θl < 0 in
(17). The coefficients Cl for the relevant parameters are the
only free parameters of the theory.
Close to a fixed point with m̃2

H� ¼ 0, λ̃H� ¼ 0, we
linearize in m̃2

H and λ̃H. Taking N ¼ 4, the flow equations
simplify to

∂tv0 ¼ −4v0 þ
ΔN

16π2M̃2
p

þ 1

12π2M̃2
p

�
5

1 − v0
þ 1

1 − v0=4

�
−

m̃2
H

4π2M̃2
p
; ð18Þ

∂tm̃2
H ¼ −2m̃2

H −
3λ̃H
16π2

þ m̃2
H

48π2M̃2
p

�
20

ð1 − v0Þ2
þ 1

ð1 − v0=4Þ2
�
; ð19Þ
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∂tλ̃H ¼ λ̃H
48π2M̃2

p

�
20

ð1 − v0Þ2
þ 1

ð1 − v0=4Þ2
�
: ð20Þ

The stability matrix in the space of couplings v0, m̃2
H, λ̃H

follows by taking derivatives at the fixed-point values v0�,
m̃2

H� ¼ λ̃H� ¼ 0,

T ¼

0
BB@

4 − A 1
4π2M̃2

p
0

0 2 − A 3
16π2

0 0 −A

1
CCA: ð21Þ

The quantity

A ¼ 1

48π2M̃2
p

�
20

ð1 − v0Þ2
þ 1

ð1 − v0=4Þ2
�

ð22Þ

depends only on M̃2
p and v0, not on ΔN. The eigenvalues of

T are simply the diagonal elements of the matrix (21). In a
more complete setting with a beta function for M̃2

p depend-
ing on v0 and m̃2

H, the extended stability matrix involves
mixing effects with the sector describing the flow of M̃2

p, as
well as possibly with other flowing parameters in the
gravitational sector. These mixing effects are neglected in
the presentwork. They concern only the critical exponent for
v0. Since the beta functions for m̃2

H and λ̃H vanish for
m̃2

H ¼ 0, λ̃H ¼ 0, the derivative of these functions with
respect to M̃2

p does not contribute at the fixed point. As a
consequence, the critical exponents for m̃2

H and λ̃H are not
affected by the mixing and remain to be given by 2 − A
and −A.
These features allow for rather robust predictions of the

critical exponents once the fixed-point values for M̃2
p and v0

are known. One only needs the computation of A in (22).
The first term in (22) is the graviton contribution from π̃2. It
typically exceeds the second term by more than a factor 20.
This validates the graviton approximation for the compu-
tation of the critical exponents in Ref. [59].

B. Cosmological constant

The value of the cosmological constant v0 near the fixed
point has a substantial influence on the size of the
gravitational fluctuations. We determine here the fixed-
point value and the associated critical exponent.

1. Fixed point as a function of the Planck mass

We first look for a possible fixed point of the cosmo-
logical constant as a function of the Planck mass by setting
the right-hand side of (18) to zero. We concentrate on
N ¼ 4, as appropriate for the Higgs doublet. The resulting
quadratic equation for v0� admits two solutions: One is a
UV fixed point, and the other is an IR one. For instance, in
the graviton approximation, namely, taking only the con-
tribution of the traceless transverse mode π2 into account,
one finds for ΔN ¼ 0 [76]

vðUVÞ0� ¼ 1

2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

5

12π2M̃2
p�

s !
; ð23Þ

vðIRÞ0� ¼ 1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

5

12π2M̃2
p�

s !
: ð24Þ

These values obtain small corrections from the scalar mode
in the metric. In Fig. 2, we plot the dependence of the fixed-
point value of v0 on the Planck mass for N ¼ 4 and
ΔN ¼ 0. We show both the full result (blue) and the
graviton approximation (only π2, red). We conclude that the
graviton approximation is valid up to corrections approx-
imately 10%.
In the limit M̃p� → ∞, the UV fixed point vðUVÞ0� merges

to the Gaussian fixed point, while the IR one converges to
1. In contrast, for decreasing M̃p�, these two fixed points
approach each other. They merge at a critical value
M̃p;c ¼ 0.217. For M̃p < M̃p;c, no fixed point exists, and
quantum gravity is not asymptotically safe. The critical
value M̃p;c depends on the particle content in the UV. We
plot M̃p;c as a function of N in Fig. 1. Here, N stands for
4þ ΔN. We include the range of negativeN, as relevant for
a sufficient number of fermions; see (9). Indeed, gauge
bosons and scalars give a positive contribution to N, while
for fermions, the contribution is negative. The value M̃2

p;c is
obtained by imposing at v0 the simultaneous requirements
∂tv0 ¼ βv ¼ 0 and ∂βv=∂v0 ¼ 0. For a given N, asymp-
totic safety is only realized for M̃p > M̃p;cðNÞ, as is visible
in Fig. 1. According to (21) and (22), the value M̃p;c

corresponds to A ¼ 4. In the vicinity of this critical value,
both the mass term and the quartic scalar coupling are
irrelevant couplings, with critical exponents −2 and −4,
respectively.

FIG. 2. The fixed-point value of the cosmological constant v0�
as a function of M̃p� for N ¼ 4 and ΔN ¼ 0. The effects of the
graviton fluctuations dominate, as shown by including only
π2 in (2).
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The IR-fixed point for v0 always exits for a given
M̃p� > M̃p;c, since the flow of v0 is always stopped before
the pole of the beta function at v0 ¼ 1 is reached. On the
other hand, M̃p depends on v0. The function M̃p�ðv0Þ
corresponds to a curve in Fig. 2 that is not computed in the
present work. The UV fixed point corresponds to the
intersection of this curve with the curve shown in Fig. 2.
If there exist two intersection points, both with the solid and
the dashed lines, both a UV and an IR-fixed point exist. If
present, one could alternatively define the theory at the IR-
fixed point. Since ∂βv=∂v0 > 0 at the IR-fixed point, one
infers from (21) and (22) that A > 4. Thus, all three
parameters v0, m̃2

H, and λ̃H are irrelevant couplings. In
the present paper, we do not pursue this possible alternative
and rather concentrate on the UV fixed point.
Once M̃2

p increases as this coupling moves away from the
UV fixed point, the IR-fixed point for v0 approaches the
pole in the beta function. Indeed, the value v0 ¼ 1
corresponds to a pole of the propagator of the graviton.
The existence of the IR-fixed point close to v0 ¼ 1 induces
strong fluctuation effects of the graviton in the IR regime
and could be a key point to resolve the cosmological
constant problem [76,78].
For general ΔN, we parametrize the ratio between the

scalar and tensor gravitational contributions by

wsðvÞ ¼
π̃0;g
π̃2

¼ 1 − v
5ð1 − v=4Þ : ð25Þ

The fixed points for v0 occur for

v0� ¼
1

2

 
1þ zΔN �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − zΔNÞ2 − 80zð1þ wsÞ

3

r !
;

ð26Þ

with

z ¼ 1

64π2M̃2
p
: ð27Þ

For large negative ΔN, the UV fixed point occurs for a
negative value,

vðUVÞ0� ≈ zΔN þ 20zð1þ wsÞ
3ð1 − zΔNÞ : ð28Þ

As long as zΔN remains small as compared to 1, one has
ws ≈ 1=5 and

vðUVÞ0� ≈ zðΔN þ 8Þ: ð29Þ

The IR-fixed point approaches 1, with ws → 0,

vðIRÞ0� ≈ 1 −
20zð1þ wsÞ
3ð1 − zΔNÞ : ð30Þ

The approximations (28)–(30) remain valid for positiveΔN
as long as zΔN ≪ 1.
For the critical zc at which the fixed point disappears,

one has

v0c ¼
1

2
ð1þ zcΔNÞ; wsðvcÞ ¼

2ð1− zcΔNÞ
15ð1þ 1

6
ð1− zcΔNÞÞ ;

ð31Þ

and therefore

ð1 − zcΔNÞ2 ¼ 80zc
3

þ 32zcð1 − zcΔNÞ
9ð1þ 1

6
ð1 − zcΔNÞÞ : ð32Þ

For largeΔN, this results in a value of zcΔN close to 1 such
that the second term on the right-hand side of (32) can be
neglected. Therefore the critical boundary for M̃2

p linearly
increases as a function of ΔN,

M̃2
p;c ≈

1

64π2

�
ΔN þ 4

ffiffiffiffiffi
15

p

3

ffiffiffiffiffiffiffiffi
ΔN

p �
: ð33Þ

The corresponding critical v0c approaches 1,

v0c ¼ 1 −
2
ffiffiffiffiffi
15

p

3
ffiffiffiffiffiffiffiffi
ΔN

p ; ð34Þ

such that the graviton contribution is enhanced. The
graviton approximation becomes rather accurate for values
of M̃2

p and v0 in the vicinity of (33) and (34).

2. Critical exponent

With the value of the UV fixed point, we obtain the
critical exponent of the cosmological constant or v0,

θv ¼ −
∂βv
∂v0
����
at FP

¼ 4 − A

¼ 4 −
1

12π2M̃2
p�

�
5

ð1 − v0�Þ2
þ 1

4ð1 − v0�=4Þ2
�

¼ 4ð1 − 2v0�Þ
1 − v0�

þ 1

16π2M̃2
p�ð1 − v0�Þ

�
ΔN þ 1

ð1 − v0�=4Þ2
�
: ð35Þ

Figure 3 displays the dependence of θv on the fixed-point
value of the Planck mass for N ¼ 4 and ΔN ¼ 0. For the
limit M̃p� → ∞ (weak interaction), the critical exponent of
the cosmological constant asymptotically converges to 4,
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which is its canonical dimension. On the other hand, for
M̃p → M̃p;c the critical exponent approaches zero.
We display in Fig. 3 various approximations. Besides the

total contribution (blue) and the graviton approximation
(red), we show the total contributions of the gravitational
d.o.f. without contributions of other particles, i.e., N ¼ 0
and ΔN ¼ 0. This corresponds in (2) to π̃2 þ π̃0;g þ η̃
(dashed green line). The total gravitational contribution
is again well approximated by the graviton approxima-
tion. Finally, the green dashed line omits the measure
contribution η̃.

IV. PREDICTIONS OF ASYMPTOTIC SAFETY
FOR THE PROPERTIES OF THE HIGGS SCALAR

As mentioned in the Introduction, a UV fixed point for
quantum gravity can predict those renormalizable cou-
plings in the SM that correspond to irrelevant couplings at
the fixed point. We find that the quartic coupling of the
Higgs scalar is always irrelevant, and the scalar mass term
is irrelevant for a certain range of the fixed-point value of
the Planck mass.

A. Effective low-energy theory

So far, we have concentrated on the flow equations in the
vicinity of the UV fixed point of asymptotically safe
quantum gravity. This corresponds to a constant value of
M̃2

p in the flow equation (8). Let us now assume that the
Planck mass corresponds to a relevant parameter in
quantum gravity. At short distances, it scales according
to the UV fixed point behavior,M2

pðk2Þ ¼ M̃2
p�k2. For small

k, it deviates from this scaling behavior and takes a fixed
value M2. This results in the qualitative behavior

M2
pðkÞ ¼

�
M̃2

p�k2 for k > kt;

M2 for k < kt:
ð36Þ

The transition scale is found as

k2t ¼
M2

M̃2
p�
: ð37Þ

A more complete treatment smoothens the transition.
Details of the threshold behavior are not important for
our purpose. One may use the simple form

M2
pðkÞ ¼ M2 þ M̃2

p�k2: ð38Þ

For k below the transition scale kt, the dimensionless
coupling M̃2

p increases rapidly,

M̃2
p ¼

M2
p

k2
¼ M̃2

p�

��
kt
k

�
2

þ 1

�
: ð39Þ

As a result, the gravitational contributions in (12) and
(13)—not in (11)—become rapidly tiny and canbeneglected.
This leads to a simple picture. For k < kt, the flow enters the
regime of an effective low-energy theory for which the effect
of gravitational fluctuations can be neglected, except for the
cosmological constant Ṽ. This effective low-energy theory
may be the SM or a possible extension of it.
To rather good accuracy, the flow of dimensionless

couplings as m̃2
H and λ̃H can be divided into two regimes.

For the UV regime k > kt, it follows the flow in the vicinity
of the UV fixed point. In contrast, for the IR regime k < kt,
the flow is given by the low-energy effective theory. In this
picture the initial values of couplings for the IR flow, e.g.,
their values at kt, are determined by their final values of the
UV flow. In case of irrelevant couplings, the initial values
for the IR flow are simply the UV fixed point values. They
are therefore predicted. Following the IR flow from kt in the
vicinity of M down to observable energy scales leads then
to predictions for observable quantities.

B. Scalar mass term

Next, we turn to the behavior of the scalar mass term in
the vicinity of the UV fixed point. Depending on the value
of M̃2

p�, this can be a relevant or an irrelevant parameter.
This issue has important consequences for the gauge
hierarchy problem [71,72]. Therefore, we start from the
discussion of this problem in the context of flow equations.

1. Scalar mass flow and gauge hierarchy problem

Let us first discuss RG improved perturbation theory in
the SM. The RG equation of the scalar mass term at one-
loop level is given by

FIG. 3. The critical exponent of the cosmological constant θv as
a function of the fixed-point value of the Planck mass (N ¼ 4).
The cosmological constant or, equivalently, v0 is a relevant
parameter. The individual contributions of various fluctuations
are visualized by including in (2) only the specified parts.
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∂tm̃2
H ¼ ð−2þ γmÞm̃2

H; ð40Þ

where the first term on the right-hand side reflects the
canonical scaling and the second one is the anomalous
dimension, which reads

γm ¼ 1

16π2

�
2λH þ 6y2t −

9

2
g2 −

3

2
g02
�
: ð41Þ

More precisely, the coupling m̃2
H measures the distance

from the critical surface of the (almost) second-order
vacuum electroweak phase transition [79]. In (41), λ, yt,
g, and g0 are the quartic coupling of the Higgs field, top-
Yukawa coupling, SUð2Þ gauge coupling, and Uð1Þ gauge
coupling, respectively. Using the values of the couplings at
the Fermi scale, the anomalous dimension γm ≈ 0.027 is
much smaller than 2.
For the marginal couplings in (41), the scale dependence

is logarithmic. Neglecting their runnings the solution of
(40) reads

m̃2
H ¼ m̃2

0

�
k
M

�
−2þγm

; ð42Þ

where m̃0 is the initial value of the scalar mass term at a
reference scale M. For M being of the order of the Planck
scale, one has to set a very tiny mass term m̃2

0 ≃ 10−34M2

at the Planck scale in order to obtain the Higgs
mass m̃2

H ¼ m2
H=Λ2

EW ≃ 1 at the electroweak scale k ¼
ΛEW ≃Oð102Þ GeV. This is the gauge hierarchy problem.
It is directly related to the role of m̃2

H ¼ m2
H=k

2 being a
relevant coupling for the (approximate) fixed point of the
SM, with critical exponent θm ¼ 2 − γm.
A frequent discussion of the gauge hierarchy problem

relies on the fact that the one-loop correction to the scalar
mass involves a quadratic divergence as the UV cutoff is
sent to infinity. In perturbation theory, the observed Higgs
mass is given by the cancellation between the squared bare
mass and the quadratic divergence. The quadratic divergence
strongly depends on the cutoff scheme. It is not present for
dimensional regularization, while the momentum cutoff
regularization and the Pauli-Villars type cutoff yield different
values, depending on the precise implementation.
In terms of the RG, the quadratic divergence indicates

the position of the phase boundary in the space of bare
couplings. This boundary or “critical surface” separates the
symmetric and broken phases and corresponds to the
massless (critical) situation [73,79–84]. The position of
the phase boundary depends on the precise definition and
choice of the bare couplings and on the precise regulari-
zation. It changes under a coordinate change in “theory
space” if the latter is parametrized by the bare couplings.
Different choices of the cutoff scheme also correspond to a
coordinate transformation in theory space. In quantum field

theory, the precise choice of bare couplings is usually not of
much interest.
On the other hand, the deviation from the phase

boundary corresponds to a renormalized coupling. Its
behavior is independent of the precise choice of micro-
physics as regularizations and the precise definition of bare
couplings. This explains why the flow equation (19) only
involves renormalized couplings, while no trace of the
quadratic divergence appears. The vanishing of the right-
hand side reflects the basic property of a second-order
phase transition. No trajectory can cross the phase boun-
dary. Couplings on the critical surface stay on the critical
surface.

2. Quantum gravity effects

We next add the effects of the gravitational quantum
fluctuations in the range k ≫ M. The beta function of the
scalar mass becomes

βm ¼ −ð2 − γm − AÞm̃2
H: ð43Þ

Comparing with (40), we see that A corresponds to the
gravitational contribution to the anomalous dimension.
Neglecting for simplicity the small value of γm as compared
to A, the critical exponent of the scalar mass parameter
reads

θm ¼ −
∂βm
∂m̃2

H

����
at FP

¼ 2 − A

¼ 2 −
1

48π2M̃2
p�

�
20

ð1 − v0�Þ2
þ 1

ð1 − v0�=4Þ2
�
: ð44Þ

An important observation is that the sign of A is positive.
Gravitational fluctuations lower the value of the critical
exponent θm. As long as A stays smaller than 2, the scalar
mass term m̃2

H remains a relevant parameter, θm > 0. In this
case, the distance from the vacuum electroweak phase
transition, as measured by the value of the Fermi constant,
cannot be predicted. It is simply a free parameter specifying
the theory. A dramatic change occurs for A > 2. In this
event, the scalar mass term m̃2

H turns out to be an irrelevant
coupling. The flow trajectory is always toward the phase-
transition surface—an example of “self-organized critical-
ity.” If asymptotically safe gravity is realized in a model
leading to A > 2, it predicts that m̃2ðkÞ vanishes for k ¼ M.
This explains the tiny value of the ratio m̃2

HðkÞk2 ¼ m̃2
H,

evaluated at k ¼ M, which is required by the observed
Fermi scale m̃2

Hðk ¼ MÞ ¼ 10−34. It produces an even
stronger gauge hierarchy, namely, m̃2

Hðk ¼ MÞ ¼ 0. If
the vacuum electroweak phase transition would be an exact
second-order phase transition, any model with A > 2
would predict a vanishing Fermi scale.
The vacuum electroweak transition is not an exact

second-order phase transition. This is due to the running
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gauge and Yukawa couplings that prevent the realization of
exact scale symmetry in the effective low-energy theory
below the Planck mass. The dominant effect is believed
to be due to the running strong gauge coupling. Chiral
symmetry breaking induces a quark-antiquark condensate
hq̄qi. For the light quarks, this condensate sets a scale of the
order 100 MeV, implying a lower bound on the Fermi scale
of the same order of magnitude. The detailed effects of the
scale violation in the top-quark–Higgs-scalar sector are not
known quantitatively. If they are not substantially larger
than the effects of the light quark condensate, asymptoti-
cally safe quantum gravity coupled to the SM predicts aW-
boson mass around 100 MeV in case of A > 2. This is not
compatible with observation.
For A > 2, extensions would be needed, as discussed in

the resurgence mechanism [73]. This may involve either
new particles with masses near or below the Fermi scale or
a more complicated UV fixed point structure for quantum
gravity. We recall in this context that a definition of the
theory at the IR-fixed point for v0 (which becomes then the
effective UV fixed point) implies A > 4. The scalar mass
term is always irrelevant for this setting.
In Fig. 4, we show the dependence of the critical

exponent of the scalar mass term on the fixed-point value
of the Planck mass M̃p for N ¼ 4 and ΔN ¼ 0. It falls
below zero (A > 2) if the strength of gravity exceeds a
certain bound or M̃p becomes small enough. This behavior
extends to other values of ΔN, as shown in Fig. 1 where N
stands for 4þ ΔN. The red region in this figure occurs for
θm < 0, A > 2.
For large positive ΔN, the physical scalar metric fluc-

tuation can be neglected, yielding for the condition A ¼ 2
the relation

ð1 − v0Þ2 ¼
40z
3

: ð45Þ

In this approximation, the fixed-point relation between z
and 1 − v0 inferred from (18) for ∂tv0 ¼ 0 reads

ð1 − v0Þ þ zΔN − 1þ 20z
3ð1 − v0Þ

¼ 0: ð46Þ

With

ð1 − v0Þ2 ¼ ð1 − zΔNÞ2 − 20z
3

−
1

2
ð1 − zΔNÞ

×

�
1 − zΔN −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − zΔNÞ2 − 80z

3

r �
; ð47Þ

and

ð1 − zΔNÞ2 ¼ 30z; ð48Þ

the line A ¼ 2 occurs for

M̃2
p� ≈

1

64π2
ðΔN þ

ffiffiffiffiffiffiffiffiffiffiffiffi
30ΔN

p
Þ: ð49Þ

For large ΔN, this comes very close to the critical value
(33) for which the UV fixed point disappears. Only a small
region with negative critical exponent θm remains.

C. Quartic scalar coupling

We finally investigate the quantum gravity effects on the
quartic scalar coupling. The critical exponent of the quartic
scalar coupling is given by the beta function in linear order
in λ̃H, βλ ¼ −θλλ̃H,

θλ ¼ −
∂βλ
∂λ̃H

����
at FP

¼ −A

¼ −
1

48π2M̃2
p�

�
20

ð1 − v0�Þ2
þ 1

ð1 − v0�=4Þ2
�
: ð50Þ

The dependence of the critical exponent on M̃p is shown
in Fig. 5.
The irrelevance of the quartic coupling at the fixed point

λ̃H� ¼ 0 means that the coupling constant vanishes for k
above the Planck scale. In other words, the boundary
condition of the RG equation of the quartic coupling is
given by the fixed-point value λ̃H� ¼ 0 at kt close to the
Planck scale. With λ̃HðktÞ ¼ 0, the flow of λ̃HðkÞ can be
followed in the effective low-energy theory for k < kt.
Assuming that this IR flow is well approximated by the
SM, the mass of the Higgs boson can be predicted as a
function of the top-quark Yukawa coupling. The result of
this prediction [1] was mH ¼ 126 GeV with only a few
giga-electron-volts uncertainty. It agrees well with the
observed value of the Higgs boson mass mH ¼ 125 GeV.
In the flow equation for λ̃H, we have neglected effects of

Yukawa couplings and gauge couplings. They contribute to

FIG. 4. The critical exponent of the scalar mass θm as a function
of the fixed-point value of the Planck mass in the cases ΔN ¼ 0
and ΔN ¼ 10. The mass term becomes irrelevant in the region
where θm is negative (red-colored region in Fig. 1).
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the wave function renormalization, leading to a small
anomalous dimension ηϕ. Yukawa and gauge couplings
also shift the fixed point λ̃H� to a tiny nonzero value. For
λH� ≠ 0, the term proportional to λ2H in βλ contributes to the
anomalous dimension, as seen from the last term in (13).
This effectively enhances the anomalous dimension and
makes the critical exponent θλ more negative. A nonzero
fixed-point value λ̃H� could also be induced by nonminimal
scalar interactions involving higher derivatives that may be
generated by gravitational fluctuations. In any case, even
for nonzero λ̃H at the UV fixed point, this value will be
small. It therefore has only little impact on our results.
In summary, the negative sign of the critical exponent for

the quartic scalar coupling seems to be a rather robust
finding. For a given low-energy model, the mass of the
Higgs scalar is predictable in asymptotically safe quantum
gravity.

V. ROBUSTNESS OF RESULTS

In view of the far-reaching consequences of our findings
for the predictivity of quantum gravity for SM parameters,
some tests of the robustness of these results seem
appropriate. Possible errors are connected with a possibly
insufficient truncation of the exact flow equation. Typical
tests are the extension of the truncation and the sensitivity
to the choice of the infrared cutoff function. Gauge
dependence is a minor issue in our approach since we
are bound to employ a physical gauge fixing that only acts
on the gauge d.o.f. in the metric. Within this class of
physical gauge fixings, the dependence on the precise
gauge fixing is small [59,85]. At the present stage, the main
uncertainty concerns the fixed-point value of the dimen-
sionless Planck mass. We will see that truncation errors can
typically be compensated by a change of this value. The
error analysis will become more meaningful at a later stage
when the fixed-point value for the Planck mass is also

calculated. Nevertheless, our two main statements seem
rather robust:
(i) The quartic scalar coupling is an irrelevant parameter

at the UV fixed point.
(ii) There exists a range of fixed-point values for the

Planck mass for which the scalar mass term is also an
irrelevant parameter.

A. Extension of truncation

So far, we have analyzed the Einstein-Hilbert truncation
for the gravity sector. Extensions of the truncation are
possible in various directions. They are, however, restricted
by diffeomorphism symmetry of the effective action. One
possibility is the inclusion of higher-order curvature invar-
iants. Only the quadratic invariants influence the propaga-
tor of the metric fluctuations in flat space, which is the only
quantity involved for the computation of the flow of the
effective scalar potential. From the quadratic curvature
invariants, it is only the squared Weyl tensor that enters in
the transverse traceless mode of the metric propagator,
which constitutes the dominant graviton contribution.
Denoting by D the coefficient of the squared Weyl tensor,
the inverse graviton propagator becomes at the fixed point

G−1
g ¼ M̃2

p�
4

ðk2q2 − k4v0�Þ þ
D�
2
q4: ð51Þ

The flow is dominated by momenta q2 ≈ k2, such that D
becomes important only for

D� ≳ M̃2
p�
2

ð1 − v0�Þ: ð52Þ

A positive D� lowers the anomalous dimension A, while a
negative D� enhances it. The sign of A is not changed as
long as gravity is stable for positive G−1

g in the Euclidean
domain. The inclusion of D modifies the factor ð1 − v0Þ−2
in the first term of (22) to ½ð1 − v0Þ þ 2D=M̃2

p�−2. For large
D, this replaces M̃−2

p ð1 − v0Þ−2 by M̃2
p=ð4D2Þ. The crucial

property A > 0 also holds within the perturbatively renor-
malizable quartic gravity [86,87].
For a second point, we investigate a possible dependence

of the effective Planck mass on the scalar field, extending
the truncation by a nonminimal interaction between the
scalar field and the curvature,

Γk ¼ −
1

2

Z
x

ffiffiffi
g

p ðM2
p þ ξρÞR: ð53Þ

We consider here a constant ξ, i.e., assumed to be at its
fixed-point value. In the following, we derive the shift in
the fixed-point values of mH and λH, the changes in the
stability matrix, as well as new contributions due to the
mixing in the scalar sector. For a main result, we find that

FIG. 5. The critical exponent of the quartic coupling θλ as a
function of the fixed-point value of the squared Planck mass in
the cases ΔN ¼ 0, ΔN ¼ 10, and ΔN ¼ −10.
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the dependence of the critical exponents on the nonminimal
coupling is small as displayed in Fig. 6.
The flow equation (3) for the effective potential remains

valid if we replace M̃2
p → M̃2

p þ ξρ̃, v ¼ 2Ũ=ðM̃2
p þ ξρ̃Þ.

The additional dependence of v on ρ̃,

∂v
∂ρ̃ ¼ 2

M̃2
p þ ξρ̃

�
Ũ0 −

ξv
2

�
; ð54Þ

modifies the flow equation for the mass term m̃2
H ¼

∂Ũ=∂ρ̃jρ̃¼0 and the quartic coupling λH ¼ ∂2Ũ=∂ρ̃2jρ̃¼0

[88]. On the other hand, the flow equation for v0 ¼ 2Ṽ=M̃2
p

depends on ξ only indirectly through the dependence of the
scalar contribution π0 on m̃2

H.
We first neglect the mixing between the scalar modes,

which will be added below. The flow equation (19) for m̃2
H

gets extended to

∂tm̃2
H ¼ ð−2þ AÞm̃2

H −
ξAv0
2

−
3λ̃H

16π2ð1þ m̃2
HÞ2

: ð55Þ

Similarly, the flow equation for λH (20) becomes

∂tλ̃H ¼ Aλ̃H þ 2

M̃2
p

∂A
∂v
�
m̃2

H −
ξv0
2

�
2

−
2ξA

M̃2
p

�
m̃2

H −
ξv0
2

�
þ 3λ̃2H
4π2ð1þ m̃2

HÞ3
; ð56Þ

where all quantities are evaluated at ρ̃ ¼ 0 and we take
N ¼ 4 for the number of scalars in (13).
The fixed-point value of m̃2

H is now nonvanishing
(assuming A ≠ 2),

m̃2
H� ¼

1

A − 2

�
ξAv0�
2

þ 3λ̃H�
16π2ð1þ m̃2

H�Þ2
�
: ð57Þ

For positive ξ and positive or small λ̃H�, the origin at ρ̃ ¼ 0
is a local minimum only for A > 2. Similarly, the fixed-
point value for λ̃H is also nonzero. A negative value of λ̃H is
not an indication of instability. The Taylor expansion is not
valid for larger values of ρ̃ for which U would get negative
in a quartic approximation. If the last term ∼λ̃2H in (56) can
be neglected and if one can approximate m̃2

H� ≪ 1 in (57),
one has

λ̃H� ¼
C

Ã
; ð58Þ

with

C ¼ 8m̃4
H�

Av0�M̃2
p�

�
A − 2 −

∂ lnA
∂ ln v

�
; ð59Þ

and

Ã ¼ Aþ 3m̃2
H�

4π2Av0�M̃2
p�

�
4 − Aþ 2

∂ lnA
∂ ln v

�
: ð60Þ

This approximation breaks down as Ã comes close to zero.
For the full fixed-point solution of Eqs. (55) and (56), both
m̃2

H� and λ̃H� remain finite. For small ξ, one has m̃2
H� ∼ ξ,

λ̃H� ∼ ξ2, such that in lowest order in ξ one obtains

FIG. 6. Critical exponents (left) and fixed-point values (right) of the scalar mass term and quartic coupling as functions of the
nonminimal coupling ξ=M̃2

p�. For the dimensionless Planck mass, we take the value M̃p� ¼ 0.22. In the right-hand panel, we compare
the fixed-point values for the numerical solutions including all terms discussed here (solid line) and the approximated ones given in (61)
(dashed line). Importantly, the critical exponents, displayed in the left-hand panel, are almost independent of the nonminimal
coupling ξ=M̃2

p�.
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m̃2
H� ¼

ξAv0�
2ðA − 2Þ ;

λ̃H� ¼
2ξ2v0�
M̃2

p�

A − 2 − ∂ lnA
∂ ln v

ðA − 2Þ2 : ð61Þ

For the graviton approximation, one may use the simple
relation

∂ lnA
∂ ln v ¼ 2v0

1 − v0
: ð62Þ

The stability matrix T receives additional off-diagonal
entries for m̃2

H� ≠ 0, λ̃H� ≠ 0,

T ¼

0
BBB@

4 − A 1
4π2M̃2

p�ð1þm̃2
H�Þ2

0

B 2 − A − 3λ̃H�
8π2ð1þm̃2

H�Þ3
3

16π2ð1þm̃2
H�Þ2

E F −A − 3λ̃H�
2π2ð1þm̃2

H�Þ3

1
CCCA;

ð63Þ

where

B ¼ ξA
2

�
1þ ∂ lnA

∂ ln v
�
−
∂A
∂v m̃

2
H�

¼ ξA
2

�
1 −

2

A − 2

∂ lnA
∂ ln v

�
; ð64Þ

and

F ¼ 1

M̃2
p�

�
2ξA − 4

∂A
∂v
�
m̃2

H� −
ξv0�
2

��
þ 9λ̃2H�
4π2ð1þ m̃2

H�Þ4

¼ 2ξA

M̃2
p�

�
1 −

2

A − 2

∂ lnA
∂ ln v

�
: ð65Þ

Here, the second lines in (64) and (65) use the approxi-
mation (61). For E, one obtains

E ¼ 2

M̃2
p�

�
2ξ

∂A
∂v
�
m̃2

H� −
ξv0�
2

�
−
ξ2A
2

−
∂2A
∂v2

�
m2

H� −
ξv0�
2

�
2
�
−
∂A
∂v λH�; ð66Þ

which is of the order ξ2. The corrections from ξ are small as
long as

jBj
4π2M̃2

p�
< jð4 − AÞð2 − AÞj;

3jFj
16π2

< jAð2 − AÞj: ð67Þ

For an order of magnitude estimate, this holds for

jξj < jA − 2jπ2M̃2
p�: ð68Þ

Since for ξ ≠ 0 the scaling solutions for m̃2
H� and λ̃H� occur

for nonzero values, there is also a contribution to the flow
equation from the mixing in the scalar sector. This only
concerns a subleading term. For small ρ̃Ũ02=ðM̃2

p þ ξρ̃Þ, the
mixing contributes an additional term to π̃0,

Δð∂tŨÞ ¼ Δπ̃0
k4

¼ −ρ̃Ũ02H;

with

H ¼ 1þ Ũ0 þ 2ρ̃Ũ00 þ 3
4
ð1 − v

4
Þ

8π2ðM̃2
p þ ξρ̃Þð1 − v

4
Þ2ð1þ Ũ0 þ 2ρ̃Ũ00Þ2 ; ð69Þ

where we take ηg ¼ ηϕ ¼ 0. This does not contribute to
the flow of V or v0, but the contribution to the flow of
m̃2

H and λ̃H vanishes only for m̃2
H ¼ 0, λ̃H ¼ 0. One finds,

with H0 ¼ Hðρ̃ ¼ 0Þ,

Δð∂tm̃2
HÞ ¼ −H0m̃4

H; ð70Þ

and

Δð∂tλ̃HÞ ¼ −2H0m̃2
H λ̃H − m̃4

H
∂H
∂ρ̃
����
ρ̃¼0

: ð71Þ

For small ξ, this shifts the fixed-point value m̃2
H� by a small

amount approximately ξ2, while the shift in λ̃H� is approx-
imately ξ3. In leading order in ξ these shifts can be neglected.
The dominant contribution of the mixing effect to the

stability matrix T is a shift in the diagonal terms for δm̃2
H

and δλ̃H (not for δv),

A → A − 2H0m̃2
H�: ð72Þ

As discussed before, it vanishes for ξ → 0, m̃2
H� → 0. With

H0 ¼
1þ m̃2

H� þ 3
4
ð1 − v0�

4
Þ

8π2M̃2
p�ð1 − v0�

4
Þ2ð1þ m̃2

H�Þ2
; ð73Þ

we may neglect in leading order m̃2
H� in H0 and employ

Eq. (61) for m̃2
H� in (72). We observe that H0 is positive

such that A is enhanced for negative m̃2
H�. For A < 2, one

has m̃2
H� < 0 such that the critical exponent for the scalar

mass term moves closer to zero by the mixing effect.
The inclusion of the nonminimal coupling ξ further

modifies the off-diagonal parts in the inverse propagator of
the spin-0 metric fluctuation in (A24), such that
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1

2
U0ϕ →

1

2
ð−ξq2 þ U0Þϕ: ð74Þ

This effect induces a shift in the anomalous dimension,
adding to (72) a further piece,

A → A − 2H0m̃2
H� þ ΔAi; ð75Þ

with

ΔAv ¼ 0; ΔAm ¼ 3ξðξþ 2Þ
32π2M̃2

pð1 − v0Þ2
;

ΔAλ ¼
3ξð3ξþ 2Þ

16π2M̃2
pð1 − v0Þ2

: ð76Þ

Even if the fixed-point values of m̃2
H� and λ̃H� are zero, this

modification differs from zero as long as ξ ≠ 0.
A characteristic quantity for the field dependence of the

effective Planck mass is ξ=M̃2
p. For ξ=M̃2

p ≪ 1, the field
dependence is weak, while for ξ=M̃2

p ≳ 1, the Planck mass
varies very rapidly with the scalar field. Figure 6 displays
the dependence of the critical exponents on ξ=M̃2

p� by
evaluating the eigenvalues of the stability matrix (63)
including the shift (75) in the diagonal elements. We use
the value of the dimensionless Planck mass M̃p� ¼ 0.22 at
which we have the anomalous dimension A ≈ 2.78 for
vanishing ξ. The dominant effect arises from the nonzero
values of m̃2

H� and λ̃H�. In a realistic setting, also gauge and
Yukawa couplings influence these fixed-point values. If the
difference of m̃H� and λ̃H� from zero can be neglected, the
effect of ξ is much smaller, given by (76). For a main result,
we find that the dependence of the critical exponents on
ξ is small, supporting our conclusions from the previous
sections.

B. Regulator dependence

The functional flow equation is exact for an arbitrary
choice of the regulator functionRk. Provided thatRk obeys
the requirements for an efficient IR cutoff, with ∂tRk
decaying fast for high momenta, the results for observable
quantities should not depend on the choice of Rk. In any
practical calculation, they do, however, and this is due to
the choice of a truncation. This observation can be used for
a test of validity of a given truncation. The dependence on
Rk should disappear for a “perfect truncation,” and any
remaining dependence can be taken as some form of
measure for the error induced by the truncation.
For a general cutoff function, the graviton contribution

to the flow of the potential is given by the threshold
function l4

0,

π̃2 ¼
5k4

16π2
l4
0ð−v0Þ; ð77Þ

with l4
0ðw̃Þ defined in terms of the propagator Gðq2Þ as

l4
0ðw̃Þ ¼

8π2

k4

Z
q
∂tRkðq2ÞGðq2Þ

¼ 1

2

Z
∞

0

dxxðpðxÞ þ w̃Þ−1fðxÞrðxÞ; ð78Þ

with x ¼ q2=k2 and

pðxÞ ¼ xþ rðxÞ; rkðxÞ ¼
4Rk

M2
pk2

; ηM ¼ ∂tM2
p

M2
p
;

fkðxÞ ¼
∂tRk

Rk
¼ 2þ ηM − 2

∂ ln r
∂ ln x : ð79Þ

For the Litim cutoff, one takes

Rk ¼
M2

p

4
ðk2 − q2Þθðk2 − q2Þ; ð80Þ

with

fkðxÞrkðxÞ ¼ 2þ ηMð1 − xÞ ð81Þ

and

pðxÞ ¼
�
1 for x < 1;

x for x > 1:
ð82Þ

This results in the threshold function

l4
0ðw̃Þ ¼

�
1

2
þ ηM

12

�
ð1þ w̃Þ−1: ð83Þ

For ηM ¼ 2, corresponding to ηg ¼ 0, we recover (3).
For a general cutoff function, one replaces in the flow

equation for Ũ

ð1 − v0Þ−1 →
3

2
l4
0ð−v0Þ; ð84Þ

a similar replacement is performed for the scalar contri-
butions. For the anomalous dimension A, one has to replace

ð1 − v0Þ−2 →
3

2
l4
1ð−v0Þ; ð85Þ

with

l4
1ðw̃Þ ¼ −

∂l4
0ðw̃Þ
∂w̃ : ð86Þ

Since A is dominated by the graviton contribution, a good
estimate of the effect of a general cutoff function is the
multiplication of Eq. (22) by a factor f,
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f ¼ 3

2
l4
1ð−v0Þð1 − v0Þ2: ð87Þ

For the Litim cutoff, f ¼ 1. Correspondingly, the value of
M̃2

p� needed to realize a given A has to be multiplied by f.
This feature is not surprising. A dominant effect of a change
in the IR-cutoff function can be viewed as an effective
rescaling of k, which may be absorbed by a multiplicative
redefinition of k. The dimensionless ratio M̃2

p ¼ M2
p=k2 is

directly affected by such a rescaling. This property dem-
onstrates that our general results hold independently of the
precise choice of the cutoff function.
Let us investigate the regulator dependence numerically.

To this end, we use an exponential interpolating cutoff
function for the explicit regulator comparison

rintðx; b; nÞ ¼
ð1 − bxÞxn−1
expðxnÞ − 1

: ð88Þ

This cutoff function has the limits rintðx; b ¼ 1; n → ∞Þ ¼
rLitimðxÞ ¼ ðx−1 − 1Þθð1 − xÞ as well as rintðx; b ¼ 0;
n ¼ 1Þ ¼ rexpðxÞ ¼ ðexpðxÞ − 1Þ−1. We further use the
regulator at the values rintðx; b ¼ 1; n ¼ 2Þ as well as
rintðx; b ¼ 1

2
; n ¼ 1Þ. The results are displayed in Fig. 7.

One can see that the fact that the critical exponent of the
scalar mass θm ¼ 2 − A becomes negative for a certain
value of the dimensionless Planck mass is not changed. The
dominant effect is indeed a simple rescaling of M̃2

p�. For a
given model and a given truncation, M̃2

p� will depend
sensitively on the chosen cutoff function. For a valid
truncation, this cutoff dependence should drop out in the
final value or θm. A computation of the flow equation for
M̃2

p will be needed for this check.

VI. DISCUSSION

We have computed quantum gravity predictions for the
mass and couplings of the Higgs scalar within the asymp-
totic safety scenario. We consider the SM of particle
physics coupled to gravity, with possible extensions of
the particle content. The value of the dimensionless flowing
Planck mass at the fixed point, M̃2

p ¼ M2
pðkÞ=k2, is influ-

enced by the particle content of the model. We treat it
here as an unknown parameter, to be determined for any
given model.
Our main findings are the following:

(i) The quartic self-coupling λ̃H of the Higgs scalar is an
irrelevant coupling. Its value at the Planck scale is
predicted to be very close to zero. For a given low-
energy model below the Planck scale, where gravita-
tional contributions decouple, this initial value at the
Planck scale is mapped by the renormalization flow to
the value at the Fermi scale. The ratio between Higgs-
boson mass and top-quark mass is therefore predicted.
This prediction works well if the low-energy theory is
the SM. The consistency of other low-energy models
has to be tested.

(ii) The dimensionless mass term m̃2
H for the Higgs scalar

can be a relevant or an irrelevant coupling, depending
on the fixed-point value M̃2

p and on the d.o.f., as shown
in Fig. 1. If m̃2

H is relevant, the value of the Fermi scale,
or more precisely the ratio between Fermi scale and
Planck scale MW=Mp, cannot be predicted. For a
relevant m̃2

H, the gauge hierarchy is a free parameter. In
contrast, if m̃2

H is irrelevant, the model predicts that
nature is located on the critical surface of the vacuum
electroweak phase transition,with only a small deviation
induced by running gauge and Yukawa couplings.
Depending on themodel, thismay overpredict the gauge
hierarchy to be 10−40 instead of 10−34.

(iii) For a given particle content, as expressed by N, we
find a lower bound on the fixed-point value of M̃2

p if
N > −4.

These results extend to other quantum field theories
with scalar fields coupled to gravity, such as extensions
of the SM or grand unified theories. The gravitational
contribution to the critical exponents is universal. Quartic
scalar couplings are irrelevant parameters at the UV fixed
point.
Our findings are of high relevance for the interplay

between quantum gravity and particle physics. The validity
of approximations and the robustness of results should
therefore be critically questioned. First of all, quantum
gravity contributions to the effective scalar potential can be
performed in flat space, allowing for the full use of
Euclidean SO(4) symmetry or Lorentz symmetry for
Minkowski space. Second, our split of gravitational fluc-
tuations into physical modes and gauge modes, together
with a physical gauge fixing acting only on the gauge

FIG. 7. Critical exponent of the scalar mass term as a function
of the fixed-point value of the Planck mass for different
regulators. The Litim regulator is depicted in blue, the exponen-
tial regulator is in yellow, rintðx; b ¼ 1; n ¼ 2Þ is in green, and
rintðx; b ¼ 1

2
; n ¼ 1Þ is in red. The main effect is the expected

multiplicative factor in the value of M̃p�.
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modes, makes the contributions of different modes very
transparent. We find that the dominant contributions in the
gravitational sector come from the fluctuations of the
graviton or traceless transverse tensor fluctuations.
The quantity needed for a reliable computation of the

dominant graviton contribution is the exact propagator of
the graviton. This is not directly available, and at this point,
an approximation is made. In the Einstein-Hilbert trunca-
tion employed in the present paper, the inverse graviton
propagator is given by

G−1ðq2Þ ¼ M2
pq2

4
−
U
2
; ð89Þ

and the question arises if this is a reasonable approxima-
tion. The inverse graviton propagator at zero momentum is
given by the effective potential

G−1ðq2 ¼ 0Þ ¼ −
U
2
: ð90Þ

For a diffeomorphism invariant formulation, this is an exact
relation enforced by diffeomorphism symmetry [78]. The
right-hand side of the flow equation involves a momentum
integral that is dominated by momenta with q2 ≈ k2. We
may therefore define the parameter M2

pðkÞ by the graviton
propagator at q2 ¼ k2, more precisely by

M2
pðkÞ ¼

4

k2
ðG−1ðq2 ¼ k2Þ −G−1ðq2 ¼ 0ÞÞ: ð91Þ

This definition goes beyond the Einstein-Hilbert truncation
since the contribution of higher-derivative invariants as the
squared Weyl tensor can be included in G−1ðq2 ¼ k2Þ. A
similar definition was already used in Refs. [41,43–45,
48,50,52,53], and the contributions of higher-derivative
invariants were in particular investigated in Refs. [48,53].
Since we treat the fixed-point value of M2

pðkÞ=k2 as a free
parameter, we may reinterpret our results as reflecting the
definition (91). We note that pure graviton vertices do not
appear in the computation of the flow of the effective
potential. They would differentiate between different terms
in the gravitational sector. All this suggests that our
estimate of the dominant graviton contribution, which is
not affected by any gauge-fixing issues, is quantitatively
rather robust.
Another robust result is the contribution from the

measure sector (gauge fluctuations and ghosts) if physical
gauge fixing is employed. The measure contribution results
in a simple field-independent term for the flow of U. This
term is necessary in order to account for the correct
counting of physical d.o.f. The contributions from the
matter sector are well understood as well. These are the
well-tested standard contributions to the flow in flat space.
One can extend their contribution to include Yukawa and
gauge interactions with the Higgs field. As long as gauge

couplings and Yukawa couplings remain small in the UV
fixed point region, these interaction effects on the flow ofU
correspond to the standard perturbative beta function. The
effect of the matter fluctuations on the field dependence of
U is much smaller than the gravitational contribution.
As far as the critical exponents for λ̃H and m̃2

H are
concerned, the interactions in the matter sector give only
tiny corrections.
In the limit of a constant M̃2

p� and constant scalar wave
function renormalization, the only term that is perhaps
subject to somewhat larger truncation errors is the con-
tribution from the physical scalar fluctuations of the metric
π̃0;g. Unless strong cancellations occur, this contribution is
only a rather small fraction of the graviton, matter, and
measure contributions. The uncertainty in the computation
of this term will only result in a rather modest quantitative
uncertainty for our overall results.
Replacing for the scaling form of the coefficient of the

curvature scalar the constant M̃2
p� by a function Fðρ̃Þ of the

scalar field induces additional terms in the flow equation
for the mass term and quartic coupling, without affecting
much the anomalous dimension A. A small shift in the
fixed-point value of λ̃H and in the location of the critical
surface has no sizeable impact on the critical exponents.
Finally, the omitted flow of the scalar wave function
renormalization shifts θm from 2 − A to 2 − A − ηϕ and
θλ from −A to −A − 2ηϕ. This would be a sizeable effect
only if ηϕ is of a similar magnitude as A.
We conclude that at least our Euclidean computation of

the flow of the effective potential for the Higgs scalar seems
rather reliable. A computation directly in Minkowski space
along the lines discussed in Ref. [76] would be welcome,
but we do not expect important modifications as compared
to the Euclidean results. The scalar potential is particularly
robust with respect to analytic continuation since no
momenta are involved. The remaining big issue is the
determination of the fixed-point value of the dimensionless
Planck mass M̃2

p. This depends on v0, rendering the flow of
M̃2

p and v0 a coupled system. Only once the fixed point of
the combined system is found, it can be decided where a
model is situated in the plane of Fig. 1 or on the curves of
Figs. 2–5. Various computations give values of M̃2

p. In the
context of the present paper, the use of a physical gauge
fixing is appropriate, and results from a gauge invariant
formulation of the flow equation would be most welcome.
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APPENDIX: EFFECTIVE ACTION
AND FORMULATION

In this Appendix, we derive the flow equation for
the effective scalar potential (2) as an approximation to
the exact flow equation for the effective average action. The
exact flow [2,89–92] takes a simple one-loop form:

∂tΓk½Φ� ¼ 1

2
Tr½ðΓð2Þ

k ½Φ� þRkÞ−1∂tRk�: ðA1Þ

Here, Rk is an infrared regulator function, and ∂t ¼ k∂k.
The trace in (A1) sums over momenta and internal space
indices of a multifield Φ, and the matrix of second

functional derivatives Γð2Þ
k is the full inverse propagator

of Φ. For reviews, see Refs. [93–101]. We apply this
equation to a model of a singlet real scalar field and gravity
and derive the flow equation for the effective scalar field.
Generalizations for additional fields are found in the
main text.

1. Setup

We investigate an effective action of the type

Γk ¼ Γgravity
k þ ΓHiggs

k : ðA2Þ

In the gravity sector, we employ the Einstein-Hilbert
truncation

Γgravity
k ¼ −

M2
p

2

Z
d4x

ffiffiffi
g

p
Rþ Sgf þ Sgh; ðA3Þ

where Mp is the reduced Planck mass related to Newton’s
constant by M2

p ¼ 1=8πGN. The cosmological constant is
included in the scalar effective potential. The metric is
linearly expanded around a fixed background,

gμν ¼ ḡμν þ hμν; ðA4Þ

where ḡμν is a constant background metric and hμν is a
fluctuation field. We will later use a flat Euclidean back-
ground, ḡμν ¼ δμν. The gauge fixing and the ghost action
for diffeomorphism symmetry are given by

Sgf ¼
1

2α

Z
d4x

ffiffiffī
g

p
ḡμνΣμΣν;

Sgh¼−
Z

d4x
ffiffiffī
g

p
C̄μ

�
ḡμρ∇̄2þ1−β

2
∇̄μ∇̄ρþ R̄μρ

�
Cρ; ðA5Þ

where C and C̄ are ghost and antighost fields. A class of
general gauge fixings is given by

Σμ ¼ ∇̄νhνμ −
β þ 1

4
∇̄μh; ðA6Þ

where h ¼ ḡμνhμν is the trace mode. Bars denote covariant
derivatives, etc., formed with the background metric. Note
that there are two gauge-fixing parameters for diffeomor-
phism symmetry, α and β. The parameter β is dimension-
less, whereas α has mass dimension minus 2. For the
physical gauge fixing, they are given by β ¼ −1 and α → 0.
We first keep general α and β in order to see the particular
role of the physical gauge fixing explicitly.
Next, we turn to the effective action for the Higgs sector.

In the SM, the Higgs field is a component of the doublet
field, coupled to the SUð2ÞL and Uð1ÞY gauge fields as well
as to quarks and leptons. Near the UV fixed point, the
contributions from these couplings to the beta function are
smaller than the ones of the graviton. All essential points
can be understood by restricting the discussion to a single
real scalar field with Z2 symmetry as representing the
physical mode of the Higgs boson. The effective action
takes the standard form

ΓHiggs
k ¼

Z
d4x

ffiffiffi
g

p �
UðρÞ þ Zϕ

2
gμν∂μϕ∂νϕ

�
: ðA7Þ

We subsequently extend our findings to the SM or possible
extensions.
The effective potential UðρÞ depends only on the

invariant ρ ¼ ϕ2=2. The value of U at the minimum can
be identified with the cosmological constant. We are
interested in momenta much larger than the Fermi scale.
The expectation value of ϕ can be neglected in this range,
and we expand

U ¼ V þm2
Hρþ

1

2
λHρ

2 þ � � � ; ðA8Þ

wherem2
H is the mass term of the Higgs boson and λH is the

quartic coupling. The field-renormalization factor of ϕ is
denoted by Zϕ.

2. Physical metric fluctuations

A crucial quantity for the flow equation is the inverse
propagator, i.e., the matrix of second functional derivatives
of Γk. The physical understanding as well as calculational
simplicity are greatly enhanced if we split the metric
fluctuations into physical and gauge fluctuations [68]. In
flat space, ḡμν ¼ δμν, one can use a momentum space
representation.
Let us start with splitting the metric fluctuations into

hμν ¼ fμν þ aμν; ðA9Þ

where fμν are the physical metric fluctuations, which
satisfy the transverse constraint qμfμν ¼ 0. The physical
metric fluctuations can be decomposed into two indepen-
dent fields as
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fμν ¼ tμν þ sμν; ðA10Þ

where the graviton tμν is the transverse and traceless (TT)
tensor, i.e., qμtμν ¼ δμνtμν ¼ 0. The tensor sμν is given as a
linear function of a scalar field σ such that

sμν ¼
1

3
Pμνσ; ðA11Þ

where we define the projection operator

Pμν ¼ δμν −
qμqν
q2

: ðA12Þ

Similarly, the gauge modes or unphysical metric fluc-
tuations aμν are decomposed into a transverse vector mode
κμ satisfying qμκμ ¼ 0 and a scalar mode u. In summary,
the metric fluctuations (A9) are parametrized by

fμν ¼ tμν þ
1

3
Pμνσ;

aμν ¼ iðqμκν þ qνκμÞ þ
qμqν
q2

u: ðA13Þ

Using the linear combinations

σ ¼ 3

4
ðhþ q2sÞ; u ¼ 1

4
ðh − 3q2sÞ; ðA14Þ

we obtain the York decomposition [102] of the fluctuation
field

hμν ¼ tμν þ iðqμκν þ qνκμÞ

−
�
qμqν −

1

4
ημνq2

�
sþ 1

4
ημνh; ðA15Þ

where h ¼ δμνhμν. We see that the scalar modes s and h in
the York decomposition are given as a mixture of
the physical scalar mode σ and the gauge mode u. The
connection of the physical metric fluctuations fμν to the
gauge invariant Bardeen potentials generally used in
cosmology can be found in Ref. [68].
The decomposition yields Jacobians that read

Jgrav ¼ ½det0ð1Þðq2Þ�1=2; Jgh ¼ ½det00ð0Þðq2Þ�−1; ðA16Þ

where a prime denotes a subtraction of the zero eigenmode.
These contributions are taken into account by introducing
auxiliary fields

Jgrav ¼
Z

DχDζDζ̄

× exp

�
−
Z
q

�
1

2
χμðq2Þ0χμ − ζ̄μðq2Þ0ζμ

�	
; ðA17Þ

Jgh ¼
Z

Dφ̄Dφ exp

�
−
Z
q
φ̄ðq2Þ0φ

�
; ðA18Þ

where χμ is a real bosonic vector field, ðφ̄;φÞ are complex
bosonic scalar fields, and ðζ̄μ; ζμÞ are vector anticommuting
ghosts.
In flat space, the matrix of second functional deriva-

tives Γð2Þ
k becomes block diagonal in the different

representations of the Lorentz group, e.g., tμν, κμ, and
the scalar fields (ϕ, σ, u). We will see that for the
physical gauge, β ¼ −1 and α → 0, it also becomes block
diagonal in the physical fluctuations and gauge fluctua-
tions. Thus, the scalar sectors decouple into separate
sectors of ðϕ; σÞ and the gauge mode u. Finally, for a
vanishing expectation value of ϕ, the physical scalar
sector becomes also block diagonal since σ and ϕ belong
to different representations of the Z2 symmetry. This
reflects the different representations of the Higgs doublet
and the singlet contained in the metric.
For the tμν-mode, we get

ðΓð2Þ
ðttÞÞ

μνρσ ¼ M2
p

4

�
q2 −

2U
M2

p

�
PðtÞμνρσ; ðA19Þ

where the TT-projection operator reads

PðtÞμνρσ ¼ 1

2
ðPμρPνσ þ PμσPνσÞ − 1

3
PμνPρσ: ðA20Þ

The Hessian for κμ is given by

ðΓð2Þ
ðκκÞÞ

μν ¼ 1

α
q2½q2 − αU�PðvÞμν; ðA21Þ

with PðvÞ the projection operator on the vector mode,
PðvÞ

μ
μ ¼ 3.

In the ðσ; u;ϕÞ-basis, the Hessian for the scalar modes
becomes

Γð2Þ
ð00Þ ¼

0
BBB@

U0ϕ
2

ðΓð2Þ
ð00ÞÞgrav

U0ϕ
2

U0ϕ
2

U0ϕ
2

Zϕq2 þU0 þ 2ρU00

1
CCCA;

ðA22Þ

where the spin-0 gravitational part is given by the 2 × 2
matrix
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ðΓð2Þ
ð00ÞÞgrav ¼

0
B@−M2

p

6



q2 − U

2M2
p

�
þ ðβþ1Þ2

16α q2 U
4
þ ðβþ1Þðβ−3Þ

16α q2

U
4
þ ðβþ1Þðβ−3Þ

16α q2 − U
4
þ ðβ−3Þ2

16α q2

1
CA: ðA23Þ

The choice of the gauge parameter β ¼ −1 eliminates the
off-diagonal terms in the matrix (A23). Furthermore, the σ-
mode becomes independent of α. Thus, the whole sector of
physical metric fluctuations becomes independent of α. For
the choice β ¼ −1, the gauge fixing function (A6) becomes
Σμ ¼ ∇̄νhνμ. Therefore, the choice β ¼ −1 is a gauge
fixing for which the gauge ∇̄νhνμ ¼ 0 satisfies the trans-
verse condition within the Faddeev-Popov method.
Taking furthermore the limit α → 0, and therefore

realizing the physical gauge, the u-mode, i.e., the lower
right element of the matrix (A23), is dominated by q2=α. In
this limit, the finite part of this element (which involves U)

no longer contributes after the inversion of (Γð2Þ
k þRk).

The same thing holds for the mixing given as U0ϕ=2 with
the physical modes in the 3 × 3 matrix (A22). For the
physical gauge, one therefore deals with a decoupled gauge
mode with inverse propagator q2=α and two physical
scalars with inverse propagator matrix

ðΓð2Þ
ð00ÞÞph ¼

0
B@−M2

p

6



q2 − U

2M2
p

�
U0ϕ=2

U0ϕ=2 Zϕq2 þ U0 þ 2ρU00

1
CA:

ðA24Þ

Finally, for α → 0, the inverse propagator for the gauge-
vector mode also becomes independent of U,

ðΓð2Þ
k Þμνκκ ¼

q4

α
PðvÞμν: ðA25Þ

We conclude that the total contribution of the gauge modes
(vector þ scalar) gives a contribution that is independent of
ϕ and independent of all parameters in the effective action.
A similar property holds for the ghost contribution and

the contribution from the Jacobians, (A17) and (A18). For
an explicit computation, we decompose the ghost field as

Cμ ¼ C⊥
μ þ iqμC; C̄μ ¼ C̄⊥

μ þ iqμC̄; ðA26Þ

where C⊥
μ (C̄⊥

μ ) is the transverse (anti)ghost field and C (C̄)
is the scalar (anti)ghost field. The Hessians for the ghost
fields is

ðΓð2Þ
ðC̄⊥C⊥ÞÞ

μν ¼ −q2PðvÞμν;

Γð2Þ
ðC̄CÞ ¼

�
2 −

1þ β

2

�
q4: ðA27Þ

We have demonstrated the decoupling of the gauge
fluctuations for the physical gauge choice for the particular
case of a flat background geometry. This property holds
actually for a general background geometry, as advocated
in Ref. [59].

3. Flow generator from physical fluctuations

Let us next investigate the structure of the flow equation
in case of the decomposition presented in the previous
subsection. Since the sector of physical fluctuations decou-
ples from the ones for the gauge modes, we can treat their
contributions separately, provided we choose a cutoff
function that respects this decomposition. This is achieved
by a block-diagonal cutoff scheme with a physical cutoff

RðphÞ
k that only acts on the fluctuations fμν and ϕ and a

gauge cutoff ∼α−1RðgÞ
k that only involves the gauge modes

of the metric. The contributions of the gauge fluctuations
can be combined with the contributions of ghosts and
Jacobians to a total measure contribution. We write the
general structure as

∂tΓk ¼ ζk ¼ πk þ ηk; ðA28Þ

with πk the physical mode contribution and ηk the measure
contribution.
For flat spacetime, we employ cutoff functions that

replace for each mode q2 by Pkðq2Þ ¼ q2 þ Rkðq2Þ. This
can be generalized by replacing q2 with an appropriate
covariant differential operator. From the TT-mode tμν, one
finds a contribution

π2 ¼
1

2
Trð2Þ

∂tRk

Γð2Þ
k þRk

����
tt

¼ 5

2

Z
q

∂tðM2
pRkÞ

M2
pðPk − k2vÞ : ðA29Þ

Here,
R
q ¼ ð2πÞ−4 R d4q, and the factor 5 comes from the

trace of PðtÞ, corresponding to the five independent d.o.f. in
tμν. The dimensionless quantity vðρÞ is defined as

vðρÞ ¼ 2UðρÞ
M2

pk2
: ðA30Þ

The contribution of the two physical scalar fluctuations
takes the form
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π0 ¼
1

2

Z
q
∂̃t ln

�
3ρU02

þ
�
M2

pPk −
U
2

�
ðZϕPk þ U0 þ 2ρU00Þ

	
; ðA31Þ

where ∂̃t is the logarithmic derivative k∂k acting only on
M2

pPk and ZϕPk, not on U or ρ. The mixing effects are
small for the range of ρ where

3ρU02 ≪
�
M2

pPk −
U
2

�
ðZϕPk þU0 þ 2ρU00Þ: ðA32Þ

In this range, π0 ¼ π0;g þ π0;ϕ decouples into two separate
parts. The gravitational scalar contributes

π0;g ¼
1

2

Z
q

∂tðM2
pRkÞ

M2
pðPk − k2v=4Þ : ðA33Þ

This contribution is similar to the tensor contribution π2. It
is suppressed by a factor 1=5, reflecting the single d.o.f.,
and a smaller enhancement of the denominator for positive
v. The contribution of ϕ,

π0;ϕ ¼ 1

2

Z
q

∂tðZϕRkÞ
ZϕPk þU0 þ 2ρU00 ; ðA34Þ

is the standard expression for a real scalar theory. For the
full SM, it will be supplemented by contributions from the
Goldstone directions, the gauge bosons, and fermions.

4. Measure contribution

We next turn to the measure contribution ηk. We have
already seen that for a physical gauge fixing it is indepen-
dent of ρ and U. This contribution depends therefore only
on the background metric. We will establish that the total
measure contribution takes for physical gauge fixing the
simple overall form

ηk ¼ −
1

2
Trð1Þ

∂tPkðD1Þ
PkðD1Þ

−
1

2
Trð0Þ

∂tPkðD0Þ
PkðD0Þ

; ðA35Þ

with D1 and D0 appropriate differential operators formed
with the background metric. For a general metric, they take
the following forms:

D1 ¼ −∇̄2 −
R̄
4
; D0 ¼ −∇̄2 −

R̄
4
: ðA36Þ

Such a simple form has been proposed in Ref. [59], based on
a direct regularization of the Faddeev-Popov determinant.
Let us explicitly see that the contribution of the gauge

modes and ghosts are given by (A35) in the present setup.
We first look at the contributions from the spin-1 gauge and
ghost modes and the auxiliary field:

η1 ¼
1

2
Trð1Þ

∂tRk

Γð2Þ
k þRk

�����
κκ

− Trð1Þ
∂tRk

Γð2Þ
k þRk

�����
C̄⊥C⊥

þ 1

2
Trð1Þ

∂tRk

Γð2Þ
k þRk

�����
χχ

− Trð1Þ
∂tRk

Γð2Þ
k þRk

�����
ζ̄ζ

: ðA37Þ

The last two terms on the right-hand side are the con-
tributions from the Jacobian (A17) associated with the
gauge mode κμ. For α → 0, the transverse vector metric
fluctuation and the contributions from the Jacobian become

δð1Þk ¼ lim
α→0

1

2
Trð1Þ

∂tRk

Γð2Þ
k þRk

�����
κκ

þ 1

2
Trð1Þ

∂tRk

Γð2Þ
k þRk

�����
χχ

− Trð1Þ
∂tRk

Γð2Þ
k þRk

�����
ζ̄ζ

¼ 1

2
Trð1Þ

∂tPk

Pk
: ðA38Þ

The contribution from the vector ghost mode takes the form

−ϵð1Þk ¼ −Trð1Þ
∂tRk

Γð2Þ
k þRk

����
C̄⊥C⊥

¼ −Trð1Þ
∂tPk

Pk
: ðA39Þ

One finds a simple relation between the contributions
from the gauge mode and the ghost field [59],

ϵð1Þk ¼ 2δð1Þk : ðA40Þ
The total contribution from spin-1 gauge modes is given by

η1 ¼ δð1Þk − ϵð1Þk ¼ −
1

2
Trð1Þ

∂tPk

Pk
: ðA41Þ

A different normalization of the vector field does not
change this result. If we redefine the transverse vector
metric fluctuation as κ̃μ ¼

ffiffiffiffiffi
q2

p
κμ, the contributions from

the Jacobian in (A37) are eliminated. Instead, the contri-
butions from the transverse vector metric fluctuation (A38)
should be multiplied by a factor 1=2. Consequently, the
contributions from the spin-1 modes yield the result (A41)
independently of the field normalization.
Next, we discuss the contributions from the spin-0

modes involved in ηk. We have

η0 ¼
1

2
Trð0Þ

∂tRk

Γð2Þ
k þRk

�����
gauge

− Trð0Þ
∂tRk

Γð2Þ
k þRk

�����
C̄C

þ Trð0Þ
∂tRk

Γð2Þ
k þRk

�����
φ̄φ

: ðA42Þ

The last term on the right-hand side corresponds to the
contribution from the auxiliary fields for the Jacobian
(A18) associated with the spin-0 ghost mode. Here, we
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denote the first term on the right-hand side corresponding
to the gauge scalar mode of the metric fluctuation as

δð0Þk ¼ lim
α→0

1

2
Trð0Þ

∂tRk

Γð2Þ
k þRk

�����
gauge

¼ 1

2
Trð0Þ

∂tPk

Pk
: ðA43Þ

The spin-0 ghost and the auxiliary fields give

−ϵð0Þk ¼ −Trð0Þ
∂tRk

Γð2Þ
k þRk

�����
C̄C

þ Trð0Þ
∂tRk

Γð2Þ
k þRk

�����
φ̄φ

¼ −Trð0Þ
∂tPk

Pk
: ðA44Þ

Within the spin-0 modes, a relation similar to (A40)
holds, i.e.,

ϵð0Þk ¼ 2δð0Þk : ðA45Þ
The total spin-0 contribution from the gauge and the ghost
modes is

η0 ¼ δð0Þk − ϵð0Þk ¼ −
1

2
Trð0Þ

∂tPk

Pk
: ðA46Þ

Again, we may redefine the gauge scalar mode as
ũ ¼ u=

ffiffiffiffiffi
q2

p
; the contribution from the gauge scalar mode

(A43) has to bemultiplied by the factor 2. On the other hand,
the contributions from the Jacobian corresponding to the
gauge scalar mode are modified correspondingly. Therefore,
the total contributions from the gauge scalar mode and the
contributions from the Jacobian do not change from (A43),
and accordingly the relation (A40) holds.
In a flat background, the contributions from the gauge

modes are given by

ηk ¼ η1 þ η0; ðA47Þ
with

η1 ¼ −
3

2

Z
q

∂tPkðq2Þ
Pkðq2Þ

; η0 ¼ −
1

2

Z
q

∂tPkðq2Þ
Pkðq2Þ

; ðA48Þ

since the differential operators D1 and D0 are simply given
by q2 multiplied with appropriate projectors.

5. Flow of the scalar potential

To summarize, the flow generator (A28) consists of the
four components

ζk ¼ π2 þ π0 þ η1 þ η0: ðA49Þ
With the approximation (A32), we have π0 ¼ π0;g þ π0;ϕ.
In the high-momentum range and for constant M2

p and Zϕ

and small v, all fluctuations behave as for massless
particles, with contributions ∼

R
qð∂tPkÞ=Pk. One can easily

count the d.o.f.: The physical modes (π2 þ π0;g þ π0;ϕ)
have 7 ¼ 5þ 1þ 1 d.o.f. From these degrees are sub-
tracted the 4 ¼ 3þ 1 d.o.f. from (η1 þ η0). The remaining
7 − 4 ¼ 3 d.o.f. correspond to the three propagating modes
of the system, namely, the two helicities from the graviton
and 1 d.o.f. from the real scalar.
We finally evaluate the explicit form of the flow

generator (A28) and (A49) for a flat background and
consider a constant scalar field. Dividing out a total volume
factor, ζk generates directly the flow of the effective
potential U,

∂tU ¼ π̃2 þ π̃0 þ η̃1 þ η̃0: ðA50Þ

We employ the Litim-type cutoff function [77] for the
regulator

Rk ¼ ðk2 − p2Þθðk2 − p2Þ: ðA51Þ

With this regulator, one can perform the momentum inte-
grations analytically and obtain the explicit form of the beta
functions. Verifying that the δ function in ∂tRk does not
contribute, we can use ∂tPk ¼ ∂tRk ¼ 2k2θðk2 − p2Þ. The
momentum integrations of Eqs. (A29), (A31), and (A48)
yields the flow equation (3) for the effective potential,
with η̃k ¼ η̃0 þ η̃1. The measure contributions are simply
given by

η̃1 ¼ −
3k4

32π2
; η̃0 ¼ −

k4

32π2
: ðA52Þ
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