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We zoom in on the microscopic dynamics for fermions and quantum gravity within the asymptotic-
safety paradigm. A key finding of our study is the unavoidable presence of a nonminimal derivative
coupling between the curvature and fermion fields in the ultraviolet. Its backreaction on the properties of
the Reuter fixed point remains small for finite fermion numbers within a bounded range. This constitutes a
nontrivial test of the asymptotic-safety scenario for gravity and fermionic matter, additionally supple-
mented by our studies of the momentum-dependent vertex flow which indicate the subleading nature of
higher-derivative couplings. Moreover our study provides further indications that the critical surface of the
Reuter fixed point has a low dimensionality even in the presence of matter.
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I. INTRODUCTION

In the search for a quantum theory of gravity that is
viable in our Universe, the existence of fermionic matter
must be accounted for. Our strategy to achieve this is based
on a quantum field theoretic framework that includes the
metric field and fermion fields at the microscopic level.
Such a setting requires an ultraviolet completion or
extension of the effective field theory framework within
which a joint description of gravity and matter is possible
up to energies close to the Planck scale. Asymptotic safety
[1,2] is the idea that scale invariance provides a way to
extend the dynamics to arbitrarily high momentum scales
without running into Landau poles which would indicate a
triviality problem. Moreover, scale invariance is a powerful
dynamical principle that is expected to fix all but a finite
number of free parameters in an infinite dimensional space
of theories. It can be reached at a fixed point of the
renormalization group (RG), which can be free (asymptotic
freedom) or interacting (asymptotic safety). Compelling
indications for the existence of the asymptotically safe
Reuter fixed point in four-dimensional gravity have been
found, e.g., in [3–14]. For recent reviews and introductions
including a discussion of open questions, see [15–19].

A central part of the interplay of the StandardModel with
gravity is the impact of quantum gravity on the microscopic
dynamics for fermions as well as the corresponding “back-
reaction” of fermionic matter on the quantum structure of
spacetime. In line with the observation that asymptotically
safe quantum gravity could be near perturbative [20,21] or
“as Gaussian as it gets” [14,22–24], studies of fermion-
gravity systems follow a truncation scheme by canonical
power counting. Furthermore, the chiral structure of the
fermion sector of the Standard Model is a key guiding
principle. Thus, the leading-order terms according to
canonical power counting have been explored in the sector
of chirally symmetric fermion self-interactions [25–27],
and fermion-scalar interaction sector [27,28]. These are
dimension-6 and dimension-8 operators, respectively.
Explicitly chiral-symmetry-breaking interactions, includ-
ing a mass term and two dimension-5, nonminimal cou-
plings of fermions to gravity [29], have been studied. The
effect of quantum gravity on a Yukawa coupling of
fermions to scalars has been studied in [27,28,30–34].
Conversely, the impact of fermionic fluctuations on the
Reuter fixed point has been explored in [29,35–40]. An
asymptotically safe fixed point exists in all of these studies,
as long as the fermion number is sufficiently small.
Moreover, all operators that have been explored follow
the pattern that canonical dimensionality is a robust
predictor of relevance at the interacting fixed point.
Further, they confirm the conjecture that asymptotically
safe quantum gravity could preserve global symmetries
[27], at least in the Euclidean regime. Thus, all symmetry-
breaking interactions can be set to zero consistently.
Additionally, interacting fixed points could, but need not
exist for these, as in the case of the Yukawa coupling
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[27,28,30–34]. In contrast, the interacting nature of asymp-
totically safe gravity percolates into the symmetric sector,
where interactions can typically not be set to zero con-
sistently [27,41]. Hence, their backreaction on the asymp-
totically safe fixed point could be critical. Further, this
sector is a potential source of important constraints on the
microscopic gravitational parameter space: Strong gravity
fluctuations could trigger new divergences in the matter
sector, manifesting themselves in complex fixed-point
values for matter interactions. The corresponding bound
on the gravitational parameter space that separates the
allowed, weakly coupled gravity regime from the forbidden
strongly coupled regime, is called the weak-gravity bound
[27,28,42].
In Table I we provide an overview over interactions in

the fermion sector that have been explored in an asymp-
totically safe context. The table contains a crucial gap,
namely nonminimal, chirally symmetric interactions. This
is the sector that we will begin to tackle in this paper. For an
analogous study in the scalar sector see [43].
As our key result we find a continuation of the

asymptotically safe Reuter fixed point to finite fermion
numbers that passes a nontrivial test by remaining robust
under a crucial extension of the approximation to the full
dynamics. Moreover, we find further indications that the
critical hypersurface of the Reuter fixed point has a low
dimensionality also in the presence of matter.
This paper is structured as follows: In Sec. II, we provide

an overview of the setup, and specify the approximation to
the full dynamics that we will explore in the following. In
Sec. III we discuss in some detail how to derive the beta
functions in our setting. In particular, we discuss the
relation of the derivative expansion to the projection at
finite momenta. Section IV provides an overview of the
fixed-point results for Nf ¼ 1, which are representative for
the results at small fermion numbers. We discuss tests of the
robustness of the fixed point, the impact of the newly
included nonminimal derivative interaction on the fixed-
point results in a smaller truncation, and the feature of
effective universality. Section V contains a discussion of

structural aspects of the weak-gravity bound for cubic beta
functions and highlights that no such bound exists for the
nonminimal derivative interaction in the regime of gravi-
tational parameter space where our truncation remains
viable. In Sec. VI we extend our investigations to
Nf ≫ 1, and discuss the continuation of the Reuter fixed
point to larger fermion numbers. In Sec. VII we provide a
short summary of our key results and highlight possible
routes forward in gravity-matter systems in an outlook.
Appendix A includes a general derivation of the form of the
flow equation for the dimensionless effective action. This
form can be used to directly derive dimensionless beta
functions, in contrast to the usual procedure of only
introducing dimensionless quantities after a truncation
has been specified.

II. SETUP

The system we analyze contains a gravitational sector
and a matter sector with chiral fermions. We aim at deriving
the beta functions in this system, and will employ the well-
suited functional renormalization group. It is based on the
flow equation for the scale-dependent effective action, the
Wetterich equation [44–46],

_Γk½Φ; ḡ� ¼ 1

2
STr½ðΓð2Þ

k ½Φ; ḡ� þ Rk½ḡ�Þ−1 _Rk½ḡ��: ð1Þ

The “superfield”Φ is simply a collection of all fields in our
system,

ðΦAÞ ¼ ðhμνðxÞ;ψ iðxÞ; ψ̄ iðxÞ; cμðxÞ; c̄μðxÞÞ; ð2Þ

where Einstein’s summation convention over the “super-
index” A contains a summation over discrete spacetime,
spinor and flavor indices and an integration over the
continuous coordinates. Here Rk is a scale-dependent
regulator that implements a momentum-shell wise integra-
tion of quantum fluctuations and the dot in _Γk refers to
a derivative with respect to t ¼ ln k=k0, the RG “time”

TABLE I. We list already investigated interactions in gravity-fermion systems in order of increasing canonical dimension, and specify
whether they are relevant at the Reuter fixed point. Further, we highlight that all but one interactions that respect chiral symmetry, i.e.,
allow a separate phase transformation of left-handed and right-handed fermions, are necessarily nonzero at the free fixed point. A subset
of these exhibits a weak-gravity bound, whereas interactions that feature a free fixed point cannot give rise to a weak-gravity bound.

Reference Interaction Dimension Relevant Symmetry Free fixed point Weak-gravity bound

[29] ψ̄ψ 3 Yes No χ sym. Yes No
[27] ψ̄ψϕ 4 Both possible No χ sym. Yes No
[29] ψ̄∇2ψ 5 No No χ sym. Yes No
[29] Rψ̄ψ 5 No No χ sym. Yes No
This work Rμνψ̄γμ∇νψ 6 No χ sym. No No
[25–27] ðψ̄γμγ5ψÞ2 6 No χ sym. No No
[25–27] ] ðψ̄γμψÞ2 6 No χ sym. Yes No
[27,28] ψ̄ð=∇ψÞð∂ϕÞ2, ψ̄γμð∇νψÞð∂νϕÞð∂μϕÞ 8 No χ sym. No Yes
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with k0 an arbitrary reference scale. The IR regulator Rk
enters the generating functional in the form of a term that is
quadratic in the fluctuation fields and renders the Wetterich
equation UV and IR finite. Specifically, we choose a
Litim-type cutoff [47] with appropriate factors of the
wave-function renormalization for all fields. Next to the
gauge-fixing term for the metric fluctuations, it is a second
source of breaking of diffeomorphism invariance. It must
be set up with respect to an auxiliary metric background
ḡμν, which provides a notion of locality and thereby enables
a local form of coarse graining. In the main part of this
paper we focus on a flat background,

ḡμν ¼ δμν; ð3Þ

while in this section we will keep ḡμν arbitrary for
pedagogical reasons. For introductions and reviews of
the method, see, e.g., [48–51]; specifically for gauge
theories and gravity, see, e.g., [15,52,53].
The Wetterich equation provides a tower of coupled

differential equations for the scale dependence of all
infinitely many couplings in theory space. In practice, this
has to be truncated to a (typically) finite-dimensional tower.
Let us briefly summarize how we proceed, before providing
more details. To construct our truncation, we define a
diffeomorphism-invariant “seed action.” Next, we expand
the terms in this seed action to fifth order in metric
fluctuations, defined as

hμν ¼ ḡμν − gμν: ð4Þ

This corresponds to an expansion of the seed action in
vertices. At this point all terms in the seed action, except
those arising from the kinetic term for fermions, come with
one of the couplings of the seed action. We next take into
account that in the presence of a regulator and gauge fixing,
the beta functions for those couplings generically differ,
when extracted from different terms. Accordingly, we
introduce a separate coupling in front of each term in
the expanded action. This provides the truncation which we
analyze in the following. To close the truncation, the
couplings of higher-order vertices are partially identified
with those of lower-order ones.
In more detail, these steps take the following form: Our

seed action reads

S ¼ Sgrav þ Sgh þ Smat: ð5Þ
Classical gravity is described by the Einstein-Hilbert
action SEH,

SEH ¼ −
1

16πḠN

Z
d4x

ffiffiffi
g

p ðR − 2λ̄Þ: ð6Þ

In order to tame the diffeomorphism symmetry of gravity,
we choose a gauge-fixing condition Fμ,

Fμ ¼
�
ḡμκD̄λ −

1þ β

4
ḡκλD̄μ

�
hκλ; β ¼ 0: ð7Þ

The gauge choice is incorporated using the gauge-fixing
action Sgf ,

Sgf ¼
1

32πḠNα

Z
d4x

ffiffiffī
g

p
FμḡμνFν; α → 0: ð8Þ

To take care of the resulting Faddeev-Popov determinant,
we use ghost fields cμ and c̄ν with the appropriate ghost
action Sgh,

Sgh ¼
Z

d4x
ffiffiffī
g

p
c̄μ

δFμ

δhαβ
Lcgαβ; ð9Þ

where Lcgαβ is the Lie derivative of the full metric gμν in
ghost cμ direction,

Lcgαβ ¼ 2ḡρðαD̄βÞcρ þ cρD̄ρhαβ þ 2hρðαD̄βÞcρ: ð10Þ

In the following, we choose the Landau gauge, i.e., α → 0.
By employing a York decomposition of hμν we see that this
choice of gauge-fixing parameters leads to contributions
from only a transverse-traceless (TT) mode hTTμν and a trace
mode hTr,

hμν ¼̂hTTμν þ 1

4
ḡμνhTr; ð11Þ

where the TT mode satisfies D̄μhTTμν ¼ 0 and ḡμνhTTμν ¼ 0,
while the trace mode is given by hTr ¼ ḡμνhμν. All other
modes drop out of the flow equation once it is projected
onto monomials with nonvanishing powers of the field. It is
important to note that the TT mode is present in any gauge
and to linear order in hμν a gauge invariant quantity. Thus,
for external metric fluctuations we exclusively consider the
TT mode. For internal metric fluctuations, also the remain-
ing trace mode is taken into account. We summarize the
purely gravitational parts of the action as Sgrav,

Sgrav ¼ SEH þ Sgf : ð12Þ

Next we turn to the chiral fermions. Their minimal
coupling to gravity is via the kinetic term Skinmat,

Skinmat ¼
XNf

i¼1

Z
d4x

ffiffiffi
g

p
ψ̄ i∇ψ i: ð13Þ

For the construction of the covariant derivative for fer-
mions, we use the spin-base invariance formalism [54–56].
For our purposes, this is equivalent to using the vierbein
formalism with a Lorentz symmetric gauge. Upon expan-
sion in hμν, this minimal interaction between fermions and
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gravity gives rise to an invariant linear in derivatives. There
are several invariants containing terms of third order in
derivatives and canonical mass dimension, namely:

S∇3

mat ¼
XNf

i¼1

Z
d4x

ffiffiffi
g

p ðκ̄Rψ̄ i=∇ψ i þ τ̄ðDμRÞψ̄ iγμψ
i

þ ξ̄ψ̄ i=∇3ψ i þ σ̄Rμνðψ̄ iγμ∇νψ
i − ð∇νψ̄

iÞγμψ iÞÞ;
ð14Þ

where each of the invariants respects the Osterwalder-
Schrader positivity of the Euclidean action. Out of these
four invariants, the ones corresponding to κ̄ and τ̄ do not
contribute linearly to an external hTTμν , as R does not contain
a transverse-traceless part to linear order. In the following,
we restrict ourselves to the nonminimal coupling σ̄ and
neglect the ξ̄-term. Thus, the kinetic matter action is
complemented with

SRmat ¼
XNf

i¼1

σ̄

Z
d4x

ffiffiffi
g

p
Rμνðψ̄ iγμ∇νψ

i − ð∇νψ̄
iÞγμψ iÞ:

ð15Þ

SRmat has all the symmetries of the original action (5) and
therefore does not enlarge the theory space.
The nonminimal coupling σ̄ introduces an invariant of

cubic order in derivatives, capturing parts of the higher-
derivative structure of the fermion-gravity interaction. Once
expanded around a flat background, the interaction with
hTTμν is given by

SRmat ¼
XNf

i¼1

σ̄

Z
d4xð□hTTμν Þψ̄ iγμ∂νψ i þOðh2Þ; ð16Þ

where □ ¼ −δμν∂μ∂ν is the d’Alambertian in flat
Euclidean space. Equation (16) is the unique invariant
consisting of one hTTμν , ψ , ψ̄ and γμ together with two
derivatives acting on the TT mode and one derivative
acting on the ψ . We summarize the matter parts of the
action as Smat,

Smat ¼ Skinmat þ SRmat: ð17Þ

After having specified our complete seed action, we
expand the scale-dependent effective action in powers of
the fluctuation field,

Γk½Φ; ḡ� ¼
X∞
n¼0

1

n!
ΓðnÞ
kA1…An

½0; ḡ�ΦAn…ΦA1 ; ð18Þ

where ΓðnÞ
k refers to functional derivatives with respect to

the field Φ,

ΓðnÞ
kA1…An

½Φ; ḡ� ¼ Γk½Φ; ḡ� δ⃖

δΦA1
…

δ⃖

δΦAn
: ð19Þ

Note the order of the indices and fields, which is important
to keep in mind for the Grassmann-valued quantities.
By using this vertex form, the flow of 5 individual

couplings λ̄2, λ̄3, Ḡh, Ḡψ and σ̄ as well as the anomalous
dimension of two wave-function renormalizations Zh and
Zψ is disentangled, cf. Table II and see Sec. III for more
details. Here the barred couplings, e.g., Ḡψ and Ḡh, refer to
dimensionful couplings.
For the gravity-fermion vertex the contributing diagrams

are shown in Fig. 1. This highlights the necessity to
truncate the tower of vertices, as the flow of each n-point
vertex depends on the (nþ 1)- and (nþ 2)-point vertices.
We use the seed action in Eq. (5) to parametrize the vertices
appearing in the diagrams. When generating, e.g., a
graviton three-point vertex or a graviton four-point vertex
for the scale-dependent effective action from the seed
action by expanding to the appropriate power in hμν, both
would depend on the same Newton coupling ḠN and the
same cosmological constant λ̄ due to diffeomorphism
symmetry. However, the gauge fixing and the regulator
break diffeomorphism symmetry. Hence, the effective
action is known to satisfy Slavnov-Taylor identities instead,
[2,52,57–60]. As these identities in general are much more
involved, there is no such simple relation between the three-
and four-point vertex of the effective action as there is
for the seed action. In other words, the breaking of
diffeomorphism symmetry leads to an enlargement of

TABLE II. We list the couplings and wave-function renorm-
alizations appearing in the nth functional derivative ΓðnÞ

k of the
effective action and indicate to which part of the seed action, SEH,
Skinmat or SRmat they are related.

Couplings SEH Skinmat SRmat

Γð2Þ
k

λ̄2, Zh Zψ � � �
Γð3Þ
k

λ̄3, Ḡh Ḡψ σ̄

Γð4Þ
k

λ̄4 ¼ λ̄3, Ḡh;4 ¼ Ḡh Ḡψ ;4 ¼ Ḡψ σ̄4 ¼ σ̄

Γð5Þ
k

λ̄5 ¼ λ̄3, Ḡh;5 ¼ Ḡh Ḡψ ;5 ¼ Ḡψ σ̄5 ¼ σ̄

FIG. 1. We show the diagrams contributing to the flow of the
gravity-fermion system. Double lines denote metric fluctuations,
single lines fermions. Each diagram is understood to carry a
regulator insertion on one of the propagators, that ∂̃t acts upon.
When ∂̃t is evaluated, a diagram with n internal propagators
becomes the sum of n diagrams, such that the regulator insertion
occurs on each of the internal propagators once.
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theory space in which the couplings parametrizing the
vertices are independent. There are different routes towards
a truncation of this large theory space. In principle, one
could pick some random tensor structure and momentum
dependence in each n-point function and parametrize
this by some coupling. Then, the connection to the diffeo-
morphism-invariant seed action would be lost completely.
Instead, we derive the tensor structures of the vertices from
the seed action, but also take into account that the various
couplings are now independent. Specifically, we proceed
using the following recipe: The structure of the n-point
vertex is drawn from the seed action,

ΓðnÞ
kA1…An

¼
ffiffiffiffiffiffi
ZΦ

p
B1

A1
…

ffiffiffiffiffiffi
ZΦ

p
Bn

An
SðnÞB1…Bn

jλ̄→λ̄n
; ð20Þ

where the replacement λ̄ → λ̄n only affects pure-gravity
vertices. Furthermore in Eq. (20) the metric fluctuations
of the purely gravitational action Sgrav are rescaled accord-
ing to

Sgrav∶ ðhnÞμν → ð16πÞn2ḠNðḠhÞn2−1ðhnÞμν; ð21Þ
whereas the graviton in Sgh and Smat is rescaled to

Sgh∶ ðhnÞμν → ð16πÞn2ðḠhÞn2ðhnÞμν; ð22Þ

Smat∶ ðhnÞμν → ð16πÞn2ðḠψÞn2ðhnÞμν: ð23Þ
This rescaling breaks diffeomorphism symmetry and
helps us choosing a basis in the appropriate theory space.
Note that the field redefinitions in Eqs. (21)–(23) are
not to be understood as actual field redefinitions in the
effective action. They are just a way of arriving at a
parametrization of the truncated effective action in the
enlarged theory space.
In the following we use the term “avatar,” when a single

coupling in the seed action leads to various incarnations in
the effective action, e.g., Ḡh and Ḡψ are avatars of the
Newton coupling ḠN.
In order to close the flow equation, we identify couplings

of higher-order n-point vertices with the corresponding
couplings of the three-point vertex. This was already
implicitly done with the rescaling in Eqs. (21)–(23) and
with the usage of one single coupling σ̄. Similarly,
all n ≥ 3-point vertices arising from the cosmological-
constant part of the seed action are parametrized by one
coupling λ̄3, i.e., λ̄4 → λ̄3 and λ̄5 → λ̄3. The relation
between λ̄2 and the gravitational mass parameter μ̄h that
is often used in the literature reads −2λ̄2 ¼ μ̄h. In the next
section we provide details on how the beta functions are
extracted from the sum of the diagrams in Fig. 1.

III. HOW TO OBTAIN BETA FUNCTIONS

We now discuss in some detail how to derive beta
functions. We concentrate on the dimensionless couplings,

which are obtained from their dimensionful counterparts
by a multiplication with an appropriate power of k.
Dimensionful couplings are denoted with overbars, e.g.,
Ḡψ , λ̄2 etc., whereas their dimensionless counterparts lack
the overbar, e.g., Gψ , λ2 etc.
A key goal of ours is to test the quality of our trunca-

tion. Thus, we place a main focus on the momentum-
dependence of the flow, i.e., the dependence of the n-point
vertices on the momenta of the fields. Higher-order
momentum dependencies than those included in the trun-
cation are in general present. This implies that different
projection schemes might yield different results when
working in truncations. We will discuss these different
schemes and their relation to each other in the following.

A. Fermionic example

As a concrete example let us consider the fermionic
sector. To arrive at beta functions, we have to take several
steps. First we define a projector Pð3Þ

p2;p3
on the gravity-

fermion vertex. Its form is motivated by the tensor structure
of the considered three-point function,

Skinmat½g ¼ δþ ð16πḠψ Þ12hTT;ψ ; ψ̄ �

¼
XNf

i¼1

Z
d4x½ψ̄ i=∂ψ i − 2π

1
2Ḡ

1
2
ψhTTμν ψ̄ iγμ∂νψ i� þOðh2Þ:

ð24Þ
By taking the corresponding functional derivatives of
Eq. (24) and evaluating in momentum space, while using
the projector onto transverse-traceless symmetric tensors
ΠTT, we find that,Z

x;y;z
eiðp1·xþp2·yþp3·zÞSkinmat

δ⃖

δhTTμν ðxÞ
δ⃖

δψ iðyÞ
δ⃖

δψ̄ jðzÞ
¼ ð2πÞ4δðp1 þ p2 þ p3Þð−i2π1

2Ḡ
1
2
ψÞΠTTμν

ρσ ðp1Þγρpσ
2δij:

ð25Þ
Of the three momenta, only two are independent, the third
can be eliminated by momentum conservation. Thus we

define the projector Pð3Þ
p2;p3

on Ḡψ as

Pð3Þ ij
p2;p3μνðx; y; zÞ ¼

iγρp2σ

10π
1
2Nfp2

ΠTT ρσ
μν ðp1Þeiðp2·yþp3·zÞδðxÞδij;

ð26Þ
which we evaluate at the symmetric point for the momenta,

p2
1 ¼ p2

2 ¼ −2ðp1 · p2Þ ¼ p2. The normalization of Pð3Þ
p2;p3

follows from

ΠTT μν
μσ ðp1Þpσ

2p2ν ¼
5

3

�
p2
2 −

ðp1 · p2Þ2
p2
1

�
: ð27Þ
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Using Pð3Þ
p2;p3

we define the projected dimensionful vertex
V̄ as

V̄ðp2Þ ¼
Z
x;y;z

tr

�
Pð3Þ ij
p2;p3μνðx; y; zÞ

× Γk
δ⃖

δhμνðxÞ
δ⃖

δψ iðyÞ
δ⃖

δψ̄ jðzÞ
�
Φ¼0

; ð28Þ

where tr implies the trace over Dirac and flavor indices.
This definition is independent of any truncation, while
a truncation for V̄ can be viewed as choosing a specific
point in theory space. For instance, when evaluating V̄
for our chosen truncation we find that V̄ is equal toffiffiffiffiffiffiffi
Ḡψ

q
ð1 − 2σ̄p2Þ. Having defined V̄, we aim at deriving

the beta function for the dimensionless counterpart V,

V

�
p2

k2

�
¼ k

Z
1
2

hðp2ÞZψðp2Þ
V̄ðp2Þ: ð29Þ

Note that V̄ carries a nontrivial dimension, as the gravity-
fermion vertex contains an additional momentum p. The
scale derivative of V reads

βV

�
p2

k2

�
¼ V

�
p2

k2

��
1þ ηψ ðp2Þ þ 1

2
ηhðp2Þ

�

þ 2
p2

k2
V 0
�
p2

k2

�
þ k _̄Vðp2Þ; ð30Þ

where one has to take into account the scaling of the
momentum, p ∼ k. Here ηh and ηψ are the anomalous
dimensions,

ηhðp2Þ ¼ −
_Zhðp2Þ
Zhðp2Þ ; ηψðp2Þ ¼ −

_Zψ ðp2Þ
Zψ ðp2Þ : ð31Þ

We can read off _̄V by replacing Γk with _Γk in Eq. (28),

_̄Vðp2Þ ¼ 1

k
Flowð3Þ

ψ ðp2Þ; ð32Þ

where Flowð3Þ
ψ is a short hand for the contributing diagrams

in Fig. 1,

Flowð3Þ
ψ ðp2Þ ¼ k

2

Z
x;y;z

tr

�
STr

�
1

Γð2Þ
k þ Rk

_Rk

�

×
δ⃖

δhμνðxÞ
δ⃖

δψ iðyÞ
δ⃖

δψ̄ jðzÞ
����
Φ¼0

× Pð3Þ ij
p2;p3μνðx; y; zÞ

�
: ð33Þ

Here we made use of Eq. (1).

By inserting the expression for _̄V given in Eq. (32) into
Eq. (30) for βV we finally arrive at the beta function βV
for V,

βV

�
p2

k2

�
¼Flowð3Þ

ψ ðp2ÞþV

�
p2

k2

��
1þηψðp2Þþ1

2
ηhðp2Þ

�

þ2
p2

k2
V 0
�
p2

k2

�
: ð34Þ

This equation will take center stage in our analysis of the
momentum dependence of the flow and tests of robustness
of the truncation. We highlight that in general the right-
hand side of the flow equation generates terms beyond the
chosen truncation. In Eq. (34) the consequence is that our
truncation does not capture the full momentum dependence
that is generated. Accordingly, the fixed-point equation

βVðp
2

k2Þ ¼ 0 cannot be satisfied for all momenta, but instead
only at selected points. We will extensively test how large
the deviations of βV from zero are in order to judge the
quality of different truncations.

B. Projection schemes

We perform our analysis in several different projection
schemes, as a comparison between the fixed-point structure
of the different truncations provides indications for or
against the robustness of the fixed point. We now motivate
the use and explain the details of these three projection
schemes.
Using Eq. (34), the momentum-dependent fixed-point

vertex V�ðp2

k2Þ could be found by demanding βVðp
2

k2Þ ¼ 0 and

solving Eq. (34). In practice, we choose an ansatz V truncðp
2

k2Þ
for Vðp2

k2Þ, which is part of choosing a truncation. At a point
in theory space defined by V trunc, Eq. (34) holds, but
indicates that terms not yet captured by V trunc are generated.
These are present in Eq. (34), so that we need to truncate
the beta function βV → βtruncV in order to close the system.
For example, in our setup, we restrict V trunc to a polynomial

up to first order in p2

k2 , i.e.,

V trunc

�
p2

k2

�
¼ ffiffiffiffiffiffiffi

Gψ

p
− 2σmod

p2

k2
; ð35Þ

and

βtruncV

�
p2

k2

�
¼ 1

2
ffiffiffiffiffiffiffi
Gψ

p βGψ
− 2βσmod

p2

k2
: ð36Þ

Here we introduced a modified version of the coupling σ,

σmod ¼
ffiffiffiffiffiffiffi
Gψ

p
σ; ð37Þ

where Gψ and σ are the dimensionless counterparts of Ḡψ

and σ̄,
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Gψ ¼ k2Ḡψ ; σ ¼ k2σ̄: ð38Þ
However, this specific ansatz does not satisfy Eq. (34) for

all values of p
2

k2 . Accordingly, the right-hand side of Eq. (34)
differs from Eq. (36). This is simply an example for the
general fact that, plugging a truncation into the right-hand
side of the Wetterich equation, terms beyond the truncation
are generated and therefore the truncation is not closed.
As βtruncV is not equal to βV for all momenta, we can

choose selected points in the interval p2

k2 ∈ ½0; 1� for which
we demand that βtruncV is exactly equal to βV at these points,
see, e.g., Eqs. (40) and (41). However, we can also choose

superpositions of more values for p2

k2, see, e.g., Eq. (42) for
σ ¼ 0. Even though this superposition might lead to βtruncV
being not exactly equal to βV at any point, it can still lead to
an overall better description of the full momentum depend-
ence, by being almost equal in a larger region. The values of
the coefficients in the ansatz, i.e.,

ffiffiffiffiffiffiffi
Gψ

p
and σmod, depend

on this choice.
Let us now compare two popular choices, namely the

derivative expansion about p2

k2 ¼ 0, and a projection at

various values for p2

k2. Working within a derivative expan-

sion about p2

k2 ¼ 0, one extracts the flow of the nth
coefficient of the polynomial by the nth derivative of

Eq. (34), evaluated at p2

k2 ¼ 0. Specifically, for the chosen
ansatz in Eq. (35) together with Eq. (36), this yields

βDEGψ
¼ 2

ffiffiffiffiffiffiffi
Gψ

p
βVð0Þ; βDEσmod

¼ −
1

2
β0Vð0Þ: ð39Þ

This expansion ensures that βV and its derivative are equal

to βtruncV and its derivative at p
2

k2 ¼ 0. However, the derivative
expansion to this order does not satisfy this equality away

from p2

k2 ¼ 0. This simply means that higher-order terms in

the derivative expansion around p2

k2 ¼ 0 are generated by the

flow. By the evaluation at a single point in p2

k2 , this scheme is

very sensitive to local fluctuations at p2

k2 ¼ 0, which might
cause deviations for larger momenta.
Alternatively, we can choose finite momenta, e.g.,

p2

k2 ¼ 1, to extract one of the beta functions. Equating βV

and βtruncV at p2

k2 ¼ 1
2
and p2

k2 ¼ 1, and solving for the beta
functions yields

βð0;1ÞGψ
¼ 2

ffiffiffiffiffiffiffi
Gψ

p �
2βV

�
1

2

�
− βVð1Þ

�
; ð40Þ

βð0;1Þσmod ¼ βV

�
1

2

�
− βVð1Þ: ð41Þ

In this scheme, the beta functions βV and βtruncV by

construction are equal at p2

k2 ¼ 1
2
and p2

k2 ¼ 1. Thus, it

provides an interpolation between these momenta, while
the derivative expansion provides an extrapolation from
p2

k2 ¼ 0 onwards. The same projection schemes can analo-
gously be applied to other n-point functions, including the
anomalous dimensions. We will refer to the projection at n

different values for the momentum p2

k2 by n-sample-point
projection in the following. More specifically, starting from
Eq. (40), the beta functions for Gψ and σ take the following
form:

βGψ
¼ 2

ffiffiffiffiffiffiffi
Gψ

p �
2C

�
k2

2

�
V trunc

�
1

2

�
− Cðk2ÞV truncð1Þ

þ 2Flowð3Þ
ψ

�
k2

2

�
− Flowð3Þ

ψ ðk2Þ
�
; ð42Þ

βσ ¼ 2σ þ 1

2
ffiffiffiffiffiffiffi
Gψ

p �
V truncð1Þ

�
−C1ðk2Þ þ

βGψ

2Gψ

�

− Flowð3Þ
ψ ðk2Þ

�
; ð43Þ

with

Cðp2Þ ¼ 1þ 1

2
ηhðp2Þ þ ηψðp2Þ: ð44Þ

In practice, the ingredients to evaluate the beta functions are

the following: Flowð3Þ
ψ is given by the sum of diagrams in

Fig. 1 which uses xAct [61,61–64] as well as the FORM-
tracer [65], V trunc is given by Eq. (36) and the anomalous
dimensions are extracted from a projection of the corre-

sponding two-point functions at p
2

k2 ¼ 1, as in [12,37,66,67].
We now provide our motivations for using projections

with n ¼ 1 and n ¼ 2 sampling points. The derivative

expansion at p2

k2 ¼ 0 for the gravity-matter avatars of the
Newton coupling does not capture all properties of the flow
in a quantitatively reliable way cf. the discussion in [20].
In particular, a derivative expansion of the Einstein-Hilbert
truncation at p2 ¼ 0, together with a momentum-
independent anomalous dimension for the graviton results
in a slightly screening property of gravity fluctuations on
the Newton coupling. We expect that at higher orders in the
truncation, the derivative expansion becomes quantitatively
reliable, but in our truncation projections at finite momenta
are preferable.
Instead, an expansion at finite momenta is expected to be

more stable in small truncations. This is easiest to appre-
ciate when thinking of the flow equation in terms of a
vertex expansion: The n-point functions that enter the flow
depend on n − 1 momenta. Of these, one becomes the loop
momentum in the flow equation. Due to the properties
of the regulator, the momentum integral over the loop
momentum is peaked at q2 ≈ k2. Accordingly, the flow
depends on the vertex at a finite momentum, not vanishing
momentum, cf. Fig. 2.
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Accordingly, a good approximation of the full flow might
require higher orders in the derivative expansion around
p2

k2 ¼ 0 than in projection schemes at finite momentum. For
technical simplicity, a symmetric point where the magni-
tudes of all momenta at the vertex are chosen to be the same
nonzero value is preferable, although the example in Fig. 2
showcases that a nonsymmetric point is likely to most
accurately capture the momentum dependence of the vertex
as it is relevant for the feedback into the flow equation.

We point out that for this type of projections, a one-to-
one mapping between the couplings extracted in this way
and the couplings of the action written in a derivative
expansion in terms of curvature invariants, as it is usually
done, becomes more involved. For the derivative expansion
about p2

k2 ¼ 0, this mapping is one-to-one. Specifically,

projecting onto a p2

k2-term at finite p
k yields a different result

than projection at vanishing p
k. This remains the case even in

untruncated theory space, where the couplings in a deriva-
tive expansion around zero momentum and the couplings in
a projection at finite momenta satisfy a nontrivial mapping
onto each other. In an untruncated theory space, such a
difference in the choice of basis does not matter for

the universal properties of the fixed point. In truncations,
such choices can make a difference, as some expansions
are better suited to capturing the flow already in small
truncations. One might tentatively interpret the results in
the Einstein-Hilbert truncation and small extensions
thereof [12,20,21,37,66–68] as implying that projections
with n sampling points are preferred over the derivative
expansion about vanishing momentum.
For the fermion-gravity vertex, we consider the follow-

ing three approximations:
(i) n ¼ 1 projection: We set σ ¼ 0 in Vtrunc [Eq. (35)]

and βσmod
¼ 0 in βtruncV [Eq. (36)] and project onto

βGψ
using the projection point p2

k2 ¼ 1. In analogous
systems, such a projection has been called bilocal,
[20,21,68].

(ii) n ¼ 2 with σ ¼ 0 projection: We set σ ¼ 0 in V trunc
[Eq. (35)] and βσmod

¼ 0 in Eq. (36) and project onto

βGψ
using the two projection points p2

k2 ¼ 1 and
p2

k2 ¼ 1
2
, as in Eq. (42).

(iii) n ¼ 2 with σ ≠ 0 projection: This projection con-
tains an extension of the truncation by βσ, and uses
Eq. (42) and Eq. (43), based on the full expressions
for V trunc [Eq. (35)] and βtruncV [Eq. (36)].

For completeness let us explain how we extract the
remaining gravitational couplings, λ̄2, λ̄3, Ḡh, and the wave-
function renormalizations, Zh, Zψ . An analogous parametri-
zation to Eqs. (28) and (35) holds for the two-fermion, as well
as the two- and three-graviton vertices. Thus, in all appro-
ximation schemes under consideration, we use a projection

with n ¼ 2 sample points of Γð2Þ
k and Γð3Þ

k at p2 ¼ 0 and
p2 ¼ k2 for these couplings, i.e., we define them as follows:

Zhðp2Þ¼N Zh
ðp2Þ

Z
x;y

�
Γk½Φ; ḡ¼ δ� δ⃖

δhμνðxÞ
δ⃖

δhρσðyÞ
�
Φ¼0

δðxÞeipy
Z
x0;y0

δðx0Þeipy0
�
SEH½g¼ δþhTT� δ⃖

δhTTμν ðx0Þ
δ⃖

δhTTρσ ðy0Þ
�
hTT¼0

;

Zψ ðp2Þ¼N Zψ
ðp2Þ

Z
x;y

tr

��
Γk½Φ; ḡ¼ δ� δ⃖

δψ iðxÞ
δ⃖

δψ̄ jðyÞ
�
Φ¼0

δðxÞeipy
Z
x0;y0

δðx0Þeipy0
�
Skinmat½ψ ; ψ̄ ; ḡ¼ δ� δ⃖

δψ iðx0Þ
δ⃖

δψ̄ jðy0Þ
�

ψ̄¼0
ψ¼0

�
;

λ̄2¼N λ̄2

Z
x;y

�
Γk½Φ; ḡ¼ δ� δ⃖

δhμνðxÞ
δ⃖

δhρσðyÞ
�
Φ¼0

δðxÞ
Z
x0;y0

δðx0Þ
�
SEH½g¼ δþhTT� δ⃖

δhTTμν ðx0Þ
δ⃖

δhTTρσ ðy0Þ
�
hTT¼0

;

λ̄3¼N λ̄3

Z
x;y;z

�
Γk½Φ; ḡ¼ δ� δ⃖

δhμνðxÞ
δ⃖

δhρσðyÞ
δ⃖

δhκλðzÞ
�
Φ¼0

×δðxÞ
Z
x0;y0;z0

δðx0Þ
�
SEH½g¼ δþhTT� δ⃖

δhTTμν ðx0Þ
δ⃖

δhTTρσ ðy0Þ
δ⃖

δhTTκλ ðz0Þ
�
hTT¼0

;

Ḡh ¼N Ḡh

Z
x;y;z

�
Γk½Φ; ḡ¼ δ� δ⃖

δhμνðxÞ
δ⃖

δhρσðyÞ
δ⃖

δhκλðzÞ
�
Φ¼0

δðxÞðeip2yþip3z−1Þ

×
Z
x0;y0;z0

δðx0Þeip2y0þip3z0
�
SEH½g¼ δþhTT� δ⃖

δhTTμν ðx0Þ
δ⃖

δhTTρσ ðy0Þ
δ⃖

δhTTκλ ðz0Þ
�

hTT¼0
λ̄¼0

p2¼k2

; ð45Þ

FIG. 2. The regulator insertion in the flow equation results in
q2 ≈ k2 from the loop integral, indicated by the arrows in the
diagram.
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where themomenta p2 andp3 are evaluated at the symmetric
point for three momenta with p2

2 ¼ p2
3 ¼ −2ðp2 · p3Þ ¼ k2

and the normalizations N Zh
, N Zψ

, N λ̄2
, N λ̄3

and N Ḡh
are

defined such that when we plug the ΓðnÞ
k from Eqs. (20), (21),

(22) and (23) intoEq. (45)weget the corresponding coupling.
This projection is equivalent to the bilocal evaluation

of the pure-graviton vertices, as employed, e.g., in
[12,37,66,67,69].

IV. ASYMPTOTIC SAFETY FOR ONE FLAVOR

Phenomenologically, fermion-gravity systems with
Nf ¼ 24 are of most interest, as this is the number of
Dirac fermions in the Standard Model, extended by three
right-handed neutrinos. There are indications [29,35–
37,39,40] that such a fermion-gravity system with Nf > 1
features an asymptotically safe fixed point that is continu-
ously connected to the pure-gravity one. We explore this
hypothesis further, and therefore start by exploring a small
deformation of the pure-gravity universality class byNf ¼ 1
fermions.
In this section, we aim at answering three key questions:
(1) Is there a fixed point in the fermion-gravity system

that is robust under extensions of the truncation and
changes of the projection scheme?

(2) Is the nonminimal coupling nonzero at the fixed
point, and how large is its backreaction onto the
minimally coupled system?

(3) Do the avatars of the Newton coupling exhibit
effective universality at this fixed point?

A. A fermion-gravity fixed point
and tests of its robustness

The n ¼ 1 truncation, i.e., σ ¼ 0, exhibits an interacting
fixed point providing further evidence for the existence of
the Reuter fixed point in gravity-fermion systems. The
fixed-point results in the first two lines of Table III are well
compatible with those of [21], calculated for a different
value of the gauge parameter β, for a similar system. The
Reuter fixed point is characterized by three relevant and one
irrelevant direction in this truncation, cf. Table III. Due to
the large overlap of the corresponding eigendirection with
λ3, the negative critical exponent can be associated with this
direction in theory space. Thus, while λ2 remains relevant,

λ3 is shifted into irrelevance at the UV fixed point. The
most relevant direction, corresponding to the critical
exponent θ1 in Table III has largest overlap with Gψ , while
the remaining two directions form a complex pair. We
highlight that only a subset of these critical exponents is
physical, namely those in the diffeomorphism-invariant
theory space. Here, we are exploring a larger theory space
that accounts for symmetry breaking through the regulator
and gauge-fixing terms, and therefore includes different
avatars of the Newton coupling, as well as the two
couplings λ2, λ3. Of the four critical exponents, only two
are therefore physical. The observation that θ1 is essentially
associated with Gψ can be interpreted as a hint that
diffeomorphism-symmetry restoration in the flow towards
the physical point k ¼ 0 is possible, as a relevant coupling
can be chosen arbitrarily in the IR.
The robustness of these results can be tested by changing

the projection scheme for Gψ from n ¼ 1 to n ¼ 2 for the
number of sample points, while staying within the same
truncation. As shown in the second line of Table III this
leads to a change of about 14% for the fixed-point value of
Gψ , but more importantly a change of about 21% at the
level of the universal1 critical exponent θ1. This indicates
the necessity of extensions of the truncation. We stress that
the change of the other couplings and critical exponents
stays small, as the feedback of Gψ into the other beta
functions is with a very small prefactor. The relative
contribution of Gψ versus that of Gh in βGh

is for instance
approximately given by Af;Gh

=AGh
. Here, AGi

is the Nf -
independent and Af;Gi

the prefactor for the Nf -dependent
quadratic coefficient of βGi

once both avatars are equated,

βGi
jGh¼Gψ¼G ¼ 2Gþ G2ðAGi

þ NfAf;Gi
Þ þOðG3Þ: ð46Þ

Accordingly, a change of the projection scheme for Gψ ,
accompanied by an unchanged projection for the other
couplings, is not expected to result in significant changes in
any values except for G�

ψ and θ1. Hence, the small relative

TABLE III. Fixed-point values as well as coefficients of the beta functions in the three schemes. The classification of different
truncations refers to the order in the n-sample point projection. Here the θi are the critical exponents, i.e., the eigenvalues of the stability
matrix multiplied by an additional negative sign. For the definition of the A’s see Eq. (46).

Truncation σ� G�
ψ G�

h λ�2 λ�3 θ1 θ2=3 θ4 θ5 ηhð0Þ ηhðk2Þ ηψ ð0Þ ηψ ðk2Þ AGh
Af;Gh

AGψ
Af;Gψ

n ¼ 1, p2 ¼ k2 � � � 0.79 0.78 0.26 0.080 2.8 2.6� 4.0i −7.5 � � � 0.87 0.12 −1.4 −1.2 −2.7 0.023 −2.6 0.017

n ¼ 2, p2 ¼ k2
2
, k2 � � � 0.90 0.75 0.26 0.083 3.4 2.8� 4.2i −7.4 � � � 0.86 0.12 −1.7 −1.5 −2.8 0.023 −1.9 0.033

n ¼ 2, p2 ¼ k2
2
, k2 −0.063 0.93 0.75 0.26 0.081 3.7 2.8� 4.2i −7.7 −2.1 0.83 0.08 −1.6 −1.4 −2.7 0.005 −1.6 −0.002

1With universality at the level of critical exponents we refer to
the insensitivity of critical exponents to unphysical details like
gauge, regulator and scheme. We refer to universality in the larger
theory space, accordingly a universal critical exponent is not
automatically associated to physics.
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changes in G�
h, λ

�
2, λ

�
3 and θ2;3;4 should not be taken as an

indication of quantitative convergence in the system.
A further aspect providing information on the quality of

our truncation is the momentum dependence of the vertex
flow. In Sec. III, we derived a formal expression equa-
tion (34) for the beta function of the fully momentum-
dependent vertex function Vðp2

k2Þ. Evaluated at the full fixed
point V� in untruncated theory space, the right-hand side of
Eq. (34) would vanish for all momenta—assuming that
such a fixed point indeed exists. In truncations this is not
the case. Within a given truncation scheme, we can use
the truncated beta functions, cf. Eq. (36), to find a fixed
point V�

trunc of the truncated RG flow projected onto the
subspace defined by the truncation. However, this truncated
fixed point will not satisfy the fixed-point equation for all

momenta, i.e., βVðp
2

k2ÞjV¼V�
trunc

≠ 0. This is a consequence of
the fact that the RG flow in truncations is not closed. Terms
beyond the truncation are generated. Accordingly, the RG
flow features additional, higher-order momentum depend-
ence than what is captured by the truncation. Thus we
introduce the quantity V, which allows us to estimate the
deviation of the truncated fixed point V�

trunc from the full
fixed point V�,

V
�
p2

k2

�
¼ βV

�
p2

k2

�����
V¼V�

trunc

þ V�
trunc

�
p2

k2

�
: ð47Þ

Specifically, the idea is simply that if we can satisfy

βVðp
2

k2ÞjV¼V�
trunc

≈ 0 for all momenta, then we expect that
the fixed point in our truncation comes close to the fixed
point in untruncated theory space. Away from the fixed
point V is an auxiliary quantity and has no direct physical
meaning. For a fixed point in untruncated theory space, the

function βVðp
2

k2ÞjV¼V� vanishes, such that V ¼ V�. This is a
general self-consistency equation for the fixed point of the
system at any value of p2. Our V is similar to what has been
investigated in [12,20].2

To further explain the meaning of Eq. (47), we now
specialize to our truncation where V truncðp

2

k2Þ is a polynomial

in p2

k2 only up to first order, cf. Eq. (35), while Flowð3Þ
ψ

clearly contains higher powers. Therefore, V can at best be
approximately equal to V�

trunc. Thus, the difference of our

choice for V�
truncðp

2

k2Þ given in Eq. (35) from Vðp2

k2Þ shows

how well V�
truncðp

2

k2Þ approximates the momentum depend-

ence of the full fixed point V�ðp2

k2Þ.

In summary, Eq. (47) can be read as follows: Vðp2

k2Þ
captures the momentum dependence as generated by the
flow of the fermion-gravity vertex, i.e., by the diagrams in
Fig. 1. In untruncated theory space, the full momentum

dependence would be captured by V�ðp2

k2Þ, leading to

βVðp
2

k2ÞjV¼V� ¼ 0. In truncations, the ansatz V�
truncðp

2

k2Þ differs
from the momentum dependence Vðp2

k2Þ generated by the

flow, such that βVðp
2

k2ÞjV¼V�
trunc

vanishes only at selected

values of p2

k2 . Accordingly, the comparison of Vðp2

k2Þ and

V�
truncðp

2

k2Þ is well suited to check whether higher-order
momentum dependences beyond the truncation are gen-
erated by the flow equation. Moreover, the magnitude of
higher-order momentum dependences can be estimated.
Finally, the flow can of course show a different momentum
dependence at large and small momenta; e.g., being well

approximated by a simple low-order polynomial at p2

k2 ≈ 1,
and exhibiting a more intricate momentum dependence for
p2

k2 ≈ 0. Comparing Vðp2

k2Þ and V�
truncðp

2

k2Þ at all values of p2

k2

provides information on such cases. This provides another
guiding principle on how to extend the truncation: The
momentum dependence of the flow, evaluated at the fixed-
point values in the n ¼ 1 and n ¼ 2 sample-point projec-

tion with σ ¼ 0 both indicate the presence of a p3

k3-term in
the flow of the graviton-fermion vertex, cf. Figs. 3 and 4.
There, we plot the comparison of both sides of Eq. (47),

FIG. 3. Momentum dependence of the graviton-fermion three-
point vertex, evaluated with n ¼ 1 sample points, at the corre-
sponding fixed point. The dashed blue line corresponds to the
truncated vertex V�

trunc, which is equal to
ffiffiffiffiffiffiffi
G�

ψ

p
in the n ¼ 1

scheme. Note that V trunc always enters the flow equation with an
additional factor p

k. Thus we plot p
k V

�
trunc. The solid red line

corresponds to the full momentum dependence of the auxiliary
quantity p

k V ¼ p
k ðβV jV¼V�

trunc
þ V�

truncÞ, cf. Eq. (47) that is gen-
erated from within our truncation, but goes beyond the momen-
tum dependence of the term in our truncation. The difference
between the two lines indicates the need for an extension of the
truncation, as both would agree if evaluated at an untruncated
fixed point V� due to the vanishing of βV jV¼V� .

2There, the auxiliary quantity was defined as VLitðp2=k2Þ ¼
− 2βV ðp2=k2Þ

2þηhðp2Þþ2ηψ ðp2Þ jV¼V�
trunc

þ V�
truncðp2=k2Þ, which only differs

from V by a normalization in front of βV . We chose the definition
)47 ) to avoid artificial poles that might arise due to the

denominator in VLit.
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multiplied by p
k. This is motivated by the classical structure

of the graviton-fermion vertex, which takes the form
p
k V truncðp

2

k2Þ. The fact that Eq. (35) does not carry this factor
of p

k is due to the specific choice of the projector
equation (26). Therefore, Figs. 3 and 4 show the vertex

V�
truncðp

2

k2Þ weighted by how it contributes in the diagrams.
The presence of a p3 contribution in Figs. 3 and 4 motivates
our extension of the truncation by σ that we explore
below. This extension allows us to feed the higher-
momentum dependence, which is already seen in the
projections with σ ¼ 0, back into the diagrams and there-
fore consider this information.

B. Generation and backreaction of σ

Motivated by the observation that higher-momentum
dependence is clearly generated by the flow equation,
we make the next step in extensions of the truncation
following canonical power counting. In the present
truncation, the next-to-leading-order coupling that con-
tributes to the graviton-fermion vertex is the nonminimal
coupling σ. The interaction itself is dimension-6, accord-
ingly the canonical dimension of the coupling is −2.
Symmetry arguments elaborated on in [27] indicate that it
should not be possible to realize σ� ¼ 0, once G�

ψ ≠ 0.
Here we will check whether this is indeed the case in
the corresponding truncation and will further explore the
backreaction of σ on the system of couplings in the
smaller truncation. For the latter, we also focus on
the momentum dependence of the flow, to find whether
it is captured more adequately once the next-to-leading
term beyond Gψ is included.

At the fixed point for the nonminimally coupled fermion-
gravity system in the n ¼ 2 projection, the flow of the
nonminimal coupling σ is given by

βσjλ�
2
;λ�

3
;G�

h;G
�
ψ
¼ 0.13þ 2.0σ − 1.9σ2 þ 1.6σ3 þOðσ4Þ:

ð48Þ

The existence of the σ-independent term confirms that
the nonminimal coupling is indeed induced at the UV
fixed point for gravity. The same conclusion can be drawn
in the derivative expansion, as indicated by various
σ-independent terms in Eq. (B3) and Eq. (B5). As a
consequence of such terms, σ� ¼ 0 is not a solution of
the flow equation and the nonminimal coupling cannot be
consistently set to zero. The fixed-point value of σ is indeed
finite, cf. Table III. Further, the inclusion of σ gives rise to
an additional irrelevant direction, cf. Table III. Due to the
negative canonical mass dimension, this is expected. It
provides yet another indication that the critical hypersur-
face of the Reuter fixed point is finite dimensional. The
shift between the canonical dimension dσ̄ ¼ −2 and the
critical exponent is significantly less than 1. This provides a
further check for the hypothesis that the critical hypersur-
face of the Reuter fixed point has a low dimensionality,
with no more relevant directions than canonically relevant
and marginal couplings. Further, the difference jθ5 − dσ̄j ≪
1 is in line with the potential near-perturbative nature of the
fixed point, cf. Sec. IV C below.
A key question is the size of the backreaction of σ on the

minimally coupled system. This provides an indication
about the state of convergence of the truncation, at least in
this particular direction in theory space and thereby it
provides guidance about the setup of future truncations. In
[27], it was shown that in the part of the gravitational
coupling space where fixed-point values lie at small
numbers of matter fields, the backreaction of induced
matter self-interactions onto the remaining system is
subleading compared to the direct gravity contribution.
Here, we make a similar observation for the nonminimal
matter-gravity coupling. Due to the small fixed-point value
for the nonminimal coupling σ� ¼ −0.063, the impact of σ
on the minimally coupled system is small. In fact, the
smallness of σ� is crucial in view of its negative sign (see
also Fig. 8): For a sufficiently negative fixed-point value, σ
can alter the effect of fermionic fluctuations on the Newton
couplings from screening to antiscreening, see also
Eq. (B2) and Eq. (B1) in Appendix B. Indeed for
Nf ¼ 1, the fixed-point value for σ leads to a slightly
negative Af;Gψ

. Yet one should keep in mind that within the
systematic error of Af;Gψ

, estimated, e.g., by the difference
of Af;Gψ

in the two projection schemes, cf. first two lines in
Table III, Af;Gψ

is compatible with being positive also in the
presence of σ. For Nf > 1.5, the effect of fermionic
fluctuations on both avatars of the Newton coupling is

FIG. 4. Momentum dependence of the graviton-fermion
three-point vertex evaluated at n ¼ 2 sample points, at the
corresponding fixed point. The dashed blue and the dot-dashed
orange lines correspond to the ansatz for the vertex p

k V
�
trunc (35),

setting σ ¼ 0 for the blue dashed line and including σ� for the
orange dot-dashed one. The solid red and dotted green lines
correspond to the full momentum dependence given by p

k V ¼
p
k ðβV jV¼V�

trunc
þ V�

truncÞ in Eq. (47).
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screening, i.e., Af;Gψ
> 0. Taken together, we view this as

tentative evidence to consider the sign of Af;Gψ
at Nf ¼ 1 as

an artifact of unphysical choices, such as gauge, regulator
and projection scheme.
Due to the smallness of σ�, the approximation of the

momentum dependence does not differ significantly from a
straight line, cf. Fig. 4, as the p2 contribution introduced by
σ is small at the fixed point. However, the inclusion of σ
nevertheless leads to a better approximation of the momen-
tum structure at p2 > 0.4k2, compared to the n ¼ 2
projection where σ was neglected, cf. Fig. 4.
To provide a more intuitive comparison of how well

different truncations capture the full momentum depend-
ence of the vertex flow, we directly evaluate βV given by
Eq. (34) for the different truncations. Evaluated at the fixed
point, this expression should vanish for all values of p2.
Thus, the deviation of the right-hand side, which we denote
by βV jV¼V�

trunc
, encodes the deviation of a given truncation

from the full momentum structure.3 It describes how
accurately the truncation approximates the fixed-point
equation (34) for all values of p2. One can interpret
βV jV¼V�

trunc
simply as a test, whether the momentum

dependence of the right-hand side of the Wetterich equation
is described accurately by a constant and a p2-term with k-
dependent but p-independent couplings. If our truncation
was exact, such that upon input of Gψ and σ no additional
terms were generated on the right-hand side, then βV jV¼V trunc

would vanish for all momenta once the fixed-point values
for the couplings are inserted. Compared to our previous
tests shown in Fig. 3 and Fig. 4, this allows for a more
direct comparison of different truncations. As a drawback,

the information on which powers of p2

k2 are induced in each
truncation is somewhat less obvious.
Figure 5 shows this quantity evaluated at the correspond-

ing fixed point in all different truncations. We caution that
the three curves in Fig. 5 have a systematic error due to our
truncation. Therefore not all differences between the curves
are significant.
Two aspects of the curves are of particular interest to us.

Firstly, momenta p2 ≈ k2 are expected to provide the main
contribution to the flow. Accordingly, it is desirable for an
approximation to capture the momentum dependence at
p2 ≈ k2 accurately. This happens if βV jV¼V�

trunc
≈ 0 for these

momenta. Secondly, all momenta (except p2 ¼ 0) contrib-
ute to the flow, even if momenta with p2 ≪ k2 contribute
less. Accordingly it is desirable to minimize the integrated
deviation of βV jV¼V�

trunc
from zero. Figure 5 serves as a

summary of our results for the momentum dependence of
the system:While the momentum dependence of the flow is

well captured by the n ¼ 1 scheme and the n ¼ 2 scheme
including σ, the latter highlights the necessity for further
extensions of the truncation, i.e., inclusion of higher-order
operators. Further, the n ¼ 2 scheme including σ captures
the momentum dependence slightly better at low values of
p2. Nevertheless, the performance of the n ¼ 1 scheme and
the n ¼ 2 scheme including σ are comparable at Nf ¼ 1.
To provide a quantitative characterization, we define

E
�
q2

k2

�
¼

Z
1

q2

k2

dyβVðyÞjV¼V�
trunc

: ð49Þ

For a truncation that captures the full momentum depend-
ence, E ¼ 0. As we are mostly interested in capturing the
momentum dependence around p2 ≈ k2 correctly, we

integrate βV from a lower boundary q2

k2 up to 1,
cf. Fig. 6. We find that the n ¼ 2 projection with σ ¼ 0
performs worst. The n ¼ 1 projection matches the flow

most closely down to q2

k2 ≈ 0.5. In this region, the approxi-
mation with n ¼ 2 sample points only yields a small
integrated deviation of order 0.04. The total integrated
deviation is smallest for the n ¼ 2 projection with the
inclusion of σ, indicating that it captures the full momen-
tum dependence best.
As a tentative conclusion of our analysis, we emphasize

that the inclusion of σ leads to a setting which captures the
momentum dependence of the full flow with a reasonable
accuracy. Nevertheless, both Figs. 4 and 5 suggest that full
accuracy requires further extensions of the truncation to
include higher-order momentum dependencies.

FIG. 5. As a key result of this section, we compare all dif-
ferent approximations of the momentum-dependent flow. Here
βV jV¼V�

trunc
refers to the evaluation of the right-hand side of

Eq. (34) for a given truncation at the corresponding fixed point
V�
trunc. The deviation of this expression from zero encodes the

accuracy of the projection. We highlight that the n ¼ 1 scheme
and n ¼ 2 scheme including σ capture the full momentum
dependence at p2 ¼ k2 by construction. Additionally, the
n ¼ 2 scheme including σ leads to a lower value of βV jV¼V�

trunc
,

i.e., a better approximation of the full flow, also at lower values of
the momentum.

3Note that βV jV¼V�
trunc

denotes the full βV (34) evaluated at the
truncated fixed point V�

trunc, as opposed to βtruncV (36), which only
contains the beta functions calculated in our truncation.
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C. Effective universality

In a theory space where a gauge symmetry is broken,
different avatars of this gauge coupling no longer agree. If
the symmetry breaking is a consequence of gauge fixing
and the regulator, then modified Slavnov-Taylor identities
select a hypersurface in this theory space. This hypersur-
face does not coincide with the symmetric theory space.
It reduces to that of the standard Slavnov-Taylor identities
at k ¼ 0, where the regulator vanishes. The initial con-
dition for the flow at k → ∞ should contain symmetry-
breaking terms such that the symmetry breaking introduced
by the regulator during the flow can be compensated for
by the initial condition, see the pedagogical introduction
in [53]. Accordingly, the fixed point might exhibit a
difference between distinct avatars of the gauge coupling.
Additionally, there is a modified shift Ward identity, see,
e.g., [59] as well as [52,70,71] for gauge theories, encoding
the difference between correlation functions of the back-
ground field and the fluctuation field, which has been
explored, e.g., in [20,72–75]. Effective universality was
defined in [20,21] as a near agreement of different avatars
of the Newton coupling. In the case of Yang-Mills theories
in four dimensions with a marginal gauge coupling,
effective universality holds in the perturbative regime as
a consequence of two-loop universality: Up to two loops,
the avatars of the gauge coupling agree exactly. Within
perturbation theory, the higher-loop terms are subleading.
Accordingly, effective universality follows due to the
marginal nature of the gauge coupling. In quantum gravity,
the case is more subtle. As the deviation from universality
is a consequence of quantum effects (the different avatars
agree trivially in a classical theory), the perturbative
regime, where quantum effects are small, is expected to
exhibit effective universality.

Effective universality is not a feature that a viable
asymptotically safe fixed point necessarily must exhibit.
Instead, it can be viewed as a criterion that distinguishes
nonperturbative from near-perturbative fixed points. Other
hints at a near-perturbative nature of the Reuter fixed point
consist in the near-canonical scaling spectrum of higher-
order curvature operators [14,22–24] which is also exhib-
ited by σ in our system, and the possibility to uncover the
fixed point within one-loop perturbation theory [76,77].
Further, the Reuter fixed point might be connected con-
tinuously to the perturbative asymptotically safe fixed point
seen within the epsilon expansion around d ¼ 2 dimen-
sions [1,78]. Indications for this have been found, e.g., in
[6,79–81], however, see also [5,82].
Moreover, such a feature appears desirable from a

phenomenological point of view: According to the findings
in [34,83,84], a near-perturbative gravitational fixed
point could induce an asymptotically safe UV completion
of the Standard Model, which matches onto the perturba-
tive RG flow of the Standard Model from the Planck scale
to the IR.
To investigate whether the effective universality is

realized in this system we expand the beta functions
for both avatars of the Newton coupling at the correspond-
ing fixed-point values for λ2 and λ3, cf. Eq. (46). The
mechanism behind asymptotic safety in gravity is a
cancellation of canonical scaling with quantum scaling.
The quantum term must have an antiscreening nature to
generate a viable fixed point at G� > 0. For a fixed point
which can be traced back to the free fixed point as d → 2,
the quantum effects are captured qualitatively by the
leading term in the expansion in G. Therefore we consider
the two quadratic coefficients AGi

and Af;Gi
as encoding key

physics of asymptotic safety. The comparison of these
coefficients for different avatars of the Newton coupling
also allows us to deduce whether effective universality
is realized.
We discover a quantitative agreement of the two avatars

in the n ¼ 1 projection. This holds for the Nf -independent
part, with AGψ

=AGh
≈ 0.96 as well for the Nf -dependent

part with Af;Gψ
=Af;Gh

≈ 0.73. The close agreement of these
coefficients is reflected in the good agreement of G�

h
and G�

ψ .
A measure for the deviation from effective universality

has been introduced in [20]:

εðG; μ; λ3Þ ¼
���� ΔβGh

− ΔβGψ

ΔβGh
þ ΔβGψ

����
Gh¼Gψ¼G

; ð50Þ

where ΔβGi
¼ βGi

− 2Gi is the anomalous part of βGi
.

Expressed in this measure, ε ≈ 0.01 at the interacting fixed
point of the n ¼ 1 truncation. This value indicates an
almost exact agreement of the beta functions of both avatars
of the Newton coupling. The systematic error of our

FIG. 6. Integrated deviation in the momentum dependence in
different truncations as defined in Eq. (49). We integrate from
p ¼ k down to p ¼ q. Here E refers to the evaluation of Eq. (49)
for a given truncation at the fixed point in the particular
truncation. The deviation of this expression from zero encodes
the accuracy of the projection.
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truncation has been estimated in [21] to result in an
uncertainty δε ≈ 0.2. Within this estimate for the systematic
error, the fixed point is compatible with exact universality
according to the measure in Eq. (50). This indicates the
near-perturbative nature of the interacting fixed point in this
truncation, as pointed out in [21].
Evaluating this measure of effective universality in the

n ¼ 2 projection without the inclusion of σ yields a value of
ε ≈ 0.2. While the value is larger than that in the n ¼ 1
projection, it is still compatible with exact universality
within the estimate for the systematic uncertainty of ε. The
discovery of effective universality in this system accord-
ingly appears to be quite robust.
At a first glance, the presence of σ at the fixed point

could look like a potential source of deviation from
effective universality. After all, σ couples differently into
βGh

than it does into βGψ
. Yet, we caution that this con-

clusion might be premature: If the Reuter fixed point
features effective universality, this is a consequence of
many structurally different contributions in the beta func-
tions. At the fixed point, nontrivial cancellations occur
which result in effective universality. In fact, this is the case
in the truncation explored in [20,21]: Although λ2 and λ3
couple differently into βGh

and βGψ
, effective universality is

realized. Hence, a priori one cannot infer whether or not
the inclusion of σ will spoil effective universality, as a
dynamical adjustment of fixed-point values can lead to
effective universality at one point in theory space even
though the impact of σ on βGh

and βGψ
is structurally

different. Therefore we now explicitly check this question.
Including σ, we find ε ≈ 0.26. Within our estimate for the
systematic uncertainty of ε, this appears to be compatible
with effective universality defined as a near agreement of
the fixed-point values of the avatars, even though it appears
to be just incompatible with an exact agreement.
In summary, both truncations (σ ¼ 0 and σ ≠ 0), with

the n ¼ 1 and n ¼ 2 projection schemes that we have
explored indicate the possibility of effective universality
at the Reuter fixed point, hinting at a potentially near-
perturbative nature of the fixed point.

V. STRUCTURAL ASPECTS OF THE
WEAK-GRAVITY BOUND

In this section, we broaden our view away from the fixed
point in the above truncation, and instead analyze βσ with
all other couplings treated as external parameters. Varying
these allows us to explore the behavior of the system away
from the results in one specific truncation. For this section,
we assume effective universality, i.e., Gψ ¼ Gh ¼ G,
motivated by our results in the previous section. Further,
we stress that our analysis for the critical exponent from βσ
can be translated to the larger system in which all couplings
are dynamical, if the stability matrix is approximately block

diagonal. Our results in the previous section highlight that
this is the case, at least at the fixed point explored there.
In [27,28,42], the weak-gravity bound for asymptotic

safety was introduced. It is based on the observation that
strong metric fluctuations can lead to the loss of a predictive
fixed point in matter interactions. Specifically, these are
such couplings that cannot be set to zero in the presence of
asymptotically safe gravity. Due to the symmetry-structures
in the matter sector, these couplings are all canonically
irrelevant. For a subset of those, analyzed in truncated
flows, strong metric fluctuations lead to a loss of the shifted
Gaussian fixed point (sGFP) at a fixed-point collision. The
maximum strength of gravitational fluctuations that is still
compatible with a real shifted Gaussian fixed point leads to
a bound on the gravitational fixed-point values, the weak-
gravity bound. We stress that even in the region beyond the
weak-gravity bound, the beta functions might allow for
other zeros to exist. These additional zeros need not
correspond to actual fixed points and could be truncation
artifacts. More importantly, these zeroes are typically
associated with a critical exponent that deviates rather
significantly from a canonical power-counting, invalidating
the truncation scheme that is typically used. In particular,
the couplings in question are all canonically irrelevant in
d ¼ 4, but might be relevant at the additional zero of the
beta function. This would imply the existence of an
additional free parameter, corresponding to a reduced
predictivity. In particular, when it comes to matter cou-
plings, there are no experimental indications that such free
parameters beyond the couplings of the Standard Model
exist in nature. Therefore, the region beyond the weak-
gravity bound, where the sGFP ceases to exist, is not
strictly excluded as a viable region for the Reuter fixed
point. Yet, the “weak-gravity” region appears preferable
both from a phenomenological point of view as well as
regarding the aspect of controlling the truncation.
In [27], a comprehensive analysis of the conditions under

which a weak-gravity bound exists for quartic matter
couplings was put forward. The corresponding beta func-
tions are quadratic in the matter coupling. Here, we will
analyze the case of beta functions that are cubic in the
coupling. The beta function for σ falls into this category.
In the previous sections, we have found it convenient to

choose a parametrization of the action where G appears in
those terms arising from the Einstein term, in the minimally
coupled interactions and in the nonminimal vertex. An
alternative parametrization, where G does not appear in the
nonminimal vertex, is related by a transformation of the
basis in theory space. Specifically, the difference between
the two parametrizations lies in the redefinition (37). To
explore the weak-gravity bound, the modified parametri-
zation is more suitable. This parametrization allows us to
test the response of one sector, the nonminimal one, to the
strengthening of metric fluctuations. In this parametriza-
tion, the strengthening can most conveniently be encoded
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in an increase of G. The same cannot be done in our
original parametrization, as an increasing of G simulta-
neously “dials” the strength of the nonminimal interaction
term. In this alternative parametrization, the flow equations
for Gψ and σmod in the n ¼ 2 scheme take the form given in
Eqs. (40) and (41). In this parametrization, βσmod

is, up to
corrections from the loop contributions to the anomalous
dimensions, cubic in σmod. In the perturbative approxima-
tion, i.e., neglecting the anomalous dimensions coming
from the scale derivative of the regulator it becomes exactly
cubic. This motivates a more general analysis of the
existence of the shifted Gaussian fixed point in cubic beta
functions.
Consider a generic beta function cubic in the coupling γ,

i.e.,

βγ ¼ aþ bγ þ cγ2 þ dγ3; ð51Þ
where a, b, c and d are coefficients that are functions of
other couplings of the system. b in general also contains a
contribution from the canonical dimension of γ. The sGFP
is defined as the fixed point that is a continuous deforma-
tion of the free fixed point for a ≠ 0. In the case of
gravitational systems, it is the effective strength of metric
fluctuations that leads to this deformation. As the effective
strength of metric fluctuations increases, the critical expo-
nent associated to γ changes. As θ ¼ 0 is associated to a
double zero of a beta function, a change of sign of the
critical exponent of the sGFP is necessarily tied to a fixed-
point collision. Such collisions can (but need not, see, e.g.,
[85,86] for exceptions) lead to a loss of real fixed points.
Up until a possible collision, a canonically irrelevant
coupling is therefore irrelevant at the sGFP. For d < 0,
the beta function can either feature one or three zeros. For
the former case, the zero comes with negative slope, i.e., it
corresponds to a fixed point at which the coupling is
relevant. Therefore, in the case of d < 0, the sGFP only
exists if the beta function has three real zeros. This
condition is equivalent to demanding that the local mini-
mum of βγ is negative and the local maximum positive.
Expressed in terms of the coefficients, this leads to

c2 ≥ 3bd; βγðγmaxÞ > 0; and βγðγminÞ < 0: ð52Þ
Given any cubic beta function, this set of conditions can be
checked. Regions in the gravitational parameter space
where these conditions are violated do not allow for the
sGFP to exist.
The case of d > 0 is more involved, since, depending on

the specifics of the system, there can be either three, or only
one real zero point of βγ. In the latter case, the coupling γ is
irrelevant at two of the zeros. Hence it is not clear from the
values of the parameters, which of them is the sGFP. To
establish this requires tracking the sGFP all the way into the
GFP as a → 0. Moreover, as the values of the parameters in
the beta function are changed, the case with one zero can
turn into the case with three zeros. Overall we conclude that

for d > 0 there does not appear to be a simple criterion that
allows us to infer the existence of the sGFP. Instead, the
sGFP has to be tracked explicitly starting from a ¼ 0 to
determine whether it exists in a given range of parameter
space. Interestingly, in the asymptotic-safety literature, [11]
constitutes an example of the d > 0 case.
We now turn our focus back to the coupling σmod, with

beta function shown in Fig. 7. In the case G ¼ 0, the beta
function features a Gaussian fixed point, as expected. In
accordance with symmetry arguments, this fixed point is
shifted away from zero for G ≠ 0, giving rise to a sGFP. At
the sGFP, σmod is shifted further into irrelevance. This
suggests indeed that canonical power counting is a suitable
guiding principle to determine which operators are relevant
or irrelevant at the Reuter fixed point.
Following our analysis above, exploring whether the

sGFP exists everywhere in the gravitational parameter
space is best done by explicitly computing the value of
the sGFP as a function of the other couplings of the system.
Figure 8 shows the value of the sGFP as a function of the
gravitational parameters G and λ2 at a fixed value of λ3.
There is no indication for a weak-gravity bound in the
shown region. Figure 8 only covers a bounded region in
theory space. Beyond the red line in Fig. 8, i.e., for larger
values of G and λ2, at least one of the anomalous
dimensions violates η ≤ 2, such that the truncation is not
reliable any more. Even though the anomalous dimensions
must increase even further in order to flip the sign of
diagrams contributing to the flow, η ¼ 2 is the point where
the regulator bound discussed in [37] is violated. For more
negative values of λ2, the effective strength of gravity
fluctuations decreases, cf. the discussion in Sec. VI. As the
weak-gravity bound is expected to be induced by strong
gravity fluctuations, we do not expect the sGFP to vanish
into the complex plane for more negative values of λ2.
Figure 9 shows the values of the critical exponent θσmod

at
the sGFP as a function of the gravitational parameters. We
observe that the critical exponent at the sGFP is almost

FIG. 7. We show βσmod
after rescaling σmod, such thatG does not

appear in the nonminimal vertex, at λ2 ¼ 0.2, λ3 ¼ 0 with G ¼ 0
(red, solid), G ¼ 2 (blue, dashed) and G ¼ 4 (green, dotted).
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everywhere shifted further into irrelevance starting from the
canonical scaling θσmod

¼ −3 at G ¼ λ2 ¼ 0. This signals
that the system is actually driven away from a fixed-point
collision. We conclude that in the region where our
truncation is expected to provide robust results, there are
no indications for a weak-gravity bound. Accordingly, the
inclusion of the nonminimal interaction σmod does not lead
to new constraints on the microscopic gravitational param-
eter space. Thus, the asymptotic-safety scenario passes a
nontrivial test: The presence of a nonzero interaction,
which has been neglected in previous studies, is innocuous
in that its inclusion does not impose new constraints and
only results in subleading corrections to fixed-point values
from previous studies.

VI. ASYMPTOTIC SAFETY FOR MORE FLAVORS

A key question on the asymptotic-safety scenario is
whether it is compatible with arbitrary matter models or
whether it places restrictions on the matter sector. If this
was not the case, there would be a huge “landscape” for

asymptotic safety. This would clearly make it much more
challenging to confront the asymptotic-safety scenario with
data, as experimental data are only available at energies
where the fixed-point scaling itself is not yet detectable. If
asymptotically safe gravity is only compatible with a very
small set of matter models, then one can hope for it to be
ruled out by particle-physics data. To establish which
models lie in the asymptotically safe regime and which
lie in the “swampland,” the interaction structure of models
also has to be taken into account. Here, we restrict
ourselves to the first step in the landscape/swampland
classification, and ask whether a bound exists on the
number of fermion flavors compatible with a fixed point
in our truncation. Note that the realization of scale
invariance in the UV relies on a delicate balance of
competing effects of quantum fluctuations of different
fields. Accordingly one might expect the asymptotically
safe region to be a tiny “island.”
Further, the gravitational fixed-point values are a key

input in determining whether asymptotically safe gravity
could provide accurate “retrodictions” of Standard Model
couplings [34,83,84]. These fixed-point values depend on
the number of matter fields, and accordingly an accurate
determination at Nf ¼ 22.5 (SM) or Nf ¼ 24 (SMþ ν’s) is
required. Our study is also a step towards reducing the
systematic error of the gravitational fixed-point values.
There are compelling indications for a screening effect of

fermions on the running Newton coupling, as it is seen in
perturbative studies [87,88], background studies [29,35,36]
and fluctuation field studies [37], including the present one
for Nf > 1.5, cf. Eq. (B2) and Eq. (B1) in Appendix B and
Table III, where Af;Gψ

> 0 for Nf > 1.5.
For the fluctuation system, the numerical prefactor of the

G2Nf -term in βGψ
and βGh

is significantly smaller than for
the background system, where it is Af;GB

=AGB
≈ 0.04 for

Dirac fermions [36], with the A’s defined in analogy to
Eq. (46). In contrast, Af;Gψ

=AGψ
≈ 8.5 × 10−4. Accordingly,

the Reuter fixed point in the fluctuation system changes
much slower as Nf is increased. Up to values of Nf in the
range Nf ≈ 20…30, only slight changes are observed in
the system. To understand the observed slight changes, the
effect of fermions on λ2 and λ3 needs to be taken into
account. This is the point where background calculations
and fluctuation calculations differ: As a function of
increasing Nf , the fixed-point value for the background
cosmological constant becomes increasingly negative,
see, e.g., [36]. At the same time, the fluctuation quantities
λ�2, λ

�
3 both become more positive.

Our results are shown in Fig. 10 for σ ¼ 0 and Fig. 11.
We observe a growth of λ�2 and λ

�
3. As λ2 grows, it enhances

the effective strength of metric fluctuations in the system of
beta functions at hand. The contribution of gravitons comes
with 1=ð1 − 2λÞ#, where # ¼ 1, 2 in our case. Therefore a
slight growth in λ�2 strengthens the metric contribution to

FIG. 8. Value of the sGFP for the nonminimal coupling σmod at
λ3 ¼ 0, as a function of the gravitational parameters G and λ2.
The existence of a real sGFP in the whole plot range implies the
absence of a weak-gravity bound in the same region. The red line
indicates where one of the anomalous dimensions reaches η ¼ 2.

FIG. 9. Values of the critical exponent θσmod
at the sGFP as a

function of the gravitational parameters G and λ2.
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βGψ=h
sufficiently to overcompensate the effect of fermions,

such that the fixed-point values in Gψ=h decrease as a
function of Nf up to Nf ≈ 20–30. We caution that such
threshold effects are regulator dependent, and accordingly
it is an interesting open question how a similar self-
stabilization of the gravitational system could be encoded

in beta functions with a different choice of regulator. For a
related discussion, see [68].
At Nf ≈ 20–30, we observe hints for the onset of a more

strongly coupled regime in our truncation. For instance, a
subset of the critical exponents deviates further from the
canonical values. This goes hand in hand with a more

FIG. 10. Upper panels: Fixed-point structure as a function of Nf in n ¼ 1 projection. Lower panels: Fixed-point structure for the
system in n ¼ 2 projection with σ ¼ 0 as function of the number of fermions Nf .

FIG. 11. Fixed-point structure for the system with n ¼ 2 projection with σ ≠ 0 evaluated Γðhψ̄ψÞ as function of the number of
fermions Nf .
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significant impact of σ, i.e., the fixed-point results with σ
start to deviate more significantly from those without.
Within the minimally coupled system, the two projections,
shown in Fig. 10 begin to show slight differences. In
particular, a difference between G�

h and G�
ψ begins to

develop in the n ¼ 2 projection. Moreover, effective
universality for G�

h and G�
ψ appears to be lost in this

regime. That this corresponds to a more strongly coupled
regime can also be inferred by exploring the effective
strength of metric fluctuations. It is for instance encoded in
the quantity

Geff;n ¼
G

ð1 − 2λ2Þn
: ð53Þ

In the present projection, βGψ
and βGh

are sensitive to
Geff;1=2. Higher powers of ð1 − 2λ2Þ can play a role in some
diagrams. As λ2 grows towards the pole at λ2 ¼ 1=2, the
effective strength of metric fluctuations can grow even if G
itself does not grow. We observe that the Geff decrease as a

function of Nf until about Nf ≈ 20, when an increase is
observed. For the truncation without σ in n ¼ 1 projection
the increase only occurs for the higher order Geff,
cf. Fig. 12.
Taken together, this indicates a need to extend the

truncation for a quantitatively reliable determination of
fixed-point properties in the regime beyond Nf ≈ 20–30. A
continuation of the Reuter fixed point also exists in this
regime in our study. Yet, a conservative estimation of the
reliability of truncations suggests that extensions are
necessary to reliably probe its existence and possible
properties. Nevertheless, we highlight that our results could
be interpreted to hint at the existence of a fixed point also at
large Nf , which could be relevant for asymptotic safety in
matter models [89,90]. Accordingly, a scenario in which a
crossover from asymptotically safe fixed-point scaling with
gravity to asymptotic safety without gravity determines
high-energy physics, might potentially be realizable. Such
a setting requires further investigation. Finally, we point out
that Geff;1 exhibits similar behavior in the background—as
in the fluctuation system for Nf ¼ 1…10. In this region,
Geff;1 falls for both systems, cf. Fig. 13, although the
underlying mechanisms at the level of fixed-point values
differ. This could be interpreted as a hint that at the level of
physically relevant combinations of couplings, the back-
ground and fluctuation system could behave similarly.

VII. CONCLUSIONS AND OUTLOOK

A. Key finding: A robust fermion-gravity
fixed point for finitely many fermions

In this paper, we have zoomed in on the microscopic
dynamics of gravity and fermions. Going beyond previous
studies in the literature, we have explored a new direction in
the space of couplings: Nonminimal derivative couplings
for fermions are expected to be present at the Reuter fixed
point according to symmetry arguments [27]. Here, we
have included the leading-order one of this family of

FIG. 12. Value of the effective gravitational coupling G�
eff;n for different values of n. Left panel: n ¼ 1 projection, central panel: n ¼ 2

with σ ¼ 0 and right panel: n ¼ 2 with σ ≠ 0.

FIG. 13. We show the value of G�
eff;1 for different truncations as

a function of the fermion number. The values for the background
system are taken from [36].
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couplings, and confirmed that it cannot be consistently set
to zero. Accordingly its inclusion constitutes a nontrivial
test of asymptotically safe gravity. In particular, we find
good indications for a robust continuation of the Reuter
fixed point from zero to finite fermion number Nf ≈ 20–30.
Specifically, the inclusion of the canonically irrelevant,
nonminimal coupling σ has very little impact on properties
of the system determined in smaller truncations. Most
importantly, the introduction of σ adds another irrelevant
direction at the interacting fixed point. Hence, our study
provides further evidence for the small finite dimension-
ality of the UV-critical hypersurface of the Reuter fixed
point also in the presence of matter. Our results further
reinforce the scenario that asymptotically safe gravity could
be near perturbative, implying that the spectrum of higher-
order critical exponents follows a near-canonical scaling.
Moreover, we find further hints for a possible near-
perturbative nature of asymptotic safety by comparing
two “avatars” of the Newton coupling. These are expected
to exhibit a near equality of fixed-point values, referred to
as effective universality [20,21], in a near-perturbative
regime. Our investigation also includes a detailed analysis
of the momentum dependence of the flow, highlighting the
small impact of the nonminimal coupling in terms of a
suppressed higher-momentum dependence of the graviton-
fermion vertex.
Beyond Nf ≈ 20–30, we find indications that further

extensions of the truncation are required. In this regime, the
inclusion of σ as well as changes in the projection scheme
have an appreciable impact on the fixed-point properties.
Moreover, critical exponents deviate further from canonical
scaling. To reliably test whether the Reuter fixed point can
be extended to much higher fermion numbers, extensions
of the truncation are required to reach quantitatively robust
control of the system at Nf⪆20 − 30.

B. Outlook

For values of Nf > 30, the large deviation of the critical
exponents from canonical scaling indicates the need for
further extensions of the truncation. In principle, many
different directions in theory space are available for such
an extension. Accordingly it is highly desirable to obtain an
educated guess, which direction is the most likely to provide
an important step towards apparent convergence of the
results. We have already observed that the system is rather
stable under the inclusion of the coupling σ. Specifically, it is
useful to consider the momentum dependence of the flow at
Nf > 1. Performing a similar comparison as for the case
Nf ¼ 1 in Fig. 14, we find that the n ¼ 2 approximation
with σ captures the momentum dependence of the flow more
accurately than the approximation without σ (n ¼ 1),
cf. Fig. 14. Therefore, our extension of the truncation is
an important step towards quantitative precision for Nf ≈ 25.
A further extension to p5-terms in the momentum depend-
ence also appears indicated by the results, cf. Fig. 14.

Further contributions from the matter sector to βGψ
might

be relevant at large Nf . In particular, this could include
induced, chirally symmetric four-fermions interactions
[25]. In [27] a suppression of the contribution of these
induced interactions to other beta functions was observed at
Nf ¼ 1. Yet, an explicit study of the impact of these
interactions to βGψ

is still outstanding. Moreover, a scaling
of this contribution with Nf could be possible, and could
therefore enhance the corresponding effects at large Nf .
Figure 15 shows the momentum dependence of the

graviton three-point vertex at Nf ¼ 1 and Nf ¼ 25. For
the former case, it is well approximated by a polynomial up
to first order in p2. This is not the case for Nf ¼ 25. There,
the momentum dependence shows a clear p4 dependence
which is not captured by the n ¼ 2 projection at p2 ¼ 0 and
p2 ¼ k2 which is the approximation we work in for Gh in
this paper. Accordingly, at large fermion numbers, the
n ¼ 2 projection introduces an error. This might be the
reason for the deviation of the fixed-point values of both
avatars of the Newton coupling, visible, e.g., in Fig. 11.
Therefore, an extension of the truncation in the pure-gravity

FIG. 14. Momentum dependence of the graviton-fermion
vertex for Nf ¼ 25 fermions for the n ¼ 1 and the n ¼ 2
projection including σ.

FIG. 15. Momentum dependence for the graviton three-point
function evaluated at the corresponding fixed point.
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direction is indicated, in order to obtain more reliable
results for the behavior at Nf > 30. In Fig. 15 we observe
that a polynomial up to second order in p2 might capture
the full momentum dependence of the graviton vertex.
Therefore the inclusion of R2 and R2

μν would be the first
step towards a more reliable large-Nf behavior. One might
interpret our observation as the generation of a sizable
RμνRμν and/or R2-term by fermionic fluctuations. This is
particularly intriguing, as the corresponding change in the
effective graviton propagator might play a role in generat-
ing quantum-gravity contributions to Standard Model beta
functions of the appropriate size to be phenomenologically
viable [27].
In summary, we aim at reaching quantitative conver-

gence of fixed-point values at finite fermion numbers.
A central motivation is that this is a key input for
investigations into the phenomenology of asymptotic
safety, both in particle physics, see, e.g., [19] as well as
in cosmology, see, e.g., [91].
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APPENDIX A: DIMENSIONLESS FORM
OF THE WETTERICH EQUATION

In this section we explain in detail, how one can cast
the flow equation into a completely dimensionless and
k-independent form. This leads us to a compact expression
containing every beta function of the system and provides a
formally exact equation underlying all fixed-point searches
in truncations. After that, we give an explicit example on
how to extract specific beta functions.

1. Generic case

In order to get the general picture we will, for now,
mostly use the DeWitt notation with super indices A, the
super field ΦA,

ðΦAÞ ¼ ðhμνðxÞ;ψ iðxÞ; ψ̄ iðxÞ; cμðxÞ; c̄μðxÞÞ; ðA1Þ
and the effective action Γk without reference to any
truncation. For example, in this language the vertex
expansion of the effective action reads

Γk½Φ; ḡ� ¼
X∞
n¼0

1

n!
ΓðnÞ
kA1…An

½0; ḡ�ΦAn…ΦA1 ; ðA2Þ

where the ΓðnÞ
k are the functional derivatives of the effective

action with respect to the fields,

ΓðnÞ
kA1…An

½Φ; ḡ� ¼ Γk½Φ; ḡ� δ⃖

δΦA1
…

δ⃖

δΦAn
: ðA3Þ

Note the order of the indices and fields, which is important
to keep in mind for the Grassmann-valued quantities. When
performing RG steps, i.e., when changing k, all n-point
functions change. However, some parts of that we can
absorb by a simple rescaling of the field. To capture this, let
us define the (Grassmann even) generalized wave-function
renormalization Zk such that the second functional deriva-
tive of Γk agrees with the standard kinetic term,

1

2
TrðΓð2Þ

k ½0; ḡ�ΦΦTÞ ¼ 1

2
TrðZk½ḡ�TKink½ḡ�Zk½ḡ�ΦΦTÞ;

ðA4Þ

where Kink is the standard kinetic operator. The wave-
function renormalization is a matrix in field space. Thus,
for practical purposes we assign a factor of Zk instead of
Z1=2

k to each field. Further, note the remaining k depend-
ence in Kink, which is present due to the following reason:

In principle we can bring Γð2Þ
k into any desired form,

however as Zk is supposed to be a rescaling it must not
vanish. Therefore we cannot remove, e.g., mass poles,
whose location we still need to follow while changing k.
One important ingredient for a full RG step is the

rescaling of the (background) spacetime. This is usually
implemented by a rescaling of the coordinates, xμ → k−1xμ.
Here we will follow a different route: as the diffeomor-
phism-invariant (background) distance is ds2 ¼ ḡμνdxμdxν,
we can implemented the rescaling by reparametrizing the
background metric ḡ in terms of a dimensionless metric ˆ̄g,4

ḡμν → ḡkμν½ ˆ̄g� ¼ k−2 ˆ̄gμν: ðA5Þ

In particular this implies that we treat coordinates as
dimensionless, while the metric carries the dimensionality.
For example the operator =̄∇ still scales with k, however, the
k now does not arise from the dimensionless ∇̄μ, but from
the dimensionful γ̄μ ¼ ḡμνγ̄ν,

fγ̄μ; γ̄νg ¼ 2ḡμν → fk−1 ˆ̄γμ; k−1 ˆ̄γνg ¼ 2k−2 ˆ̄gμν: ðA6Þ

The advantage of this assignment of dimensionality is
twofold. Firstly this fits better to the diffeomorphic nature
of gravity, where one can choose coordinates as one
pleases. For instance, for spherical coordinates, it is
obvious that we do not want the angles to carry any
dimension. Yet, if we insist on the radial coordinate to carry

4In this appendix we use a hat to indicate dimensionless
quantities, e.g., ˆ̄g, whereas dimensionful quantities “wear” no
additional symbols, in order to avoid confusion of dimensionful
quantities with the bar of background quantities, e.g., ḡ.
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a dimension, then the metric tensor would not have a
homogenous dimension, as the purely radial component
would be dimensionless, while the angular components of
the metric do carry nonzero dimensionality. The second
advantage is that we can make the rescaling of the
spacetime manifest in the effective action, by using k−2 ˆ̄g
instead of ḡ as the (background) metric argument of Γk.
This would be somewhat more complicated if we insisted
on rescaling the coordinates.
Considering the rescaling of the (background) space-

time, we define the (in field space) diagonal operator Kk,
such that it accounts for the canonical mass dimension of
the fields. We can read off the canonical scaling with k from
the behavior of the kinetic term under a rescaling of the
(background) metric,

Kink½k−2 ˆ̄g� ¼ K−1
k
dKink½ ˆ̄g�K−1

k ; KT
k ¼ Kk; ðA7Þ

where dKink is the dimensionless kinetic operator with
dimensionless couplings (mass poles). The scale derivative
of Kk then gives a factor N corresponding to the canonical
mass dimension,

∂tKk ¼ NKk ¼ KkN : ðA8Þ

With the above definitions we can parametrize the dimen-
sionful field Φ in terms of the dimensionless field Φ̂,

Φ → Φk½Φ̂; ˆ̄g� ¼ Z−1
k ½k−2 ˆ̄g�KkΦ̂: ðA9Þ

In our case this translates into the following canonical
powers of k:

ðKk
A
BΦ̂

BÞ¼k
d−6
2 ðĥμνðxÞ;k5

2ψ̂ðxÞ;k5
2 ˆ̄ψðxÞ;k2ĉμðxÞ;k2 ˆ̄cμðxÞÞ;

ðA11Þ

and corresponding canonical mass dimension N

ðN A
BΦ̂BÞ ¼

�
d − 6

2
ĥμνðxÞ;

d − 1

2
ψ̂ðxÞ; d − 1

2
ˆ̄ψðxÞ;

d − 2

2
ĉμðxÞ; d − 2

2
ˆ̄cμðxÞ

�
: ðA12Þ

Note the canonical scaling of hμν ∼ k
d−6
2 ĥμν. At first sight

this seems different from the standard one of a bosonic field
∼kd−2

2 . This “different” factor arises from the positioning of
the indices in the kinetic term for hμν,

1

2
TrðKink½k−2 ˆ̄g�hhTÞ ∼ k6−d

Z ffiffiffī̂
g

q
hμν

ˆ̄Δhρσ ˆ̄gμρ ˆ̄gνσ: ðA13Þ

If we were to use h̃μν ¼ ḡμρhρν instead of hμν,

1

2
TrðKink½k−2 ˆ̄g�h̃h̃TÞ ∼ k2−d

Z ffiffiffī̂
g

q
h̃μν ˆ̄Δh̃νμ; ðA14Þ

we would find the usual ∼kd−2
2 . One can easily see that this

choice has no impact on any of the beta functions, as every
such factor can be reabsorbed into the wave-function
renormalization.
Finally let us define the generalized anomalous dimen-

sion ηk, which captures the anomalous scaling of the fields,
i.e., the scaling not coming from Kk but from Zk,

ηk½ ˆ̄g� ¼ −2K−1
k

_Zk½k−2 ˆ̄g�Z−1
k ½k−2 ˆ̄g�Kk: ðA15Þ

The full scaling of the dimensionful field Φk then reads

K−1
k Zk½k−2 ˆ̄g�∂tΦk½Φ̂; ˆ̄g� ¼

�
1

2
ηk½ ˆ̄g� þN

�
Φ̂: ðA16Þ

Using the above we can define the dimensionless effective
action Γ̂k,

Γ̂k½Φ̂; ˆ̄g� ¼ Γk½Z−1
k ½k−2 ˆ̄g�KkΦ̂; k−2 ˆ̄g�: ðA17Þ

Next we choose a regulator Rk of the form

Rk½ḡ� ¼ ZT
k ½ḡ�K−1

k R̂½k2ḡ�K−1
k Zk½ḡ�; ðA18Þ

where R̂½ ˆ̄g� is a dimensionless and k-independent regulator
shape function. This is in full agreement of the standard
way of writing the shape function as a function of a
dimensionful Laplacian divided by k2. Expressed in terms
of the dimensionless Laplacian, the shape function has no k
dependence.
Now we can move on to the calculation of the flow of the

dimensionless effective action, which explicitly contains all
beta functions of the considered system,

βΓ̂k
½Γ̂k; R̂; ˆ̄g�½Φ̂� ¼ ∂tΓ̂k½Φ̂; ˆ̄g�: ðA19Þ

We start with the standard flow equation,

_Γk½Φ; ḡ� ¼ 1

2
STr½ðΓð2Þ

k ½Φ; ḡ� þ Rk½ḡ�Þ−1 _Rk½ḡ��: ðA20Þ

On the right-hand side we can insert the functional
derivative of the dimensionless effective action (A17)
and our chosen regulator (A18), leading to

ðΓð2Þ
k ½Φk½Φ̂; ˆ̄g�; ḡk½ ˆ̄g�� þ Rk½ḡk½ ˆ̄g��Þ−1

¼ Z−1
k ½k−2 ˆ̄g�KkðΓ̂ð2Þ

k ½Φ̂; ˆ̄g� þ R̂k½ ˆ̄g�Þ−1KkZ−1T
k ½k−2 ˆ̄g�;

ðA21Þ

where ḡk and Φk are given in Eqs. (A5) and (A9). In terms
of dimensionless and k-independent quantities, the scale
derivative of the regulator can be expressed via
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KkZ−1T
k ½k−2 ˆ̄g� _Rk½k−2 ˆ̄g�Z−1

k ½k−2 ˆ̄g�Kk

¼ −
�
1

2
ηTk ½ ˆ̄g� þN

�
R̂½ ˆ̄g� − R̂½ ˆ̄g�

�
1

2
ηk½ ˆ̄g� þN

�
− ∂qR̂½q−2 ˆ̄g�jq¼1: ðA22Þ

In the last term we treated the k derivative in terms of
an auxiliary dimensionless parameter q. This trick helps
us making everything explicitly k independent. We use
the q derivative in order to capture the scaling with the
metric. In practice such a term essentially leads to
derivatives with respect to the (dimensionless) momentum,
e.g.,

Δ½q−2 ˆ̄g� ¼ q2Δ½ ˆ̄g�: ðA23Þ

By comparison with the definition of the dimensionless
effective action (A17), and applying the chain rule for
derivatives, we observe that the scale derivative of Γ̂k
decomposes into the diagrams, coming from the standard
flow equation, and the scaling of the fields:

∂tΓ̂k½Φ̂; ˆ̄g� ¼ _Γk½Z−1
k ½k−2 ˆ̄g�KkΦ̂; k−2 ˆ̄g�

þ Γ̂ð1Þ
k ½Φ̂; ˆ̄g�

�
1

2
ηk½ ˆ̄g� þN

�
Φ̂

þ ∂qΓ̂k½Φ̂;q−2 ˆ̄g�jq¼1: ðA24Þ

Replacing the first line with the standard flow
equation (A20), while using the expressions (A21) and
(A22), we are led to the flow equation for Γ̂k,

βΓ̂k
½Γ̂k; R̂; ˆ̄g�½Φ̂� ¼ −

1

2
STr

�
ðΓ̂ð2Þ

k ½Φ̂; ˆ̄g� þ R̂½ ˆ̄g�Þ−1
��

1

2
ηTk ½ ˆ̄g� þN

�
R̂½ ˆ̄g� þ R̂½ ˆ̄g�

�
1

2
ηk½ ˆ̄g� þN

�
þ ∂qR̂½q−2 ˆ̄g�jq¼1

��

þ Γ̂ð1Þ
k ½Φ̂; ˆ̄g�

�
1

2
ηk½ ˆ̄g� þN

�
Φ̂þ ∂qΓ̂k½Φ̂; q−2 ˆ̄g�jq¼1: ðA25Þ

Note that we now have a completely k-independent
flow equation, with a compact form for the fixed-point
equation,

βΓ̂k
½Γ̂�

k½R̂; ˆ̄g�; R̂; ˆ̄g� ¼ 0; ðA26Þ

where Γ̂�
k½R̂; ˆ̄g� is the fixed-point action as a function of the

chosen regulator shape and the chosen (background)
spacetime.
Within the vertex expansion scheme a point in theory

space can be specified by choosing the Γ̂ðnÞ
k ½0; ˆ̄g� for n ≠ 2

and choosing the remaining parameters (mass poles) indKink½ ˆ̄g�, while Γ̂ð2Þ
k ½0; ˆ̄g� is then given by

Γ̂ð2Þ
k ½0; ˆ̄g� ¼ dKink½ ˆ̄g�: ðA27Þ

The dimensionless effective action Γ̂k then reads

Γ̂k½Φ̂; ˆ̄g� ¼ Γ̂k½0; ˆ̄g� þ Γ̂ð1Þ
k ½0; ˆ̄g�Φ̂þ 1

2
TrðdKink½ ˆ̄g�Φ̂Φ̂TÞ

þ
X∞
n¼3

1

n!
Γ̂ðnÞ
kA1…An

½0; ˆ̄g�Φ̂An…Φ̂A1 : ðA28Þ

The flow βΓ̂ðnÞ
k
of the vertices Γ̂ðnÞ

k ½0; ˆ̄g� (n ≠ 2) is calculated

by taking n functional derivatives of Eq. (A25) with respect
to Φ̂ and evaluate the expression at Φ̂ ¼ 0,

βΓ̂ðnÞ
k
½Γ̂k; R̂; ˆ̄g�A1…An

¼ FlowðnÞ
A1…An

½ ˆ̄g� þ
Xn
l¼1

Γ̂ðnÞ
kA1…Al−1BAlþ1…An

½0; ˆ̄g�
�
1

2
ηk½ ˆ̄g� þN

�
B

Al

þ ∂qΓ̂
ðnÞ
kA1…An

½0; q−2 ˆ̄g�; ðA29Þ

where FlowðnÞ is a short hand for the corresponding diagrams,

FlowðnÞ
A1…An

½ ˆ̄g� ¼ 1

2
STr½ðΓ̂ð2Þ

k ½Φ̂; ˆ̄g� þ R̂½ ˆ̄g�Þ−1
�
−
�
1

2
ηTk ½ ˆ̄g� þN

�
R̂½ ˆ̄g� − R̂½ ˆ̄g�

�
1

2
ηk½ ˆ̄g� þN

�
− ∂qR̂½q−2 ˆ̄g�jq¼1

��

×
δ⃖

δΦ̂A1
…

δ⃖

δΦ̂An

����
Φ̂¼0

: ðA30Þ

Furthermore the generalized anomalous dimension needs to be determined self-consistently, by taking two functional
derivatives of Eq. (A25) and evaluating at Φ̂ ¼ 0,

βcKink ½Γ̂k; R̂; ˆ̄g� ¼ Flowð2Þ½ ˆ̄g� þ
�
1

2
ηTk ½ ˆ̄g� þN

�dKink½ ˆ̄g� þ dKink½ ˆ̄g�
�
1

2
ηk½ ˆ̄g� þN

�
þ ∂q

dKink½q−2 ˆ̄g�: ðA31Þ
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However, usually we only consider the flow of somehow
projected n-point functions V̂ðnÞ

k;λ ,

V̂ðnÞ
k;λ ½ ˆ̄g� ¼ Γ̂ðnÞ

kA1…An
½0; ˆ̄g�PðnÞA1…An

λ ½ ˆ̄g�; ðA32Þ

where PðnÞ
λ projects onto the physically most relevant or

technically most feasible structures of Γ̂ðnÞ
k . Here we use the

index λ to denote some tunable external parameter for the

projection. In practice this can, e.g., be an external
momentum scale or numerating various tensor structures.

In order to derive the running of V̂ðnÞ
k;λ ,

β
V̂ðnÞ
k;λ
½Γ̂k; R̂; ˆ̄g� ¼ ∂tV̂

ðnÞ
k;λ ½ ˆ̄g�; ðA33Þ

we contract Eq. (A29) with PðnÞ
λ ,

β
V̂ðnÞ
k;λ
½Γ̂k; R̂; ˆ̄g� ¼ FlowðnÞ

A1…An
½ ˆ̄g�PðnÞA1…An

λ ½ ˆ̄g� þ ∂qV̂
ðnÞ
k;λ ½q−2 ˆ̄g�

þ
Xn
l¼1

Γ̂ðnÞ
kA1…Al−1BAlþ1…An

½0; ˆ̄g�
�
1

2
ηk½ ˆ̄g� þN

�
B

Al

PðnÞA1…An
λ ½ ˆ̄g� − Γ̂ðnÞ

kA1…An
½0; ˆ̄g�∂qP

ðnÞA1…An
λ ½q−2 ˆ̄g�: ðA34Þ

In some cases the terms in the second line of Eq. (A34)
boil down to a simple factor multiplying V̂ðnÞ

k;λ .

2. Example: Fermionic sector

Let us be more explicit in the following. As an example
we consider again the fermionic sector from the main text,
now in d-dimensional Euclidean space. The fermionic
terms we are following in our truncation can be written as

Γψ
k ½h;ψ ; ψ̄ ;k−2δ� ¼ k−d

XNf

i¼1

Z
½kψ̄ iZψ

k ð□kÞ=∂ψ i

−2π
1
2k3ðVkð□kÞhTTμν Þψ̄ iγμ∂νψ i�; ðA35Þ

where □k ¼ k2□ is the dimensionful version of the
dimensionless □ ¼ −∂2. Here we already inserted a flat
background, k−2 ˆ̄gμν ¼ k−2δμν. The standard kinetic term
for chiral fermions is

Kinψk ½k−2δ�ijðx; yÞ ¼ k1−d=∂δðx − yÞδij; ðA36Þ

where a factor k−d arises from the
ffiffiffī
g

p
and one factor k from

the γ̄μ in the covariant formulation of the kinetic term,R ffiffiffī
g

p
ψ̄ γ̄μ∇̄μψ . Note that Kinψk corresponds to the ψ − ψ̄

sector in field space,

Kink½ḡ� ¼

0
BBBBBB@

Kinhk ½ḡ� 0 0 0 0

0 0 Kinψk ½ḡ� 0 0

0 −KinψTk ½ḡ� 0 0 0

0 0 0 0 Kinck½ḡ�
0 0 0 −KincTk ½ḡ� 0

1
CCCCCCA: ðA37Þ

The generalized wave-function renormalization Zψ
k

then reads

Zψ
k ½k−2δ�ijðx; yÞ ¼ Z

ψ1
2

k ð□kÞδðx − yÞδij: ðA38Þ

As we are dealing with chirally symmetric fermions there is
no explicit mass term, leading to an actually k-independent

dimensionless kinetic operator dKinψk ,5
dKinψk ½q−2δ�ijðx; yÞ ¼ q1−d=∂δðx − yÞδij: ðA39Þ

Here we can read off the canonical scaling Kψ
k and the

canonical mass dimension N ψ
k ,

Kψ
kijðx; yÞ ¼ k

d−1
2 δðx − yÞδij;

N ψ
kijðx; yÞ ¼

d − 1

2
δðx − yÞδij: ðA40Þ

Thus the fermionic generalized anomalous dimension ηψk ½δ�
is essentially given by the standard fermionic anomalous
dimension ηψk ð□Þ,

ηψk ½δ�ijðx; yÞ ¼ −
_Zψ
k ð□kÞ

Zψ
k ð□kÞ

δðx − yÞδij ¼ ηψk ð□Þδðx − yÞδij:

ðA41Þ
5If we dealt with nonchiral fermions we had dKinψk ½q−2δ�ij×

ðx; yÞ ¼ q−dðq=∂ þ m̂ψ
k Þδðx − yÞδij, where m̂ψ

k would be the
dimensionless fermionic mass.
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Putting everything together the dimensionless version of
Eq. (A35) takes the form

Γ̂ψ
k ½ĥ; ψ̂ ; ˆ̄ψ ; q−2δ�

¼ q−d
XNf

i¼1

Z
½q ˆ̄ψ i=∂ψ̂ i − 2π

1
2q3ðV̂kð□̂qÞĥTTμν Þ ˆ̄ψ iγμ∂νψ i�;

ðA42Þ

where □̂q ¼ q2□ is the dimensionless metric scaled
version of □. To self-consistently determine the general-
ized anomalous dimension we plug the above into
Eq. (A31),

0 ¼ Flowð2Þ
ψ ½δ�ijðx; yÞ þ ηψk ð□Þ=∂δðx − yÞδij: ðA43Þ

By first multiplying with i p
dγNfp2 δðxÞeip·yδij, then taking

the Dirac and flavor trace and finally integrating with
respect to x and y, we arrive at

ηψk ðp2Þ ¼
Z
x;y

tr

�
i

=p
dγNfp2

eip·yδðxÞδijFlowð2Þ
ψ ½δ�ijðx; yÞ

�
:

ðA44Þ

This projection can be summarized as

Pð2Þ
p ½q−2δ�ijðx; yÞ ¼ iqd−1

=p
dγNfp2

δðxÞeip·yδij: ðA45Þ

Finally let us move on to the running of V̂k. The
full graviton-fermion three-point function depends on
three coordinates x, y and z, and therefore on three
external momenta in Fourier space, p1, p2 and p3. One
of them can be eliminated due to momentum conser-

vation. As projector Pð3Þ
p2;p3

on the desired quantity V̂k,
we use

Pð3Þ
p2;p3

½q−2δ�ijμνðx; y; zÞ ¼ iqd−38ðd − 1Þγρp2σ

6π
1
2dγNfðdþ 1Þðd − 2Þp2

× ΠTT ρσ
μν ðp1Þeiðp2·yþp3·zÞδðxÞδij;

ðA46Þ

which we evaluate at the momentum symmetric point,
where p2

2 ¼ p2
3 ¼ −2ðp2 · p3Þ ¼ p2 and p1 ¼ −p2 − p3.

This is the d-dimensional version of Eq. (26). The

normalization of Pð3Þ
p2;p3

again follows from

ΠTT μν
μσ ðp1Þpσ

2p2ν ¼
ðdþ 1Þðd − 2Þ

2ðd − 1Þ
�
p2
2 −

ðp1 · p2Þ2
p2
1

�
;

ðA47Þ
when evaluated at the momentum symmetric point,
p2
1 ¼ p2

2 ¼ −2ðp1 · p2Þ ¼ p2. Using the general expres-
sion (A34) for β

V̂ðnÞ
k;λ

and inserting the projector (45) we

finally arrive at the d-dimensional version for βV̂k
, cf. (34),

βV̂k
ðp2Þ ¼ Flowð3Þ

ψ ðp2Þ þ V̂kðp2Þ
�
d − 2

2
þ ηψk ðp2Þ

þ 1

2
ηhkðp2Þ

�
þ 2p2V̂k

0ðp2Þ: ðA48Þ

APPENDIX B: BETA FUNCTIONS FOR AVATARS
OF THE NEWTON COUPLING FROM THE

DERIVATIVE EXPANSION

Extracting all beta functions and anomalous dimensions
from the derivative expansion and then equating Gψ ¼ G ¼
Gh results in the following twobeta functions for theavatarsof
the Newton coupling. We highlight the last term in each
expression, which encodes the effect of fermionic fluctua-
tions. These screen thegravitational couplings for σ > −0.07.
Here and in the followingPTT ¼ 1

1−2λ2
and PTr ¼ 1

3−4λ2
denote

the pole structure of the TT and trace mode, respectively.

βGh
¼ 2Gþ G2

π

�
−
27

95
PTr5 þ

175

152
PTr4 þ 9PTr2 −

85

342
PTT2 −

1

5
PTr3PTT2 þ

54

95
PTr4PTT

þ 277

2280
PTr3PTT þ

2ð−439þ 932λ3Þ
855

PTrPTT4 −
5ð−3265þ 1152λ3Þ

4104
PTrPTT2

þ 5ð1069þ 1728λ3Þ
1368

PTr2PTT þ
ð−1811þ 3508λ3Þ

285
PTr2PTT3

−
23ð−13263þ 39472λ3Þ

61560
PTrPTT3 þ

ð−136953þ 231368λ3Þ
20520

PTr2PTT2

þ ð−21565þ 47432λ3 þ 30664λ23Þ
5130

PTT3 þ
ð−2689þ 15948λ3 − 33144λ23 þ 20768λ33Þ

2565
PTT5

þ ð251791 − 1241168λ3 þ 1676088λ23 þ 2606848λ33Þ
61560

PTT4 −
287

4104
þ Nf

19439þ 165440σ

159600

�
þOðG3Þ; ðB1Þ

EICHHORN, LIPPOLDT, and SCHIFFER PHYS. REV. D 99, 086002 (2019)

086002-24



βGψ
¼ 2Gþ G2

π

�
3

8
PTr4 −

25

12
PTr2PTT2 þ

5ð71 − 272λ3 þ 296λ23Þ
216

PTT4 þ
4ð−9þ 20σ2Þ

81
PTT

−
10ð−11þ 28σ2Þ

231
PTrPTT þ

2ð−81þ 180σ þ 80σ2Þ
81

PTT2 þ
27þ 112σ þ 252σ2

42
PTr3

−
5ð−3135þ 1232σ þ 2688σ2Þ

5544
PTrPTT2 −

5ð253þ 1232σ þ 2688σ2Þ
1848

PTr2PTT

þ 4536þ 9045σ þ 7168σ2

7560
PTr −

12528þ 73855σ þ 100072σ2

2520
PTr2

þ 5ð−17þ 24λ23 − 96σ þ 80λ3ð−3þ 2σÞÞ
162

PTT3 −
1

324
þ Nf

105þ 1472σ

720

�
þOðG3Þ; ðB2Þ

βσ ¼ 2σ þG
π

�
−
25ð−1þ 2σ þ 6σ2Þ

24
PTT2PTr2 þ

3ð27þ 140σ þ 300σ2Þ
256

PTr4 −
σð2268 − 9999σ þ 896σ2Þ

12096
PTr

−
1155 − 12012σ þ 17370σ2 þ 8960σ3

18144
PTT þ

1386 − 12375σ þ 10010σ2 þ 10080σ3

16632
PTTPTr

þ 5082þ 4125σ þ 29260σ2 þ 20160σ3

16632
PTrPTT2 −

13041þ 85104σ þ 134428σ2 þ 48384σ3

16128
PTr3

þ 20979þ 128628σ þ 243065σ2 þ 236544σ3

12096
PTr2 þ

5ð51 − 74σ þ λ3ð−111þ 124σÞÞ
432

PTT4

−
6741þ 6858σ þ 306590σ2 þ 53760σ3 − 300λ3ð49 − 126σ þ 96σ2Þ

54432
PTT2

þ 6237þ 11055σ − 7700σ2 þ 20160σ3

5544
PTr2PTT

−
1386 − 9690σ − 21280σ2 þ 15λ3ð−749 − 2730σ þ 740σ2Þ

13608
PTT3

�
þOðG2Þ: ðB3Þ

In the following we list the general beta function for the fermion-gravity avatar of the Newton coupling Gψ and the
nonminimal coupling σ, obtained via a derivative expansion:

βGψ
¼ ð2þ ηhTT þ 2ηψ ÞGψ þ G2

ψ

π

�
−
2ð18 − 40σ2 þ ηψð−3þ 4σ2ÞÞ

81
PTT

þ 154ð−891þ 5040σ þ 1280σ2Þ þ ηhTTð−207575þ 97020σ þ 17920σ2Þ
99792

PTT2

þ −88ð3591þ 58095σ þ 66556σ2ÞηhTrð62469þ 623172σ þ 552104σ2Þ
221760

þ ηψ ð4158þ 9405σ þ 3304σ2Þ − 11ð2268þ 7155σ þ 3416σ2Þ
83160

PTr

�

þ
ffiffiffiffiffiffiffi
Gψ

p
G

3
2

h

π

�
5ð264 − 672σ2 þ ηψ ð−33þ 56σ2ÞÞ

2772
PTrPTT þ

ηψ ð81þ 224σ þ 168σ2Þ − 8ð81þ 280σ þ 252σ2Þ
2016

PTr2

þ −520ð−121þ 231σ þ 504σ2Þ þ 3ηhTTð−2145þ 4004σ þ 6720σ2Þ
108108

ðPTrPTT2 þ 3PTr2PTTÞ

−
−715ð27þ 112σ þ 252σ2Þ þ ηhTrð2145þ 6734σ þ 13680σ2Þ

30030
PTr3

�
; ðB4Þ
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βσ ¼ 2σ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
GhGψ

p
π

�
−
25ð−1þ 2σ þ 6σ2Þ

24
PTr2PTT2 þ

3ð27þ 140σ þ 300σ2Þ
256

PTr4

þ 5ð51 − 74σ þ λ3ð−111þ 124σÞÞ
432

PTT4 þ
5λ3ηhTTð−861 − 3030σ þ 68σ2Þ

27216
PTT3

−
ηψð1848 − 12375σ þ 8008σ2 þ 6720σ3Þ − 8ð1386 − 12375σ þ 10010σ2 þ 10080σ3Þ

133056
PTrPTT

−
−312ð6237þ 11055σ − 7700σ2 þ 20160σ3Þ þ ηhTrð59202þ 368225σ þ 299208σ2 þ 482840σ3Þ

1729728
PTr2PTT

þ ηhTTð10692 − 54175σ − 93184σ2Þ þ 88ð−693þ 4845σ þ 10640σ2Þ þ 660λ3ð749þ 2730σ − 740σ2Þ
598752

PTT3

−
−2ηψ ð63 − 225σ þ 196σ2Þ þ 4ð189 − 900σ þ 980σ2Þ þ 75λ3ðηψ ð49 − 84σ þ 48σ2Þ − 4ð49 − 126σ þ 96σ2ÞÞ

54432
PTT2

−
ηhTrð521235þ 471900σ − 2475836σ2 − 5322240σ3Þ

23063040
PTr3

−
σðηψ ð81þ 280σ þ 252σ2Þ − 8ð81þ 350σ þ 378σ2ÞÞ

6048
PTr2

þ 567ηψ ð1þ 2σÞ2 − 2ð1701þ 12528σ þ 34636σ2 þ 48384σ3Þ
32256

PTr3
�

þ Gψ

π

�
ηψð609 − 4044σ þ 4360σ2 þ 1792σ3Þ − 2ð1155 − 12012σ þ 17370σ2 þ 8960σ3Þ

36288
PTT

−
33ð1995þ 3486σ þ 100890σ2 þ 17920σ3Þ − 3ηhTTð1386þ 13728σ þ 143407σ2 þ 17920σ3Þ

598752
PTT2

−
ηhTrð189189þ 766755σ þ 971685σ2 þ 768320σ3Þ

443520
PTr2

−
189ηψð5þ 32σ þ 44σ2Þ − 4ð6993þ 42462σ þ 79155σ2 þ 76832σ3Þ

16128
PTr2 −

9ð5þ 32σ þ 44σ2Þ
64

PTr3
�
: ðB5Þ
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