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We study the limits to the localizability of events and reference frames in the κ-Minkowski quantum
spacetime. Our main tool will be a representation of the κ-Minkowski commutation relations between
coordinates, and the operator and measurement theory borrowed from ordinary quantum mechanics.
Spacetime coordinates are described by operators on a Hilbert space, and a complete set of commuting
observables cannot contain the radial coordinate and time at the same time. The transformation between the
complete sets turns out to be the Mellin transform, which allows us to discuss the localizability properties of
states both in space and in time. We then discuss the transformation rules between inertial observers, which
are described by the quantum κ-Poincaré group. These too are subject to limitations in the localizability of
states, which impose further restrictions on the ability of an observer to localize events defined in a different
observer’s reference frame.
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I. INTRODUCTION

The problem of quantum gravity suggests that the
classical spacetimes at the basis of general relativity and
quantum field theory may have to be replaced with
quantum structures. A concrete realization of this idea is
provided by noncommutative geometry. In this paper we
consider the κ-Minkowski space [1–11], which is the
homogeneous space of the κ-Poincaré Hopf algebra (quan-
tum group) [12–16]. The commutation relations of the
coordinate functions for κ-Minkowski are

½x0; xi� ¼ iλxi; ½xi; xj� ¼ 0; i; j ¼ 1; 2; 3: ð1:1Þ

Often the deformation parameter λ is indicated by 1
κ, hence

the name. For us, as usual, x0 ¼ ct, where c is the speed of
light, λ has the dimension of a length, and a natural scale for
time is given by λ

c. The coordinate operators are assumed to

be Hermitian ðxμÞ† ¼ xμ. Our aim is to study the geomet-
rical kinematics of spacetime, seen as a “quantum” object.
The quantization parameter will be λ, a quantity presum-
ably of the order of Planck length. Relations (1.1) suggest
we use the theory of operators on a Hilbert space as the
correct description. Since we are interested in the kine-
matics of spacetime alone, and will not discuss momentum
for κ-Minkowski, the quantum of action ℏ will not play a
role, except when we reason in analogy with particle
quantum mechanics.
The geometry described by Eq. (1.1) is a noncommu-

tative geometry. One of the aims of this paper is to discuss
what sorts of measurements of position and time are
possible, and which are the states. Clearly, the presence
of nontrivial commutation relations indicates that a version
of Heisenberg’s uncertainty relations is present:

Δx0Δxi ≥
λ

2
jhxiij; ð1:2Þ

and it will not be possible in general to localize states both
in space and in time. In our treatment we will follow Dirac’s
correspondence principle; i.e., we will associate with the
classical coordinates, and in general with the observables,
operators on a Hilbert space, and consider their spectrum
and eigenfunctions. We will also assume the eigenvalues to
be the possible results of a measurement of the observables,
and use the standard apparatus of quantum mechanics
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(although, we repeat, we do not consider conjugate
momenta and their commutations).
Let us make more precise what we mean by non-

commutative geometry. An ordinary topological space is
fully described by the algebra of continuous complex-
valued functions (in the noncompact case, vanishing at
infinity) on it. These form a commutative C�-algebra,
which can always be represented as operators on a
Hilbert space. Further structures, such as smoothness,
are encoded in other operators, such as the Dirac operator
or its generalizations (for a review, see e.g., Ref. [17]).
Usually, one introduces a deformation of this algebra by
defining a noncommutative deformed ⋆-product so that
the ⋆-commutator ½xμ; xν�⋆ ¼ xμ⋆xν − xν⋆xμ reproduces
Eq. (1.1), usually based on the composition of plane waves
[5,18]. There exist many versions of ⋆-products which
reproduce the commutation relation (1.1); see, e.g.,
Refs. [10,19,20]. One of them has proved useful for
the study of the quantum properties of various models
of κ-Poincaré invariant scalar field theories [10,11]. Besides
this, the geometric (spectral) properties, à la Connes, of
the κ-Minkowski spacetime have been investigated in
Refs. [21–24].
We are interested in the localizability of the states, i.e.,

the possibility to have a state of the system which describes
a pointlike event, or a good approximation of it. In a
noncommutative geometry, such as the quantum phase
space of a particle, it may not be possible to localize points
due to some version of the uncertainty principle (1.2). One
might wonder whether the localizability properties of a
state depend on the reference frame or not. This is not the
case for the quantum phase space of one particle: the
algebra of positions and momenta is invariant under
classical translations and rotations. However, the algebra
of Eq. (1.1) is clearly not invariant under the classical action
of the Poincaré group (in particular, under translations and
boosts). It is, however, invariant under a noncommutative
generalization of the Poincaré group—as a matter of fact, it
is defined as the homogeneous space of such generaliza-
tion. This deformation of the Poincaré group makes the
group manifold itself into a noncommutative space, and the
transformation parameters relating different reference
frames are subject to limitations to their localizability as
well. As a consequence, different observers will not agree
in general on the localizability properties of the same state.
Before we proceed with our treatment, we would like to

remark that everything we do in the present paper pertains
strictly to the kinematics of systems in κ-Minkowski
spacetime: there is no dynamics. We are interested in the
implications of the noncommutativity of this spacetime for
the localizability of events, independently of the dynamical
laws they are subject to, or which may be defining such
events. In particular, seeing how, in the following, we
represent certain noncommutative spacetime coordinates as
differential operators, one might be tempted to interpret

those as momenta conjugate to some of the coordinates,
and wonder whether a phase space structure underlies our
construction. We stress that the commutation relations (1.1)
and the uncertainty relations (1.2) are not physically the
Heisenberg algebra and Heisenberg’s uncertainty principle
between canonical coordinates and momenta. Indeed, the
parameter λ setting the scale of noncommutativity has
the dimension of a length, while the Planck constant ℏ has
the dimension of an action. The length λ parametrizes a
noncommutative geometrical property of a noncommuta-
tive spacetime (essentially, it sets the limits to the local-
izability of spacetime regions), while ℏ sets the limits to the
localizability of phase space regions, a dynamical entity.
The two constants may be connected—namely, λ may be
Planck’s length (the Compton length associated with the
Planck mass)—but it may also have a different origin. If we
want to find a connection between relations (1.1) and
dynamics, it has to be looked for at a much deeper level,
and its details (and consistency) are presently unknown. In
fact, relations (1.1) are supposed to be an effective
description of a quantum theory of gravity, whose ground
state is not Minkowski spacetime, but rather a noncom-
mutative deformation thereof. The limits to localizability
then could be understood as the effective description of
gravitational excitations that intervene when enough energy
is concentrated into a small region in order to localize an
event [25,26], and this would indeed be a dynamical effect.
However, at the effective level, one would lose completely
any trace of this dynamics, and would only be dealing with
the effects that these limits to localizability have on the
macroscopic dynamics. This connection with a fundamen-
tal quantum theory of gravity is, as we remarked, only
crude. At the moment it can be made precise only in 2þ 1

dimensions, where we have a better understanding of
quantum gravity, and indeed, relations of the form (1.1)
emerge when we integrate away the gravitational degrees of
freedom in a model of quantum gravity coupled with
matter [27,28].
If one were interested in going one step further, and

discussing the dynamics of systems living in the non-
commutative spacetime described by (1.1), then it would be
necessary to introduce momenta and phase-space struc-
tures. It is then debatable whether it makes sense to
introduce momenta that are conjugate to the coordinates
of (1.1), because that would be subsuming the concept of a
point particle, in a context where there are limits to the
localizability of points. One way around this problem is to
skip point particles altogether, and consider (quantum) field
theories on noncommutative spacetimes, which then will
have, in some limit, an approximate notion of particles as
asymptotic solutions of the dynamics. One could then argue
that it is only appropriate to talk about phase spaces at the
level of field variables. These considerations, however, are
beyond the scope of this work.
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A. On localization and pure states

Consider first the phase space of classical mechanics,
described through the commutative algebra of position and
momentum operators q and p. Probability distributions
ρðp; qÞ are only required to be integrable, so they belong to
the function space L1ðR2dÞ. We can represent the algebra as
multiplication operators on L1ðR2dÞ, and bounded oper-
ators will be continuous functions which vanish at infinity.
However, a vector of L1ðR2dÞ, being a function, is not a
pure state, because it can always be written as the sum of
two vectors obtained, e.g., by setting the original function
to zero for q1 > 0 or q1 < 0, and adjusting the normal-
izations. Nevertheless, there are pure states, which can be
obtained as limits: the Dirac δ’s, also called evaluation
maps in this case, so that if f is a function, the state is
δq0;p0

ðfÞ ¼ fðq0; p0Þ. This is true for all commutative
algebras. These states correspond also to irreducible
representations and can be used to reconstruct the topology.
The δ is not a vector of L1ðR2dÞ, but is an acceptable
distribution, and can be reached as a limit of normalized
vectors.
When the algebra is noncommutative, this kind of pure

states does not usually exist. Think, e.g., of the quantum-
mechanical phase space algebra, i.e., the algebra of
bounded operators of p and q, where ½p; q� ¼ iℏ. In this
case H is L2ðRdÞ, the space of wave functions, and pure
states are any vector, while mixed states are mixed-density
matrices. The noncommutativity of the algebra implies that
there are no states which correspond to a single localized
phase space point. Pure states in this case are normalized
vectors of L2ðRdÞ, the “wave functions.”1 This is, of
course, a manifestation of the Heisenberg uncertainty
principle:

ΔpΔq ≥
ℏ
2
; ð1:3Þ

which forbids the localization of phase space regions of
area smaller than ℏ

2
.

In what follows, we will be studying the states on the
algebra (1.1), in a spirit similar to what is described here in
the case of classical and quantum mechanics. In particular,
we will focus on their localizability properties (i.e., to what
extent one can be certain that an event took place within a
certain region of an observer’s coordinate system), and on
the relationship between the states measured by different
inertial observers. To achieve this, we will make use of
specific representations of the commutation relations (1.1)
as operators acting on some Hilbert space of functions.

B. Outline of the paper

In Sec. II, we discuss the notions of states and events in a
κ-Minkowski spacetime. To set the scene, we first present
the well-known case study of ordinary quantum phase
space in Sec. II A. Proceeding in analogy, we present the
case of time and position in κ-Minkowski in Sec. II B,
introducing the time operator and connecting its spectrum
with Mellin transforms. We discuss the localization of
states for an observer at the origin. In Sec. III, we briefly
introduce the κ-Poincaré symmetries of our space, and in
Sec. IV, we discuss the role of observer located away from
the origin, using the deformed κ-Poincaré symmetry. This
section is partly in 1þ 1 dimension, where explicit
representations are easier to control. A consistent part of
the section is devoted to the physical interpretation of the
results. A final section contains conclusions and outlook.

II. κ-MINKOWSKI SPACETIME:
STATES AND EVENTS

In this section, we present a discussion on the states of
the algebra of κ-Minkowski spacetime. To set the scene,
however, we first present the well-known case of the
single-particle quantum phase space of ordinary quantum
mechanics.

A. A case study: The quantum phase space

Before we consider κ-Minkowski space, it is useful to
consider the archetypical noncommutative geometry, that
of the phase space of a single quantum particle. The content
of this section is well known to every undergraduate student
in physics, but we present it to set up a parallelism with
what we will do in the next section.
A particle in three dimensions has a phase space which is

a six-dimensional space spanned by the coordinates
ðqi; piÞ. What makes the particle quantum is promoting
these coordinates to operators ðq̂i; p̂iÞ with nonvanishing
commutation relations

½q̂i; p̂j� ¼ iℏδij; ð2:1Þ

all other commutators being zero. The most common
representations of position and momenta are as operators
acting on the Hilbert space of square-integrable functions
of position, L2ðR3

qÞ, as2

q̂iψðqÞ ¼ qiψðqÞ; p̂iψðqÞ ¼ −iℏ
∂
∂qi ψðqÞ: ð2:2Þ

We will indicate the operators with a hat .̂ Both the q̂’s and
p̂’s are unbounded self-adjoint operators with a dense1Treating the quantum phase space as a noncommutative

geometry, in two dimensions, one gets the Moyal plane. It is
easy to show that the �-product of a real function by itself is not
definite positive, and therefore the evaluation maps cannot be
states.

2To simplify the notation, we indicate by q and p the
corresponding three-vectors, avoiding the use of a notation
like q⃗.
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domain. The spectrum is the real line (for each i). They
have no eigenvectors but have improper eigenfunctions—
namely, the eigenvalue problem is solved by a distribution.
Since the q̂i’s commute among themselves, it is possible to
have a simultaneous improper eigenvector of all of them;
these are the Dirac distributions δðq − q̄Þ for a particular
position q̄, which is a vector in R3. Similarly, for a
particular momentum p̄, the improper eigenfunctions of
the p̂i are the plane waves eip̄iqi .
Formally, the eigenvalue equation

∂qψðqÞ ¼ αψðqÞ; α ∈ C3 ð2:3Þ

is solved by any function of the kind eα·q. No function of
this kind is square integrable, and therefore there are no
eigenvalues or (proper) eigenfunctions. The operator p̂ is
self-adjoint on the domain of absolutely continuous func-
tions, which is dense in L2ðR3

qÞ. One can see from Eq. (2.3)
that α must be purely imaginary, α ¼ ik, k ∈ R3, for
distributions to be well defined on the domain of self-
adjointness of the operators. If α had a real part, eα·q would
not be a solution of the eigenvalue problem even in the
distributional sense. The improper eigenfunctions of
momentum are physically interpreted as infinite plane
waves of precise frequency. Since plane waves are not
vectors of the Hilbert space, there is no quantum state
which would give as its measure exactly the value ℏk;
nevertheless, we have all learned to live with this fact, and
there is a well-defined sense in which we talk about
“particles of momentum ℏk.”
The representation (2.2) is tantamount to the choice of q̂i

as a complete set of observables, and to the description of a
quantum state as a function of positions. As usual, we
interpret jψðqÞj2 for normalized functions as the probability
density to find the particle at position q. The wave function,
being a complex quantity, contains also the information
about the density probability of the momentum operator.
The connection is in the choice of the complete set of
commuting observables and the Fourier transform. It is
important that the Fourier transform be an isometry; i.e., it
should map normalized functions of positions into nor-
malized functions of momenta.
If we choose p̂i as the complete set, then it is natural to

express the state of the system as a function of the p’s on
which

q̂iϕðpÞ ¼ iℏ
∂
∂pi ϕðpÞ; p̂iϕðpÞ ¼ piϕðpÞ: ð2:4Þ

The functions ψðqÞ and ϕðpÞ carry exactly the same
information and are connected by a Fourier transform,
which is but an expansion on the eigenfunction of p̂:

ψðqÞ ¼ 1

ð2πÞ32
Z

d3pϕðpÞei
ℏp·q: ð2:5Þ

The fact that p̂ and q̂ have been treated symmetrically
(apart from signs) can be traced back to the symmetry of
Eq. (2.1). If we choose a different set of commuting
observables—for example, the number operator, the total
angular momentum, and one of its components—the
Hilbert space will look different (especially because these
operators have discrete spectra).
All of this is, of course, well known. Let us now consider

the case of κ-Minkowski in the same spirit.

B. Time and position of events in κ-Minkowski

In this section, we will use the techniques of the previous
section. Let us begin by considering the x̂i’s as a complete
set of observables on the Hilbert space L2ðR3

xÞ. We will
represent the x̂μ as operators on this space.

1. The operator representation

The representations of the algebra generated by Eq. (1.1)
are discussed in detail in Refs. [29,30]. In particular, the
paper of Dabrowski and Piacitelli has been an important
inspiration. In the following, we focus on the representation
of time and position operators given by

x̂iψðxÞ ¼ xiψðxÞ;

x̂0ψðxÞ ¼ iλ

�X
i

xi∂xi þ
3

2

�
ψðxÞ ¼ iλ

�
r∂r þ

3

2

�
ψðxÞ:

ð2:6Þ

The 3
2
factor is necessary to have symmetric operators. In d

dimensions, 1
2
ðr∂r þ ∂rrÞ ¼ r∂r þ d

2
. Here, x̂0 plays the

role that p̂ played in Sec. II A.
The representation (2.6) is far from being unique. In

Ref. [31], Meljanac and Stojic have written (in the
Euclidean context) the most general class of operator with
the correct characteristic and have shown that they depend
on two functions with some constraints. It would be
interesting to consider these more general realizations,
but we will not do it in this paper (see also Refs. [32,33]).
Let us discuss the relativistic invariance of the theory.

The relation (2.6) appears to renounce the relativistic
equivalence between space and time coordinates, because
we are treating space and time differently. Indeed, in
Eq. (2.6) we are representing the time coordinate as a
dilation operator while the spatial coordinates are multi-
plicative operators. Clearly, there is a difference between x̂0

and x̂i. Already in the commutation relation (1.1), we can
see that the commutator between space and time coordi-
nates is proportional to the spatial coordinate. This clearly
breaks ordinary Lorentz invariance, understood as a linear
coordinate transformation x̂μ → Λμ

νx̂ν in which Λμ
ν are
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numerical entries of a Lorentz matrix. But the noncommu-
tative spacetime [Eq. (2.6)] is a quantum homogeneous
space, with a maximal degree of symmetry. Its symmetries,
however, are nonordinary symmetries described by a Lie
group: they are quantum group symmetries. As we will
discuss in detail below in Sec. III, this type of symmetry
requires Lorentz matrices Λμ

ν and translations, which are
noncommutative coordinates themselves—for example, in
relations like Eq. (3.1) below. Our interpretation of the
meaning of this is the following: one inertial observer, e.g.,
Alice, will be able to perform local experiments and
establish that the limits to the localizability of events
satisfy the uncertainty relations (1.2), where x̂0 is the
direction of spacetime she calls “time.” With repeated
uncertainty measurements, she will be able to establish
that her time direction and her spatial coordinates satisfy
the commutation relations (1.1). A different observer, e.g.,
Bob, will perform similar measurements, perhaps on the
same system studied by Alice (seen in his reference frame)
and will conclude that his own time and space coordinates
satisfy (1.1). But this is impossible if Bob’s coordinates are
related to Alice by linear relations like x̂0μ ¼ Λμ

νx̂ν. The
solution to this apparent contradiction is that the trans-
formation relating Bob’s coordinates to Alice’s is not a
simple linear combination of Alice’s coordinate operators,
but it involves operator-valued Lorentz matrices (and
translations), such that the transformed coordinates still
satisfy the same commutation relations [Eq. (1.2)]. These
commutation relations are then independent of the refer-
ence frame, and appear the same to all inertial observers,
independently of their state of motion and translation. The
secret to achieving this is the fact that the transformations
act both on Alice’s coordinates and on their state, which
describes the event that Alice is studying, and they do so in
such a way that the transformed event, when acted upon by
Bob’s coordinates, will show the same commutation
relations, when referred to what Bob calls space and time
coordinates.
The x̂0 operator is, up to constants, the dilation operator,

and this suggests the use of a polar basis. The polar
coordinates θ̂, φ̂ do not correspond to well-defined self-
adjoint operators, but we note that, defining r̂ cos θ̂ ¼ x̂3

and r̂eiφ̂ ¼ ðx̂1 þ ix̂2Þ, a simple calculation shows that

½x̂0; cos θ̂� ¼ ½x̂0; eiφ̂� ¼ 0; ½x̂0; r̂� ¼ iλr̂: ð2:7Þ

In fact, x̂0 commutes with all spherical harmonics, or in
general functions of θ̂ and φ̂ independent on r. Hence, in
the following we will consider the vectors of L2ðR3

xÞ to be
functions of the kind ψ ¼ P

lmψ lmðrÞYlmðθ;φÞ. Moreover,
since the angular variables commute with everything, we
will often concentrate on the radial parts, and consider
functions of r alone. The uncertainty principle (1.2) has its
polar version

Δx̂0Δr̂ ≥
λ

2
jhr̂ij: ð2:8Þ

The operator x̂0 is symmetric, but we should verify its
self-adjointness domain. Since problems can only arise
from the integration over r, we will assume that the angular
degrees of freedom have been integrated out. Integrating by
parts, one finds

Z
drr2ψ�

1iλ

�
r∂r þ

3

2

�
ψ2

¼ iλ
Z

drr2ψ�
1

3

2
ψ2 −

Z
dr iλ∂rðr3ψ�

1Þψ2 þ ψ�
1r

3ψ2j∞0 :

ð2:9Þ

One can see that the boundary term vanishes if ψ1 and ψ2

vanish at infinity faster than r−
3
2, which is true for all square-

integrable (according to the measure
R
drr2) functions. In

the origin, the condition imposed is weaker than the one
imposed by square integrability.
Let us now look for the spectrum and the (improper)

eigenvectors. They will be the equivalent of the plane
waves. Monomial in r are formal solutions of the eigen-
value problem:

iλ

�
r∂r þ

3

2

�
rα ¼ iλ

�
αþ 3

2

�
rα ¼ λαrα: ð2:10Þ

Therefore, eigenvalues are

λα ¼ iλ

�
αþ 3

2

�
: ð2:11Þ

These eigenvalues are real if and only if

α ¼ −
3

2
þ iτ; ð2:12Þ

with −∞ < τ < ∞ a real number. In complete analogy
with the momentum case previously discussed, unless the
real part of α is −3=2, the improper eigenfunctions would
not be acceptable distributions. The spectrum of the time
operator is real and goes from minus infinity to plus
infinity.
The distributions

Tτ ¼
r−

3
2
−iτ

λ−iτ
¼ r−

3
2e−iτ logðrλÞ ð2:13Þ

are for time in classical κ-Minkowski space what plane
waves are for momentum in quantum phase space. They are
not physical states [vector of L2ðR3

xÞ], because their
behavior at the origin and at infinity is bad, but “just
about”—an epsilon slower at the origin and an epsilon
faster at infinity would do, but then they would not be
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eigenfunctions of x̂0. They have a well-defined inner
product with every vector in the domain of x̂0. The
distribution has the correct dimension of a length to the
power 3=2; the factor of λ is there to avoid taking
the logarithm of a dimensional quantity. Since λ is a natural
scale for the model, this choice is natural, but not unique.

2. The spectrum of time and Mellin transforms

Since x̂0 is a self-adjoint operator, it will have a complete
basis. As what matters to us is only the radial coordinates,
we will leave θ and φ unchanged. We can therefore use in
our set of complete observables either r or τ.
As noted earlier, the completeness of the observables

implies that any function of r can be isometrically
expanded in terms of the Tτ:

ψðr; θ;φÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dτr−

3
2e−iτ logðrλÞψ̃ðτ; θ;φÞ: ð2:14Þ

The integral above suggests ψðr; θ;φÞ to be some kind of
integral transform of ψ̃ðτ; θ;φÞ, the analog in this context of
the Fourier transform.
It is in fact aMellin transform. Given a locally integrable

function fðxÞ with x ∈ ð0;∞Þ, the integral

M½f; s� ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

0

dx xs−1fðxÞ ¼ F ðsÞ ð2:15Þ

defines the Mellin transform of f, when Eq. (2.15) con-
verges. The integral in Eq. (2.15) converges for
ReðsÞ ∈ ðA; BÞ, where A and B are real numbers such that

fðxÞ ¼
�
Oðx−A−ϵÞ as χ → 0þ
Oðe−BþϵÞ as χ → þ∞

; ∀ ϵ > 0; A < B:

ð2:16Þ

The interval ðA;BÞ is the so-called strip of analyticity of
M½f; s�. The inverse of the Mellin transform is3

M−1½F ðsÞ; x� ¼ 1

i
ffiffiffiffiffiffi
2π

p
Z

Cþi∞

C−i∞
ds x−sF ðsÞ; A < C < B:

ð2:17Þ

We require a transform which is an isometry between
square-integrable functions of r with measure drr2 and
functions of τ. Therefore, we define

ψðr; θ;φÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dτ r−

3
2e−iτ logðrλÞψ̃ðτ; θ;φÞ

¼ M−1½ψ̃ðτ; θ;φÞ; r�; ð2:18Þ

ψ̃ðτ; θ;φÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

0

dr r
1
2eiτ logð

r
λÞψðr; θ;φÞ

¼ M
�
ψðr; θ;φÞ;− 3

2
þ iτ

�
: ð2:19Þ

Thus, ψ̃ is the Mellin transform of ψ , with s ¼ 3=2þ iτ.
Hereafter, we will often omit the explicit dependence on θ
and φ when there is no confusion. The above-defined
transformations conserve the norms:Z

∞

0

drr2jψðrÞj2 ¼
Z

∞

−∞
dτjψ̃ðτÞj2: ð2:20Þ

Likewise, there is a Parseval identity:

hψ1jψ2i ¼
Z

∞

0

dr r2ψ̄1ðrÞψ2ðrÞ

¼
Z

∞

−∞
dτψ̃2ðτÞψ̃1ðτÞ ¼ hψ̃1jψ̃2i: ð2:21Þ

Assuming the usual measurement theory, we have that the
average time measured by a particle in the state described
by ψ with spherical symmetry is given by

hx̂0iψ ¼ 4π

Z
r2drψ̄ðrÞiλ

�
r∂r þ

3

2

�
ψðrÞ: ð2:22Þ

If ψ is real, it results in hx̂0iψ ¼ 0. In fact,

Z
r3drψ̄ðrÞ∂rψðrÞ ¼ r3jψ j2j∞0 −

Z
r3drψðrÞ∂rψ̄ðrÞ − 3

Z
r2drjψðrÞj2

⇓

ψ ¼ ψ̄ ⇒
Z

r3drψ̄ðrÞ∂rψðrÞ ¼ −
3

2

Z
r2drjψðrÞj2; ð2:23Þ

which implies that the two terms in Eq. (2.22) cancel each
other. Hence, only complex-valued functions will have a
nonzero mean value for a measurement of time. One may
note the analogy with quantum phase space, where real

functions have avanishingmeanvalue of themomentum.The
probability ofmeasuring a givenvalue of τ is givenby jψ̃ðτÞj2
for normalized functions.
To get familiar with this representation, let us give a few

examples. Consider the following state, localized on a shell
of radius r0: ψðrÞ ¼ δðr − r0Þ=r20. Then3A more detailed discussion can be found in Ref. [34].
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ψ̃ðτÞ ¼ 1ffiffiffiffiffiffi
2π

p r
−3
2

0

�
r0
λ

�
iτ
¼ 1ffiffiffiffiffiffi

2π
p r

−3
2

0 eiτ logð
r0
λ Þ; ð2:24Þ

and the probability jψðτÞj2 does not depend on τ, which
means that all values of time are equally probable, just like
in quantum mechanics, where a localized particle has all
values of momentum equally probable. Not surprisingly,
the function ψ̃ðτÞ in Eq. (2.24) is not normalizable. We can
regularize the delta function by approximating it with a
constant function with support on a “thick spherical shell”:

ψðrÞ ¼

8>><
>>:

0 r < R1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4πðR3
2
−R3

1
Þ

q
R1 ≤ r ≤ R2

0 R2 < r

: ð2:25Þ

Its Mellin transform is

ψ̃ðτÞ ¼ 1ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

4πðR3
2 − R3

1Þ

s �
R

3
2
þiτ
2 − R

3
2
þiτ
1

λiτ

�
2

3þ 2iτ

ð2:26Þ

with the probability density

jψ̃ðτÞj2 ¼ 3

8π2ðR3
2 − R3

1Þ

×

�
R3
2 þ R3

1 − 2R
3
2

1R
3
2

2 cos

�
τ log

R2

R1

��
4

9þ 4τ2
;

ð2:27Þ
which is an even function, which explains why the average
value of x̂0 vanishes. The probability density (2.27) now is

not constant: it is now peaked around τ ¼ 0, and it
decreases like τ−2 away from the origin. In the limit
R1 → R2, the Mellin transform (2.26) tends to (be propor-
tional to) the Mellin transform of the delta function (2.24).
It is useful to have an idea of the dimensional quantities

involved. If we call t the eigenvalue of the time operator x0
c ,

then τ ¼ t cλ. Note that c
λ is a dimensional quantity. If we

choose for λ the Planck length, then c
λ ∼ 2 × 1043 Hz. In

other words, if t ¼ 1 s, then τ ¼ 2 × 1043, an extremely
large number. If t is of the order of Planck time, then τ ∼ 1.

C. Localized states

The aim of this section is to show that the localization
properties (in space and time) of a particle at the origin are
different from those away from it. To this extent, we will
consider the Hilbert-space vectors for particles in the two
cases and compare them and their limit to a distribution.
The relation (2.8) implies a generalized uncertainty prin-
ciple which will limit the simultaneous localizabilty of a
particle in space and time; we wish to see its explicit
consequences for localized states. We have chosen to
present the results of this section using concrete examples
for clarity; we do not, however, have at present a general
theory encompassing all possible states. This will have to
wait for further work.

1. Point localized at a finite distance from the origin

Consider a wave function localized in space in a small
region of size a around a point at distance z0 along the
z axis. The wave function can have constant value inside
that region, and the normalization condition fixes that
value. In spherical coordinates we can write

ψ z0;aðr; θ;φÞ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ

2aπððaþz0Þ3−z30Þ
q

; z0 ≤ r ≤ ðz0 þ aÞ and cos θ > 1 − a
λ

0; otherwise
: ð2:28Þ

The shape of the region we are considering is shown in Fig. 1. For any nonzero (positive) a, the wave function is normalized
and is a well-defined state of the Hilbert space L2ðR3

xÞ. In the limit a → 0, ψ z0;a goes to a δ function localized at a distance z0
from the origin along the positive z axis. It is possible to calculate its Mellin transform

ψ̃ z0ðτ; θ;φÞ ¼
ffiffiffiffiffi
3λ

p

π

ðz0 þ aÞ32þiτ − z
3
2
þiτ
0

λiτð3þ i2τÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aððaþ z0Þ3 − z30Þ

q Θ
�
cos θ − 1þ a

λ

�
ð2:29Þ

and the associated probability density

jψ̃ z0;aj2 ¼
3λ

π2
z30 þ ðz0 þ a0Þ3 − 2ðz0ðaþ z0ÞÞ3=2 cos ðτ logð z0

z0þaÞÞ
ð4τ2 þ 9Þaððaþ z0Þ3 − z30Þ

Θ
�
cos θ − 1þ a

λ

�

¼
�

λ

4π2z0
−

λa
8ðπ2z20Þ

þOða2Þ
�
Θ
�
cos θ − 1þ a

λ

�
: ð2:30Þ

LOCALIZATION AND REFERENCE FRAMES IN κ … PHYS. REV. D 99, 085003 (2019)

085003-7



We can integrate the above function in θ, which gives a
factor a=λ:

Z
jψ̃ z0;aj2 sin θ dθ ¼ a

4π2z0
−

a2

8λðπ2z20Þ
þOða3Þ: ð2:31Þ

The Mellin transformed function has been plotted in Fig. 2.
In the limit a → 0, the Mellin-transformed wave function
tends to a constant λ

4π2z0
localized in θ in a cone of angle

arccosð1 − a
λÞ − π=2 ∼

ffiffiffiffi
2a
λ

q
. The angular average tends to a

constant which vanishes as a → 0 (because of the nor-
malization). This implies that in the limit, the state is not an
L2 function anymore, and is instead a function with zero
scalar product with all L2 functions.
Note also that (not surprisingly) the series expansion for

a around 0, and that for z0 around ∞ are the same:

jψ̃ z0 j2 ¼
λ

4π2z0
−

aλ
8π2z20

þ a2λð7 − 4τ2Þ
192π2z30

þ Oða3Þ

¼ λ

4π2z0
−

aλ
8π2z20

þ a2λð7 − 4τ2Þ
192π2z30

þ Oðz−40 Þ:

This means that a sharp localization of a particle far away
from the origin implies that the particle cannot be localized
in time. And this is in accordance with the generalized
uncertainty principle (2.8).

D. Points localized at the origin of space
and limit to eigenstates of the origin

We now present a one-parameter family of L2 functions
which tends to a state completely localized at the spatial
origin (while in time it might be completely localized
around any value of τ, or it may be nonlocal). This is all
allowed by the κ-Minkowski uncertainty relations (1.2), in

which the presence of hx̂ii on the right-hand side suggests
that, although general localized states are impossible to
achieve, in the special case of states localized at the spatial
origin, perfect localization should be possible. Just like
delta functions and plane waves in ordinary quantum
mechanics (as described in Sec. I A), it should be possible
to obtain the mentioned states localized at the spatial origin
as limits of normalized vectors of our Hilbert space (see
Fig. 4). The key is to find functions that saturate the
uncertainty bounds. In the case of the quantum phase space
algebra, these are Gaussians (coherent states), as is well
known. The κ-Minkowski algebra, however, is not canoni-
cal, and Gaussians are not minimal uncertainty states for
this algebra. This role is played by log-Gaussian normal-
ized wave functions, as plotted in Fig. 3:

Lðr; r0Þ ¼ Ne−
ðlog r−log r0Þ2

σ2 ¼ e
−
�

logð rr0Þ
σ

	
2

e−
9
16
σ2ffiffiffi

σ
p ð2πÞ3=4

ffiffiffiffiffi
r30

q : ð2:32Þ

They have a maximum in r ¼ r0, and they localize at r ¼
r0 as σ → 0, and at r ¼ 0 as r0 → 0, for any value of σ ≥ 0.

FIG. 1. The support of the wave function (2.28).

FIG. 2. The τ dependence of the Mellin transform of the wave
function (2.28).

FIG. 3. The σ → ∞ limit of Lðr; r0Þ when ξ ¼ e−σ
ð2þϵÞ

, for
ϵ ¼ 0.01.
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The calculation of the average values of r̂n is straightfor-
ward,

hr̂niL ¼ e
σ2

8
nðnþ6Þrn0; ð2:33Þ

and shows that they all vanish for r0 → 0. In order to
calculate the quantity hrniL, it is best to Mellin-transform;
the function in τ space is remarkably simple:

L̃ðτ; r0Þ ¼
σ

1
2e−

1
4
σ2τðτ−3iÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
2π3=4

4
p

�
r0
λ

�
iτ
; ð2:34Þ

The interesting fact is that

jL̃ðτ; r0Þj2 ¼
σe−

σ2τ2

2

4
ffiffiffi
2

p
π3=2

: ð2:35Þ

Namely, in τ space, the probability density is a Gaussian
independent on r0. It is now trivial to see that

hðx̂0ÞniL ¼ 1

4π

�
λ

σ

�
n
�
0 n odd

ðn − 1Þ!! n even
: ð2:36Þ

We can see that there is a double limit,4 r0 → 0 and σ → ∞,
which gives a state which is localized both in space (at
r ¼ 0) and in time. In the example above, the time
localization is at τ ¼ 0, but it is possible to shift the state
by multiplying the function by riτ0. Moreover, one can
attribute any wave function to time while still having the
spatial coordinates localized at the origin, just by convolut-
ing this with a function of τ. We have then introduced a
state—which we can call the “eigenstate of the origin,” and

refer to as5 joi—that is completely localized at the origin of
spacetime and can be obtained as a limit of normalized
elements of L2ðR3

xÞ. Moreover, we have a one-parameter
family of states, which we indicate from now on with joτi,
which are localized at the origin of space, at a nonzero time.
These states, too, can be obtained as limits of normalized
elements of L2ðR3

xÞ.

III. κ-POINCARÉ SYMMETRY

In this section, we briefly introduce the deformed
symmetry of our space. We still concentrate on the group
rather than the algebra. We will opt for an intuitive
presentation, rather than a mathematically rigorous one.
In the following, to lighten the notation, we will suppress
the hat symbol we have used so far to distinguish quantum
operators.

A. The κ-Poincaré quantum group

The algebra (1.1) emerges as the quantum homogeneous
space of a Hopf-algebra deformation of the Poincaré group,
known as κ-Poincaré [1,12–14]. This object has historical
precedence over κ-Minkowski, which was introduced by
Majid and Ruegg after recognizing the “bi-cross-product”
structure of the κ-Poincaré group [1]. The κ-Poincaré group
is part of a very small family of possible Hopf-algebra
deformations of the Poincaré group with a deformation
parameter with the dimensions of (the inverse of) energy
[16,35]. Moreover, under the requirement of undeformed
spatial isotropy, the version of κ-Poincaré corresponding to
Eq. (1.1) is singled out uniquely [16].
We introduce κ-Poincaré as the noncommutative algebra

of functions Pκ, generated by Λμ
ν and aμ, that leave the

commutation relations (1.1) invariant under the transfor-
mation

xμ → x0μ ¼ Λμ
ν ⊗ xν þ aμ ⊗ 1: ð3:1Þ

We ask that the above map, from the κ-Minkowski algebra
Mκ to the tensor product algebra Pκ ⊗ Mκ, be a left-
coaction. This entails that the map is a homomorphism with
respect to the noncommutative product of Mκ, hence the
covariance of the commutation relations (1.1). In other
words, we require that

½x0μ; x0ν� ¼ iλðδμ0x0ν − δν0x0μÞ: ð3:2Þ

This fixes some commutation relations between the κ-
Poincaré group coordinates6:

FIG. 4. The σ → ∞ limit, or Qσ;ξ0ðξÞ when ξ ¼ e−σ
ð2þϵÞ

, for
ϵ ¼ 0.01.

4For example, it is sufficient to take r0 ¼ e−σ
2þϵ

for any ϵ > 0,
such that all hr̂niL in Eq. (2.33) and all hðx̂0ÞniL in Eq. (2.36) go
to zero as σ → ∞.

5While we have seen that there is a state corresponding to joi,
there is not a normalized vector corresponding to it. Here (and in
the following), we are performing the usual abuse of notation
made when one uses the ket notation jxi in ordinary quantum
mechanics.

6The metric used here is ημν ¼ diagðþ;−;−;−Þ.
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½aμ; aν� ¼ iλðδμ0aν − δν0aμÞ; ½Λμ
ν;Λρ

σ� ¼ 0;

½Λμ
ν; aρ� ¼ iλ½ðΛμ

σδ
σ
0 − δμ0ÞΛρ

ν þ ðΛσ
νδ

0
σ − δ0νÞημρ�:

ð3:3Þ

Also, the group laws (the group product or composition
law, the inverse, and the identity), here encoded with a
coproduct Δ∶Pκ → Pκ ⊗ Pκ,

ΔðaμÞ ¼ aν ⊗ Λμ
ν þ 1 ⊗ aμ; ΔðΛμ

νÞ ¼ Λμ
ρ ⊗ Λρ

ν;

ð3:4Þ

an antipode S∶Pκ → Pκ,

SðaμÞ ¼ −aνðΛ−1Þμν; SðΛμ
νÞ ¼ ðΛ−1Þμν; ð3:5Þ

and a counit ε∶Pκ → C,

εðaμÞ ¼ 0; εðΛμ
νÞ ¼ δμν; ð3:6Þ

have to be homomorphisms with respect to the commuta-
tion relations (3.3). In this way we make sure that our
noncommutative algebra of functions on the Poincaré
group is compatible with the group structure. Finally, in
order to have a proper Hopf algebra, the group maps,
together with the noncommutative product, have to satisfy
two identities. One is the coassociativity of the coproduct:

ðΔ ⊗ idÞ ∘Δ ¼ ðid ⊗ ΔÞ∘Δ; ð3:7Þ

which ensures that we can combine two coproducts in
either order, and the result is the same. As we said, the
coproduct encodes the group combination law. Combining
two coproducts means that we are making three subsequent
transformations in the two possible orders, and the com-
bined transformation is the same. This is just one of
the axioms of ordinary Lie groups: the associativity of
the group product. The other axioms are the existence of the
identity (ensured by the existence of the counit map), and
the relation between the group inverse and the identity. This
is now encoded in the Hopf identity:

μ ∘ ðS ⊗ idÞ ∘Δ ¼ μ ∘ ðid ⊗ SÞ ∘Δ ¼ ε; ð3:8Þ

which ensures that the antipode provides a left- and right-
inverse for the coproduct [μ∶Pκ ⊗ Pκ → Pκ stands for the
(noncommutative) multiplication map].

B. A representation of the κ-Poincaré quantum group

The operators Λμ
ν in Eq. (3.3) should not be understood

as 16 independent operators, but rather as 16 redundant
functions satisfying the relations ημνΛμ

ρΛν
σ ¼ ηρσ, which

reduce the independent components to six. Since all
components of Λμ

ν commute with each other, the standard

representation theory of the Lorentz group applies, and we
can write

Λμ
ν ¼ ðexpωÞμν; ωμ

ρη
ρν ¼ −ων

ρη
ρμ; ð3:9Þ

where the (Lorentzian) antisymmetry relation above
reduces the independent components of ωμ

ν to six.
These components commute with each other,

½ωμ
ν;ωρ

σ� ¼ 0; ð3:10Þ

but they do not commute with aμ. The structure of the
commutation relations (3.3) suggests the representation of
the aμ’s as vector fields,

aρ ¼ −iλ½ðΛμ
σδ

σ
0 − δμ0ÞΛρ

ν þ ðΛσ
νδ

0
σ − δ0νÞημρ�

∂
∂Λμ

ν
;

ð3:11Þ

and the exponential relation between ωμ
ν and Λμ

ν implies
∂

∂Λμ
ν
¼ Λν

α
∂

∂ωμ
α
, which allows us to write the above repre-

sentation as vector fields acting on the space of ωμ
ν

coordinates:

aρ¼−iλ½ðΛμ
σδ

σ
0−δμ0ÞΛρ

νþðΛσ
νδ

0
σ −δ0νÞημρ�Λν

α
∂

∂ωμ
α
:

ð3:12Þ

Interestingly, the above vector fields already “know” about
the commutation relations between the translation oper-
ators. In fact, the commutator of two of these vector fields
acts on wave functions of ωμ

ν as the Lie bracket between
the vector fields, and computing this Lie bracket
yields ½aμ; aν� ¼ iλðδμ0aν − δν0aμÞ.
We found a representation of the κ-Poincaré algebra, in

which Λμ
ν is represented as multiplication operators on

wave functions of ωμ
ν,

Λμ
νϕðωÞ ¼ ðexpωÞμνϕðωÞ; ð3:13Þ

while the translation operators act as vector fields,

aρϕðωÞ ¼ −iλ½ðΛμ
σδ

σ
0 − δμ0ÞΛρ

ν

þ ðΛσ
νδ

0
σ − δ0νÞημρ�Λν

α
∂ϕðωÞ
∂ωμ

α
: ð3:14Þ

The wave functions can be taken as belonging to
L2ðSOð3; 1ÞÞ, with the scalar product constructed, e.g.,
with the Haar measure on the Lorentz group.
Unfortunately, the representation we just considered is

not good enough: it is not faithful. In fact, we can write
combinations of the Λμ

ν and aρ operators that are repre-
sented as the null operator:
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ηρμðΛμ
σδ

σ
0 − δμ0Þaρ⊳ϕðωÞ

¼ ½ηρβΛρ
νðδκ0Λβ

κ − δβ0Þðδσ0Λμ
σ − δμ0Þ þ ðδσ0Λμ

σ − δμ0Þðδ0σΛσ
ν − δ0νÞ�Λν

α
∂ϕðωÞ
∂ωμ

α

¼ ðδσ0Λμ
σ − δμ0Þ½ηρβΛρ

νðδκ0Λβ
κ − δβ0Þ þ ðδ0σΛσ

ν − δ0νÞ�Λν
α
∂ϕðωÞ
∂ωμ

α

¼ ðδσ0Λμ
σ − δμ0Þ½ðη00 − 1Þδ0ν þ ð1 − η00ÞΛ0

ν�Λν
α
∂ϕðωÞ
∂ωμ

α
¼ 0; ð3:15Þ

where the last line is zero because η00 ¼ þ1 in our
convention. The operator

ηρμðΛμ
σδ

σ
0 − δμ0Þaρ ð3:16Þ

is nontrivial and, at least in order to admit a good classical
limit, some of its expectation values should not be vanish-
ing. We conclude that the representation (3.14) is not
faithful, and it needs to be enlarged. The simplest way to do

this is to write a direct sum of representations: the above
one and the (at this point familiar) representation (2.6) of κ-
Minkowski coordinates, which reproduces the commuta-
tion rules between translation operators, but commutes with
Lorentz transformations. The Hilbert space now has to be
enlarged with three additional coordinates, qi ∈ R, i ¼ 1,
2, 3, so it is L2ðSOð3; 1Þ ×R3Þ; the Lorentz matrices still
represent as multiplicative operators (3.13); and the trans-
lation operators are represented as follows:

aρ ¼ −i
λ

2
½ðΛμ

σδ
σ
0 − δμ0ÞΛρ

ν þ ðΛσ
νδ

0
σ − δ0νÞημρ�Λν

α
∂

∂ωμ
α
þ i

λ

2

�
δρ0qi

∂
∂qi þ δρiqi

�
þ 1

2
H:c:; ð3:17Þ

where by “H.c.” we mean the Hermitian conjugate of the previous expression. This ensures that the operator is self-adjoint
on some domain. The final form of our representation is

aρϕðq;ωÞ ¼ iλδρ0

�
3

2
ϕðq;ωÞ þ qi

∂ϕðq;ωÞ
∂qi

�
þ δρiqiϕðq;ωÞ

− iλ∶½ðΛμ
σδ

σ
0 − δμ0ÞΛρ

ν þ ðΛσ
νδ

0
σ − δ0νÞημρ�Λν

α
∂

∂ωμ
α
∶ϕðq;ωÞ;

Λμ
νϕðq;ωÞ ¼ Λμ

νðωÞϕðωÞ ¼ ðexpωÞμνϕðq;ωÞ; ð3:18Þ

that is,

aρϕðq;ωÞ ¼ iλδρ0

�
3

2
ϕðq;ωÞ þ qi

∂ϕðq;ωÞ
∂qi

�
þ δμiqiϕðq;ωÞ

−
iλ
2
½ðΛμ

σδ
σ
0 − δμ0ÞΛρ

ν þ ðΛσ
νδ

0
σ − δ0νÞημρ�Λν

α
∂ϕðq;ωÞ
∂ωμ

α

−
iλ
2
ϕðq;ωÞ ∂

∂Λμ
ν
½ðΛμ

σδ
σ
0 − δμ0ÞΛρ

ν þ ðΛσ
νδ

0
σ − δ0νÞημρ�;

Λμ
νϕðq;ωÞ ¼ Λμ

νðωÞϕðωÞ ¼ ðexpωÞμνϕðq;ωÞ: ð3:19Þ

It is trivial to check that, since the derivatives with
respect to ωμ

ν commute with the functions of qi, and the
derivatives with respect to qi commute with the functions of
ωμ

ν, the representation splits into a direct sum of repre-
sentations, and the commutation relations between aμ’s are
satisfied.

The representation (3.19) is complicated, and its explicit
functional form depends on the coordinate system on the
Lorentz group we choose. In two spacetime dimensions,
the situation is greatly simplified by the fact that the
Lorentz group is one dimensional, and everything can be
made very explicit. In the next section, we will repeat the
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steps that led us to introduce the representation (3.19) in the
(1þ 1)-dimensional case, a useful exercise both for peda-
gogical reasons, and in order to have an example that can be
worked out explicitly. This will be useful later.

C. The representation of κ-Poincaré in 1 + 1 dimensions

The great advantage of working in 1þ 1 dimensions is
that we have an explicit (and simple) coordinatization of the
Lorentz group:

Λ0
0 ¼ Λ1

1 ¼ cosh ξ; Λ0
1 ¼ Λ1

0 ¼ sinh ξ ð3:20Þ

in this parametrization. The commutation relations of
κ-Poincaré (3.3) take the form

½a0; a1� ¼ iλa1; ½cosh ξ; a0� ¼ −iλsinh2ξ;

½cosh ξ; a1� ¼ −iλðcosh ξ − 1Þ sinh ξ;
½sinh ξ; a0� ¼ −iλ sinh ξ cosh ξ;

½sinh ξ; a1� ¼ −iλðcosh ξ − 1Þ cosh ξ; ð3:21Þ

which can be simplified to

½a0;a1�¼ iλa1; ½ξ;a0�¼−iλsinhξ; ½ξ;a1�¼ iλð1−coshξÞ:
ð3:22Þ

It is evident that a0 and a1 act on ξ like vector fields:

a0 ¼ iλ sinh ξ
∂
∂ξ ; a1 ¼ iλðcosh ξ − 1Þ ∂

∂ξ : ð3:23Þ

The above representation would be acceptable, as it
reproduces the ½a0; a1� commutation relations. In this case,
we can easily show this explicitly:

½a0;a1�¼−λ2
�
sinhξ

∂
∂ξðcoshξ−1Þ−ðcoshξ−1Þ ∂∂ξsinhξ

� ∂
∂ξ

¼−λ2½sinh2ξ−ðcoshξ−1Þcoshξ� ∂∂ξ
¼−λ2ðcoshξ−1Þ ∂∂ξ¼ iλa1: ð3:24Þ

As before, this representation cannot be faithful, because
the operator

ðcosh ξ − 1Þa0 − sinh ξa1

¼ −iλðcosh ξ − 1Þ

× sinh ξ
∂
∂ξþ iλ sinh ξðcosh ξ − 1Þ ∂

∂ξ ¼ 0; ð3:25Þ

which is the (1þ 1)-dimensional version of Eq. (3.16), is
represented as the null operator. Again, it is sufficient to

add to the above representation the familiar representation
of the κ-Minkowski algebra in 1þ 1 dimensions:

a0 ¼ iλq
∂
∂qþ iλ sinhξ

∂
∂ξ ; a1 ¼ qþ iλðcoshξ− 1Þ ∂∂ξ :

ð3:26Þ

The two parts commute with each other and separately
satisfy the commutation relations and the Jacobi identity,
and therefore they provide a good representation of our
algebra on the Hilbert space L2ðSOð1; 1Þ ×RÞ ∼ L2ðR2Þ
of square-integrable functions of ξ and q. This representa-
tion is not self-adjoint, but it can be made so by Weyl-
ordering it:

a0 ¼ iλ
2

�
q
∂
∂qþ

∂
∂qq

�
þ iλ

2

�
sinhξ

∂
∂ξþ

∂
∂ξ sinhξ

�
;

a1 ¼ qþ iλ
2

�
ðcoshξ− 1Þ ∂∂ξþ

∂
∂ξ ðcoshξ− 1Þ

�
; ð3:27Þ

which can be written

a0 ¼ iλ

�
1

2
þ q

∂
∂q

�
þ iλ

�
1

2
cosh ξþ sinh ξ

∂
∂ξ

�
;

a1 ¼ qþ iλ

�
1

2
sinh ξþ ðcosh ξ − 1Þ ∂

∂ξ
�
: ð3:28Þ

It is easy to check that the above reproduces the commu-
tation relations (3.3).

D. From κ-Poincaré to κ-Minkowski

We can now make it precise, within the framework of the
representations we introduced for κ-Minkowski and κ-
Poincaré, in which sense the κ-Minkowski noncommutative
spacetime is the quantum homogeneous space obtained by
quotienting the κ-Poincaré quantum group by the Lorentz
group. The idea is that there are enough states in the
representation of κ-Poincaré that we can reproduce any
vector in the Hilbert space of the representation of κ-
Minkowski [i.e., L2ðRÞ] as an appropriate limit of
vectors belonging to the representation of κ-Poincaré
[L2ðSOð3; 1Þ × RÞ], in which the wave function on the
Lorentz group becomes localized at the identity (in the limit).
We illustrate this explicitly in the (1þ 1)-dimensional

case. Consider the representation (3.28): if it is restricted to
act on functions which are localized around ξ ∼ 0, we can
expand all the functions of ξ on the right-hand side around
ξ ¼ 0, and at first order in ξ, the representation looks like

a0 ¼ iλ

�
1

2
þ q

∂
∂q

�
þ iλ

�
1

2
þ ξ

∂
∂ξ

�
þOðξ2Þ;

a1 ¼ qþ iλ
2
ξþOðξ2Þ: ð3:29Þ
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This reveals the underlying structure: on wave functions
sufficiently localized around ξ ¼ 0, the representation
looks like two copies of the κ-Poincaré representation
(2.6), one acting on q and one on ξ (the only difference
being that the ξ part of a1 is multiplied by iλ=2, which is
irrelevant in our discussion). We are interested in defining a
sequence of wave functions that localize at ξ ¼ 0, main-
taining the freedom in the choice of the q dependence. The
form (3.29) suggests taking nonentangled states:

ψσ;ξ0ðq; ξÞ ¼ fðqÞQσ;ξ0ðξÞ; ð3:30Þ

where Qσ;ξ0 is a log-Gaussian similar to (2.32):

Qσ;ξ0ðξÞ ¼
e−

σ2

16ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

p
ξ0σ

q e
−
�

logðξ2Þ−logðξ2
0
Þ

2σ

	
2

; ð3:31Þ

which is a function which attributes to ξn a zero expectation
value for n positive and odd, and e

1
8
nðnþ2Þσ2 for n positive

and even.
All the expectation values of ðaμÞn tend to

hψσ;ξ0 jðaμÞnjψσ;ξ0i⟶ξ0→0;σ→∞
hfjðxμÞnjfi

¼
Z

dqf̄ðqÞðxμÞnfðqÞ; ð3:32Þ

where x1 ¼ q and x0 ¼ iλð1
2
þ q ∂

∂qÞ is the familiar κ-
Poincaré representation, and the limits ξ0 → 0, σ → ∞
are taken in such a way7 that ecσ

2

ξ0 → 0 for all c > 0.
This is the fundamental content of the statement that κ-

Minkowski is the homogeneous space of κ-Poincaré: we
can reproduce any vector f in L2ðRxÞ by taking the limit of
the product of f with the log-Gaussian (3.31), and all
expectation values of powers of translation operators will
coincide with the expectation values of the corresponding
powers of xμ operators on the vector f. We reproduce all
we know of κ-Minkowski by taking particular states
on κ-Poincaré and “silencing” the boost part localizing
around ξ ¼ 0.

IV. OBSERVERS AND REFERENCE FRAMES

We are representing the algebra (1.1) as generators of
operators on the Hilbert space of functions of position. This
algebra and its states represent the position in κ-
Minkowski. We have to specify, however, the observer
making the observations, and we have been implicitly
considering an observer located at the origin. In order to
change the observer, usually a Poincaré transformation is
performed. But in our case, the symmetry is the quantum

κ-Poincaré. Accordingly, it will be impossible to locate the
position of the transformed observer, since translations do
not commute. In the spirit of this paper, wewill consider the
algebra generated by the a’s and Λ’s, and associate with a
translated and Lorentz-transformed observer a state of this
algebra. We first consider the observer located at the origin,
which is reached via the identity transformation.

A. The identity transformation state

Looking at the commutation relations (3.3), it is possible
to define a state joiP of Pκ with the property

Phojfða;ΛÞjoiP ¼ εðfÞ; ð4:1Þ

where fða;ΛÞ is a generic element of the κ-Poincaré
algebra (i.e., a generic noncommutative function of trans-
lations and Lorentz-transformation matrices), and ε is the
counit of the κ-Poincaré algebra defined in Eq. (3.8). In
other words, the state returns the value of the function on
the identity transformation.
We interpret this state in the enlarged algebra as

describing the Poincaré transformation between two coinci-
dent observers—i.e., between an observer and a second one
located at the origin of the coordinate system of the first
observer. It is not difficult to see, looking at Eq. (3.3), that
the state is such that all combined uncertainties vanish.
Coincident observers are therefore a well-defined concept
in κ-Minkowski spacetime.
Note also that all the Λ’s commute among themselves,

and will therefore have common eigenvectors. It is clear
from this that the localizability uncertainties have to do
with translations, not Lorentz transformations.
This state can easily be obtained as a limit of vectors in

the Hilbert space. It suffices to take a succession of
functions which converge to a δ as far as aμ and the
diagonal elements of Λμ

ν are concerned, and to zero for the
off-diagonal elements of the Λ’s.

B. Physical interpretation

We propose an interpretation for the operators xμ we
have been using all along, and the operators x0μ that appear
in Eq. (3.1): they are the coordinate systems associated with
two inertial observers—say, Alice and Bob—which are
translated and in relative motion with respect to each other.
A spacetime event (i.e., the clicking of a particle detector)
seen by Alice will be described by the expectation value of
its coordinates hxμi; their variance hðxμ − hxμiÞ2i, which
measures how localized it is; the skewness hðxμ − hxμiÞ3i
measuring how asymmetric it is around the expectation
value; and all higher moments hðxμ − hxμiÞni, which
describe in increasingly finer details the distribution of
probability where the event can be localized. The same
event, seen by Bob, will be described by a tower of
moments of the transformed coordinate operators:
hðx0μ − hx0μiÞni, which are in general different from

7As before, we could take ξ0 ¼ e−σ
ð2þϵÞ

and get everything we
want from the σ → ∞ limit.
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Alice’s, unless the transformation that connects Alice and
Bob is the identity described in Sec. IVA.
What does it mean to take expectation values of the

operators x0μ and their powers? x0μ belongs to the tensor-
product algebra Pκ ⊗ Mκ. We can obtain a representation
for this algebra by taking the direct sum of the

representation (3.19) of Pκ with the representation (2.6)
ofMκ. Clearly the xμ algebra (Alice’s coordinates) is lifted
to elements of the kind 1 ⊗ Mκ, where the identity
of Pκ is given by Λμ

ν ¼ δμν, aμ ¼ 0. The representation
of Pκ ⊗ Mκ will act on the Hilbert space HP×
L2ðR3

xÞ ∼ L2ðSOð3; 1Þ ×R3
q × R3

xÞ, in the following way:

x0μfðω; q; xÞ ¼ iλΛμ
νðωÞ

�
δν0

�
3

2
fðω; q; xÞ þ xi

∂fðω; q; xÞ
∂xi

�
þ δνixifðω; q; xÞ

�

þ iλδμ0

�
3

2
fðω; q; xÞ þ qi

∂fðω; q; xÞ
∂qi

�
þ δμiqifðω; q; xÞ

−
iλ
2
½ðΛμ

σδ
σ
0 − δμ0ÞΛρ

ν þ ðΛσ
νδ

0
σ − δ0νÞημρ�Λν

α
∂fðω; q; xÞ

∂ωμ
α

−
iλ
2
fðω; q; xÞ ∂

∂Λμ
ν
½ðΛμ

σδ
σ
0 − δμ0ÞΛρ

ν þ ðΛσ
νδ

0
σ − δ0νÞημρ�:

In the (1þ 1)-dimensional case, we have a more intelligible expression for our representation:

x00fðξ; q1; x1Þ ¼ iλ cosh ξ

�
1

2
f þ x1

∂f
∂x1

�
þ sinh ξx1f þ iλ

�
1

2
f þ q1

∂f
∂q1

�
þ iλ

�
1

2
cosh ξf þ sinh ξ

∂f
∂ξ

�
;

x01fðξ; q1; x1Þ ¼ iλ sinh ξ

�
1

2
f þ x1

∂f
∂x1

�
þ cosh ξx1f þ q1f þ iλ

�
1

2
sinh ξf þ ðcosh ξ − 1Þ ∂f∂ξ

�
: ð4:2Þ

Our Hilbert space will admit nonentangled states, i.e., objects of the kind

jg;ψi ¼ jgi ⊗ jψi; ð4:3Þ

with jgi ∈ HP ¼ L2½SOð3; 1Þ� ×R3
q and jψi ∈ L2ðR3Þ. It represents the state of the coordinates x0μ of a Poincaré-

transformed observer. If we want to calculate the expectation values of the coordinates of the transformed observer, we have
to do the following:

hx0μi ¼ hgj ⊗ hψ jðΛμ
ν ⊗ xν þ aμ ⊗ 1Þjgi ⊗ jψi ¼ hgjΛμ

νjgihψ jxνjψi þ hgjaμjgi; ð4:4Þ

where we use the normalization condition hψ jψi ¼ 1.
Similarly, one can calculate all the higher momenta of
the coordinates as

hx0μ1…x0μni ¼ hgj ⊗ hψ jðx0μ1…x0μnÞjgi ⊗ jψi: ð4:5Þ

Examining again the relations (4.2), notice how the
coordinates x0μ of a Poincaré-transformed observer (e.g.,
Bob) act on states describing an event in this observer’s
reference frame with two copies of the now-familiar
representation (2.6). One acts on the state of the original
observer (Alice), which, if the state is a product state as in
Eq. (4.3), is written as a function of xi ∈ R3. The other acts
on the state of the Poincaré group coordinates, which, in the
product state case, is written as a function of qi ∈ R3

and Λμ
ν ∈ SOð3; 1Þ.

C. Transforming the states

We will now derive some general results regarding the
properties of these transformed states, which do not depend
on a representation except for assuming the existence of the
identity state.

1. Poincaré-transforming the origin state

Consider the following state, which Poincaré-tranforms
the origin:

jg; 0i ¼ jgi ⊗ joi: ð4:6Þ

If we want to know what the Poincaré-transformed
observer measures with the coordinates centered on her
reference frame, we have to use the operators
x0μ ¼ Λμ

ν ⊗ xν þ aμ ⊗ 1, which act on L2ðR3
xÞ ×HP .

Their expectation values on our transformed state are
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hx0μi ¼ hgj ⊗ hojx0μjgi ⊗ joi
¼ hgjΛμ

νjgihojxνjoi þ hgjaμjgihojoi; ð4:7Þ

the state joi is normalized so that hojoi ¼ 1, and moreover,
the expectation value of xμ on joi is, as we have shown
before, zero. We get

hx0μi ¼ hgjaμjgi; ð4:8Þ

and the expectation value of the transformed coordi-
nates is completely determined by the expectation value
of the translation operators on the chosen κ-Poincaré
state. This is natural: the different observers are
comparing positions, not directions. Now consider, more
in general, an arbitrary monomial in the transformed
coordinates: x0μ1x0μ2…x0μn . Its expectation value on
jgi ⊗ joi is

hx0μ1…x0μni ¼ hgj ⊗ hojðaμ1 ⊗ 1þ Λμ1
ν1 ⊗ xν1Þ � � � ðaμn ⊗ 1þ Λμn

νn ⊗ xμnÞjgi ⊗ joi
¼ hgjaμ1 � � � aμn jgihojoi þ hgjOμ1…μn

ν ða;ΛÞjgihojxνjoi þ � � �
þ hgjOμ1…μn

ν1ν2 ða;ΛÞjgihojxν1xν2 joi þ hgjOμ1…μn
ν1…νn ða;ΛÞjgihojxν1…xνn joi; ð4:9Þ

and since we showed that joi is such that
hojxν1…xνn joi ¼ 0∀ n,

hx0μ1…x0μni ¼ hgjaμ1…aμn jgihojoi ¼ hgjaμ1…aμn jgi:
ð4:10Þ

Therefore, Poincaré-transforming the origin state joi by a
state with wave function jgi in the representation of the
κ-Poincaré algebra aμ, Λμ

ν, the resulting state will assign,
to all polynomials in the transformed coordinates
x0μ ¼ aμ ⊗ 1þ Λμ

ν ⊗ xν, the same expectation value as
that assigned by jgi to the corresponding polynomials in aμ.
In other words, the state of x0μ is identical to the state of aμ.
So, e.g., all uncertainty in the transformed coordinates Δx0μ
is introduced by the uncertainty in the state of the trans-
lation operator, Δaμ. Let us stress again the fact that,
although the new observer is measuring these expectation

values, since the aμ closes a noncommutative algebra, we
cannot know, with absolute precision in time and direction,
where the new observer is, unless she has just time-
translated the origin, i.e., jgi ¼ joa0iP .

2. Poincaré-transforming an arbitrary
state with the identity transformation

A second useful result we present now is the effect of the
identity transformation on an arbitrary state of the κ-
Minkowski coordinates. We start from an arbitrary element
of the Hilbert space of our representation of the κ-
Minkowski algebra, jψi ∈ L2ðR3

xÞ. We transform the state
as in Eq. (4.3) but use the identity state joiP in place of the
generic jgi. In the transformed state joiP ⊗ jψi, all of the
expectation values of the polynomials in the transformed
coordinates x0μ take the form

hx0μ1…x0μni ¼ Phoj ⊗ hψ jðaμ1 ⊗ 1þ Λμ1
ν1 ⊗ xν1Þ � � � ðaμn ⊗ 1þ Λμn

νn ⊗ xμnÞjoiP ⊗ jψi
¼ Phojaμ1…aμn joiPhψ jψi þ PhojOμ1…μn

ν ða;ΛÞjoiPhψ jxνjψi þ PhojOμ1…μn
ν1ν2 ða;ΛÞjoiPhψ jxν1xν2 jψi

þ � � � þ PhojOμ1…μn
ν1…νn ða;ΛÞjoiPhψ jxν1…xνn jψi

¼ ϵðaμ1…aμnÞhψ jψi þ ϵ½Oμ1…μn
ν ða;ΛÞ�hψ jxνjψi þ ϵ½Oμ1…μn

ν1ν2 �hψixν1xν2 jψi
þ � � � þ ϵ½Oμ1…μn

ν1…νn ða;ΛÞ�hψ jxν1…xνn jψi: ð4:11Þ

Now, the algebra elements Oμ1…μn
ν1…νmða;ΛÞ are monomials in

aμ, Λμ
ν, without a particular ordering. However, we know

that the mth element contains m Lorentz matrix generators
and n −m translation generators. Using the homomor-
phism property of the counit map ϵ, and the fact that
ϵðaμÞ ¼ 0, ϵðΛμ

νÞ ¼ δμν, we can prove that

ϵ½Oμ1…μn
ν1…νmða;ΛÞ� ¼ 0 unless m ¼ n ð4:12Þ

and

ϵ½Oμ1…μn
ν1…νn ða;ΛÞ� ¼ δμ1ν1…δμnνn : ð4:13Þ

We conclude that

Phoj ⊗ hψ jx0μ1…x0μn joiP ⊗ jψi ¼ hψ jxμ1…xμn jψi; ð4:14Þ

i.e., the identity transformation does not change any
expectation value—the original observer [who uses the
coordinate operators xμ and the Hilbert space L2ðR3

xÞ], and
the transformed one [using the coordinates operators x0μ
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and the Hilbert space HP ⊗ L2ðR3
xÞ] agree on all mea-

surements if the state ofHP that defines the transformation
is joiP .

3. κ-Poincaré and coordinate uncertainty

Consider a generic transformation of a generic state:
jψi → jgi ⊗ jψi. We want to study the relationship
between the uncertainty in the transformed coordinates
Δx0μ and that in the original ones Δxμ.
First, the simplest example: a pure translation,

x0μ ¼ 1 ⊗ xμ þ aμ ⊗ 1. Calculating the variance of xμ,

Δðx0μÞ2¼hðx0μÞ2i− hx0μi2¼hðxμÞ2þðaμÞ2þxμaμþaμxμi
− hxμi2− haμi2−2hxμihaμi

¼ΔðxμÞ2þΔðaμÞ2þ2covðxμ;aμÞ: ð4:15Þ

The covariance between aμ and xμ is zero, because they
belong to different sides of the tensor product:

2covðxμ; aμÞ ¼ hgj ⊗ hψ jðxμaμ þ aμxμÞjgi ⊗ jψi
− 2hψ jxμjψihgjaμjgi

¼ hψ jxμjψihgjaμjgi þ hgjaμjgihψ jxμjψi
− 2hψ jxμjψihgjaμjgi ¼ 0: ð4:16Þ

We conclude that

Δðx0μÞ2 ¼ ΔðxμÞ2 þ ΔðaμÞ2 ≥ ΔðxμÞ2; ð4:17Þ

i.e., a translation can only increase the uncertainty of the
coordinates. One is simply adding uncorrelated variables,
and their uncertainties get square-summed.8

Performing a translation results in an increase of the
uncertainty in the coordinates, unless the translation
parameter has zero uncertainty. This happens only in the
cases of the identity transformation or of a purely temporal
translation, which can have zero uncertainty in all of the
aμ’s, in analogy with the discussion in the Introduction. We
have the nice result that the uncertainty does not depend on
time translations.
Consider a state which looks uncertain to the observer

Alice located at the origin. One could think that there would
be another observer, Bob, translated with respect to Alice,
such that this same state is perfectly localized for him. One
could naively think to start (in 1+1D) from the state ψðx1Þ
for x1, and then make a translation with the wave function
ψð−q1Þwhere ψ is the same function. One would think that
the translated state is localized at the origin. Relation (4.17)
shows that this is impossible. Calculating the expectation
value of ðx01Þn ¼ ðx1 þ a1Þn, a Newton binomial sum of
this kind is obtained:

hðx1 þ a1Þni ¼
Xn
m¼0

�
n

m

�
hψðx1Þjðx1Þn−mjψðx1Þihψð−qÞjða1Þmjψð−qÞi

¼
Xn
m¼0

�
n

m

�
hψ jðx1Þn−mjψihψ jð−x1Þmjψi: ð4:18Þ

The above expression can never be zero. For example, for n ¼ 2,

hðx1 þ a1Þ2i ¼ hðx1Þ2i þ 2hx1a1i þ hða1Þ2i ¼ 2hðx1Þ2i − 2hx1i2 ¼ 2Δðx1Þ2: ð4:19Þ

The variance doubles; it does not go to zero.
The process of translating a state and then “undoing” it with a change of observer does not lead to an identification of

states. Of course, the symmetry between Alice and Bob is preserved—each has a set of states which is isomorphic, but the
quantum nature of the transformation implies that this set of states are not transformed into each other by a translation.
Now, let us consider general κ-Poincaré transformations—for example, the transformation of the spatial coordinate in

1þ 1 dimensions,

x01 ¼ cosh ξ ⊗ x1 þ sinh ξ ⊗ x0 þ a1 ⊗ 1; ð4:20Þ

calculating the difference between its variance and the variance of x1:

8Notice that this conclusion is a consequence of the fact that we assumed that transformed states are product states jgi ⊗ jψi. If we
allowed for entanglement between the transformation part jgi and the state jψi describing the event in the initial reference frame, we
would have opened the possibility of reducing the uncertainty of xμ with a translation. This, however, conflicts with the basic physical
intuition that the relationship between inertial observers should be independent of the state of the system that the observers are studying.
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Δðx01Þ2 ¼ Δðx1Þ2 þ Δða1Þ2 þ hx1i2Δðcosh ξÞ2 þ hx0i2Δðsinh ξÞ2
þ hsinh ξi2Δðx0Þ2 þ Δðsinh ξÞ2Δðx0Þ2 þ hcosh ξi2Δðx1Þ2 þ Δðcosh ξÞ2Δðx1Þ2
þ 2covðx1; x0Þhcosh ξihsinh ξi þ 2covða1; sinh ξÞhx0i þ 2covða1; cosh ξÞhx1i
þ 2covðcosh ξ; sinh ξÞðcovðx0; x1Þ þ hx0ihx1iÞ − Δðx1Þ2: ð4:21Þ

The above expression can be rewritten as

Δðx01Þ2 ¼ Δðx1Þ2 þ hsinh2ξiðΔðx0Þ2 þ Δðx1Þ2Þ
þ Δ½cosh ξ�2hx1i2 þ Δ½sinh ξ�2hx0i2 þ 2covðcosh ξ; sinh ξÞhx0ihx1i
þ Δ½a1�2 þ 2covðcosh ξ; a1Þhx1i þ 2covðsinh ξ; a1Þhx0i
þ 2hcosh ξ sinh ξicovðx0; x1Þ; ð4:22Þ

the second and third lines above can be rewritten as the squared uncertainty of the operator a1 þ sinh ξhx0i þ cosh ξhx1i,
which is positive, and we get

Δðx01Þ2 − Δðx1Þ2 ¼ Δ½a1 þ sinh ξhx0i þ cosh ξhx1i�2
þ hsinh2ξiðΔðx0Þ2 þ Δðx1Þ2Þ þ 2hcosh ξ sinh ξicovðx0; x1Þ: ð4:23Þ

Now, we assume that hx0i ¼ hx1i so that the first term reduces to the uncertainty of a1. Moreover, we rewrite the covariance
of x0 and x1 as 2covðx0; x1Þ ¼ Δðx0 þ x1Þ2 − Δðx0Þ2 − Δðx1Þ2:

Δðx01Þ2−Δðx1Þ2¼Δða1Þ2þðhsinh2ξi− hcoshξsinhiÞðΔðx0Þ2þΔðx1Þ2ÞþhcoshξsinhξiΔðx0þx1Þ2: ð4:24Þ

It is easy to prove that

hsinh2 ξi þ hcosh ξ sinh ξi ¼ 1

2
ðhe2ξi − 1Þ; ð4:25Þ

so that

Δðx01Þ2 − Δðx1Þ2 ¼ Δða1Þ2 þ 1

2
ðhe2ξi − 1ÞðΔðx0Þ2 þ Δðx1Þ2Þ þ hcosh ξ sinh ξiΔðx0 þ x1Þ2: ð4:26Þ

One linear combination of x0 and x1 can always be made
arbitrarily localized, so we can make Δðx0 þ x1Þ2 arbitrar-
ily small. The same, of course, holds for Δða1Þ2, without
putting any constraint on the other quantities except the
uncertainty of ξ, which, however, does not limit much our
ability to manipulate the state in order to adjust the values
of he2ξi and hcosh ξ sinh ξi. It does not take long to
convince oneself that we can concoct a state such that
he2ξi < 1 (e.g., it is sufficient that the wave function over ξ
be supported on the ξ < 0 region) and hcosh ξ sinh ξi is
Oð1Þ. Then the expression above will be dominated by
1
2
ðhe2ξi − 1ÞðΔðx0Þ2 þ Δðx1Þ2Þ, which is negative.
We proved that the variances of xμ can only increase after

a pure translation, but under particular circumstances, they
can decrease after a Poincaré transformation. In particular,
states with a zero expectation value of xμ, such that the
uncertainty of ðx0 þ x1Þ is sufficiently small, can reduce

their uncertainty if we perform a κ-Poincaré transformation
with sufficiently localized translation and a Lorentz trans-
formation such that he2ξi < 1 and hcosh ξ sinh ξi ¼ Oð1Þ.
We postpone to further work the study of the physical
consequences of this observation.

V. CONCLUSIONS AND OUTLOOK

In this paper, we discussed a way to look at the κ-
Minkowski quantum space with the tools of the algebra of
operators and the theory of measurement initially devel-
oped for ordinary quantum mechanics. This enables a
coherent way to look at states, localization, and trans-
formations. The picture of quantum κ-Minkowski space-
time which emerges is, in our opinion, quite fascinating.
There are no absolutely localized points, but it is never-
theless possible to find states which approximately localize.
The role of Fourier transformation from position to

LOCALIZATION AND REFERENCE FRAMES IN κ … PHYS. REV. D 99, 085003 (2019)

085003-17



momentum is here played by Mellin transforms, which
connect time with (radial) position. We also laid out the
foundations of a discussion of the deformed transformations
of this space. This is an aspect which will deserve further
scrutiny for a complete understanding of transformation
theory. In this paper, we presented a series of basic results
valid in 3þ 1 dimensions, and we discussed in quantitative
details the (1þ 1)-dimensional case. Generalizing all of our
results to the (3þ 1)-dimensional case seems technically
more complicated, but there donot seem to be any conceptual
obstacles. A possible future development could be address-
ing the fact that we used a particular representation of the
operators, while others are possible. It should be investigated
if the alternatives are, at least qualitatively, similar.
Finally, the next challenge: we considered a regime

which is not very natural in physics—namely, we consid-
ered the effects of a quantum spacetime for which the
noncommutativity parameter of space λ is nonzero, while ℏ
can be ignored. Bringing ℏ back into the picture would
require us to consider momenta (either in the form of wave
modes in a field-theoretical setting, or as a quantity
of motion of particles). The space of momenta in

κ-Minkowski is curved [36–39], and this has led us to
introduce the principle of relative locality [38,40,41]. The
relationship between the relaxations of locality that
we found in the present paper and those introduced by
relative locality is an interesting open issue, worth
exploring.
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