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We perform an extensive analysis of linear fluctuations during preheating in Higgs inflation in the
Einstein frame, where the fields are minimally coupled to gravity, but the field-space metric is nontrivial.
The self-resonance of the Higgs and the Higgsed gauge bosons are governed by effective masses that scale
differently with the nonminimal couplings and evolve differently in time. Coupled metric perturbations
enhance Higgs self-resonance and make it possible for Higgs inflation to preheat solely through this
channel. For ξ ≳ 100 the total energy of the Higgs-inflaton condensate can be transferred to Higgs particles
within 3 e-folds after the end of inflation. For smaller values of the nonminimal coupling preheating takes
longer, completely shutting off at around ξ ≃ 30. The production of gauge bosons is dominated by the
gauge boson mass and the field-space curvature. For large values of the nonminimal coupling ξ≳ 1000, it
is possible for the Higgs condensate to transfer the entirety of its energy into gauge fields within one
oscillation. For smaller values of the nonminimal coupling gauge bosons decay very quickly into fermions,
thereby shutting off Bose enhancement. Estimates of non-Abelian interactions indicate that they will not
suppress preheating into gauge bosons for ξ ≳ 1000.

DOI: 10.1103/PhysRevD.99.083519

I. INTRODUCTION

While the discovery of the Higgs boson at CERN [1]
solidified our understanding of the StandardModel (SM), its
behavior in the early Universe, above the electroweak
symmetry-breaking scale, remains unclear. An intriguing
possibility is the identification of the Higgs boson with the
scalar field(s) necessary for driving inflation, the rapid
acceleration phase of the Universe required to solve both
the horizon and flatness problems, as well as seeding
primordial fluctuations necessary for structure formation
[2–4].
The original attempt to use the Higgs or a Higgs-like

sector to drive inflation resulted in an inconsistently large
amplitude of fluctuations [5], because of the value of the
Higgs self-coupling λ in the Standard Model. However, the
introduction of a nonminimal coupling between the Higgs
field and the Ricci scalar can remedy this [6]. Such non-
minimal couplings are not only generic, since they arise as
necessary renormalization counterterms for scalar fields in
curved spacetime [7–16], but they also grow without a UV

fixed point under renormalization group flow, at least below
the Planck scale [10]. The inherent ambiguity in the running
of the Higgs self-coupling λ at high energies, due to our
incomplete knowledge of possible new physics between the
TeV and inflationary scales, leads to an ambiguity in the
exact value of the required nonminimal coupling [17–19].
While simple estimates like λinfl ¼ Oð0.01Þ lead to the
requirement of ξ ¼ Oð104Þ, smaller values of λ can allow for
much smaller nonminimal couplings. We will remain
agnostic about the exact running of the Standard Model
couplings at high energies and instead explore a broad
parameter range1 covering 10≲ ξ≲ 104.
A basic feature of inflationary models with nonminimal

couplings is that they provide universal predictions for the
spectral observables ns and r, largely independent of the
exact model parameters and initial conditions [23,24].
These observables fall in line with the Starobinsky model
[25] as well as with the large family of α attractors [26].2

*e.sfakianakis@nikhef.nl
†jorindev@nikhef.nl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1For inflation on a flat plateau one should consider ξ≳ 440
(e.g., Ref. [20]). In models of hilltop or inflection-point inflation,
smaller values of ξ are possible, although UV corrections are
expected to be larger. A discussion of the effects of UV
corrections (as well as initial conditions) in Higgs inflation
can be found, e.g., in Refs. [21,22]. In order to provide as
complete a treatment of Higgs inflation as possible without
referring to specific unknown physics, we choose to consider a
broad range of nonminimal couplings that go below ξ ≈ 400.

2See Ref. [27] for a way to alter the predictions of α-attractor
models through multifield effects.
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Even after the latest Planck release [28], these models,
which predict ns ¼ 1–2=N� and r ¼ Oð1=N2�Þ, continue to
be compatible with the data for modes that exit the horizon
at N� ≃ 55 e-folds before the end of inflation.
While inflation provides a robust framework for com-

puting the evolution of the Universe and the generation of
fluctuations [3,29–35], the transition from an inflating
universe to a radiation bath (as required for big bang
nucleosynthesis [36–38]), known as reheating, remains a
weakly constrained era in the cosmic evolution. Despite the
difficulty of directly observing reheating due to the very
short length scales involved, knowledge of how the
equation of state of the Universe transitioned from w ≃
−1 to w ¼ 1=3 is crucial, since it affects how one relates the
observed cosmic microwave background (CMB) modes to
the time during inflation when they exited the horizon
[39–46]. This becomes increasingly relevant as new data
shrink the experimental bounds on primordial observables.
The transfer of energy from the inflaton [which carries

(almost) the entirety of the energy density of the Universe
during inflation] to radiation degrees of freedom (d.o.f.) can
occur either through perturbative decays or through non-
perturbative processes. The latter case, denoted as preheat-
ing, includes parametric and tachyonic resonances (see
Ref. [47] for a review). The end state of any (p)reheating
scenario must be a universe filled with SM and dark matter
(DM) particles, or at least intermediary particles that decay
into the SM and DM sectors. Preheating therefore has the
potential to address other long-standing challenges in
cosmological theory (such as generating the observed
baryon-antibaryon asymmetry [48–52]) or leave behind
cosmological relics (such as cosmological magnetic fields
[53,54] or primordial black holes [55–57]).
Higgs inflation provides a unique opportunity to study

the transition from inflation to radiation domination, since
the couplings of the Higgs inflaton to the rest of the SM are
known. Detailed analyses of reheating in Higgs inflation
were first performed in Refs. [58,59] and extended in
Ref. [60] using lattice simulations. However, as discussed
later in Refs. [61–63] and independently in Ref. [64],
multifield models of inflation with nonminimal couplings
to gravity can exhibit more efficient preheating behavior
than previously thought, due to the contribution of the field-
space structure to the effective mass of the fluctuations.
Furthermore, it was shown in Refs. [61–63] that, in
nonminimally coupled models, preheating efficiency can
be vastly different for different values of the nonminimal
coupling, even if these values lead to otherwise identical
predictions for CMB observables. We will thus perform a
detailed study of preheating in Higgs inflation, extending
the results of Refs. [58,59,61–64], in order to distinguish
between Higgs inflation models with different values of the
nonminimal coupling.
Because of the appeal of Higgs inflation as an economi-

cal model of realizing inflation within the particle content

of the Standard Model, the unitarity cutoff scale has been
extensively studied [19,65–68] (see also Ref. [69] for a
recent review). For large values of the Higgs vacuum
expectation value (VEV) (like the ones appearing during
inflation) the appropriate unitarity cutoff scale is Mpl=

ffiffiffi
ξ

p
,

while for small values of the Higgs VEV it must be
substituted by Mpl=ξ, where Mpl ≡ ð8πGÞ−1=2 is the
reduced Planck mass.
In Sec. II of this work, we introduce a simplified model

of a complex Higgs field coupled to an Abelian gauge field.
Section III describes the generalization of this model to the
full electroweak sector of the Standard Model. In Sec. IV
we study the self-resonance of Higgs modes. Section V
deals with the evolution of the gauge fields during and after
Higgs inflation. At the end of this section we also address
the unitarity scale. The decays and scattering processes that
involve the produced Higgs and gauge bosons are
described in Sec. VI, and observational consequences
are described in Sec. VII. Concluding remarks follow in
Sec. VIII.

II. ABELIAN MODEL AND FORMALISM

We build on the formalism of Ref. [70] for the evolution
of nonminimally coupled multifield models, as it was
applied in Refs. [23,71,72] during inflation and in
Refs. [61–63] during preheating. The electroweak sector
consists of a complex Higgs doublet, expressed using four
real-valued scalar fields in 3þ 1 spacetime dimensions:

Φ ¼ 1ffiffiffi
2

p
�
φþ hþ iθ

ϕ3 þ iϕ4

�
; ð1Þ

where φ is the background value of the Higgs field, h
denotes the Higgs fluctuations, and θ;ϕ3, and ϕ4 are the
Goldstone modes. We also add the SUð2ÞL and Uð1ÞY
gauge sectors. We will start by closely examining an
Abelian simplified model of the full electroweak sector,
consisting of the complex scalar field

Φ ¼ 1ffiffiffi
2

p ðφþ hþ iθÞ ð2Þ

and a Uð1Þ gauge field only. The full equations of the
Higgsed electroweak sector are given in Sec. III, where we
also discuss their relation to the Abelian simplified model.
In order to connect our notation to that of Ref. [70], we

identify ϕ1 ¼ φþ h and ϕ2 ¼ θ. We will start by deriving
the equations of motion for general ϕI fields for notational
simplicity. We use uppercase latin letters to label field-
space indices, I; J ¼ 1, 2, 3, 4 (or just I; J ¼ 1, 2 in the
Abelian case); greek letters to label spacetime indices, μ,
ν ¼ 0, 1, 2, 3; and lowercase latin letters to label spatial
indices, i, j ¼ 1, 2, 3. The spacetime metric has signa-
ture ð−;þ;þ;þÞ.
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We first considerUð1Þ symmetry with the corresponding
gauge field Bμ. The Lagrangian in the Jordan frame is
given by

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
fðΦ;Φ†ÞR̃ − g̃μνð∇̃μΦÞ†∇̃νΦ

−
1

4
g̃μρg̃νσFμνFρσ − ṼðΦ;Φ†Þ

�
: ð3Þ

The covariant derivative ∇̃μ is given by

∇̃μ ¼ D̃μ þ ieBμ; ð4Þ

where D̃μ is a covariant derivative with respect to the
spacetime metric g̃μν and e is the coupling constant. The
corresponding field strength tensor3 is

Fμν ¼ D̃μBν − D̃νBμ: ð5Þ
By performing a conformal transformation

g̃μνðxÞ → gμνðxÞ ¼
2

M2
pl

fðΦ;Φ†Þg̃μνðxÞ; ð6Þ

the action in the Einstein frame becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R − gμν

�
1

2
GIJðΦ;Φ†ÞDμϕ

IDνϕ
J

þ M2
pl

2fðΦ;Φ†Þ ððieBμΦÞ†ðieBνΦÞ þ ieð−BμΦ†DνΦ

þ BνðDμΦ†ÞΦÞÞ
�
− VðΦ;Φ†Þ − 1

4
gμρgνσFμνFρσ

�
;

ð7Þ
with

VðΦ;Φ†Þ ¼ M4
pl

4f2ðΦ;Φ†Þ ṼðΦ;Φ†Þ; ð8Þ

and

GIJðΦ;Φ†Þ ¼ M2
pl

2fðΦ;Φ†Þ

×

�
δIJ þ

3

fðΦ;Φ†Þ fðΦ;Φ†Þ;I fðΦ;Φ†Þ;J
�
;

ð9Þ

as in Refs. [70,71]. The potential in the Jordan frame is the
usual Standard Model Higgs potential

ṼðΦ;Φ†Þ ¼ λ

�
jΦj2 − 1

4
v2
�

2

≃ λjΦj4; ð10Þ

where the Higgs vacuum expectation value v ¼ 246 GeV
can be safely neglected at field values that arise during
inflation and preheating. Hence, the Higgs potential can be
adequately modeled by a pure quartic term.
For the sake of readability, we will drop the arguments of

G, V, and f from now on. Varying the action with respect to
the scalar fields ϕI , the corresponding equation of motion
for ϕI is

□ϕI þ gμνΓI
JK∂μϕ

J∂νϕ
K þ GIJ

��
M4

pl

4ξf
e2B2

�
;J −V;J

�

þ ie
M2

pl

2f2
f;J GIJð−BμΦ†DμΦþ BμðDμΦ†ÞΦÞ

− ieM2
plG

IJ

�
−

1

2f
BμΦ†;J DμΦþDμ

�
1

2f
BμΦ†

�
Φ;J

−Φ†;J Dμ

�
1

2f
BμΦ

�
þ 1

2f
BμðDμΦ†ÞΦ;J

�
¼ 0: ð11Þ

We work to first order in fluctuations, in both the scalar
fields and spacetime metric. The gauge fields have no
background component, and thus we only treat them
as first-order perturbations. We consider scalar metric
perturbations around a spatially flat Friedmann-Lemaître-
Robertson-Walker metric,

ds2 ¼ gμνðxÞdxμdxν
¼ −ð1þ 2AÞdt2 þ 2að∂iBÞdxidt
þ a2½ð1 − 2ψÞδij þ 2∂i∂jE�dxidxj; ð12Þ

where aðtÞ is the scale factor. We may always choose a
coordinate transformation and eliminate two of the four
scalar metric functions that appear in Eq. (12). We work in
the longitudinal gauge, where BðxÞ ¼ EðxÞ ¼ 0. Further-
more, in the absence of anisotropic pressure perturbations, the
remaining two functions are equal, AðxÞ ¼ ψðxÞ.
We also expand the fields,

ϕIðxμÞ ¼ φIðtÞ þ δϕIðxμÞ: ð13Þ

Note that for Higgs inflation only ϕ1 has a background
value, φðtÞ, whereas the background value of ϕ2 is zero.
We may then construct generalizations of the

Mukhanov-Sasaki variable that are invariant with respect
to spacetime gauge transformations up to first order in the
perturbations (see Ref. [61] and references therein):

3The tensor Fμν is defined with lower indices. In that case, it
does not matter whether partial or covariant derivatives are used.
However, when working with F̃μν it does matter, since the metric
does not commute with partial derivatives. So, F̃μν is given by
F̃μν ¼ g̃μρg̃νσFρσ ¼ g̃μρg̃νσðD̃ρBσ − D̃σBρÞ ¼ D̃μBν − D̃νBμ.
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QI ¼ δϕI þ _φI

H
ψ : ð14Þ

The background equation of motion for φI is unchanged
with respect to models with multiple scalar fields and no
gauge bosons,

Dt _φ
I þ 3H _φI þ GIJV;J ¼ 0; ð15Þ

and

H2 ¼ 1

3M2
pl

�
1

2
GIJ _φ

I _φJ þ VðφIÞ
�
;

_H ¼ −
1

2M2
pl

GIJ _φ
I _φJ; ð16Þ

where overdots denote derivatives with respect to t, and the
Hubble parameter is given by HðtÞ ¼ _a=a. Covariant
derivatives with respect to the field-space metric are given
by DJAI ¼ ∂JAI þ ΓI

JKA
K for a field-space vector4 AI ,

from which we may construct the (covariant) directional
derivative with respect to cosmic time,

DtAI ¼ _φJDJAI ¼ _AI þ ΓI
JK _φJAK; ð17Þ

where the Christoffel symbols ΓI
JKðφLÞ are constructed

from GIJðφKÞ.
We now specify our analysis to the case of a complex

Higgs field with background φðtÞ and fluctuations hðt; x⃗Þ
and θðt; x⃗Þ as in Eq. (2). The equation of motion for the
gauge-invariant fluctuation QI is identical to the case
without the presence of a gauge field [61–63,70], up to
terms that mix θ and Bμ:

D2
t QI þ 3HDtQI þ

�
k2

a2
δIJ þMI

J

�
QJ − e

M2
pl

2f
GIJ dθ

dϕJ

×

�
2Bμ∂μφþ ðDμBμÞφþ 2fBμφDμ

�
1

2f

��
¼ 0;

ð18Þ
where we define the mass-squared matrix by

MI
J≡GIKðDJDKVÞ−RI

LMJ _φ
L _φM−

1

M2
pla

3
Dt

�
a3

H
_φI _φJ

�
;

ð19Þ

and RI
LMJ is the Riemann tensor constructed from the

field-space metric GIJðφKÞ. The term in Eq. (19) propor-
tional to 1=M2

pl arises from the coupled metric perturbations
through expanding Einstein’s field equations to linear order
and using Eq. (14). It hence vanishes in the limit of an
infinitely rigid spacetime MPl → ∞. In the single-field

attractor [23,61,71], the background field motion proceeds
along a straight single-field trajectory φðtÞ. GIJ and MIJ

are then diagonal at background order, so the equations of
motion for the first-order fluctuations h and θ do not mix:

D2
t Qh þ 3HDtQh þ

�
k2

a2
þMh

h

�
Qh ¼ 0;

D2
t Qθ þ 3HDtQθ þ

�
k2

a2
þMθ

θ

�
Qθ

− e
M2

pl

2f
Gθθ

�
2Bμ∂μφþ ðDμBμÞφþ 2fBμφDμ

�
1

2f

��
¼ 0; ð20Þ

where

Qh ¼ hþ _φ

H
Ψ; Qθ ¼ θ: ð21Þ

We see that only the Higgs fluctuations, generated along the
direction of background motion, are coupled to the metric
perturbations Ψ. In the language of Refs. [61–63], the
Higgs fluctuations correspond to adiabatic modes.
The equations are simplified if we replaceQI → XI=aðtÞ

and use covariant derivatives with respect to conformal
time τ instead of cosmic time. We multiply the equations by
a3 and obtain

D2
τXh þ

�
k2 þ a2

�
Mh

h −
1

6
RGh

h

��
Xh ¼ 0; ð22Þ

D2
τXθ þ

�
k2 þ a2

�
Mθ

θ −
1

6
RGθ

θ

��
Xθ

− ea3
M2

pl

2f
Gθθ

�
2B0 _φþ ðDμBμÞφ −

1

f
B0φ _f

�
¼ 0;

ð23Þ
where R is the spacetime Ricci curvature.
The variation of the action with respect to the gauge field

S → Sþ δS
δBμ

δBμ gives

DνFνμ−
M2

ple
2

f
Φ†ΦBμþ ie

M2
pl

2f
gμνðΦ†∂νΦ−ð∂νΦ†ÞΦÞ¼0:

ð24Þ

Since there is no background value for the gauge field,5 the
first-order perturbation equation is

4Examples of field-space vectors include AI ¼ δϕI and
AI ¼ _φI .

5There has been a growing interest in inflation models where
gauge fields acquire a nontrivial background value during
inflation. While this is not possible for Abelian fields, SUð2Þ
gauge fields can have nontrivial vacuum configurations during
inflation, leading to interesting phenomenology, like the violation
of the Lyth bound [73] and tensor non-Gaussianity [74], while
providing ns and r in agreement with CMB observations.
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DνFνμ −
M2

ple
2

2f
φ2Bμ þ e

M2
pl

2f
gμνðθ∂νφ − φ∂νθÞ ¼ 0;

ð25Þ

where we used Eq. (2) and we stress again that Fνμ is
defined using covariant derivatives.
Until now we have worked in full generality and not

chosen a gauge. Hence, we are in principle working with
more d.o.f. than needed. We will distinguish two frequently
used gauges: unitary and Coulomb gauge. The equation of
motion of Xh is unaffected by the gauge choice.

A. Unitary gauge

In the unitary gauge θ ¼ 0 ¼ Xθ. Equation (23) thus
becomes a constraint equation,

DμBμ ¼
�
−
2 _φ

φ
þ

_f
f

�
B0: ð26Þ

The equations of motion for the gauge fields are
rewritten as

1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
gνρgμσFρσÞ −

M2
ple

2

2f
φ2Bμ ¼ 0: ð27Þ

Separating the time and space components, the equation for
B0 becomes

−
1

a2
∂ið∂iB0 − ∂0BiÞ þ

M2
ple

2

2f
φ2B0 ¼ 0: ð28Þ

Performing the analysis in Fourier space, with the con-
vention fðxÞ ¼ R d3k

ð2πÞ3=2 fke
−ik·x, we derive an algebraic

equation for B0;k,

B0;k ¼ iki _Bi;k

k2 þ a2M2
ple

2

2f φ2
: ð29Þ

The equation of motion for the spatial components Bi is

_a
a3

ð∂iB0 − _BiÞ −
1

a2
ðB̈i − ∂i

_B0Þ þ
1

a4
ð∂2

jBi − ∂i∂jBjÞ

−
1

a2
M2

ple
2

2f
φ2Bi ¼ 0: ð30Þ

Using the constraint (26), going to Fourier space, and
multiplying by a2, the equation of motion becomes

B̈i;k þH _Bi;k þ k2

a2
Bi;k þ 2

�
_φ

φ
−

_f
2f

þH

�
kikj _Bj;k

k2 þ M2
pla

2

2f e2φ2

þM2
ple

2

2f
φ2Bi;k ¼ 0; ð31Þ

which is somewhat simplified in conformal time,

∂2
τBi;k þ k2Bi;k þ 2

�∂τφ

φ
−
∂τf
2f

þ ∂τa
a

�
kikj∂τBj;k

k2 þ M2
pla

2

2f e2φ2

þ a2
M2

ple
2

2f
φ2Bi;k ¼ 0: ð32Þ

We now distinguish between transverse (B�
k ) and longi-

tudinal (BL
k ) modes:

B⃗k ¼ ϵ̂LkB
L
k þ ϵ̂þkB

þ
k þ ϵ̂−kB

−
k; ð33Þ

with

ik · ϵ̂Lk ¼ jkj; k · ϵ̂�k ¼ 0: ð34Þ

The equations of motion for the transverse and longitudinal
modes become

∂2
τB�

k þ
�
k2 þ a2

M2
ple

2

2f
φ2

�
B�
k ¼ 0;

∂2
τBL

k þ 2

�∂τφ

φ
−
∂τf
2f

þ ∂τa
a

�
k2

k2 þ M2
pla

2

2f e2φ2
∂τBL

k

þ
�
k2 þ a2

M2
ple

2

2f
φ2

�
BL
k ¼ 0: ð35Þ

B. Coulomb gauge

In the Coulomb gauge (∂iBi ¼ 0), the Goldstone mode θ
remains an explicit dynamical d.o.f., and thus the relevant
equations of motion are

D2
τXθ þ

�
k2 þ a2

�
Mθ

θ −
1

6
RGθ

θ

��
Xθ

þ ea3
M2

pl

2f
Gθθ

�
2B0 _φþ ð _B0 þ 3HB0Þφ−

1

f
φ _fB0

�
¼ 0;

−
1

a2
∂2
i B0 þ

M2
ple

2

2f
φ2B0 − e

M2
pl

2f
ðθ _φ− φ_θÞ ¼ 0;

_a
a3

ð∂iB0 − _BiÞ −
1

a2
ðB̈i − ∂i

_B0Þ þ
1

a4
∂2
jBi

−
1

a2
M2

ple
2

2f
φ2Bi −

e
a2

M2
pl

2f
φ∂iθ ¼ 0: ð36Þ
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Going to Fourier space, we can solve for B0;k in terms of
θk, similarly to the situation in the unitary gauge,

B0;k ¼
e
M2

pl

2f ðθk _φ − φ_θkÞ
k2

a2 þ
M2

ple
2

2f φ2
: ð37Þ

By plugging the longitudinal mode into the last equation of
Eq. (36) and demanding that it is zero, we get the additional
constraint

HB0 þ _B0 ¼
M2

pl

2f
eφθ: ð38Þ

Substituting the two previous relations into the equation of
motion for Xθ gives

D2
τXθ − 2e2

M4
pl

4f2
Gθθ

φð∂τφ− ∂τf
2f φþ ∂τa

a φÞ
k2

a2 þ
M2

ple
2φ2

2f

DτXθ

þ
�
k2þa2

�
Mθ

θ −
1

6
RGθ

θ

�

þ e2
M4

pl

4f2
Gθθ

�
a2φ2þ 2

ð∂τφ− ∂τf
2f φþ ∂τa

a φÞð∂τφþ ∂τa
a φÞ

k2

a2 þ
M2

ple
2

2f φ2

þ 2
∂τφφð∂τφ− ∂τf

2f φþ ∂τa
a φÞ

k2

a2 þ
M2

ple
2

2f φ2
Γθ
hθ

��
Xθ ¼ 0: ð39Þ

We must demand that physical observables are identical
in the two gauges, and derive a relation between θk in the
Coulomb gauge and BL

k in the unitary gauge.X
h
k and B

�
k are

already identical in the two gauges. The longitudinal
component of the electric field6 is given by

EL
k ¼ _BL

k − kB0;k: ð40Þ

In the unitary and Coulomb gauge we get

Unitary∶ EL
k ¼ M2

ple
2

2f
φ2

_BL
k

k2

a2 þ
M2

ple
2

2f φ2
;

Coulomb∶ EL
k ¼ −k

M2
ple

2f
θk _φ − φ_θk
k2

a2 þ
M2

ple
2

2f φ2
: ð41Þ

Since EL should not depend on the gauge, we can use these
expressions to solve for BL in terms of θ. We obtain

BL
k ¼ k

eφ
θk: ð42Þ

It is a straightforward algebraic exercise to show that by
using Eq. (42), the equations of motion for BL

k and θk can
be transformed into each other, providing a useful check for
our derivation.
During preheating, when the background inflaton field

oscillates, the unitary gauge becomes ill defined at the
times where φðtÞ ¼ 0, as can be seen for example in the
transformation relation of Eq. (42). We will compute gauge
boson production during preheating by solving the corre-
sponding linearized equations of motion in the Coulomb
gauge, which is always well defined. The evolution of the
background Higgs field φðtÞ will be numerically computed
in an expanding background according to Eqs. (15) and
(16), neglecting backreaction from fluctuations and
produced particles.

C. Single-field attractor and parameter choices

For Higgs inflation, the function fðΦ;Φ†Þ is given by [6]

fðΦ;Φ†Þ ¼ M2
pl

2
þ ξΦ†Φ: ð43Þ

For typical values of Higgs inflation λ ¼ Oð0.01Þ, and
correspondingly ξ ∼ 104. If we consider a different renorm-
alization group flow for the self-coupling λ through the
introduction of unknown physics before the inflationary
scale, λ will become smaller or larger at inflationary
energies. As we will show below, since the combination
λ=ξ2 is fixed by the amplitude of the scalar power spectrum,
a larger or smaller value of λ during inflation will lead to a
correspondingly larger or smaller value of the nonminimal
coupling ξ. We will consider values of ξ in the range
10 ≤ ξ ≤ 104. The inflationary predictions for the scalar
and tensor modes for nonminimally coupled models with
ξ ≥ 10 fall into the large-ξ single-field attractor regime, as
described, e.g., in Ref. [23]. This results in very simple
expressions for the scalar spectral index ns, the tensor-to-
scalar ratio r, and the running of the spectral index α as a
function of the number of e-folds at horizon crossing N�

ns ≃ 1 −
2

N�
−

3

N2�
; r ≃

12

N2�
;

α ¼ dns
d ln k

≃ −
2

N2�

�
1þ 3

N�

�
: ð44Þ

The values for the spectral observables given in Eq. (44)
correspond to single-field background motion. Multifield
nonminimally coupled models of inflation at large ξ show a
very strong single-field attractor behavior. The strength of
the attractor was analyzed in Ref. [71] for the case of an
SOðNÞ-symmetric model, similar to Higgs inflation

6The gauge field being studied is not the Uð1Þ of the
electromagnetic sector. However, we will use the more familiar
nomenclature found in electromagnetism.
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without gauge fields. The more general case of two-field
inflation with generic potential parameters was studied in
Refs. [61,72], where it was shown that the single-field
attractor becomes stronger for larger ξ and that it persists
not only during inflation but also during the (p)reheating
era. For generic initial conditions, the isocurvature fraction
βiso is exponentially small for random potentials, while for
a symmetric potential βiso ¼ Oð10−5Þ, as was shown in
Ref. [72]. As discussed in Sec. VA, during inflation the
gauge bosons are very massive compared to the Hubble
scale, making the single-field attractor behavior of Higgs
inflation stronger than the one described in Ref. [71] for the
scalar symmetric case. Hence, the use of a single-field
motion φðtÞ for the background is well justified during and
after Higgs inflation.
The dimensionless power spectrum of the (scalar)

density perturbations is measured to be

As ≃ 2 × 10−9: ð45Þ
Using the tensor-to-scalar ratio from Eq. (44) with N� ¼ 55

yields r ≃ 3.3 × 10−3, and hence the tensor power spectrum
becomes

PT

M2
Pl

¼ 2H2

π2M2
Pl

¼ r × As ≃ 6.6 × 10−12: ð46Þ

Given that the Hubble scale during inflation is approx-
imately [6]

H2
infl ≃

λ

12ξ2
M2

Pl; ð47Þ

the Higgs self-coupling and nonminimal coupling must
obey the relation

λ

ξ2
≃ 5 × 10−10: ð48Þ

We keep the value of the Hubble scale fixed and determine
the value of λ that corresponds to each ξ through Eq. (48).

III. ELECTROWEAK SECTOR

We now consider the full SUð2Þ ×Uð1Þ gauge sym-
metry, as it exists in the electroweak sector of the SM. The
Lagrangian in the Jordan frame is given by

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
fðΦ;Φ†ÞR̃ − g̃μνð∇̃μΦÞ†∇̃νΦ

−
1

4
g̃μρg̃νσBμνBρσ −

1

4
g̃μρg̃νσAμν · Aρσ − ṼðΦ;Φ†Þ

�
;

ð49Þ

with the Higgs doublet

Φ ¼ 1ffiffiffi
2

p
�

ϕ3 þ iϕ4

φþ hþ iθ

�
: ð50Þ

The covariant derivative ∇̃μ is given by

∇̃μ ¼ D̃μ þ ig0
1

2
YBμ þ ig

1

2
Aμ · τ; ð51Þ

where Y is the generator of hypercharge Uð1Þ and Bμ is the
corresponding gauge field. The Higgs doublet has hyper-
charge þ1. We have also introduced the vector notation

Aμ ≡ ðA1;μ; A2;μ; A3;μÞ; τ≡ ðτ1; τ2; τ3Þ: ð52Þ
The Aμ are the gauge fields corresponding to SUð2Þ and τi
are the Pauli matrices. The corresponding field-strength
tensors are

Bμν ¼ ∂μBν − ∂μBν;

Aa;μν ¼ ∂μAa;ν − ∂νAa;μ − g
X3
b;c¼1

ϵabcAb;μAc;ν: ð53Þ

Defining the fields Wμ, W
†
μ, Zμ, and Aμ as

Wμ ¼
A1;μ − iA2;μffiffiffi

2
p Aμ ¼ sin θWA3;μ þ cos θWBμ

W†
μ ¼ A1;μ þ iA2;μffiffiffi

2
p Zμ ¼ cos θWA3;μ − sin θWBμ; ð54Þ

with

e ¼ g sin θW ¼ g0 cos θW; ð55Þ
the components of the covariant derivative of Φ are
given by

∇̃μΦ ¼ 1ffiffiffi
2

p
 
D̃μðϕ3 þ iϕ4Þ þ iðeAμ þ g cos 2θW

2 cos θW
ZμÞðϕ3 þ iϕ4Þ þ igffiffi

2
p Wμðφþ hþ iθÞ

D̃μðφþ hþ iθÞ − ig
2 cos θW

Zμðφþ hþ iθÞ þ igffiffi
2

p W†
μðϕ3 þ iϕ4Þ

!
: ð56Þ

The structure of the equations is almost identical to the one studied in the earlier parts of this work, where we focused on the
Abelian case. For θ, the Goldstone mode that becomes the longitudinal polarization of the Z boson, we substitute
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2eBν → −
g

cos θW
Zν ð57Þ

in our Abelian equation and obtain

D2
τXθþ

�
k2þa2

�
Mθ

θ−
1

6
RGθ

θ

��
Xθ

þa3
M2

pl

2f
g

2cosθW
Gθθ

�
2Z0 _φþðDμZμÞφ−1

f
Z0φ _f

�
¼0:

ð58Þ

The Goldstone bosons ϕ3 and ϕ4 become the longitudinal
modes of theW� bosons. Making the substitutions θ → ϕ3

and θ → ϕ4 in the Abelian equation and

2eBν → i
gffiffiffi
2

p ðWν −W†
νÞ; 2eBν →

gffiffiffi
2

p ðWν þW†
νÞ;

ð59Þ

we obtain

D2
τXϕ3 þ

�
k2 þ a2

�
Mϕ3

ϕ3
−
1

6
RGϕ3

ϕ3

��
Xϕ3

− a3
M2

pl

2f
ig

2
ffiffiffi
2

p Gϕ3ϕ3

�
2ðW0 −W†0Þ _φ

þ ðDμðWμ −W†μÞÞφ −
1

f
ðW0 −W†0Þφ _f

�
¼ 0; ð60Þ

D2
τXϕ4 þ

�
k2 þ a2

�
Mϕ4

ϕ4
−
1

6
RGϕ4

ϕ4

��
Xϕ4

− a3
M2

pl

2f
g

2
ffiffiffi
2

p Gϕ4ϕ4

�
2ðW0 þW†0Þ _φ

þ ðDμðWμ þW†μÞÞφ −
1

f
ðW0 þW†0Þφ _f

�
¼ 0: ð61Þ

At quadratic order, the field-strength term for the
electroweak case is no more complicated than the
Abelian case; it simply contains more fields,

Lgauge ¼ −
1

2
F†
WμνF

μν
W −

1

4
FZμνF

μν
Z −

1

4
FμνFμν; ð62Þ

with

FWμν ¼ ∂μWν − ∂νWμ; FZμν ¼ ∂μZν − ∂νZμ;

Fμν ¼ ∂μAν − ∂νAμ: ð63Þ

Comparing Eqs. (56) and (62) with the Abelian case, we
can easily find the equations of motion for the gauge fields.

The photon Aμ does not couple to the Higgs:

DνFνμ ¼ 0: ð64Þ

The Z boson obeys

DνF
νμ
Z −

M2
pl

2f
g2

4cos2θW
φ2Zμ

−
M2

pl

2f
g

2 cos θW
gμνðθ∂νφ − φ∂νθÞ ¼ 0; ð65Þ

and correspondingly for the W� bosons

DνF
νμ
W −

M2
pl

2f
g2

2
φ2Wμ −

M2
pl

2f
ig

2
ffiffiffi
2

p gμνððϕ3 þ iϕ4Þ∂νφ

− φ∂νðϕ3 þ iϕ4ÞÞ ¼ 0: ð66Þ

A. Unitary gauge

In the unitary gauge, the equations of motion for the
three Goldstone d.o.f. θ and ϕ3;ϕ4 give the constraints

DμZμ ¼
�
−
2 _φ

φ
þ

_f
f

�
Z0; DμWμ ¼

�
−
2 _φ

φ
þ

_f
f

�
W0:

ð67Þ

The equations of motion for Zμ and Wμ are

DνF
νμ
Z −

M2
pl

2f
g2

4cos2θW
φ2Zμ ¼ 0;

DνF
νμ
W −

M2
pl

2f
g2

2
φ2Wμ ¼ 0: ð68Þ

These equations are identical to the equations in the
Abelian case, albeit with different couplings. The equations
for the longitudinal and transverse modes are thus given by

∂2
τZ�

k þ
�
k2 þ a2

M2
pl

2f
g2

4cos2θW
φ2

�
Z�
k ¼ 0;

∂2
τZL

k þ 2

�∂τφ

φ
−
∂τf
2f

þ ∂τa
a

�
k2

k2 þ M2
pla

2

2f
g2

4cos2θW
φ2

∂τZL
k

þ
�
k2 þ a2

M2
pl

2f
g2

4cos2θW
φ2

�
ZL
k ¼ 0; ð69Þ

and
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∂2
τW�

k þ
�
k2 þ a2

M2
pl

2f
g2

2
φ2

�
W�

k ¼ 0;

∂2
τWL

k þ 2

�∂τφ

φ
−
∂τf
2f

þ ∂τa
a

�
k2

k2 þ M2
pla

2

2f
g2

2
φ2

∂τWL
k

þ
�
k2 þ a2

M2
pl

2f
g2

2
φ2

�
WL

k ¼ 0; ð70Þ

whereW� denotes the � polarization of the fieldW (so the
� does not distinguish W or W†).

B. Coulomb gauge

The Coulomb gauge for the two types of bosons, Z and
W�, is defined through the conditions

∂iZi ¼ 0; ∂iWi ¼ 0: ð71Þ

In Fourier space, we can express Z0;k in terms of θ andW0;k
in terms of ϕ3 and ϕ4:

Z0;k ¼
M2

pl

2f
g

2 cos θW
ðφ_θ − θ _φÞ

k2

a2 þ
M2

pl

2f
g2

4cos2θW
φ2

;

W0;k ¼
M2

pl

2f
ig

2
ffiffi
2

p ðφð _ϕ3 þ i _ϕ4Þ − ðϕ3 þ iϕ4Þ _φÞ
k2

a2 þ
M2

pl

2f
g2

2
φ2

: ð72Þ

From the decoupling of the longitudinal modes from the
equations for the corresponding transverse ones we get the
constraints

HZ0 þ _Z0 ¼ −
M2

pl

2f
g

2 cos θW
φθ;

HW0 þ _W0 ¼ −
M2

pl

2f
ig

2
ffiffiffi
2

p φðϕ3 þ iϕ4Þ: ð73Þ

Substituting into the equation for Xθ gives

D2
τXθ − 2

g2

4cos2θW

M4
pl

4f2
Gθθ

φ2ð∂τφφ − ∂τf
2f þ ∂τa

a Þ
k2

a2 þ
M2

pl

2f
g2

4cos2θW
φ2

DτXθ þ
�
k2 þ a2

�
Mθ

θ −
1

6
RGθ

θ

�

þ g2

4cos2θW

M4
pl

4f2
Gθθ

�
a2φ2 þ 2

φ2ð∂τφÞð∂τφφ − ∂τf
2f þ ∂τa

a Þ
k2

a2 þ
M2

pl

2f
g2

4cos2θW
φ2

Γθ
hθ þ 2

φ2ð∂τφφ − ∂τf
2f þ ∂τa

a Þð∂τφφ þ ∂τa
a Þ

k2

a2 þ
M2

pl

2f
g2

4cos2θW
φ2

��
Xθ ¼ 0; ð74Þ

and substituting into the equation for Xϕ3 gives

D2
τXϕ3 − 2

g2

4

M4
pl

4f2
Gϕ3ϕ3

φ2ð∂τφφ − ∂τf
2f þ ∂τa

a Þ
k2

a2 þ
M2

pl

2f
g2

2
φ2

DτXϕ3 þ
�
k2 þ a2

�
Mϕ3

ϕ3
−
1

6
RGϕ3

ϕ3

�

þ g2

4

M4
pl

4f2
Gϕ3ϕ3

�
a2φ2 þ 2

φ2ð∂τφÞð∂τφφ − ∂τf
2f þ ∂τa

a Þ
k2

a2 þ
M2

pl

2f
g2

2
φ2

Γϕ3

hϕ3
þ 2

φ2ð∂τφ
φ − ∂τf

2f þ ∂τa
a Þð∂τφφ þ ∂τa

a Þ
k2

a2 þ
M2

pl

2f
g2

2
φ2

��
Xϕ3 ¼ 0; ð75Þ

and likewise

D2
τXϕ4 − 2

g2

4

M4
pl

4f2
Gϕ4ϕ4

φ2ð∂τφφ − ∂τf
2f þ ∂τa

a Þ
k2

a2 þ
M2

pl

2f
g2

2
φ2

DτXϕ4 þ
�
k2 þ a2

�
Mϕ4

ϕ4
−
1

6
RGϕ4

ϕ4

�

þ g2

4

M4
pl

4f2
Gϕ4ϕ4

�
a2φ2 þ 2

φ2ð∂τφÞð∂τφφ − ∂τf
2f þ ∂τa

a Þ
k2

a2 þ
M2

pl

2f
g2

2
φ2

Γϕ4

hϕ4
þ 2

φ2ð∂τφ
φ − ∂τf

2f þ ∂τa
a Þð∂τφφ þ ∂τa

a Þ
k2

a2 þ
M2

pl

2f
g2

2
φ2

��
Xϕ4 ¼ 0: ð76Þ

The equations of motion of the transverse modes of the Z and W are

Z̈�
k þH _Z�

k þ 1

a2

�
k2 þM2

Pl

2f
g2

4 cos θW
φ2

�
Z�
k ¼ 0; ð77Þ

Ẅ�
k þH _W�

k þ 1

a2

�
k2 þM2

Pl

2f
g2

2
φ2

�
W�

k ¼ 0: ð78Þ
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IV. HIGGS SELF-RESONANCE

We now focus on the Higgs fluctuations, neglecting the
effects of Goldstone modes and gauge fields. In our linear
analysis the Higgs fluctuations do not couple to the gauge
field. The equation of motion for the rescaled fluctuations
XhðxμÞ≡ aðtÞQhðxμÞ is

D2
τXh

k þ ω2
hðk; τÞXh

k ¼ 0; ð79Þ

where the effective frequency is defined as

ω2
hðk; τÞ
a2

¼ k2

a2
þm2

eff;h: ð80Þ

For notational simplicity and connection to earlier work
[61–63] we define the various contributions to the effective
mass of the Higgs fluctuations,

m2
eff;h ≡Mh

h −
1

6
R ¼ m2

1;h þm2
2;h þm2

3;h þm2
4;h; ð81Þ

where Mh
h was defined in Eq. (19) and

m2
1;h ¼ GhhðDφDφVÞ; ð82Þ

m2
2;h ¼ −Rh

LMh _φ
L _φM; ð83Þ

m2
3;h ¼ −

1

M2
Pla

3
Dt

�
a3

H
_φ2Ghh

�
; ð84Þ

m2
4;h ¼ −

1

6
R ¼ ðϵ − 2ÞH2: ð85Þ

For the case of fluctuations along the straight background
trajectory (like Higgs fluctuations), the Riemann contribu-
tionm2

2;h vanishes identically. As described in Ref. [75] and
further utilized in Ref. [61], the mode functions can be
decomposed using the vielbeins of the field-space metric.
In the single-field attractor—which exists in the non-
minimally coupled models that include Higgs inflation
both during [23] and after inflation [61]—the decomposi-
tion of Xh

k into creation and annihilation operators is trivial,

X̂h ¼
Z

d3k

ð2πÞ3=2 ½vke
h
1âke

ik·x þ v�ke
h
1â

†
ke

−ik·x�; ð86Þ

where eh1 ¼
ffiffiffiffiffiffiffi
Ghh

p
. Since the vielbeins obey the parallel

transport equationDτeh1 ¼ 0, the equation of motion for the
mode function vk becomes

∂2
τvk þ ω2

hðk; τÞvk ¼ 0: ð87Þ

We solve the equation in cosmic rather than conformal
time, which is better suited for computations after inflation,

v̈k þH _vk þ ω2
hðk; tÞ
a2

vk ¼ 0; ð88Þ

where the frequency is defined in Eq. (80).
We examine the two dominant terms of the effective

mass: the one arising from the potential (m2
1;h) and the one

arising from the coupled metric perturbations (m2
3;h). The

latter is often overlooked in studies of preheating, perhaps
because it is vastly subdominant during inflation. It arises
by combining the equation of motion for δϕ and the metric
perturbation ψ , defined through Eq. (12), in conjunction
with the definition of the Mukhanov-Sasaki variables,
given in Eq. (14).
The expression for m2

1;h is

m2
1;h¼

λM4
Plφ

2ðξφ2ð12ξM2
Pl−2ξð6ξþ1Þφ2þM2

PlÞþ3M4
PlÞ

ðξφ2þM2
PlÞ2ðξð6ξþ1Þφ2þM2

PlÞ2

≃−
λM4

Pl

3ξ3φ2
þλM4

Plðφ2þ18M2
PlÞ

18ξ4φ4
; ð89Þ

where we used ξ ≫ 1 in expressions such as ð6ξþ 1Þ ≃ 6ξ.
Furthermore, since we are initially interested in studying
the behavior during inflation where analytic progress can
be made, we use ξφ2 ≫ M2

Pl as an approximation. As we
will see, this works reasonably well even close to the end of
inflation. We normalize the effective mass by the Hubble
scale,

m2
1;h

H2ðtÞ¼
12M2

Plðξφ2ð12ξM2
Pl−2ξð6ξþ1Þφ2þM2

PlÞþ3M4
PlÞ

φ2ðξð6ξþ1Þφ2þM2
PlÞ2

≃−
4M2

Pl

ξφ2
þ4M4

Pl

ξ2φ4
þO

�
M6

Pl

ξ3φ6x

�
: ð90Þ

We can use the single-field slow-roll results

−N ¼ 3

4

ξφ2

M2
Pl

þ 1

8

φ2

M2
Pl

þOðlog½φ=MPl�Þ; ð91Þ

where we went beyond lowest order in ξφ2 and we measure
the number of e-folds from the end of inflation, meaning
that negative values correspond to the inflationary era.7

This leads to

m2
1;h

H2ðtÞ ≃
3

N
þ 9

4N2
þO

�
1

N3

�
: ð92Þ

If we minimize m2
1 as a function of δ ¼ ffiffiffi

ξ
p

φ, the field
amplitude that minimizes the mass is

7We neglected the contributions coming from the lower end of
the integral leading to Eq. (91).
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δmin ¼
ffiffiffi
2

p
MPl þO

�
MPl

ξ

�
; ð93Þ

or, equivalently, Nmin ≃ −1.5. For the minimization we
used the full expression for the effective mass and only took
the Taylor expansion for large ξ at the end. We can see that
for ξ ≫ 1 the minimum of m2

1 is independent of ξ and thus
occurs at the same value of δ (which will also be the same
value ofN) in the approximation of Eq. (91). In general, the
function m2

1;hðNÞ=H2 shows no appreciable difference for
different values of ξ ≫ 1 during inflation. This can be
easily seen by substituting Eq. (91) into Eq. (90). As shown
in Ref. [62], this behavior persists during the time of
coherent inflaton oscillations.
The mass component arising from the metric fluctua-

tions is

m2
3;h ¼ −

ðξð6ξþ 1Þφ2 þM2
PlÞ _φðHðtÞðϵðtÞ þ 3Þ _φþ 2φ̈Þ

HðtÞðξφ2 þM2
PlÞ2

≃ −
18 _φ2

φ2
; ð94Þ

where the last approximation holds during inflation. Using
the slow-roll expression for _φ we get that during inflation

m2
3;h

H2ðtÞ ≃ −
9

2N2
: ð95Þ

This contribution is clearly subdominant tom2
1;h, and hence

it can be safely neglected during inflation. However, jm2
3;hj

grows near the end of inflation, since it is proportional to
_φ2, which at the end of inflation is given by

_φ2
end ¼ GφφV ¼ λM2

Plφ
4

4ð6ξ2φ2 þ ξφ2 þM2
PlÞ

≃
λM2

Plφ
2

24ξ2
: ð96Þ

It has been numerically shown in Ref. [61] that the field
value at the end of inflation is

ffiffiffi
ξ

p
φend ≃ 0.8MPl, leading to

_φ2
end ≃

0.82λM4
Pl

24ξ3
≃
2λM4

Pl

75ξ3
: ð97Þ

Numerically, we get m2
3;h=H

2ðtÞ ≃ −11 at the end of
inflation, in rough agreement with the approximate expres-
sions given above.
The numerical results for ξ ¼ 10 are shown in Fig. 1,

along with the approximate analytical expressions that we
derived. We only show the ξ ¼ 10 case, since all cases with
higher values of the nonminimal coupling exhibit visually
identical results. After the end of inflation the two dominant
components of the effective mass of the Higgs fluctuations
evolve differently for different values of ξ. In Ref. [62] the
behavior of m2

1;h was analyzed in the static universe
approximation. It was shown that for ξ≳ 100 the effective
mass component m2

1;h quickly approaches a uniform shape
regardless of the value of ξ. The consequence of this is that
the Floquet chart for the inflaton self-resonance also
approaches a common form for ξ≳ 100. This can be seen
in the left panel of Fig. 2, where m2

1;h is very similar
between ξ ¼ 100 and ξ ¼ 103, but different for ξ ¼ 10. The
coupled metric fluctuations component of the effective
mass has a similar shape for ξ ¼ 100 and ξ ¼ 103, but for
ξ ¼ 10 it is significantly less pronounced, as seen in the
right panel of Fig. 2.

A. Superhorizon evolution and thermalization

An important notion when dealing with (p)reheating is
the transfer of energy from the inflaton condensate to the
radiation d.o.f. Naively, one must compute all the power
concentrated in the wave numbers that are excited above
the vacuum state (meaning that they are different than the
adiabatic vacuum at any time) and compare that to the
energy density stored in the condensate. However, when
dealing with inflationary perturbations, one must keep in
mind that computations should refer to modes, whose
length scales are relevant to the dynamics being studied.
For curvature perturbations, the use of a finite box was

FIG. 1. The components of the effective mass of the Higgs fluctuations m2
1;h and m2

3;h rescaled by the Hubble scale. The blue curves
show the numerical curves for ξ ¼ 10 and the red dashed curves show the approximate analytic expressions of Eqs. (92) and (95),
respectively.
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described in Ref. [76]. For preheating, since thermalization
proceeds through particle interactions, the relevant length
scales are those that allow for particle interactions, meaning
subhorizon scales or short wavelengths.
The parametric excitation of long-wavelength modes has

been extensively studied [77–86]. It has been demonstrated
that the coupled metric fluctuations lead to an enhancement
of (in particular) long-wavelength modes [80–84], which is
larger than the one computed using a rigid background.
Furthermore, the amplification of long-wavelength modes,
even on super-Hubble scales, does not violate causality, as
discussed, e.g., in Refs. [80,82–84,86]. Intuitively, the
inflaton condensate has a super-Hubble correlation length
and can thus consistently affect super-Hubble modes.
While UVmodes encounter the complication of possibly

being excited for wave numbers that exceed the unitarity
bound (this does not occur for Higgs modes), the IR modes
have a different conceptual difficulty: since thermalization
occurs when particles interact and exchange energy, in
order to lead to a thermal distribution modes that are
superhorizon are “frozen in” and hence cannot take part in
such processes.8 Hence, it is normal to only consider modes
that have large enough physical wave numbers that place
them inside the horizon at the instant in time that we are
considering. Modes that have longer wavelengths are
frozen outside the horizon and do not contribute to the
thermalization process. They should be summed over and

added to the local background energy density. We will skip
this last step, as their contribution is subdominant com-
pared to the energy density stored in the inflaton con-
densate. In Fig. 3 we see the evolution of the comoving
Hubble radius, which shrinks during inflation and grows
afterwards. We also see that different values of ξ lead to
different post-inflationary evolutions, which is expected,
since the effective equation of state of the background
dynamics after inflation depends strongly on ξ, as shown in
Ref. [61]. More specifically, large nonminimal couplings
ξ≳ 100 lead to a prolonged period of matter-domination-
like expansion, which can last for several e-folds in the
absence of backreaction. As we will see in the next
sections, the majority of the parametric resonance effects
occur for N ≲ 3 e-folds, placing the entirety of the
reheating dynamics inside the matter-dominated back-
ground era for large values of ξ. In order to consistently
take into account the relevant wave numbers, we use an
adaptive code that only sums up the contributions of modes
that are inside the horizon at the point in time when we
compute the energy density of the Higgs field fluctuations.

FIG. 2. The ratio of the components of the effective mass of the Higgs fluctuations m2
1;h (left) and m2

3;h (right) rescaled by the Hubble
scale at the end of inflation. The blue, red dashed, and green dotted curves correspond to ξ ¼ 10; 102; 103, respectively.

FIG. 3. The size of the comoving Hubble radius during and
after inflation for ξ ¼ 10; 102; 103; 104 (black, blue, red, and
green, respectively). The curves are normalized to unity at the end
of inflation.

8Generically, in multifield models one would not expect the
curvature perturbations to remain “frozen in” when stretched
outside the Hubble radius, since multifield interactions can
generate nonadiabatic pressure, which in turn will source changes
in the gauge-invariant curvature perturbations on arbitrarily long
length scales. However, in models like Higgs inflation that feature
strong single-field attractor dynamics during inflation, the non-
adiabatic pressure effectively vanishes and the long-wavelength
modes remain “frozen in,” akin to the expected behavior in simple
single-field models. Details on the single-field attractor in such
models can be found in Refs. [23,61,71].

SFAKIANAKIS and VAN DE VIS PHYS. REV. D 99, 083519 (2019)

083519-12



B. Preheating

We now move to the computation of the energy density
in the Higgs particles that are produced during preheating.
A detailed analysis was performed in Ref. [63]. However,
all computations were initialized at the end of inflation,
thereby neglecting the amplification of long-wavelength
modes during the last e-folds of inflation. We initialize all
computations at 4.5 e-folds before the end of inflation, in
order to ensure that all relevant modes are well described by
the Bunch-Davies (BD) vacuum solution

vk;h ≃
1ffiffiffiffiffi
2k

p e−ikτ: ð98Þ

We see in the right panels of Fig. 4 that at early times
(before the end of inflation) the energy density in Higgs
modes (indicated by the solid blue line) decays as a−4

(indicated by the dotted line), in keeping with the expect-
ation for modes in the BD state. However, approximately
one e-fold before the end of inflation, the evolution of the
energy density in Higgs modes departs from a−4, because
the low-k modes are enhanced with respect to the BD
spectrum. This enhancement occurs because m2

eff;h < 0, an
early tachyonic amplification phase driven largely by the
effect of coupled metric perturbations. An immediate
consequence of this fact is that one would underestimate
the true amount of growth by starting the computation in a
BD-like vacuum state at the end of inflation.

FIG. 4. Left: The effective mass squared (black-dotted curve), along with the contributions from the potential (blue curve) and the
coupled metric perturbations (red curve). Right: The energy density in the background Higgs condensate (orange curve) and the Higgs
fluctuations (blue curve) for ξ ¼ 10; 102; 103 (top to bottom). The green curve shows 10% of the background energy density, which is
used as a proxy for the limit of our linear analysis. The orange-dashed curve is ρ0a−4, corresponding to the redshifting of the background
energy density during radiation-dominated expansion. The energy density is plotted in units of M4

Pl.
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The right panels of Fig. 4 present the results for the
energy transfer into Higgs particles for ξ ¼ 10; 102; 103.
Preheating is completed when the energy density in the
Higgs fluctuations (blue line) becomes equal to the energy
density of the background field (orange line). However, the
linear analysis is expected to break down when the energy
density of the Higgs fluctuations becomes comparable to
that of the inflaton field. As an indicator of the validity of
the linear theory, which neglects backreaction of the excited
modes onto the background, the green line shows 10% of
the energy density of the inflation field.
For all values of ξ studied, the system exhibits an

amplification of inflaton (Higgs) fluctuations. This is
mainly caused by the periodic negative contribution of
m2

3;h to the effective mass squaredm2
eff;h, which is plotted in

the left panels of Fig. 4. This is the term arising from
considering the effect of the coupled metric perturbations at
linear order. As shown in Ref. [63] and further reiterated in
Fig. 4, the amplification driven by m2

3;h lasts longer for
larger values of ξ. Specifically, the time at which the
tachyonic resonance regime stops scales as t ∼

ffiffiffi
ξ

p
H−1

end, as
shown in Ref. [63]. However, for ξ > 100 the differences
are irrelevant (in the simplified linear treatment), since the
Universe will have preheated already by N ≃ 3 e-folds.
Hence, for ξ > 100 the self-resonance of the Higgs field
leads to predictions for the duration of preheating that are
almost independent of the exact value of ξ.
After the tachyonic resonance has ended (and if preheat-

ing has not completed yet), the modes undergo parametric
resonance, driven by the oscillating effective mass term
m2

1;h. However, for very long-wavelength modes k ≃ 0 the
Floquet exponent vanishes [62] and the amplification is
polynomial in time rather than exponential, and hence
significantly weaker. As shown in Ref. [62], the maximum
Floquet exponent in the static universe approximation is
μk;maxT ≈ 0.3, where T is the background period. Using the
relation ω=H ≃ 4, which was derived in Ref. [61] for
ω ¼ 2π=T, the maximum Floquet exponent is expressed as
μk ∼ 0.5H. Hence, the Floquet exponent is too small to lead
to an efficient amplification of Higgs fluctuations in an
expanding universe. Thus the early-time tachyonic reso-
nance driven by the coupled metric fluctuation is crucial for
preheating the Universe through Higgs particle production.
For ξ ¼ 10 the situation is significantly different. Both

tachyonic resonance (due to the coupled metric fluctuations
encoded in m2

3;h) as well as parametric resonance (due to
the potential term m2

1;h) become inefficient earlier, leading
to a slower growth of the fluctuations and the energy
density that they carry and an incomplete preheating.
However, for smaller values of the nonminimal coupling
ξ ¼ Oð10Þ one must take into account another important
feature, namely, the evolution of the background. As shown
in Ref. [61], larger values of ξ put the Universe into a
prolonged matter-dominated state (w ¼ 0). This means that

the energy density of the background condensate redshifts
as a−3 ¼ e−3N . For small values of ξ, however, the Universe
passes briefly through the background (average) equation
of state w ¼ 0 and after the first e-fold approachesw ≃ 1=3.
Figure 5 shows the evolution of the energy density in Higgs
modes for the marginal case of ξ ¼ 30. We see that the
fluctuation energy density in the Higgs modes would
always be smaller than the background if the background
evolved with w ≃ 0, as indicated by the orange dashed line.
However, the fact that the background energy density
redshifts faster (w ≃ 1=3) allows for complete preheating.
Simply put, nonminimal couplings in the “intermediate”
regime of ξ ¼ Oð10Þ exhibit a shorter period of tachyonic-
parametric amplification, while at the same time following
a background evolution of ρϕ ∼ e−4N .
We distinguish two time points relevant for preheating:

Nreh is the time at which the energy density in the linear
fluctuations equals the background energy density (which
we take as the time of complete preheating), and Nbr is the
time at which the energy density in the linear fluctuations
equals 10% of the background energy density (which is the
point at which backreaction effects may become impor-
tant). We have numerically found that the self-resonance of
the Higgs field becomes insufficient to preheat the Universe
at ξ < 30. In particular, the results for NrehðξÞ can be fitted
by a simple analytical function, as shown in Fig. 6:

NrehðξÞ ≃
21

ξð1þ 0.016ξÞ þ 3; ð99Þ

for ξ≳ 30, where complete preheating is possible, at least
in the linear approximation that we used. For ξ > 100, Nreh
becomes largely independent of ξ, as expected from the
results of Fig. 4.
As a final note, we must say that the results were

insensitive to the exact value of the maximumwave number

FIG. 5. The energy density in the background Higgs condensate
(orange curve) and the Higgs fluctuations (blue curve) for the
marginal case of ξ ¼ 30 (top to bottom). The green line shows
10% of the background energy density, which is used as a proxy
for the limit of our linear analysis. The orange-dashed curve is
ρ0a−4, corresponding to the redshifting of the background energy
density during radiation-dominated expansion.
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considered. This is due to the fact that the small (but
subhorizon) wave numbers k ¼ OðHendÞ are exponentially
amplified and dominate the fluctuation energy density
shortly after the end of inflation. Hence, we do not need
to implement any scheme to subtract the vacuum contri-
bution from large-k modes, since it is vastly subdominant
for any reasonable UV cutoff.

V. GAUGE/GOLDSTONE BOSON PRODUCTION

A. Evolution during inflation and initial conditions
for preheating

We use the equations of motion derived in the Abelian
model in the unitary gauge, in order to study the evolution
of gauge fields during inflation. The unitary gauge is well
defined in this period, since φðtÞ does not vanish. The
values of B�;L

k at the end of inflation serve as initial
conditions for preheating. Accurate knowledge of the
spectrum of gauge fields at the end of inflation is essential,
especially when initializing lattice simulations which are
increasingly expensive to start deeper within inflation.
During preheating, the unitary gauge is not well defined
at moments when φðtÞ ¼ 0, so we use the Coulomb gauge.
In order to determine the initial condition for θk, we will
use Eq. (42), which relates BL

k in the unitary gauge to θk in
the Coulomb gauge.
The equations of motion for the longitudinal and trans-

verse modes in the unitary gauge in conformal time τ are

∂2
τBL

k þ 2

�∂τφ

φ
−
∂τf
2f

þ ∂τa
a

�
k2

k2 þ M2
Pla

2

2f e2φ2
∂τBL

k

þ
�
k2 þ a2

M2
Pl

2f
e2φ2

�
BL
k ¼ 0; ð100Þ

∂2
τB�

k þ
�
k2 þ a2

M2
ple

2

2f
φ2

�
B�
k ¼ 0; ð101Þ

where e is the Uð1Þ gauge coupling. These equations are of
the form

∂2
τBI

k þ
� ∂
∂τ logðbIÞ

�
∂τBI

k þ ω2
I ðk; τÞBI

k ¼ 0; ð102Þ

with I denoting either L or � polarization, and bI and ω2
I

are given by

bLðk; τÞ ¼
�
1þ k22f

M2
Pla

2e2φ2

�−1
;

ω2
Lðk; τÞ ¼ k2 þ a2

M2
Pl

2f
e2φ2;

b�ðk; τÞ ¼ 1; ω2
�ðk; τÞ ¼ k2 þ a2

M2
Pl

2f
e2φ2: ð103Þ

After integrating by parts, we rewrite the quadratic action in
Fourier space as

SI ¼
Z

dτLIðτÞ

¼
Z

dτ
Z

d3kbIðk; τÞ
�
1

2
j∂τBI

kj2 −
1

2
ω2
I ðk; τÞjBI

kj2
�
;

ð104Þ

and follow the same quantization procedure as the one
appearing in Ref. [87]. This is the standard method used to
quantize models with noncanonical kinetic terms, which
include nonminimally coupled models in the Einstein
frame. The canonical momentum is

πI;kðτÞ ¼
δLðτÞ

δð∂τBI
−kðτÞÞ

¼ bI∂τBI
kðτÞ; ð105Þ

and the commutator relation of the operator B̂I
kðτÞ is

½B̂I
kðτÞ; ∂τB̂

J
qðτÞ� ¼ i

1

bIðk; τÞ
δIJδðkþ qÞ: ð106Þ

We decompose the field operator B̂I
kðτÞ in terms of creation

and annihilation operators,

B̂I
kðτÞ ¼ âIku

I
kðτÞ þ âI†−ku

I�
k ðτÞ; ð107Þ

where the mode function uIkðτÞ satisfies the same equation
of motion as the field operator B̂I

kðτÞ [Eq. (100)].
As long as the adiabaticity condition j ∂τω

ω2 j ≪ 1 holds
[87], the modes can be described by the WKB approxi-
mation,

FIG. 6. The number of e-folds after inflation when the energy
density in the Higgs fluctuations equals the background energy
density Nreh (blue solid curve) or 10% of the background
energy density Nbr (black dashed curve).
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uIkðτÞ¼
αIffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bIðk;τÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωIðk;τÞ

p exp
�
−i
Z

dτ0ωIðk;τ0Þ
�

þ βIffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bIðk;τÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωIðk;τÞ

p exp

�
þi
Z

dτ0ωIðk;τ0Þ
�
:

ð108Þ

The behavior is different for modes with jkτj > xc (early
times/short wavelengths) and jkτj < xc (late times/long
wavelengths), with xc given by

xc ¼
ffiffiffiffiffiffiffi
12ξ

λ

r
e; ð109Þ

corresponding to the ratio of the gauge boson mass to the
Hubble scale during inflation. Both cases can be described
by the WKB approximation, but they exhibit different
behavior, which we describe below.
At early times and for large values of the wave number k

the wave function uIkðτÞ must match the Bunch-Davies
vacuum solution. We focus on the longitudinal mode first.
We can take the limit of early times (or subhorizon modes)
analytically, when 1 ≪ jkτj ≃ k=ðaHÞ, resulting in

ωLðk; τÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2

M2
Pl

2f
e2φ2

s
→ k; ð110Þ

and

bLðk; τÞ →
M2

Pla
2e2φ2

k22f
: ð111Þ

Putting everything together, the mode function for jkτj >
xc becomes

uLk ðτÞ →
1ffiffiffiffiffi
2k

p kτ
xc

e−ikτ; ð112Þ

where we used 2f ≃ ξφ2 and x2c ¼ M2
Ple

2=ðξH2Þ.
The transverse modes are canonically normalized and

furthermore conformally coupled at early times, and hence
their mode function becomes

u�k ðτÞ →
1ffiffiffiffiffi
2k

p e−ikτ: ð113Þ

Overall, αL;� ¼ 1 and βL;� ¼ 0 in Eq. (108).

1. Single-field attractor strength from gauge interactions

The superhorizon evolution (k ≪ aH) of isocurvature
fluctuations is an indicator of the (in)stability of the
classical background trajectory (see, e.g., Ref. [88]). We
will analyze the behavior of the gauge fields and the
possible effects on the stability of the single-field attractor.

We will mainly focus on the longitudinal mode, since it will
be amplified most efficiently during preheating.
During inflation we can rewrite the equations of motion

using x ¼ −kτ as the time variable. If we further make use
of the de Sitter approximation (τ ¼ −1=aH) and take φðtÞ
as a constant, the equations of motion become9

∂2
xB�

k þ
�
1þ x2c

x2

�
B�
k ¼ 0; ð114Þ

∂2
xBL

k −
2

x
1

1þ x2c
x2

∂xBL
k þ

�
1þ x2c

x2

�
BL
k ¼ 0; ð115Þ

with xc as defined in Eq. (109). As expected, we recover the
solution of Eq. (112) in the limit jkτj ≫ xc.
By using the relation between ξ and λ given in Eq. (48)

which is required by the normalization of the power
spectrum, Eq. (109) gives

xc ¼
Oð105Þffiffiffi

ξ
p ; ð116Þ

where we took e ≃ 1 for Standard Model gauge couplings
during inflation. For ξ≳ 1, where the CMB observables
and the inflationary dynamics fall into the “large-ξ”
attractor, xc ≫ 1 for all values of interest. Thus, the first
of the two cases that were examined in Ref. [87], xc < 1
and xc > 1, does not apply for nonminimally coupled
models of inflation with large ξ unless one takes a very
weakly coupled gauge field e ≪ 1, making such a value
very different to gauge couplings found in the SM.
For the longitudinal mode BL the presence of a first-

derivative term is important for x < xc, leading to

uLðk; τÞ ¼
1ffiffiffiffiffi
2k

p
�
kjτj
xc

�
1=2

ðkjτjÞ−ixc ; kjτj < xc: ð117Þ

The details of the derivation are given in the Appendix.
Figure 7 shows the evolution of certain wave numbers

from kjτj ≫ xc ≫ 1 until the end of inflation. It is evident
that the simple scalings of juLðkjτj ≫ xcÞj ∝ jτj and
juLðkjτj ≪ xcÞj ∝

ffiffiffiffiffijτjp
agree very well with the full

numerical evolution across a wide range of wave numbers.
While ξ ¼ 1000was chosen for Fig. 7, different values of a
nonminimal coupling ξ ≫ 1 lead to similar results.
Following Eq. (116), gauge fields during Higgs inflation

become very massive, when compared to the Hubble scale.
This further reinforces the single-field description of the

9It is worth noting that the equations of motion for the gauge
fields during inflation look very similar in structure to the ones
derived for a minimally coupled charged inflaton in Ref. [87]. As
shown in Ref. [70], the field space is asymptotically flat for large
field values, and hence all covariant derivatives can be substituted
for partial derivatives during inflation, at lowest order in 1=ξ.
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background trajectory discussed in Sec. II C, since the
orthogonal direction(s)—described equally well through
the scalar d.o.f. θ or through the longitudinal polarization of
the gauge boson BL—are very massive, making the back-
ground single-field trajectory a stable one.10 It is interesting
to note that, due to the relation between ξ and λ arising from
the normalization of the power spectrum, the gauge fields
become less massive for larger ξ, meaning that the ratio of
the gauge field mass to the Hubble scale becomes smaller.
Hence, the single-field attractor, at least in the linearized
analysis, becomes weaker for larger ξ. This is opposite to
the case of a scalar-only multifield model with a non-
symmetric potential, where the attractor strength increases
with ξ, as shown in Ref. [61]. While for the SM the gauge
couplings are large enough to make the gauge field much
heavier than the Hubble scale, one can construct more
general inflationary models involving a Higgs-like field
and the associated gauge sector. In this case weakly coupled
gauge sectors might leave observational imprints through
oscillations of the background during inflation. A search
for “primordial clocks” [89,90] in these models is beyond
the scope of the present work because they do not arise in
SM Higgs inflation, but they could provide a useful tool for
exploring gauge-field phenomena in broader classes of
nonminimally coupled inflation.
The transverse modes are significantly easier to analyze,

since Eq. (114) makes clear that the B� are conformally
coupled at early times and will become massive (and thus
be suppressed) for x < xc. In the de Sitter approximation,

Eq. (115) can be solved exactly using Hankel functions,
resulting in

u�k ðτÞ ¼
ffiffiffiffiffiffiffiffi
−kτ

p ffiffiffiffiffi
π

4k

r
Hð1Þ

z ð−kτÞeizπ2þiπ
4; ð118Þ

where z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− x2c

q
, as described, e.g., in Ref. [87]. The

analysis of the transverse modes is essentially identical to
the minimally coupled case of Ref. [87]. Since they will not
be significantly amplified during preheating, we will not
discuss them further.

2. Initial conditions in the Coulomb gauge

Having explored in detail the behavior of the longi-
tudinal gauge fields during inflation, we focus on their form
close to the end of inflation and the start of the (p)reheating
era. Since we are interested in the details of the vacuum (as
will be evident later), we compare the adiabatic vacuum
during inflation [given in Eq. (108)] to the approximate
analytic expressions derived for uLðk; τÞ, as well as to the
numerically derived values. It is a straightforward exercise
to expand bLðk; τÞ and ωLðk; τÞ in the two limiting cases of
kjτj to see that the WKB expression given in Eq. (108) with
α ¼ 1 and β ¼ 0 matches Eqs. (112) and (117) in the
appropriate limits.
Figure 8 shows the comparison of the WKB solution of

Eq. (108), the approximate expressions of Eqs. (112) and
(A8), as well as the numerical results from the modes
shown in Fig. 7. We see an excellent agreement between all
three, with the exception of the modes around kjτj ∼ xc,
where the approximate expressions fail, since they were
derived using the limits kjτj ≫ xc or kjτj ≪ xc. We must
also note that we used the approximation τ ¼ −1=aH for
the analytically derived expressions, and hence we expect
some discrepancy close to the end of inflation. This
agreement has a significant physical meaning: since the
adiabatic vacuum follows the evolution of the mode
functions, there is no particle production during inflation.
We can thus begin our numerical computations at the end of
inflation, unlike the case of Higgs self-resonance where we
needed to initialize our simulations several e-folds before
the end of inflation in order to capture nontrivial dynamics
that took place during the last stages of inflation itself.
The initial conditions in the Coulomb gauge can be

easily read off from the unitary gauge solutions using
Eq. (42). It is interesting to note that there is no ξ-dependent
term in the relation of θk to BL

k. The initial conditions that
we will use for the computations in the Coulomb gauge are

θkðtinÞ ¼
1ffiffiffi
2

p eφðtinÞ
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bLðk; tinÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωLðk; tinÞ

p ; ð119Þ

_θkðtinÞ ¼ −i
ωLðk; tinÞ
aðtinÞ

× θkðtinÞ: ð120Þ

FIG. 7. The evolution of the longitudinal gauge field mode
during inflation for ξ ¼ 103. The solid lines correspond to the
numerical solution for k=Hend ¼ 1; 10; 102; 103; 104 (blue, green,
black, orange, and brown, respectively), along with the approxi-
mate solutions of Eqs. (112) and (117) (red-dotted lines). The
vertical lines correspond to the points kjτj ¼ xc, where the
matching between the two asymptotic regimes is performed.
For the brown curve this does not occur during inflation.

10We must note here, that our analysis only shows the
linearized stability of the single-field trajectory, not the approach
towards it from generic initial conditions fΦ; ∂tΦg. The latter
was performed in Ref. [71] for an SOð4Þ-symmetric model meant
to describe Higgs inflation without gauge couplings.
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Before we conclude the analysis of the gauge-field
evolution during inflation, let us focus on the case of
kjτj ≫ xc, where the initial conditions for preheating are

θkðτinÞ ≈
eϕ
xc

τinffiffiffiffiffi
2k

p ; ð121Þ

_θkðτinÞ ≈ θkðτinÞ ×
�

ik
aðτinÞ

�
: ð122Þ

It is reassuring that for large wave numbers the coupling
constant e drops out of the initial conditions for the θ field
(since xc ∝ e), and hence the decoupling limit is trivially
obtained. For kjτj < xc it is slightly more complicated to
see this, since for e → 0 we get xc → 0, and hence that
region shrinks into nonexistence as we take the decoupling
limit. Also, we would have to compute the expressions for
xc ≪ 1 before we send e → 0 in that case. Since the case of
e ≪ 1 does not apply to Higgs inflation, we will not pursue
it further.

B. Preheating

We start by rewriting Eq. (39) in a somewhat more
compact way,

D2
τXθ − ∂τ log

�
1þ m̃2

B

k2

�
DτXθ þ

�
k2 þ a2m2

eff;θ

þ m̃2
B þ

�∂τφ

φ
þ ∂τa

a
−
∂τf
2f

�
∂τ log

�
1þ m̃2

B

k2

��
Xθ ¼ 0;

ð123Þ

where we defined the gauge-field mass

m̃2
B ≡ e2φ2

M2
pl

2f
a2; ð124Þ

and Xθ ¼ aðtÞ · θ. We normalize the scale factor as a≡ 1 at
the end of inflation. The effective mass of the Goldstone
mode θ in the absence of gauge fields is

m2
eff;θ ≡Mθ

θ −
1

6
R ¼ m2

1;θ þm2
2;θ þm2

3;θ þm2
4;θ; ð125Þ

with

m2
1;θ ¼ GθθðDθDθVÞ; ð126Þ

m2
2;θ ¼ −Rθ

hhθ _φ
2; ð127Þ

m2
3;θ ¼ 0; ð128Þ

m2
4;θ ¼ −

1

6
R ¼ ðϵ − 2ÞH2: ð129Þ

The numerical solution of Eq. (123) was obtained in
cosmic rather than conformal time, since this is more
convenient for numerical simulations after the end of
inflation. The computations were initialized at the end of
inflation, according to Eqs. (119) and (120).
We can follow the quantization method described in

Ref. [61] and utilized in Sec. IV for the study of the Higgs
self-resonance,

X̂θ ¼
Z

d3k

ð2πÞ3=2 ½zke
θ
2âke

ik·x þ z�ke
θ
2â

†
ke

−ik·x�; ð130Þ

where eθ2 ¼
ffiffiffiffiffiffiffi
Gθθ

p
. Using the vielbein decomposition, the

covariant derivatives are effectively substituted by partial
ones,

FIG. 8. The mode-function amplitude (left) and frequency (right) for N ¼ 0, 2, 4 e-folds before the end of inflation (blue, green, and
black, respectively). Solid lines correspond to the WKB expression of Eq. (108) and red-dotted lines correspond to the approximate
solutions for x ≫ xc and x ≪ xc. The dots show the full numerical results.
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∂2
τzk − ∂τ logð1þ m̃2

B=k
2Þ · ∂τzk

þ
�
k2 þ a2m2

eff;θ þ m̃2
B þ 1

2
∂τ log

×

�
m̃2

B

ffiffiffiffiffiffiffiffi
2f
M2

Pl

s �
∂τ log

�
1þ m̃2

B

k2

��
zk ¼ 0: ð131Þ

In order to eliminate the first-derivative term we can use the
rescaled variable z̃k, defined as

zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̃2

B

k2

s
z̃k ≡ T · z̃k; ð132Þ

leading to

∂2
τ z̃k þ ω2

z z̃k ¼ 0; ð133Þ

where

ω2
z ¼ k2 þ a2m2

eff;θ þ m̃2
B þ

1

2
∂τ log

�
m̃2

B

ffiffiffiffiffiffiffiffi
2f
M2

Pl

s �
∂τ logðT2Þ

þ ∂2
τðm̃2

BÞ
2k2T2

−
3

4

ð∂τm̃2
BÞ2

k4T4
; ð134Þ

where m̃2
B is larger than m2

1;θ and m2
4;θ. As discussed

extensively in Refs. [61–63] for the case of a purely scalar
multifield model with large nonminimal couplings to
gravity, the field-space manifold is asymptotically flat
for large field values and exhibits a curvature “spike” at
the origin φðtÞ ≃ 0. This “Riemann spike” is exhibited in
the effective mass of the isocurvature modes m2

eff;θ, more
specifically in the m2

2;θ component, which is subdominant
for all times away from the zero crossings of the back-
ground value of the inflaton field φðtÞ. We will not
reproduce the entirety of the Floquet structure of this
model, both because we do not wish to repeat the analysis
of Ref. [62], and because (as we will see in the subsequent
section) the first zero crossing of φðtÞ is the only relevant
one for preheating through gauge modes.
In order to estimate the maximum excited wave number

kmax, we consider the following approximation containing
only the dominant terms:

ω2
z;approx ≡ k2 þ a2m2

2;θ þ m̃2
B; ð135Þ

where m̃2
B dominates over all subsequent terms in Eq. (134)

for large k. Figure 9 shows the three contributions to
ω2
z;approx for ξ ¼ 103; 104. As shown in Ref. [63], the scaling

of the spike in the effective mass is

m2
2;θjmax

hHðtÞi2 ¼ Oð10Þξ2; ð136Þ

where hHðtÞi is a time-averaged version of the Hubble
scale over the early oscillatory behavior. The range of
excited wave numbers is given by the relation

k2 ≲ a2m2
2;θjmax; ð137Þ

assuming that the spike of m2
2;θ dominates over m̃2

B near
φðtÞ ¼ 0. Each subsequent inflaton zero crossing affects a
smaller range of wave numbers, since m2

2;θ ∝ H2 ∝
ρinfl: ∝ a−3, where we assumed w ¼ 0 for the averaged
background evolution.Altogether k2max ∝ a−1, and hence the
maximum excited wave number shrinks for every sub-
sequent inflaton oscillation. The maximum comoving
wave number after the first inflaton zero crossing, where
aðtÞ ≈ 1, is

k2max ¼ Oð10Þξ2H2
end ¼ Oð1ÞλM2

Pl; ð138Þ

where we used Eq. (47) and Hend ≈ 0.5Hinfl. This is in
agreement with Ref. [64]. We focus primarily on the first
inflaton zero crossing, since the produced gauge bosonswill
decay into fermions between two subsequent background
zero crossings, and hence Bose enhancement is lost. This
was shown in Refs. [58,59] and will be discussed in detail
in Sec. VI.
The second dominant component of the gauge-field

effective frequency squared is m̃2
B, which scales simply as

m̃2
B=a

2

H2
end

¼ M2
Ple

2

2f
φ2

1

H2
end

¼ Oð1Þ ξ
λ
¼ Oð1Þ 10

10

ξ
; ð139Þ

where the λ − ξ relation given in Eq. (48) was used in the
last step. We can see that for ξ ¼ 103 the maxima of the two
contributions m̃2

B and m3
2;θ are similar, as shown in Fig. 9.

Computing the energy density transferred from the
inflaton condensate into the gauge-field modes requires
more attention than the corresponding computation of
Sec. IV for the Higgs self-resonance. In the case of
Higgs self-resonance, the range of excited wave numbers
is khmax ∼H. A naive computation of the energy density in
the local adiabatic (WKB) vacuum for the same modes
gives ρBD ∼ k4max ∼H4, which is 10 orders of magnitude
smaller than the background energy density.11 In that case,
we do not need to subtract this unphysical vacuum
contribution from the energy density of the Higgs modes,
since the energy density in the parametrically amplified
modes is exponentially larger.

11Any computation that does not involve vacuum subtraction,
including lattice simulations (such as in Refs. [53,54]), deals with
classical quantities and computes the energy density of the
vacuum modes as if they were physical. Such a computation
is valid as long as the unphysical energy density of the vacuum
modes is vastly subdominant.
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For the case of gauge fields the maximum wave number
up to which modes can be excited is given in Eq. (138). The
vacuum energy density in these modes, naively computed,
is ρBD ∼ k4max ∼ λ2M4

Pl. The total energy density in the
inflaton field is ρinfl ¼ 3H2M2

Pl, leading to ρBD=ρinfl∼
λξ2 ∼ 10−10ξ4. This is much greater than unity for large
values of the nonminimal coupling. We thus need to
remove the unphysical vacuum contribution to the energy
density using the adiabatic subtraction scheme [9]. In this
scheme we compare the wave function of the gauge fields
to the instantaneous adiabatic vacuum, computed in the
WKB approximation, isolating the particle number for each
wave number k. The particle number corresponding to a
mode vk is given by

nk ¼
ωk

2

�j _vkj2
ω2
k

þ jvkj2
�
−
1

2
: ð140Þ

A drawback of this method is that the particle number is
only well defined when the adiabaticity condition holds,
_ωk=ω2

k ≪ 1, and thus we cannot define the particle number
in the vicinity of the “Riemann spike” when φðtÞ ¼ 0.12

The energy density is easily computed through the particle
number as

ρL;θ ¼
Z

d3k
ð2πÞ3 nkωk: ð141Þ

Both the particle number and the energy density can be
computed equally well using the field θk or BL

k, since the
only moment for which the longitudinal gauge fields are
not defined is when φðtÞ ¼ 0. At this instant we cannot
define the particle number either way, since there is no
well-defined adiabatic vacuum. Figure 10 shows the
evolution of the particle number density for a few values
of the comoving wave number after the first few inflaton
zero crossings, neglecting the effect of particle decays, as
described in Sec. VI. The left panel of Fig. 11 shows the
particle number density per k mode for ξ ¼ 10; 102; 103

after the first inflaton zero crossing. The condition of
Eq. (138) for the maximum excited wave number kmax is
evident.
At this point, it is worth performing a simple estimate of

the energy density that can be transferred to the gauge-field
modes away from the first point φðtÞ ¼ 0,

ρ ¼
Z

d3k
ð2πÞ3 nkωk ∼ hnim̃Bk3max

∼ hni
�
105ffiffiffi
ξ

p Hend

�
ðλ3=2M3

PlÞ ∼ hniM4
Pl10

−15ξ5=2; ð142Þ

where hni is the average occupation number. The back-
ground inflaton energy density is ρinfl ¼ 3H2M2

Pl∼
10−11M2

Pl, and hence for ξ≳ 103 the transfer of energy
is enough to completely drain the inflaton condensatewithin
one zero crossing of φðtÞ if we take the particle number
shown in Fig. 11 into account. The right panel of Fig. 11
shows the ratio of the energy density in gauge fields to the
background energy density of the inflaton after the first zero
crossing. Obviously, values of ρgauge=ρinfl > 1 are not
physical but signal the possibility of complete preheating.

FIG. 9. Dominant components of the effective frequency squared for ξ ¼ 103 (left) and ξ ¼ 104 (right). Color coding is as follows:
m̃2

B=a
2 (red), m2

2;θ (blue), and k2=a2 (black) for the maximum excited wave number kmax. The orange-dotted curve shows the
scaling a−3.

12Reference [64] computed the particle number, working in the
Jordan frame, and arrived at similar results. The energy of
the gauge fields was subsequently computed using the value
of the gauge-field mass directly on the “Riemann spike.” We
refrain from using m2

2;θjmax as an indicator of the gauge-field
mass, since the particle number is not a well-defined quantity
there. For ξ ≈ 103, the two contributions to the gauge-field mass
m2

2;θ and m̃2
B are comparable, as shown in Fig. 9, which does not

hold for other values of ξ.
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C. Unitarity scale cutoff

So far we have computed the excitation of gauge-field
modes of arbitrary wave number k < MPl. However, the
unitarity scale sets a limit above which no analytical
(perturbative) treatment can be trusted. The unitarity scale
for Higgs inflation, and more generally for nonminimally
coupled models, has received extensive attention in the
literature. We will follow the analysis of Ref. [67], where a
field-dependent unitarity scale was derived in both the
Jordan and Einstein frames.
The unitarity scale at the end of inflation is kUV;1≡

MPl=
ffiffiffi
ξ

p
, which becomes kUV;2 ≡MPl=ξ for even smaller

values of the background Higgs field. It is straightforward
to estimate the relation of the unitarity scale to the
maximum excited wave number,

kUV;1
kmax

¼ 1ffiffiffiffiffi
ξλ

p ∼
5 × 104

ξ3=2
; ð143Þ

kUV;2
kmax

¼ 1

ξ
ffiffiffi
λ

p ∼
5 × 104

ξ2
: ð144Þ

We see that, depending on the value of the nonminimal
coupling ξ, the wave number of the produced gauge bosons
can exceed the field-dependent unitarity scale. New physics
is needed above the unitarity scale and it is not clear how
this new physics will change particle production for such
large wave numbers. We do not wish to propose any UV
completion of the Standard Model in order to address the
dynamics above the unitarity scale. We will instead provide
a conservative estimate of the energy density in gauge
bosons in the presence of unknown UV physics that
suppresses particle production with large wave numbers
(above the unitarity scale). Simply put, we will compute the
energy density by introducing a UV cutoff at kUV;1 or kUV;2.
If we consider the UV cutoff at kUV;1, both ξ ¼ 103 and

ξ ¼ 104 preheat entirely after one inflaton zero crossing,

FIG. 10. The particle number density for k=Hend ¼ 1; 150; 550; 2600; 28000 (blue, black, green, red, and purple, respectively). From
left to right: ξ ¼ 102; 103; 104. If a colored curve is missing from a panel, the corresponding wave number is not excited.

FIG. 11. Left: The particle number density after the first inflaton zero crossing for ξ ¼ 102; 103; 104 (blue, orange, and green,
respectively) Right: The ratio of the energy density in gauge fields to the background inflaton energy density as a function of the
nonminimal coupling ξ after the first zero crossing. We see that for ξ ≳ 103 gauge boson production can preheat the Universe after one
background inflaton zero crossing, and hence it is much more efficient than Higgs self-resonance.
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since kUV;1 ≳ kmaxðξ ¼ 1000Þ, as can be seen from Fig. 11.
If instead we place the UV cutoff at kUV;2, the gauge fields
do not carry enough energy to completely preheat the
Universe after one inflaton zero crossing, regardless of the
value of the nonminimal coupling ξ. We thus conclude that
preheating into gauge fields is very sensitive to unknown
UV physics, since the majority of the energy density is
carried by high-k modes, whose number density in a UV-
complete model can be much different than the one
computed here. It is worth noting that the excitation of
Higgs fluctuations occurs entirely below the unitarity scale,
and hence it is not UV sensitive. We will not consider any
UV cutoff for the remainder of this work, unless explicitly
stated.

VI. SCATTERING, DECAY, AND BACKREACTION

So far we have computed the parametric excitation of
particles, either Higgs or gauge bosons, from the oscillating
Higgs condensate during preheating. With the exception of
the brief discussion in Sec. IVA, the interactions of the
resulting particles have been completely ignored. However,
as discussed in Refs. [58,59], certain types of decays of the
produced particles can suppress Bose enhancement and
thus effectively shut off preheating. We will discuss in turn
(A) the decay of Higgs particles into gauge bosons and

fermions,
(B) the scattering of Higgs particles into gauge bosons

and fermions,
(C) the decay of parametrically produced gauge bosons,
(D) the scattering of gauge bosons into fermions and

Higgs bosons, and
(E) possible effects arising from non-Abelian inter-

actions of the produced W and Z bosons.
Any of the above-mentioned processes can suppress or shut
off the resonances. Due to their inherent differences, we
will explore them separately.

A. Higgs decay

In the Standard Model, Higgs particles can decay into
pairs of fermions or gauge bosons. The fermion masses are

m2
f ¼

y2f
2

φ2

2f
; ð145Þ

while the gauge boson masses were extensively studied in
Sec. V B. For now, it is enough to consider the part of the
gauge-field mass analogous to mf in Eq. (145) with the
Yukawa coupling substituted by the gauge coupling.
We start with the process of a Higgs particle decaying

into two gauge bosons. In order for this to be kinematically
allowed, the following relation must hold: mh > 2mgauge. It
is straightforward to see that mh ≪ 2mgauge, at least for
φðtÞ ≠ 0. When φðtÞ ¼ 0, the Riemann contribution to the
gauge-field mass (the “Riemann spike”) dominates,

keeping the relation mh ≪ 2mgauge valid at all times.
Hence, the Higgs field cannot decay into gauge bosons,
as long as the background Higgs condensate follows the
evolution that is derived neglecting backreaction.
The decays of Higgs bosons to fermions deserve closer

attention, due to the fact that small Yukawa couplings for
some fermions (like electrons and positrons) can make
them much lighter than the Higgs particles, and hence
kinematically open the decay channel. Furthermore, fer-
mion masses do not have a Riemann component, and hence
when φðtÞ crosses zero fermions become instantaneously
massless, making the decay even easier. A similar analysis
of kinematical blocking of perturbative decays during
reheating was performed in Ref. [91], where the Higgs
field was a light spectator field during inflation rather than
playing the role of the inflaton itself.
We will compute each component of the Higgs fieldmh;1

andmh;3 separately.We beginwith the potential contribution

m2
h;1 ¼

λM2
Pl

ξ

δ2ðδ2ð12ξ − 12ξδ2Þ þ 3Þ
ð1þ δ2Þ2ð1þ 6ξδ2Þ2 ∼

λ

3ξ2
M2

Pl ∼H2
end;

ð146Þ

where δ ¼ ξφ2 and δ ≃ 0.8 at the end of inflation, as
discussed in Refs. [61–63]. The value in Eq. (146) holds
at the start of preheating and until the crossover time
tcross ∼

ffiffiffi
ξ

p
H−1

end. The expression for tcross was derived in
Ref. [63]. For t < tcross metric perturbations dominate the
effective mass, resulting in tachyonic amplification. For
t > tcross the Higgs particle massm2

h;1 decreases slowly with
time. For ξ ¼ 10; 102; 103 the crossover time occurs at
Ncross ≃ 1.5; 2.5; 3.2, respectively.
Figure 12 shows the ratio of the fermion to the Higgs

mass at the end of inflation as a function of the Yukawa
coupling, for different values of the nonminimal coupling.
We see that the decay is kinematically possible for small
Yukawa couplings. Furthermore, the decay channel is less
constrained for later times and larger nonminimal coupling.
The perturbative decay rate of Higgs particles to fermions is
given by

Γ ¼ y2f
8π

mh: ð147Þ

Figure 12 shows the ratio Γ=H, which must be greater than
unity in order for the decay to be efficient. It is clear that, in
the parameter range where the decay is kinematically
allowed, it is very inefficient. This can be intuitively
understood since mh ∼H, mf is proportional to yf and
Γ is proportional to y2f, and hence Γ=H is suppressed by an
extra factor of the Yukawa coupling compared to mf=mh.
This conclusion does not change, even if one considers the
short increase in the mass of the Higgs modes due to the
coupled metric fluctuations term m2

3;h. Even though m2
3;h
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has a large positive spike, its duration is too small to allow
for a significant decay of Higgs particles into fermions.
Before we conclude this section, we will make one

further note regarding the evolution of fermion masses.
Equation (145) shows that fermions become massless when
φðtÞ ¼ 0. The distinction between computing the fermion
mass during reheating by either using an averaged quantity
for the Higgs VEVor by using the full time dependence was
explored in Ref. [91]. In order to explore possible effects of
the time dependence of the fermion mass, we focus on the
case of ξ ¼ 103 and choose a large Yukawa coupling
yw ¼ 1, since that provides the largest decay rate to
Hubble scale ratio Γ=H ≃ 10, as shown in Fig. 12. The
time per oscillation thatmf < mh is Δt �H ≃ 10−3. Hence,
Γ=Δt ≪ 1, meaning that the time when fermions are
massless is too small to significantly deplete the Higgs
boson population.

B. Higgs scattering

While we saw that Higgs decays to both gauge bosons
and fermions are either kinematically blocked or extremely
weak during preheating, the same might not be true for
Higgs scatterings, due to the large occupation number,
close to the time of complete preheating. The kinematical
blocking arguments still apply, since the relation mh >
2mf;A is replaced by mh > mf;A, and hence is weakened
only by a factor of 2. As we saw, the kinematical constraints
are significant, and hence we will only consider scattering
of Higgs particles into the lightest fermions (electron-
positron pairs), with ye ¼ Oð10−6Þ. The relevant rate is

Γ ¼ nσv: ð148Þ
The Higgs particles are heavy (mh > H) and have
small wave numbers (k=a≲H), and hence will be non-
relativistic. We will take v ¼ c≡ 1 as an upper limit. The
number density of Higgs particles is approximately

n ≈
ρh
mh

≤
ρinfl
mh

; ð149Þ

where ρh ¼ ρinfl at the point of complete preheating. The
cross section is

σ ≈
y4e

8πm2
h

: ð150Þ

Putting everything together, we arrive at

Γ
H

≤ y4e
1

8π

ρtot
m3

hH
¼ y4e

3

8π

M2
PlH
m3

h

: ð151Þ

It is easy to see that Γ=H ≪ 1 since y4e ≃ 10−24,
M2

Pl=H
2 ≃ 1010, and H=mh < 1.

It is also worth briefly noting other scattering diagrams
leading to the depletion of the Higgs population. Two
examples are shown in Fig. 13, which are the inverse of
gluon-fusion processes considered for the LHC. In general,
they suffer from the same suppression factors as the tree-
level scattering: light fermions come with small Yukawa
couplings, while heavy ones will lead to suppression
factors from the fermion loops. We will not discuss these
processes further.

C. Gauge decay

Following Refs. [58,59], the decay widths of the W and
Z bosons to fermions are given by

FIG. 12. Left: Fermion to Higgs mass ratio as a function of the Yukawa coupling for ξ ¼ 10; 100; 103 (blue, red, and green,
respectively) atN ¼ 0, 1.5, 3 (solid, dashed, and dotted curves, respectively). Right: Ratio of the decay rate to the Hubble rate. The color
coding is the same.

FIG. 13. Loop diagrams that contribute to the scattering of
Higgs bosons to gluon pairs.
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ΓW ¼ 3g2

16π
mW; ð152Þ

ΓZ ¼ g22
8π2 cos2 θW

mZ

�
7

2
−
11

3
sin2 θW þ 49

9
sin4 θW

�
;

ð153Þ

where the decay widths are obtained by summing over all
allowed decay channels into SM fermions. The decay of the
Z boson to a pair of Higgs particles proceeds similarly.
Using the gauge boson mass given in Eq. (139), we see that
ΓW;Z=H ≫ 1, and hence the produced gauge-boson pop-
ulation is depleted within a Hubble time, or between two
consecutive inflaton background zero crossings φðtÞ ¼ 0.
There are two issues that need to be addressed: the possible
decay of particles during their production close to the
Riemann spike at φðtÞ ¼ 0 and the decay away from
φðtÞ ¼ 0, when the m̃2

B ¼ e2φ2ðM2
Pl=2fÞ component domi-

nates the gauge-field mass. In both cases, we will approxi-
mate the total decay of the particle number as

nðtÞ ¼ n0e
−
R

t

t0
Γðt0Þdt0

; ð154Þ

where ΓðtÞ is defined through Eqs. (152) and (153) by
considering the time-dependent mass of the gauge bosons.
We will focus only on the cases of ξ ¼ 103 and ξ ¼ 104.
During the spike, the particle number is not a well-defined
quantity, since an adiabatic vacuum cannot be constructed
due to the violation of the adiabaticity condition. We will
however compute the exponential decay factor of Eq. (154)
as an estimate of possible particle decays. We choose the
limits of integration to correspond to the times for which
adiabaticity is violated, and hence particle production
occurs. This is also the time at which the Riemann spike

is pronounced. For all cases we get e
−
R

t

t0
Γðt0Þdt0

> 0.5, and

hence there is no significant particle decay. We will thus
neglect this altogether.
However, after the particle production has taken place at

φ ¼ 0, the particle number is a constant, if one neglects
decays, and the particle mass grows sharply as m2

W;Z ∼ φ2.
We rewrite the equation for the energy density in the gauge
sector as

ρL;θ ¼
Z

d3k
ð2πÞ3 n0e

−
R

t

t0
Γðt0Þdt0

ωk: ð155Þ

Figure 14 shows the energy density per particle number of a
random excited kmode as ρ ≃ nðtÞmA, with A denoting any
gauge field. We see that decays into fermions completely
deplete the produced gauge-boson population within far
less than a period of background oscillations. Hence, in
order for the energy transfer to be able to preheat the
Universe, the energy density in the gauge fields must be
equal to the energy density in the inflaton condensate as
soon as the adiabaticity condition is restored. The fact that
the particle decays during the “Riemann spike” are insuf-
ficient to suppress gauge boson production shows that this
is indeed possible.

D. Gauge scattering

Instead of decaying into fermions, gauge bosons can also
scatter into Higgs particles or fermion-antifermion pairs.
We will estimate the rate of the Higgs scattering to Higgs
bosons. The scattering rate is Γ ¼ nσv, where we take
v ¼ c and

m ≃
HM2

Pl

mA
≃HM2

Pl

ffiffiffi
ξ

p
10−5; ð156Þ

σ ≃
α2

s
≃

1

ð ffiffiffi
λ

p
MPlÞ2

; ð157Þ

FIG. 14. Energy density per mode (in arbitrary units) with (blue) and without (red) considering particle decays for ξ ¼ 103 (left) and
ξ ¼ 104 (right). The time is rescaled by the period of background oscillations.
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where we computed the number density using the condition
of complete preheating and we took the Mandelstam
variable s ≃ k2max. Altogether,

Γ
H

≃
105

ξ3=2
; ð158Þ

where we used the relation between λ and ξ given in
Eq. (48). Since Γ=H ≲ 1 for ξ≳ 103, gauge field scatter-
ings are not important. This is different from other cases of
preheating into gauge bosons, such as that in Ref. [54]
where gauge boson scattering is extremely efficient. The
difference is that in the present case the number density is
not large, but the average energy carried by each gauge
boson is, due to the large range of excited wave numbers.

E. Non-Abelian effects

Since we are using an Abelian Uð1Þ gauge field as a
proxy for preheating into SM W and Z bosons, we must
estimate the possible non-Abelian effects. As long as the
linear analysis holds, the electroweak sector can be decom-
posed into three almost identical Abelian copies. A
numerical example of the relation between an SUð2Þ gauge
field and its three Abelian copies at low field values was
shown in Ref. [92].
However, once the gauge-field modes become suffi-

ciently populated, their true non-Abelian nature cannot
be neglected. The relevant term in the non-Abelian
Lagrangian is

Lnon-Abelian ⊂ −
1

4
fabcfadeAbμAd

μAcνAe
ν; ð159Þ

where fabc and fade are SUð2Þ structure constants. In the
equation of motion for the gauge field strength Ai, this term
in the Lagrangian will induce a term of the form g2AjAjAi,
which has the form of an effective non-Abelian mass term.
Using a Hartree-type approximation we can define the
non-Abelian contribution to the gauge-field mass squared
as m2

non-Abelian ∼ g2hAAi. We estimate hAAi through the
energy density of the gauge fields as ρ ≃m2

AhA2i. Taking as
a maximum value ρ ¼ ρinfl ¼ H2M2

Pl, we estimate

hA2i ≃ 10−10ξM2
Pl: ð160Þ

In order for the non-Abelian mass contribution to suppress
particle production, it must dominate over m2

θ;2. However,
we know that m2

θ;2 ≃ ξ2H2 ≃ ξ210−12M2
Pl, meaning that for

ξ≳ 103 the “Riemann spike” dominates over the possible
non-Abelian mass contribution. Hence, we expect the
explosive transfer of energy from the inflaton to the gauge
fields to persist even in the full SUð2Þ ×Uð1Þ sector.
A further phenomenon that has been observed during

simulations of preheating of a non-Abelian Higgsed sector
was described in Ref. [93]. There, the decay of the Higgs
condensate through resonant decay of electroweak bosons
was simulated. Non-Abelian gauge boson interactions led

to an extended momentum distribution. Particles with such
high momenta are energetic enough to scatter off the Higgs
condensate and fragment it, thereby shutting off any further
parametric resonance. In the case of Higgs inflation the
gauge fields produced do not survive long before decaying
into fermions, due to their large masses. Hence, this is
unlikely to be an issue in the present case.

VII. OBSERVATIONAL CONSEQUENCES

Observing reheating is difficult due to the inherently small
length scales involved. However, there are two important
quantities that can be used to connect reheating to particle
physics processes orCMBobservables: the reheat temperature
Treh, and the number of e-folds of an early matter-dominated
epoch in the expansion history of the Universe Nmatter.
The reheat temperature is computed using the Hubble

scale at the instant when ρinfl ¼ ρrad as

3M2
PlH

2 ¼ ρ ¼ π2

30g�T
4
reh; ð161Þ

where g� ¼ 106.75 is the number of relativistic d.o.f. at high
energies. For instantaneous reheating from gauge field
production, which happens for ξ≳ 1000, the Hubble scale
is H ≃Hend. For ξ≲ 1000 preheating proceeds through
Higgs self-resonance, leading to a smaller value of the
energy density, as shown in Fig. 4. The monotonic increase
of the reheat temperature Treh as a function of the non-
minimal coupling ξ is shown in Fig. 15. It must be noted that
Eq. (161) assumes the immediate transition to a thermal state
after preheating has ended. For the case of Higgs self-
resonance, this will occur through efficient scattering of
Higgs bosons to the rest of the SM. For the case of
instantaneous preheating to gauge fields, the situation is
more complicated. In that case the number density of gauge
bosons is not exponentially large, as is usually the case in
preheating. On the contrary, the transfer of energy to gauge
fields is done primarily through the production of fewer
high-momentum modes kmax ∼

ffiffiffi
λ

p
MPl. A fraction of the

produced W and Z bosons will decay to leptons, while
another fraction will decay into quarks and antiquarks that
will eventually hadronize. The approach to thermal equi-
libriumwill thus bemore complicated.We leave the study of
the thermalization process for future work and we use
Eq. (161) as an estimate of the reheat temperature, under
the assumption of efficient thermalization.
However, a high reheat temperature may pose a chal-

lenge for any computation that goes beyond the linearized
analysis that we presented, due to possible conflicts with
the unitarity scale. Since thermalization of the reheating
products will result in a blackbody spectrum, we can take
the typical momentum involved to be k ∼ 3Treh, which is
thus the typical momentum exchange in particle scatterings
inside the plasma. Since complete reheating means that the
inflaton condensate will have completely decayed, the
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unitarity scale is kUV;2 ≡MPl=ξ. The typical particle
momenta are below the unitarity scale for 3T < kUV;2.
As shown in Fig. 15, for ξ≲ 300, the resulting plasma has a
low enough temperature to avoid processes that exceed the
unitarity scale, at least neglecting the tail of the thermal
spectrum. For ξ≳ 300, the unitarity scale kUV;2 will be
exceeded by the typical wave numbers in the system,
provided that thermalization is efficient. Finding out
whether the unitarity scale is indeed violated for ξ≳ 300
requires a more extensive study of the thermalization phase,
which lies outside the scope of the present work.
The number of matter-dominated e-folds of post-

inflationary expansion is a nonmonotonic function of the
nonminimal coupling. For ξ≳ 103, instantaneous reheating
leads to a universe filled with gauge-field modes of high
wave numbers, and hence the Universe transitions immedi-
ately to radiation domination (assuming no UV suppres-
sion). We must note that the decay of the inflaton
condensate makes the gauge fields light, and hence
relativistic. For small values of the nonminimal coupling
ξ ¼ Oð10Þ the background evolves as w ≈ 1=3, and hence
the evolution of the Universe is that of radiation domination
soon after the end of inflaton, even if preheating is not
efficient. Hence, Nmatter ¼ 0 for both large and Oð10Þ
values of the nonminimal coupling. There is an intermedi-
ate region of ξ ¼ Oð100Þ, where preheating happens
through self-resonance and the background evolves follow-
ing an average equation of state of w ≈ 0 [61] before
preheating completes. In that regime of nonminimal cou-
plingsNmatter ≈ Nreh ≈ 3, slightly shifting the predictions of
the CMB compared to the approximation of instantaneous
reheating [47], where the equation of state is assumed
to transition from w ¼ −1=3 at the end of inflation to
w ¼ 1=3 immediately afterwards.

VIII. CONCLUSIONS

Higgs inflation is an appealing way to realize inflation
within theparticle content of theStandardModel, by coupling
theHiggs field nonminimally to the gravity sectorwith a large
value of the nonminimal coupling. We analyzed the non-
perturbative decay of theHiggs condensate intoHiggs bosons
and electroweak gauge fields, finding distinct behavior for
different ranges of values of the nonminimal coupling ξ.
The self-resonance of the Higgs field leads to preheating

after Nreh ≃ 4 e-folds for values of the nonminimal cou-
pling ξ≳ 30. For large values ξ > 100 the inflaton can
transfer all of its energy into nonrelativistic Higgs modes
within Nreh ≈ 3, independent of the exact value of the
nonminimal coupling. The dominant contribution to the
parametric excitation of Higgs modes is the effect of
coupled metric fluctuations. In order to accurately capture
the amplitude of the Higgs wave function, the computation
must be initiated before the end of inflation.
The excitation of gauge bosons is much more dramatic,

reminiscent of the purely scalar case of preheating in
multifield inflation with nonminimal couplings [61–63].
Gauge fields are excited after the first zero crossing of the
inflaton field, up towave numbers kmax ∼

ffiffiffi
λ

p
MPl. This leads

to the possibility of the inflaton condensate transferring the
entirety of its energy density toW andZ bosons immediately
after the end of inflation, leading to instantaneous preheat-
ing.W andZ bosonswill efficiently decay into SMfermions,
ultimately filling the Universe with a thermal plasma.
Estimates of perturbative decay and non-Abelian effects
show that gauge field production is robust against both.
The efficiency of the reheating stage can have observa-

tional consequences. The values of the spectral observables
ns and r are related to the time N� when the CMB-relevant
modes exited the horizon during inflation. For Higgs
inflation and related models the CMB observables are given
by ns ≃ 1–2=N� − 3=N2� and r ≃ 12=N2�. Depending on the
speed of the transition from the end of inflation to radiation-
dominated expansion of the Universe, the observationally
relevant N� may vary, shifting the predictions for ns and r.
The use of the Coulomb rather than unitary gauge for our

computations allowed us to tie the results to the purely scalar
case studied in Refs. [61–63], as well as apply the results to
other models with curved field-space manifolds. One such
example is another version of Higgs and Higgs-like infla-
tion, proposed in Ref. [94]. In that model, the necessary
nonminimal coupling is small and negative, accompanied by
a minimum of the Higgs potential at a large vacuum
expectation value during inflation. The analysis of this
model is left for future work and can provide a possible
method for probing the Higgs potential during inflation
through its effect on the preheating behavior and the reheat
temperature, rather than the CMB observables alone.
Another modification of Higgs inflation is based on the

possible existence of an inflection point in the Higgs
inflation potential [95–97]. The possibility of primordial

FIG. 15. Reheat temperature in units ofMPl as a function of the
nonminimal coupling ξ. The discontinuity at ξ ≃ 103 occurs due
to the instantaneous preheating to gauge fields. The light red
region represents the uncertainty of the exact threshold of
instantaneous preheating to gauge fields. The black-dotted line
corresponds to the unitarity scale constraint Treh ≲MPl=3ξ. The
blue-dashed line shows the reheat temperature due entirely to
Higgs self-resonance, assuming gauge boson production above
the unitarity scale is suppressed due to unknown UV physics.
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black hole production in critical Higgs inflation has been
proposed in Ref. [98]. It was however shown that large
curvature fluctuations in Higgs inflation are hard or impos-
sible to producewithout violating observational limits on the
tensor-to-scalar ratio and the running of the spectral tilt
[99,100], unless one postulates a large running of the
nonminimal coupling ξ that is not found in the renormaliza-
tion group flow of the Standard Model nonminimally
coupled to gravity. Recent studies of Higgs inflation
involving nonminimal couplings in the Palatini formulation
of gravity [101,102] can also have different preheating
phenomenology. Exploring the preheating phenomenology
of thesemodels is interesting and can be performed using the
techniques applied here. Such analyses can provide unique
methods to probe theHiggs potential at energy scales that are
out of reach for the LHC and any future accelerator.
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APPENDIX: Gauge field modes
during inflation for jkτj < xc

Significant analytical progress can be made in comput-
ing the spectrum of the various modes close to the end of
inflation, at which point we start the preheating computa-
tion. As shown also in Ref. [87], for the case of xc ≫ 1,
which is where Higgs inflation falls, the spectrum at the
end of inflation is indistinguishable from the de Sitter
results (at least in the case of quadratic inflation, which was
the example used in Ref. [87]).
Fortunately, as pointed out in Ref. [87] but not further

pursued there, the equation of motion for x < xc can be
analytically solved using hypergeometric functions,

uLðk; τÞ ¼ c1ð−1Þ14ð1−νÞx
1
2
ðν−1Þ
c ðkτÞ12ð1−νÞ1F1

×

�
1

4
−
1

4
ν; 1 −

1

2
ν;
k2τ2

x2c

�

þ c2ð−1Þ14ðνþ1Þx
1
2
ð−ν−1Þ
c ðkτÞ12ðνþ1Þ

1F1

×

�
1

4
νþ 1

4
;
1

2
νþ 1;

k2τ2

x2c

�
; ðA1Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2c

p
and c1, c2 are integration constants.

This is a rather cumbersome formula that does not provide a
lot of insight. By Taylor expanding it for values of kjτj ≪
xc we get a rather simple expression,

uLðk; τÞ ≃ c1 × ð−1Þ14ð1−νÞ
�
kτ
xc

�1
2
ð1−νÞ

þ c2 × ð−1Þ14ðνþ1Þ
�
kτ
xc

�1
2
ð1þνÞ

: ðA2Þ

We require c2 ¼ 0 in order for the phases to match the
Bunch-Davies form e−ikτ in the past. We must also set c1
such that the norm matches Eq. (112) for kjτj ¼ xc,

juLðk; τÞj ≃ jc1je1
4
πℑð

ffiffiffiffiffiffiffiffiffi
1−4x2c

p
Þe

1
2
ℜðð1−

ffiffiffiffiffiffiffiffiffi
1−4x2c

p
Þ logð x

xc
ÞÞ: ðA3Þ

If we work in the regime xc ≫ 1, which is true for Higgs
inflation, we approximate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2c

p
≃ i2xc, and the above

expression simplifies to

juLðk; τÞj ≃ jc1je1
2
πxc

�
x
xc

�
1=2

; ðA4Þ

and hence equating this to Eq. (112) for kjτj ¼ xc reveals
the value of the integration constant c1,

jc1j ¼ e−
1
2
πxc

1ffiffiffiffiffi
2k

p : ðA5Þ

Altogether, the evolution of the mode function is

uLðk; τÞ ¼
1ffiffiffiffiffi
2k

p
�
kjτj
xc

�
1=2

ðkjτjÞ−ixc ; kjτj < xc; ðA6Þ

where we dropped an arbitrary pure phase term. The
derivative is

∂τuLðk; τÞ
uLðk; τÞ

¼ −1
τ

�
1

2
− ixc

�
: ðA7Þ

As a side note, the fact that the term proportional to i is
negative shows that we correctly chose the right-moving
wave.13 Again, dropping an arbitrary phase, the initial
conditions for preheating computations are

uLðk; τinÞ ¼
1ffiffiffiffiffi
2k

p
�
kτin
xc

�
1=2

; ðA8Þ

_uLðk; τinÞ ¼ BLðk; τinÞ
1

aðτinÞτin

�
1

2
− ixc

�

≃ BLðk; τinÞHðτinÞ
�
1

2
− ixc

�
ðA9Þ

for wave numbers such that jkτinj < xc. Since xc ≫ 1, we
can drop the 1=2 factor in the above equation.

13In reality, when solving the full equation of motion in cosmic
time with all factors included, the result is not a perfect right-
moving wave. However, this is still a very good approximation to
use as an initial condition both for the current linear computation
of fluctuations as well as for future lattice simulations.
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