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We study Dark Matter (DM) phenomenology with multiple DM species consisting of both scalar and
vector DM particles. More specifically, we study the hidden gauged SU(3) model of Arcadi et al. Before
proceeding to the hidden gauged SU(3) model, we study the relic abundances of simplified multispecies
DM scenarios to gain some insights when multiple species and interactions are included. In the hidden
gauged SU(3) model, because of the large parameter space, we restrict ourselves to three representative
benchmark points, each with multiple DM species. The relic densities for the benchmark points were found
using a program developed to solve the coupled Boltzmann equations for an arbitrary number of interacting
DM species with two particles in the final state. For each case, we varied the mass of the DM particles and
then found the value of the dark SU(3) gauge coupling that gives the correct relic density. We found that for
some sets of parameter values DM would be difficult to observe in direct detection experiments but would
be easier to observe in indirect detection experiments while for other sets of parameter values the situation
was reversed so that measurements from both types of experiments complement each other and could help
pinpoint the details of the hidden SU(3) model. Important to this is that, even for moderate changes in input
parameter values, the relative relic density of each species can change significantly, resulting in large
changes in the observability of multispecies DM by direct or indirect detection.

DOI: 10.1103/PhysRevD.99.076008

I. INTRODUCTION

The nature of Dark Matter (DM) is one of the biggest
puzzles in particle physics. The evidence for DM in the
Universe comes from a wide variety of astrophysical and
cosmological observations, and there has been considerable
theoretical effort to understand its nature (for recent reviews,
see, e.g., Refs. [1–5]). Up until now, much of the work has
focused on simple DM sectors, typically with only one or
possibly two DM candidates. These scenarios are increas-
ingly constrained by experimental measurements. Therefore,
workers in the field are exploring ever more complex DM
scenarios including models with multiple DM species (see,
e.g., Refs. [6–38]). In this context, there is a growing body of
work studying details of “freeze-out” for multiple interacting
DM species, e.g., Refs. [9,10,13,14,19,25–27,36,37,39,40].
To expand on this theme, we developed a computer program
capable of calculating the relic densities of an arbitrary
number of interacting DM species and in this work, use it to

explore the behavior for several scenarios and the implica-
tions for DM direct and indirect detection experiments.
For a specific example of a model with multiple DM

species, we reexamine the hidden gauged SU(3) model of
Arcadi et al. [31]. This model has the potential to have
numerous DM species depending on the choice of parameter
values from the breaking of the new SU(3). The paper of
Arcadi et al. [31] chose specific values of the parameters that
reduced the multispecies DM problem to effectively two DM
species to enable them to implement the model in the
computer program MICROMEGAS [41]. It turns out that
different values of the parameters can lead to much more
complex and interesting scenarios with multiple DM species
to explore. Thus, a main focus of this paper is to explore
different values of the parameters of the hidden gauged
SU(3) model that lead to a more complex DM particle
spectrum. We found that some scenarios with multiple
DM species give the correct relic density, but because the
dominant components have a small direct detection cross
section, the DM will be difficult to observe in direct
detection experiments. However, in some cases when the
DM is not observable by direct detection experiments, it
could be observable in indirect detection measurements and
vice versa. These points were also made by Arcadi et al. [31]
and by many others for other DM scenarios. A small
sampling of examples is given by Refs. [1–5,15,20,35].
The hidden gauged SU(3) model has a very rich

phenomenology with details of the phenomenology very
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much dependent on the choice of parameter values. Some
of our results convey a warning that approximations can
lead to erroneous conclusions. For example, in a scenario
with multiple DM species, a moderate change in the input
parameter values can lead to major differences in the
relative relic densities of the stable DM species. This
would have a major impact on whether DM could be
observed by direct or indirect detection experiments. An
important lesson from our study is that models with
multiple species of DM particles can lead to a very rich
phenomenology and that one needs to be careful when
studying relic densities in multispecies DM models.
The parameter space of the hidden gauged SU(3) model

is large. Integrating the coupled Boltzmann equations to
obtain the relic density for multiple DM species is
computationally intensive, so it is impractical to perform
a complete scan of the parameter space. Instead, we choose
a small number of representative benchmark points in the
parameter space and examine their phenomenology. For
two of the benchmark points, there are four stable DM
species, while in the third, there are seven. These cases will
be examined in detail in Sec. V.
Section II gives the details of the coupled Boltzmann

equations we use to calculate the relic abundance for
multispecies DM scenarios [40]. This is the core ingredient
of the paper needed to calculate the subsequent results
for the hidden gauged SU(3) model. Before proceeding to
the hidden gauged SU(3) model, we explore two simple
multispecies DM scenarios in Sec. III. In that section, we
assume three or four scalar DM species with a range of
masses and assumptions for the interactions between them.
We do so to gain some insight before proceeding to the more
complicated hidden gauged SU(3) model. In Sec. IV, we give
the details of the hidden gauged SU(3) model. In that
section, we start by writing down the Lagrangian, then
compute the mass eigenstates for the scalar and vector
sectors in terms of the Lagrangian parameters, the vacuum
expectation values, and the new gauge coupling. We then
write down expressions for the theoretical constraints on
these parameters. In Sec. V, we explore the phenomenology
of three benchmark points for the hidden gauged SU(3)
model that satisfy the theoretical constraints and use the relic
density to constrain the parameters of the model which are
then used to calculate direct detection and indirect detection
cross sections. Finally, in Sec. VI, we summarize our results.

II. BOLTZMANN EQUATIONS FOR
MULTI-SPECIES DM

Our purpose is to study models of DM that include
multiple DM species. The first step in such a study is to
calculate the relic density for a DM sector with an arbitrary
number of interacting DM species. To calculate the DM
relic density, we assume that the dark sector was in thermal
and chemical equilibrium at some early time, which allows
us to use the coupled Boltzmann equations in the form

written down by Dienes et al. [40], which is a generali-
zation of the Boltzmann equation given in Kolb and Turner
[42] (see also Ref. [43]). These themes have been explored
previously by Edsjo and Gondolo [39] and others, e.g.,
Refs. [9,19,25,26,30,36,44].
In what follows, we simply reproduce the coupled

Boltzmann equations as given by Dienes et al. [40], which
we will use to calculate each of the individual relic densities,
and we refer the interested reader to their work for details.
We only include the details needed to reproduce our results
including some of the equations and definitions that we used
from Kolb and Turner [42] and refer the interested reader to
that monograph for more complete details.
We wish to calculate the relic density of each of the DM

species, ϕi, which is given by

Ωi ¼
ρi
ρC

¼ 8πGmini
3H2

; ð1Þ

where mi, ni, and ρi ¼ mini are the mass, number density,
and energy density of particle ϕi, ρC is the critical density,
G is Newton’s constant, andH is the Hubble parameter. For
species ϕi in kinetic equilibrium, the number density is
given by

neqi ¼ gi
ð2πÞ3

Z
fiðp⃗iÞd3p; ð2Þ

where gi is the number of internal degrees of freedom
(d.o.f.) and the phase space distribution, fiðp⃗iÞ, is given by

fiðp⃗iÞ ¼
1

eðEi−μiÞ=T � 1
; ð3Þ

where T is the temperature of the photon bath; p⃗i, Ei, and μi
are the three-momentum, energy, and chemical potential
associated with species ϕi; and the plus and minus signs are
for fermionic and bosonic species, respectively. We are
working in the comoving frame in which hv⃗i ¼ 0 for all ϕi.
In a frame in which hv⃗i ¼ 0, the fiðv⃗Þ only depend on the
magnitude of v⃗ and not its direction.
In general, the Boltzmann equations can include an

arbitrary number of species participating in reactions and
decays [40]. We will restrict ourselves to simplified cases in
which the Boltzmann equations for all relevant species can
be expressed in terms of number densities, ni, rather than the
phase space distributions, fi; we assume CP is conserved so
that the matrix elements satisfy jMðij → klÞj2 ¼ jMðkl →
ijÞj2 for cross sections and jMði → jkÞj2 ¼ jMðjk → iÞj2
for decays and that all visible sector particles and all dark-
sector particles are in thermal equilibrium due to rapid
interactions among themselves until long after the lightest
DM species have frozen out. To minimize the complexity of
the problem, we restrict ourselves to 1 → 2 and 2 → 2 type
interactions. With these simplifications, the Boltzmann
equations become [40]
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dni
dt

¼ −3Hni −
X
a;b

Γi→abðni − neqi Þ −
X
j≠i

X
a

�
Γi→ja

�
ni − nj

neqi
neqj

�
− Γj→ia

�
nj − ni

neqj
neqi

��

−
X
j;k

�
1

2
ð1þ δjkÞΓi→jk

�
ni − njnk

neqi
neqj n

eq
k

�
− ð1þ δikÞΓj→ik

�
nj − nink

neqj
neqi n

eq
k

��

−
X
j

X
a;b

ð1þ δijÞhσij→abviðninj − neqi n
eq
j Þ

−
X
j

X
a;b

�
hσia→jbvi

�
ni − nj

neqi
neqj

�
neqa − hσja→ibvi

�
nj − ni

neqj
neqi

�
neqa

�

−
X
j;k

X
a

�
ð1þ δjkÞhσia→jkvi

�
ni − njnk

neqi
neqj n

eq
k

�
neqa − ð1þ δikÞhσja→ikvi

�
nj − nink

neqj
neqi n

eq
k

�
neqa

�

−
X
j;k

X
a

ð1þ δijÞhσij→kavi
�
ninj − nk

neqi n
eq
j

neqk

�
−
X
j;k;l

ð1þ δijÞð1þ δklÞhσij→klvi
�
ninj − nknl

neqi n
eq
j

neqk n
eq
l

�
; ð4Þ

where in Eq. (4), the indices i, j, k, l run over the dark-
sector particles and a, b run over visible sector particles.
The first term on the right-hand side is the dilution due
to the expansion of the Universe, and H is the Hubble
parameter. hσxy→zwvi, which will be given below, repre-
sents the thermally averaged annihilation cross section
of two initial state particles, xy, to two final state particles,
zw, where xyzw represent either visible or dark-sector
particles. Likewise, Γx→yz represents the partial decay
width of particle x into particles yz. Equation (4) assumes
that all particles are in thermal equilibrium. In Eq. (4), the
thermally averaged cross sections are given by

hσxy→zwvxyi≡ gxgy
neqx n

eq
y

Z
σxy→zwvxyf

eq
x f

eq
y
d3px

ð2πÞ3
d3py

ð2πÞ3 ; ð5Þ

where gi is the number of internal d.o.f. of particle i, σxy→zw

is the cross section for the process ϕxϕy → ϕzϕw, and

vxy ≡ jvx − vyj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpx · pyÞ2 −m2

xm2
y

q
ExEy

ð6Þ

is the magnitude of the relative velocity of ϕx and ϕy in the
comoving frame. In the absence of a degenerate Fermi
species or a Bose condensate, the phase space distributions
of the DM species reduce to the classical Maxwell-
Boltzmann distribution in the nonrelativistic limit [42].
For sufficiently rapid interactions, the particles approach
kinetic and chemical equilibrium depending on the nature
of the interaction. This latter situation places constraints
on the chemical potentials of the species involved, which
depend on the reaction. For example, the reaction ϕi þ
ϕj ↔ ϕk þ ϕl would imply the constraint μi þ μj ¼
μk þ μl. For the visible particles, the chemical potential

μ is small or zero, which results in the chemical potential of
the DM species being small or zero in the absence of an
asymmetry. We will therefore treat all equilibrium chemical
potentials as zero. Under these conditions, we approximate
fiðviÞ by the equilibrium phase space distribution,

feqi ðviÞ ≈ e−EiðviÞ=T; ð7Þ

where vi is the speed of the particle. With these approx-
imations, the equilibrium number density, neqi , is given by

neqi ¼ gi

Z
d3pi

ð2πÞ3 e
−Ei=T ¼ gim2

i T
2π2

K2ðmi=TÞ; ð8Þ

≈

(
giðmiT

2π Þ3=2e−mi=T for mi ≫ T;

gi
T3

π2
for T ≫ mi;

ð9Þ

where K2ðxÞ is the modified Bessel function of the second
kind.
The standard approach for solving Eq. (4) is to scale out

the effect of the expansion of the Universe by considering
the evolution of the number density in a comoving volume.
This is done by using the entropy density, s, as a fiducial
quantity by defining [42]

Y ¼ ni
s
; Yeq ¼ neqi

s
; ð10Þ

where the entropy density in the comoving volume in any
cosmological epoch is defined by

s≡ S
V
¼ ρþ p

T
¼ 2π2

45
g�ST3; ð11Þ

T is the photon temperature, and ρ and p are the total
energy density and the pressure, respectively, expressed in
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terms of the photon temperature T [42]. g�S represents the
number of interacting d.o.f. in the thermal bath, which can
be found by rewriting Eq. (11) as

g�S ¼
45

2π2T4
ðρþ pÞ: ð12Þ

Yi is the actual number per comoving volume, and Yeq
i is

the equilibrium number per comoving volume. In addition,
we rescale the Hubble constantHðTÞ ¼ HðmÞ=x2 with x ¼
m=T where m is any convenient mass scale [42], which we
will take to be the mass of the heaviest stable DM particle.
In the radiation dominated epoch, HðmÞ is given by [42]

HðmÞ ¼ 2π3=2ffiffiffiffiffi
45

p g1=2� m2

mPl
; ð13Þ

where mPl is the Planck mass and g� represents the total
number of effectively massless d.o.f. and is given by

g� ¼
30ρR
π2T4

; ð14Þ

where ρR is the total energy density of all species in
equilibrium. Expressions for ρR, g�S, and g� can be found in
the work by Kolb and Turner [42]. In computing g� and g�S,
we used the Fermi-Dirac or Bose-Einstein distributions as
appropriate in the sum. For the region around the QCD
phase transition, the correct d.o.f. become ambiguous and
require lattice QCD to compute. We use the values found in
Ref. [45] for this region.
With these substitutions, Eq. (4) is recast as

dYi

dx
¼ −

xs
HðmÞ

�
1

s

X
a;b

Γi→abðYi − Yeq
i Þ þ

1

s

X
j≠i

X
a

�
Γi→ja

�
Yi − Yj

Yeq
i

Yeq
j

�
− Γj→ia

�
Yj − Yi

Yeq
j

Yeq
i

��

−
1

s

X
j;k

�
1

2
ð1þ δjkÞΓi→jk

�
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Yeq
i

Yeq
j Y

eq
k

�
− ð1þ δikÞΓj→ik

�
Yj − YiYk

Yeq
j

Yeq
i Y

eq
k

��

þ
X
j

X
a;b

ð1þ δijÞhσij→abviðYiYj − Yeq
i Y

eq
j Þ

þ
X
j

X
a;b

�
hσia→jbvi

�
Yi − Yj

Yeq
i

Yeq
j

�
Yeq
a − hσja→ibvi

�
Yj − Yi

Yeq
j

Yeq
i

�
Yeq
a

�

þ
X
j;k

X
a

�
ð1þ δjkÞhσia→jkvi

�
Yi − YjYk

Yeq
i

Yeq
j Y

eq
k

�
Yeq
a − ð1þ δikÞhσja→ikvi

�
Yj − YiYk

Yeq
j

Yeq
i Y

eq
k

�
Yeq
a

�

þ
X
j;k

X
a

ð1þ δijÞhσij→kavi
�
YiYj − Yk

Yeq
i Y

eq
j

Yeq
k

�
þ
X
j;k;l

ð1þ δijÞð1þ δklÞhσij→klvi
�
YiYj − YkYl

Yeq
i Y

eq
j

Yeq
k Y

eq
l

��
: ð15Þ

III. SIMPLE MULTICOMPONENT DM
SCENARIOS

Before proceeding to the hidden gauged SU(3) DM
model, we start by exploring the relic abundance of two
simplified multispecies DM scenarios. Models with multi-
ple species and different types of interactions can be
complicated. Deconstructing how the different terms in
Eq. (15) affect the number densities can give us insight into
the coupled Boltzmann equations and help us understand
which terms are important and which ones can be
neglected. Both of the scenarios initially consist of multiple
DM species freezing out by only self-annihilating into
Standard Model (SM) particles. We then add additional
interactions between the DM species and observe the
effects. Finally, we include all interactions that would be
present due to crossing symmetry to obtain the final result.
We assume that the thermally averaged cross sections for

all interactions are s-wave, and thus independent of speed,
and use the approximation hσvi ¼ 0.1 pb for all the
interactions. In a particular model, these cross sections
would not necessarily be equal, but this assumption is
reasonable for the purpose of exploring the behavior of
Eq. (15) for simplified scenarios. In all cases, we assume
that the SM particles are in thermal equilibrium with the
photon bath and treat them as relativistic with the appro-
priate d.o.f. Plots of the DM number per comoving volume
vs x ¼ m=T are shown in Figs. 1 and 2, where we takem to
be the mass of the heaviest stable DM particle.
In all cases, the solid curves represent the equilibrium

number densities; the dashed lines represent the scenarios
with only self-annihilation to SM particles, which we label
as the “base”; the lines with a combination of dashes and
dots include the base interactions and a single additional
interaction, ignoring the contributions from crossing sym-
metry; and finally the dotted lines show the results when all
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the additional interactions are included. We label the
species as ϕi with the index i increasing with increasing
species mass.
In Fig. 1, we consider three DM species, ϕ1 (green), ϕ2

(blue), and ϕ3 (red), with masses of 100, 120, and 150 GeV,
respectively. We will start with the most general application
of Eq. (15) that is applicable to this case and examine each
of the contributions in turn. For this case, Eq. (15) reduces
to the following set of three coupled equations:

dY1

dx
¼ −

xs
HðmÞ

�
2hσ11→SMþSMviðY2

1 − ðYeq
1 Þ2Þ

− 2hσ23→11vi
�
Y2Y3 − Y2

1

Yeq
2 Y

eq
3

ðYeq
1 Þ2

��
; ð16Þ

dY2

dx
¼ −

xs
HðmÞ

�
2hσ22→SMþSMviðY2

2 − ðYeq
2 Þ2Þ

þ hσ23→11vi
�
Y2Y3 − Y2

1

Yeq
2 Y

eq
3

ðYeq
1 Þ2

�

− hσ13→12vi
�
Y3 − Y2

Yeq
3

Yeq
2

�
Y1

�
; ð17Þ

dY3

dx
¼ −

xs
HðmÞ

�
2hσ33→SMþSMviðY2

3 − ðYeq
3 Þ2Þ

þ hσ23→11vi
�
Y2Y3 − Y2

1

Yeq
2 Y

eq
3

ðYeq
1 Þ2

�

þ hσ13→12vi
�
Y3 − Y2

Yeq
3

Yeq
2

�
Y1

�
: ð18Þ

From this set of equations, we can examine which factors
influence each of the DM species’ number densities.
Starting with ϕ1, the only additional term that can affect

the ϕ1 number density is ϕ2 þ ϕ3 ↔ ϕ1 þ ϕ1 because ϕ1

only acts as a spectator in the ϕ1 þ ϕ3 ↔ ϕ1 þ ϕ2 inter-
action, leaving the ϕ1 number density unchanged. The
interesting temperature is when ϕ1 freezes out when the
actual ϕ1 number density departs from the equilibrium
number density. This occurs when Y1 ¼ cYeq

1 for c≳ 1

[42]. Because ϕ1 is lighter than the other DM species, ϕ2

and ϕ3 have already departed from chemical equilibrium so
that Y2 ≫ Yeq

2 and Y3 ≫ Yeq
3 . This gives

Y2
1 − ðYeq

1 Þ2 ≈ ð1 − c−2ÞY2
1;

Y2Y3 − Y2
1

Yeq
2 Y

eq
3

ðYeq
1 Þ2

≈ Y2Y3: ð19Þ

Since Y1 ≫ Y2 and Y1 ≫ Y3 at the temperature where
Y1 ¼ cYeq

1 , the second line in Eq. (19) is negligible and can
safely be ignored during a numerical scan. This explains
why the two additional terms in Fig. 1 have no significant
effect on the ϕ1 relic density.
We next examine the temperature region around where

ϕ2 freezes out; Y2 ¼ cYeq
2 . In this case, Y1 ≈ Yeq

1 and
Y3 ≫ Yeq

3 . This leads to

Y2
2 − ðYeq

2 Þ2 ≈ ð1 − c−2ÞY2
2;

Y2Y3 − Y2
1

Yeq
2 Y

eq
3

ðYeq
1 Þ2

≈ Y2Y3;�
Y3 − Y2

Yeq
3

Yeq
2

�
Y1 ≈ Y1Y3: ð20Þ

FIG. 1. DM number densities as a function of x ¼ m=T for
three DM species. The solid curves represent the equilibrium
density; the dashed curves represent the scenario with only self-
annihilation to SM particles, which we label as the base; the
curves with both dots and dashes represent scenarios with the
base interactions plus a single additional interaction as labeled in
the plot; and the dotted curve represent the result including all the
additional interactions of the previous curves. The green, blue,
and red curves represent the number density of ϕ1, ϕ2, and ϕ3

with masses of 100, 120, and 150 GeV, respectively. Note that for
the green and blue curves, the various curves sit very closely on
top of each other.

FIG. 2. DM number densities as a function of x ¼ m=T for four
DM species. The line labeling is as in Fig. 1. The green, blue, red,
and purple curves represent the number density of ϕ1, ϕ2, ϕ3, and
ϕ4 with masses of 100, 120, 150, and 180 GeV, respectively. Note
that for the green, blue, and red curves the various curves sit very
closely on top of each other.
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Since Y2
2 ≫ Y2Y3, the second line in Eq. (19) will be

negligible. The third line could potentially be important
since Y1 ≫ Y2 ≫ Y3. However, it turns out that for our
choice of masses the ϕ1 þ ϕ3 ↔ ϕ1 þ ϕ2 interaction
causes Y2

2 ≫ Y1Y3, so this term also has a negligible
contribution compared to the first line in Eq. (20). The
net result is that the interactions added to the base case do
not significantly alter the ϕ2 relic abundance.
Finally, we consider the temperature where ϕ3 freezes

out; Y3 ¼ cYeq
3 . In this case, Y1 ≈ Yeq

1 and Y2 ≈ Yeq
2 . This

gives

Y2
3 − ðYeq

3 Þ2 ≈ ð1 − c−2ÞY2
3;

Y2Y3 − Y2
1

Yeq
2 Y

eq
3

ðYeq
1 Þ2

≈ ð1 − c−1ÞY2Y3;�
Y3 − Y2

Yeq
3

Yeq
2

�
Y1 ≈ ð1 − c−1ÞY1Y3: ð21Þ

In this case, the largest reaction rate is for ϕ1 þ ϕ3 ↔
ϕ1 þ ϕ2, corresponding to the third line of Eq. (21),
followed by ϕ2 þ ϕ3 ↔ ϕ1 þ ϕ1, corresponding to the
second line of Eq. (21), because of the hierarchy of the
number densities, Y1 ≫ Y2 ≫ Y3. This is what we see in
Fig. 1, where the curves with the additional interactions
stay in thermal equilibrium longer, resulting in a smaller
relic density for ϕ3. So, for the case of annihilation of ϕ3

with ϕ1, there is a small amount of ϕ3 which sees a large
amount of ϕ1 so that the interaction ϕ1 þ ϕ3 ↔ ϕ1 þ ϕ2

depletes ϕ3 significantly but barely affects the ϕ1 density,
which is what is seen in Fig. 1. Because ϕ2 has a smaller
relic density than ϕ1, it does not deplete ϕ3 as much, which
is also observed in Fig. 1.
In Fig. 2, we repeat the exercise for four DM species, ϕ1

(green), ϕ2 (blue), ϕ3 (red), and ϕ4 (purple), with masses of
100, 120, 150, and 180 GeV, respectively. For this case,
Eq. (15) leads to a set of four coupled equations. ϕ1, ϕ2, and
ϕ3 behave similarly to the previous case, so to avoid
repetition, we will focus on the behavior of the ϕ4 number
density. The differential equation for Y4 is given by

dY4

dx
¼ −

xs
HðmÞ

�
2hσ44→SMþSMviðY2

4 − ðYeq
4 Þ2Þ

þ hσ34→12vi
�
Y3Y4 − Y1Y2

Yeq
3 Y

eq
4

Yeq
1 Y

eq
2

�

þ hσ24→13vi
�
Y2Y4 − Y1Y3

Yeq
2 Y

eq
4

Yeq
1 Y

eq
3

�

þ hσ14→23vi
�
Y1Y4 − Y2Y3

Yeq
1 Y

eq
4

Yeq
2 Y

eq
3

��
: ð22Þ

To obtain some insight into the behavior of the ϕ4

number density, we start by considering the temperature
where ϕ4 freezes out, Y4 ¼ cYeq

4 with c≳ 1, and assume
that in this region Y1 ≈ Yeq

1 , Y2 ≈ Yeq
2 , and Y3 ≈ Yeq

3 :

Y2
4 − ðYeq

4 Þ2 ≈ ð1 − c−2ÞY2
4;

Y3Y4 − Y1Y2

Yeq
3 Y

eq
4

Yeq
1 Y

eq
2

≈ ð1 − c−1ÞY3Y4;

Y2Y4 − Y1Y3

Yeq
2 Y

eq
4

Yeq
1 Y

eq
3

≈ ð1 − c−1ÞY2Y4;

Y1Y4 − Y2Y3

Yeq
1 Y

eq
4

Yeq
2 Y

eq
3

≈ ð1 − c−1ÞY1Y4: ð23Þ

These expressions can explain why the ϕ4 þ ϕ3 ↔ ϕ1 þ
ϕ2 (dot-dot-dashed) curve sits above the ϕ4 þ ϕ2 ↔ ϕ1 þ
ϕ3 (dot-dashed-dashed) and ϕ4 þ ϕ1 ↔ ϕ2 þ ϕ3 (dot-dot-
dashed-dashed) curves but fails to explain other details of
this plot. As pointed out above, the number density of a DM
species depends on its mass so that there is less of ϕ3 to
annihilate with than ϕ1 and ϕ2 so that ϕ4 is depleted less by
its interactions with ϕ3 than with the other DM species.
Next, we consider the behavior of the ϕ4 number density

for the curves when the ϕ4 þ ϕ2 ↔ ϕ1 þ ϕ3 and ϕ4 þ
ϕ1 ↔ ϕ2 þ ϕ3 interactions are present in the temperature
region around ϕ3 and ϕ4 freeze-out where Y4 ¼ c1Y

eq
4 and

Y3 ¼ c2Y
eq
3 with c1 ≃ c2 ≳ 1:

Y2
4 − ðYeq

4 Þ2 ≈ ð1 − c−21 ÞY2
4;

Y3Y4 − Y1Y2

Yeq
3 Y

eq
4

Yeq
1 Y

eq
2

≈ ð1 − c−11 c−12 ÞY3Y4;

Y2Y4 − Y1Y3

Yeq
2 Y

eq
4

Yeq
1 Y

eq
3

≈ ð1 − c2c−11 ÞY2Y4;

Y1Y4 − Y2Y3

Yeq
1 Y

eq
4

Yeq
2 Y

eq
3

≈ ð1 − c2c−11 ÞY1Y4: ð24Þ

In this temperature region, the factors, (1 − c2c−11 ), in the
third and fourth equations in Eq. (24), are small, so the ϕ4

number density is dominated by the first equation in
Eq. (24). The second equation is not relevant here as it
applies to the ϕ4 þ ϕ3 ↔ ϕ1 þ ϕ2 case, which we are not
considering here. The result is that the curves for ϕ2 þ ϕ4 ↔
ϕ1 þ ϕ3 and ϕ1 þ ϕ4 ↔ ϕ2 þ ϕ3 have similar values of Y4

shortly after ϕ4 departs from the equilibrium curve.
Lastly, we examine the region where ϕ2 freezes out, cor-

responding to the temperature where Y2 ¼ cYeq
2 with c≳ 1

as before. We assume that Y1 ≈ Yeq
1 , Y3 ≫ Yeq

3 , and Y4 ≫
Yeq
4 so that

Y2
4 − ðYeq

4 Þ2 ≈ ð1 − c−2ÞY2
4;

Y3Y4 − Y1Y2

Yeq
3 Y

eq
4

Yeq
1 Y

eq
2

≈ Y3Y4;

Y2Y4 − Y1Y3

Yeq
2 Y

eq
4

Yeq
1 Y

eq
3

≈ Y2

�
Y4 − c−1Y3

Yeq
4

Yeq
3

�
;

Y1Y4 − Y2Y3

Yeq
1 Y

eq
4

Yeq
2 Y

eq
3

≈ Y1

�
Y4 − cY3

Yeq
4

Yeq
3

�
: ð25Þ
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It turns out that Y4 is numerically comparable to Y3
Yeq
4

Yeq
3

at the

temperature range we are considering. As the temperature
decreases, c, which is a measure of the difference between Y

and Yeq, increases so that (Y4 − cY3
Yeq
4

Yeq
3

) will become

negative and the reverse reaction will dominate. At the

same time, (Y4 − c−1Y3
Yeq
4

Yeq
3

) remains positive and continues

to deplete ϕ4. This is why in Fig. 2 the ϕ4 þ ϕ1 ↔ ϕ2 þ ϕ3

(dot-dot-dashed-dashed) curve increases while the ϕ4 þ
ϕ2 ↔ ϕ1 þ ϕ3 (dot-dashed-dashed) curve decreases. The
dotted line shows the result when all processes are included.
It can be seen that the reverse reaction is important up until
ϕ1 starts to freeze out, at which point the ϕ1 þ ϕ4 ↔ ϕ2 þ
ϕ3 interaction becomes dominant and starts depleting ϕ4.
These simple examples show that even for a simple

multispecies DM sector the behavior of the relic abundance
can be quite complicated and the resulting relic abundances
can vary substantially depending on the details of the
underlying model. It is not always a priori obvious how the
details of the model will work out, and one needs to
understand how each of the interactions contribute to the
final result. All things being equal, heavier DM species will
be more affected by their interactions with lighter DM
species than vice versa. The interactions between multi-
species SM can lead to experimental consequences. Say, for
example, that a model has many DM species but only one
interacts with a portal to the visible Universe. One could
imagine a scenario where the model could account for the
measured DM relic density, but the component that
interacts with the visible Universe has a very small relic
density, making it unlikely that it could be observed in
direct or indirect detection experiments.
In the next sections, we will explore in detail a specific

multispecies DM model, the hidden gauged SU(3) model.
Because the parameter space is large, we will restrict
ourselves to several representative benchmark points with
interesting phenomenology.

IV. HIDDEN GAUGED SU(3) MODEL

In the remainder of this paper, we study the phenom-
enology of the hidden gauged SU(3) model of Arcadi et al.
[31], which consists of spin-1 and spin-0 states. In their
paper, they examined two representative limiting cases that
made their numerical analysis tractable. We extend their
studies to consider different points in the parameter space
that leads to more complex DM scenarios. We mention that
others have also studied hidden SU(3) models [26,28,33].

A. Details of the model

For completeness and clarity, we start by reproducing the
details of the hidden gauged SU(3) model of Arcadi et al.
[31]. The model consists of a gauged SU(3), which is fully
broken by two complex scalar triplets, Φ1 and Φ2, so that

all the new gauge bosons acquire a mass. These new scalars
are not charged under the SM gauge groups and can only
interact with the SM through the SM Higgs doublet. To
simplify the Lagrangian and insure additional stable states,
a Z2 symmetry is also imposed such that

Φ1 → −Φ1;

Φ2 → Φ2; ð26Þ

which has the effect of only including even powers of the
scalar triplets in the Lagrangian. Following Ref. [31], and
imposing this additional Z2 symmetry, we write the
Lagrangian as

L ¼ LSM þ Lportal þ Lhidden; ð27Þ

where

−LSM ⊃ VSM ¼ m2
HjHj2 þ λH

2
jHj4; ð28Þ

−Lportal ¼ Vportal ¼ λH11jHj2jΦ1j2 þ λH22jHj2jΦ2j2; ð29Þ

−Lhidden ¼ −
1

4
Ga

μνGμνa þ jDμΦ1j2 þ jDμΦ2j2 − Vhidden;

ð30Þ

Vhidden ¼ m2
11jΦ1j2 þm2

22jΦ2j2 þ
λ1
2
jΦ1j4 þ

λ2
2
jΦ2j4

ð31Þ

þλ3jΦ1j2jΦ2j2 þ λ4jΦ†
1Φ2j2 þ

λ5
2
½ðΦ†

1Φ2Þ2 þ H:c:�: ð32Þ

Here, Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ g̃fabcAb

μAc
ν is the field

strength tensor for the hidden SU(3), where g̃ is the gauge
coupling and fabc are the SU(3) structure constants. The
covariant derivative is given byDμ ¼ ∂μ − ig̃Aa

μta, where ta
are the Gell-Mann matrices (see, e.g., Ref. [46], where
the ta ¼ 1

2
λa).

In general, the scalar doublet and triplets will have the
form

H ¼ 1ffiffiffi
2

p
 

ϕH
1;r þ iϕH

1;i

vþ ϕH
2;r þ iϕH

2;i

!
;

Φ1 ¼
1ffiffiffi
2

p

0
B@

ϕ1
1;r þ iϕ1

1;i

ϕ1
2;r þ iϕ1

2;i

v1 þ ϕ1
3;r þ iϕ1

3;i

1
CA;

Φ2 ¼
1ffiffiffi
2

p

0
B@

ϕ2
1;r þ iϕ2

1;i

v2 þ ϕ2
2;r þ iϕ2

2;i

v3 þ ϕ2
3;r þ iϕ2

3;i

1
CA; ð33Þ
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where the vi are the vacuum expectation values (vevs), the
superscript indicates to which of the Φi the field belongs,
and the subscripts indicate the position in the triplet and
whether it is the real or imaginary component. When all
three new vevs are taken to be nonzero, we have some
freedom in defining the Goldstone bosons of the hidden
SU(3). One convenient way to define them is

G1 ¼ ϕ2
1;i; G2 ¼ ϕ2

1;r; G3 ¼ ϕ2
2;i; G4 ¼ ϕ1

1;i; G5 ¼ ϕ1
1;r;

G6 ¼ v1ϕ1
2;iþv2ϕ2

3;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21þv22

p ; G7 ¼ v1ϕ1
2;rþv3ϕ2

2;rþv2ϕ2
3;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21þ v22þ v23
p ;

G8 ¼ v2v3ϕ1
2;iþðv21þ v22Þϕ1

3;iþ v1v3ϕ2
3;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv21þv22Þðv21þv22þv23Þ
p ; ð34Þ

which leaves the physical states

φ1 ¼
v2ϕ1

2;i − v3ϕ1
3;i þ v1ϕ2

3;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v23

p ; ð35Þ

φ2 ¼
v3ϕ1

2;r þ v1ϕ2
2;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v23
p ; ð36Þ

φ3 ¼
v1v2ϕ1

2;r þ v2v3ϕ2
2;r þ ðv21 þ v23Þϕ2

3;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv21 þ v22Þðv21 þ v22 þ v23Þ

p ; ð37Þ

φ4 ¼ ϕ1
3;r: ð38Þ

We will see in Sec. IV B 3 that in order to have a
consistent vacuum state we must have v1v3ðλ4 þ λ5Þ ¼ 0.
Since we require v1 ≠ 0 to fully break the SU(3), we will
study the cases where we take v3 ¼ 0 and allow λ4 ≠ −λ5.
For completeness, we give the details of the λ4 ¼ −λ5 case
in the Appendix for the interested reader who may wish to
study this possibility.

In the v3 ¼ 0 case, the resulting Goldstone bosons are
given by

G1 ¼ ϕ2
1;i; G2 ¼ ϕ2

1;r; G3 ¼ ϕ2
2;i; G4 ¼ ϕ1

1;i; G5 ¼ ϕ1
1;r;

G8 ¼ ϕ1
3;i; G6 ¼ sβϕ1

2;iþ cβϕ2
3;i; G7 ¼ sβϕ1

2;r − cβϕ2
3;r;

ð39Þ

where we define sβ ¼ sin β ¼ v1ffiffiffiffiffiffiffiffiffi
v2
1
þv2

2

p and cβ ¼ cos β ¼
v2ffiffiffiffiffiffiffiffiffi
v2
1
þv2

2

p . This leads to the convenient definition for the

physical states given by

φ1 ¼ ϕ1
3;r; φ2 ¼ ϕ2

2;r; φ3 ¼ cβϕ1
2;r þ sβϕ2

3;r;

φ4 ¼ cβϕ1
2;i − sβϕ2

3;i; ð40Þ

and the resulting form of the triplets in the unitary gauge is
given by

Φ1 ¼
1ffiffiffi
2

p

0
B@

0

cβðφ3 þ iφ4Þ
v1 þφ1

1
CA; Φ2 ¼

1ffiffiffi
2

p

0
B@

0

v2 þφ2

sβðφ3 − iφ4Þ

1
CA:

ð41Þ

Spontaneous symmetry breaking in the SM happens in the
usual way so that the Higgs doublet in the unitary gauge is
given by

H ¼ 1ffiffiffi
2

p
�

0

vþ h

�
; ð42Þ

where v is the SM vev.
In the unitary gauge, we write down the scalar mass

matrix in the form L ⊃ 1
2
ΦTm2

scalarΦ, where ΦT ¼
ðh;φ1;φ2;φ3;φ4Þ are the scalars in the model and where

m2
scalar ¼

0
BBBBBBBB@

λHv2 λH11vv1 λH22vv2 0 0

λH11vv1 λ1v21 λ3v1v2 0 0

λH22vv2 λ3v1v2 λ2v22 0 0

0 0 0
ðλ4þλ5Þ

2
ðv21 þ v22Þ 0

0 0 0 0
ðλ4−λ5Þ

2
ðv21 þ v22Þ

1
CCCCCCCCA
: ð43Þ

We see that, because the second row of Φ1 and the third
row ofΦ2 do not have a vev, φ3 and φ4 cannot mix with any
of the other scalars. In addition, because we do not haveCP
violation in the scalar sector, φ3 and φ4 cannot mix with
each other, so both are mass eigenstates. To differentiate the
mass states from the gauge states, we relabel the mass
eigenstates as φ3 ¼ H and φ4 ¼ χ. We label the remaining
mass eigenstates as h1, h2, and h3 and parametrize the

mixing between them using three angles θ1, θ2, and θ3 as
follows:0
B@
m2

h1
0 0

0 m2
h2

0

0 0 m2
h3

1
CA¼UT

0
B@

λHv2 λH11vv1 λH22vv2
λH11vv1 λ1v21 λ3v1v2
λH22vv2 λ3v1v2 λ2v22

1
CAU;

ð44Þ
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where

U ¼ Y1X2Y3; Y1 ¼

0
B@

c1 0 −s1
0 1 0

s1 0 c1

1
CA;

X2 ¼

0
B@

1 0 0

0 c2 −s2
0 s2 c2

1
CA; Y3 ¼

0
B@

c3 0 −s3
0 1 0

s3 0 c3

1
CA: ð45Þ

Here, mhi is the mass of hi, si ¼ sin θi, ci ¼ cos θi, for
i ¼ 1, 2, 3. The advantage of this parametrization is that, in
the limit of small θ2, we can define an effective mixing
angle θ ¼ θ1 þ θ3, which mixes h and φ2. This is con-
venient since the mixing between the SM Higgs and the
dark scalars is constrained to be small to be consistent with
precision electroweak measurements. References [31,47]
find that sin θ ≲ 0.3–0.4 depending on the mass of the
second scalar. For all our benchmark points, we will
take sin θ ¼ 0.1.
In the vector boson sector, there is only mixing between

A3 and A8 through the following mass matrix:

L ⊃
g̃
8
ðA3

μ A8
μ Þ

0
B@ v22 − v2

2ffiffi
3

p

− v2
2ffiffi
3

p 1
3
ð4v21 þ v22Þ

1
CA�A3

μ

A8
μ

�
: ð46Þ

We define the mass eigenstates as

A30
μ ¼ cαA3

μ þ A8
μsα; ð47Þ

A80
μ ¼ −sαA3

μ þ A8
μcα; ð48Þ

where cα ¼ cos α, sα ¼ sin α, and

α ¼
8<
:

1
2
arctan

	 ffiffi
3

p
v2
2

2v2
1
−v2

2



for v22 ≤ 2v21

1
2
arctan

	 ffiffi
3

p
v2
2

2v2
1
−v2

2



þ π

2
for v22 > 2v21

: ð49Þ

We note that α ∈ ð0; π
3
Þ and that tα ¼ tan α > 0. We label all

the mass eigenstates with a prime to distinguish between
the mass and gauge eigenstates. The resulting vector boson
masses are given by

mA10 ¼ mA20 ¼ g̃
2
v2; mA40 ¼ mA50 ¼ g̃

2
v1;

mA60 ¼ mA70 ¼ g̃
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q

mA30 ¼ g̃v2
2

�
1 −

tαffiffiffi
3

p
�

1=2
; mA80 ¼ g̃v1

2

�
1 −

tαffiffiffi
3

p
�

−1=2
:

ð50Þ

We can also write mA30 and mA80 explicitly in terms of the
vevs as

m2

A30 ¼
g̃2

6

	
v21 þ v22 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v41 − v21v

2
2 þ v42

q 

; ð51Þ

m2

A80 ¼
g̃2

6

	
v21 þ v22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v41 − v21v

2
2 þ v42

q 

: ð52Þ

From this form, we can see that A30
μ is the lightest vector

boson while A80
μ is the heaviest, or one of the heaviest.

When v1 ¼ v2, A80
μ becomes degenerate with A60

μ and A70
μ .

This model has a global Z2 × Z0
2 × Z00

2 symmetry
remaining from the breaking of the SU(3). Note that the
Z00
2 symmetry was not in the model studied in Ref. [31].
The Z2 symmetry is a subgroup of two remaining U(1)

symmetries, one for the vectors and one for the scalars. The
U(1) for the vectors is characterized by the matrix

U ¼ eiδ1=3diagðe−iδ1 ; 1; 1Þ: ð53Þ

Under the transformation Aa
μta → UAa

μtaU†, setting δ1 ¼ π

takes A1;2;4;5
μ → −A1;2;4;5

μ and does not change the other
vector fields. The U(1) for the scalars is described by taking
Φ1;2 → eiδ2Φ1;2. The Z2 subgroup corresponds to choosing
δ1 ¼ π and δ2 ¼ π. The Z0

2 symmetry is associated with
complex conjugation, which is an outer automorphism of
SU(3). The Z00

2 symmetry is one that does not appear in
Ref. [31]. This symmetry is a result of having added the
extra Z2 in Eq. (26). This added symmetry results in the
scalar potential being invariant under rephrasing ϕ3 and ϕ4.
Independently, a U(1) subgroup of SU(3) characterized by
the matrix

U0 ¼ eiδ3=3diagð1; e−iδ3 ; 1Þ ð54Þ

leaves the the field strength tensor invariant. In order for the
scalar kinetic terms to be invariant, we must make a specific
choice for the rephasing of ϕ3 and ϕ4, as well as for δ3. This
results in the following transformations:

ϕ3;4 → −ϕ3;4

A1;2;6;7
μ → −A1;2;6;7

μ ð55Þ

We summarize the charges of the physical states under
the Z2 × Z0

2 × Z00
2 symmetries in Table I. A minus sign in

the table represents multiplying the field by −1 under the
symmetry.
From these charges, we can identify the expected DM

species in this model. From the charges in Table I, we
expect a minimum of three stable DM species and a
maximum of seven DM species. Because the mass degen-
eracies, mA10 ¼ mA20 and mA40 ¼ mA50 , put restrictions on
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which decays are kinematically allowed, the actual mini-
mum number of stable DM species is 4.

B. Theoretical constraints on
Lagrangian parameters

The hidden gauged SU(3) model has numerous param-
eters. Much of the parameter space can be excluded by
theoretical consistency of the scalar potential and by
experimental measurements. In the following subsections,
we lay out the details of the theoretical constraints.

1. Unitarity

The scalar couplings in the potential can be bounded by
perturbative unitarity of the 2 → 2 scalar field and vector
boson scattering amplitudes.
The partial wave amplitudes, aJ, are related to the matrix

element of the process, M, by

M ¼ 16π
X
J

ð2J þ 1ÞaJPJðcos θÞ; ð56Þ

where J is the (orbital) angular momentum and PJðcos θÞ
are the Legendre polynomials. Perturbative unitarity
requires that the zeroth partial wave amplitude, a0, satisfies
ja0j ≤ 1 or jRea0j ≤ 1

2
. Because the 2 → 2 scalar field

scattering amplitudes are real at tree level, we adopt the
second, more stringent constraint. We will use this to
constrain the magnitudes of the scalar quartic couplings.
We work in the high energy limit where only four-point

diagrams contribute to 2 → 2 scalar scattering since all
diagrams involving scalar propagators are suppressed by
the square of the collision energy. Thus, the dimensionful
couplingsm2

H,m11, and m22 are not constrained directly by
perturbative unitarity. In the high energy limit, it is valid to
use the Goldstone bosons as the physical d.o.f. instead of
the longitudinally polarized vector bosons. We neglect
scattering processes involving transversely polarized gauge
bosons and fermions.
Under these conditions, only the zeroth partial wave

amplitude contributes to M resulting in the constraint

jRe a0j < 1
2
being equivalent to jMj < 8π. To obtain a

minimal list of constraints, we must ensure that all the
eigenvalues of the coupled-channel scattering matrix M,
which includes each possible combination of two scalar
fields in the initial and final states, satisfy this constraint.
We include a symmetry factor of 1=

ffiffiffi
2

p
for each pair of

identical particles in the initial or final states.
We use the fields in the form used in Eq. (33). This leads

to a large 120 × 120 dimension scattering matrix. However,
the part of the scalar potential that leads to the quartic
interactions obeys nineZ2 discrete symmetries which bring
the matrix M into block diagonal form, which greatly
simplifies the problem. In a 2 → 2 scattering process, the
initial and final states must have the same charges under
these Z2 symmetries. The charges we assign for the scalar
fields that leave the potential invariant under these sym-
metries are given in Table II. We can understand the origins
of these charges by examining the various terms in the
potential. The first four symmetries arise because the
doublet, H, only appears as jHj2 ¼ 1

2
ððϕH

1;rÞ2 þ ðϕH
1;IÞ2þ

ðϕH
2;rÞ2 þ ðϕH

2;IÞ2Þ, so changing the sign of any one of the
fields does not change the term. The fifth through seventh
symmetries can be understood by looking at the quadratic
terms involving the triplets which appear in the potential,
namely, jΦ1j2, jΦ2j2, and Φ†

1Φ2. From this, we see that
there are never any terms which multiply fields from
different scalar triplet rows. The eighth symmetry is related
to the extra Z2 symmetry given in Eq. (26) that we imposed
on the potential. Finally, the last symmetry comes from
taking the complex conjugate of the potential. The resulting
constraints are given by

TABLE I. Charges of the physical states under theZ2×Z0
2×Z00

2

symmetry.

Physical states Z2 × Z0
2 × Z00

2

h1, h2, h3 ðþ;þ;þÞ
H, A70

μ ðþ;þ;−Þ
A30
μ , A80

μ ðþ;−;þÞ
A50
μ ð−;þ;þÞ

A40
μ ð−;−;þÞ

A20
μ ð−;þ;−Þ

χ, A60
μ ðþ;−;−Þ

A10
μ ð−;−;−Þ

TABLE II. Charges of the scalar gauge eigenstates under
the nine global Z2 symmetries of the quartic part of the scalar
potential.

Fields Z2 Charges

ϕH
1;r − þ þ þ þ þ þ þ þ

ϕH
1;i þ − þ þ þ þ þ þ −

ϕH
2;r þ þ − þ þ þ þ þ þ

ϕH
2;i þ þ þ − þ þ þ þ −

ϕ1
1;r þ þ þ þ − þ þ − þ

ϕ1
1;i þ þ þ þ − þ þ − −

ϕ1
2;r þ þ þ þ þ − þ − þ

ϕ1
2;i þ þ þ þ þ − þ − −

ϕ1
3;r þ þ þ þ þ þ − − þ

ϕ1
3;i þ þ þ þ þ þ − − −

ϕ2
1;r þ þ þ þ − þ þ þ þ

ϕ2
1;i þ þ þ þ − þ þ þ −

ϕ2
2;r þ þ þ þ þ − þ þ þ

ϕ2
2;i þ þ þ þ þ − þ þ −

ϕ2
3;r þ þ þ þ þ þ − þ þ

ϕ2
3;i þ þ þ þ þ þ − þ −
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jλHj ≤ 8π; ð57Þ

jλH11j ≤ 8π; ð58Þ

jλH22j ≤ 8π; ð59Þ

jλ3 − λ4j ≤ 8π; ð60Þ
jλ3 þ λ4j ≤ 8π; ð61Þ

jλ3 − λ5j ≤ 8π; ð62Þ

jλ3 þ λ5j ≤ 8π; ð63Þ

jλ3 þ 3λ4 − 4λ5j ≤ 8π; ð64Þ

jλ3 þ 3λ4 þ 4λ5j ≤ 8π; ð65Þ
���λ1 þ λ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ24

q ��� ≤ 4π; ð66Þ
���λ1 þ λ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ24

q ��� ≤ 4π; ð67Þ
���λ1 þ λ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ25

q ��� ≤ 4π; ð68Þ

���λ1 þ λ2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ25

q ��� ≤ 4π; ð69Þ

jRootsðPðzÞÞj ≤ 8π; ð70Þ

where

PðzÞ ¼ z3 − 2z2ð4λ1 þ 4λ2 þ 3λHÞ
− 4zðð3λ3 þ λ4Þ2 − 12ðλ1 þ λ2ÞλH
− 16λ1λ2 þ 6λ2H11 þ 6λ2H22Þ
− 24ð−ð3λ3 þ λ4Þ2λH þ 16λ1λ2λH − 8λ2λ

2
H11Þ

− 8λ1λ
2
H22 þ 4ð3λ3 þ λ4ÞλH11λH22Þ: ð71Þ

This last polynomial comes from finding the eigenvalues of
the 3 by 3 matrix:

PðzÞ ¼ det

0
B@

8λ1 − z 2ð3λ3 þ λ4Þ
ffiffiffiffiffi
24

p
λH11

2ð3λ3 þ λ4Þ 8λ2 − z
ffiffiffiffiffi
24

p
λH22ffiffiffiffiffi

24
p

λH11

ffiffiffiffiffi
24

p
λH22 6λH − z

1
CA:

The bounds from Eq. (70) can be translated into the fol-
lowing bounds using the same technique used in Ref. [48]:

4π ≥
���2λ1 þ 2λ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðλ1 − λ2Þ2 þ ð3λ3 þ λ4Þ2

q ���;
4π ≥

���2λ1 þ 2λ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðλ1 − λ2Þ2 þ ð3λ3 þ λ4Þ2

q ���;
λH <

4π

3
þ 4ðð3λ1 þ λ4ÞλH11λH22 þ 2λ2H11ðπ − λ2Þ þ 2λ2H22ðπ − λ1ÞÞ

ð3λ1 þ λ4Þ2 − 16ðπ − λ1Þðπ − λ2Þ
;

λH > −
4π

3
þ 4ðð3λ1 þ λ4ÞλH11λH22 þ 2λ2H11ð−π − λ2Þ þ 2λ2H22ð−π − λ1ÞÞ

ð3λ1 þ λ4Þ2 − 16ð−π − λ1Þð−π − λ2Þ
:

2. Scalar potential bounded from below

We next study the constraints on the scalar couplings by
requiring the potential to be bounded from below. The
constraints that must be satisfied at tree level for the scalar
potential to be bounded from below can be determined by
only considering the quartic terms of the potential because
these dominate at large field values. We follow the
approach of Refs. [48,49]. First, we make the following
definitions:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHj2 þ jΦ1j2 þ jΦ2j2

q
; ð72Þ

r2 cos2 γ1 ¼ jHj2; ð73Þ

r2 cos2 γ2 sin2 γ1 ¼ jΦ1j2; ð74Þ

r2 sin2 γ2 sin2 γ1 ¼ jΦ2j2; ð75Þ

ζ ¼ jΦ†
1Φ2j2

jΦ1j2jΦ2j2
; ð76Þ

ω ¼ ðΦ†
1Φ2Þ2 þ ðΦ†

2Φ1Þ2
2jΦ1j2jΦ2j2

: ð77Þ

The parameters ζ and ω are bounded by

ζ ∈ ½0; 1�; ð78Þ

ω ∈ ½−1; 1�: ð79Þ

Making these substitutions, we can write the quartic part of
the potential as

MULTICOMPONENT DARK MATTER FROM A HIDDEN … PHYS. REV. D 99, 076008 (2019)

076008-11



V4 ¼
r4

ð1þ tan2γ2Þ2ð1þ tan2γ1Þ2
xTAy; ð80Þ

where

x ¼

0
B@

1

tan2γ2
tan4γ2

1
CA; y ¼

0
B@

1

tan2γ1
tan4γ1

1
CA; ð81Þ

and

A ¼ 1

2

0
B@

λH λH11 λ1

2λH λH11 þ λH22 2ðλ3 þ ζλ4 þ ωλ5Þ
λH λH22 λ2

1
CA: ð82Þ

The fraction in Eq. (80) is always positive and grows with
the overall field excursion r. The xTAy term in Eq. (80) can
be positive or negative; we require it to be positive to ensure
that the potential is bounded from below. This term can be
expressed as a biquadratic in tan γ2 with coefficients being
other biquadratics in tan γ1. A biquadratic of the form aþ
bz2 þ cz4 will be positive for all values of z if the following
conditions are satisfied:

a > 0; c > 0; and bþ 2
ffiffiffiffiffi
ac

p
> 0: ð83Þ

This provides us with the following constraints:

λH > 0; ð84Þ

λ1 > 0; ð85Þ

λ2 > 0; ð86Þ

λH11 þ 2
ffiffiffiffiffiffiffiffiffiffi
λ1λH

p
> 0; ð87Þ

λH22 þ 2
ffiffiffiffiffiffiffiffiffiffi
λ2λH

p
> 0; ð88Þ

λ3 þ ζλ4 þ ωλ5 þ
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0: ð89Þ

This last bound can be split up into the different cases

λ3 þ
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
>

8>>><
>>>:

λ5 for λ4 > 0; λ5 > 0;

−λ4 þ λ5 for λ4 < 0; λ5 > 0;

−λ5 for λ4 > 0; λ5 < 0;

−λ4 − λ5 for λ4 < 0; λ5 < 0:

ð90Þ

3. Avoiding alternative minima

In this section, we discuss the structure of the vacuum of
the model to confirm that the choice of vevs corresponds to
the absolute minimum of the potential. First, we write the
potential in terms of the vevs:

Vðv; v1; v2; v3Þ ¼
1

2
ðm2

Hv
2 þm2

11v
2
1 þm2

22ðv22 þ v23ÞÞ

þ 1

8
ðλHv4 þ λ1v41 þ λ2ðv42 þ v43ÞÞ

þ 1

4
ðλH11v21 þ λH22ðv22 þ v23ÞÞv2

þ 1

4
ðλ3v21v22 þ λ2v22v

2
3 þ ðλ3 þ λ4 þ λ5Þv21v23Þ: ð91Þ

Minimizing the potential leads to the following constraints:

∂V
∂v ¼ 0 ¼ vð2m2

H þ λHv2 þ λH11v21 þ λH22ðv22 þ v23ÞÞ; ð92Þ

∂V
∂v1 ¼ 0 ¼ v1ð2m2

11 þ λH11v2 þ λ1v21 þ λ3v22 þ ðλ3 þ λ4 þ λ5Þv23Þ; ð93Þ

∂V
∂v2 ¼ 0 ¼ v2ð2m2

22 þ λH22v2 þ λ3v21 þ λ2ðv22 þ v23ÞÞ; ð94Þ

∂V
∂v3 ¼ 0 ¼ v3ð2m2

22 þ λH22v2 þ ðλ3 þ λ4 þ λ5Þv21 þ λ2ðv22 þ v23ÞÞ: ð95Þ

ALEXANDRE POULIN and STEPHEN GODFREY PHYS. REV. D 99, 076008 (2019)

076008-12



Note that v2 ∂V
∂v3 ¼ v3 ∂V

∂v2 þ ðλ4 þ λ5Þv21v3. From this, we
conclude that to have a consistent vacuum configuration
requires that ðλ4 þ λ5Þv21v3 ¼ 0. Since we need v1 ≠ 0 to
fully break the hidden SU(3) and setting λ4 ¼ −λ5 is an
unmotivated tuned choice, we will assume that v3 ¼ 0.
Given a collection of input parameters, we wish to ensure
that we are in the deepest minima. From the inputs, we can
obtain values for the scalar couplings, the vevs, and g̃, but
not m2

H, m
2
11, and m2

22. We use Eq. (92) to (95) to solve for
these parameters, which ensures that our choice of param-
eters is one of the extrema of the potential. We then find all
possible values for ðv; v1; v2; v3Þ which satisfy Eqs. (92)–
(95) and check to see which values lead to the smallest
value of the potential. If the values of the vevs with which
we started do not lead to the deepest minima, we must reject
that point.

V. RESULTS AND DISCUSSION FOR THE
HIDDEN GAUGED SU(3) MODEL

The hidden gauged SU(3) model has too many param-
eters to make a full scan of the parameter space practical.
Therefore, we will explore the implications of three
representative benchmark points. The parameter values
for benchmark point A were chosen to explore the region
where one of the DM species could annihilate to SM
particles through a Higgs resonance. Benchmark point B
was chosen to explore a region where no such resonant
effects would occur. Finally, benchmark point C was
chosen to explore the region where v1 and v2 have similar
values and where there are many more stable DM particles.
We will vary the mass of one of the DM species and find

the gauge coupling g̃ which results in the correct relic
density. We vary the mass of χ, H, and A10 for benchmark
points A, B, and C, respectively. Some of the hidden sector
particles are stable because symmetry respecting decays are
kinematically forbidden. Thus, benchmark points A and B
have four stable DM species, while benchmark point C has

seven DM species. Our purpose is to study some of the
features that arise from having many stable DM species.
The benchmark points we consider are defined in Table III.
For all the benchmark points, we take θ2 ¼ 0 and combine
θ1 and θ3 into a single angle θ, which we set to sin θ ¼ 0.1,
which is consistent with experimental constraints coming
from the SM Higgs couplings [31,47]. We also ignore any
unstable dark-sector species by assuming that they would
have decayed out long before freeze-out occurred.

A. DM relic density from the hidden
gauged SU(3) model

When varying the mass of one of the DM species for a
benchmark point, we used a binary search to find a value of
the gauge coupling which would result in the relic density
lying in the measured range of ΩCDMh2 ¼ 0.1186� 0.002
[45]. Figure 3 shows the resulting values for the coupling as
a function of the DMmass for each benchmark point. If the
required value of the coupling fell outside the unitarity
bound of

ffiffiffiffiffiffi
4π

p
, we did not consider it. This was the case for

benchmark point A for a range of mχ masses above the
threshold for annihilation via the Higgs boson resonance as
can be seen by the lack of points between half the Higgs
mass and about 90 GeV.
Another insightful variable is the ratio of the relic

density of vector particles to the total relic density. This
is defined by

fA ¼
P

iΩAi 0

Ωtot
: ð96Þ

This variable shows how the composition of the DM
changes as we vary parameters such as the gauge coupling.
It is very useful when looking at direct and indirect
detection since the scalar and vector particles interact very
differently with detectors. Figure 3 shows how fA varies for
each benchmark point.

B. DM direct detection

We now examine the constraints obtained from direct
detection measurements using the latest results from the
XENON1T experiment [50,51]. Because there are multiple
DM species that can each interact differently with the
detector, we cannot simply calculate a cross section and
compare it with the reported experimental bound. Instead,
we must find the predicted number of events that the
experiment would have seen and compare that to what
the experiment observed. The theoretical rate of events is
given by

dR
dER

¼
X
i

fi

�
dR
dER

�
i
; ð97Þ

where fi ¼ Ωi
Ωtot

and [15]

TABLE III. Input parameters for the benchmark points. mχ ,
mH, andmA1 0 were allowed to vary for benchmark point A, B, and
C, respectively, along with the gauge coupling, which was varied
to obtain the correct relic density. In all cases, we take the mixing
in the scalar sector to only be between h1 and h3 with a mixing
angle of sin θ ¼ 0.1. We also setmh1 equal to the SMHiggs mass.

Parameters Scenarios A Scenarios B Scenarios C

mA1 0 300 GeV 300 GeV 200–500 GeV
mh2 2500 GeV 2500 GeV 600 GeV
mh3 650 GeV 650 GeV 225 GeV
mH 1000 GeV 400–600 GeV 250 GeV
mχ 50–200 GeV 1000 GeV 250 GeV
v1=v2 10 10 1.2
DM χ, A10, A20, A30 H, A10, A20, A30 H, χ, A10, A20,

A30, A40, A50
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�
dR
dER

�
i
¼ σ0iNρ

loc
i

2μ2iNmi
F2
i ðERÞIiðERÞ: ð98Þ

Here, ER is the nuclear recoil energy in the detector; σ0iN is
the DM nucleus cross section at zero momentum transfer;
ρloci is the local DM density for the ith species; μiN ¼
mimN=ðmi þmNÞ is the reduced mass of the nucleus DM
system; FiðERÞ is a nuclear form factor; and IiðERÞ is the
mean of the inverse of the speed, hv−1i i, of the ith species in
the DM halo for a givenER. Explicit formulas for IiðERÞ and
FiðERÞ can be found in Ref. [15]. Once the differential rate
is calculated, we integrate it over the energy range appro-
priate for the experiment and multiply the result by an
efficiency factor which could in principle be different for
each species. In the case for XENON1T, the energy range for
single nuclear recoil events is 4.9 to 40.9 keV, and we

assume a detection efficiency of 89%, which for simplicity
we took to be the same for all DM species and recoil
energies.
For the parameter values to be allowed, the calculated

theoretical rate should fall below the experimental limit. At
a confidence level of 1 − β, a background rate νb, and a
total of nobs observed events, we can find the upper limit on
the signal rate νups by numerically solving

β ¼ e−ðν
up
s þνbÞPnobs

n¼0
ðνups þνbÞn

n!

e−νb
Pnobs

n¼0

νnb
n!

: ð99Þ

For XENON1T [50,51], we use νb ¼ 735 and nobs ¼ 739.
To compare the experimental rate to the theoretical pre-
diction, the experimental rate needs to be given in
terms of events per unit time per unit mass, which is

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Constraints on the allowed SU(3) gauge coupling values and the resulting ratio of the vector relic density to total relic density
as a function of the DM mass. The left column shows values of the gauge coupling required so that the relic density is consistent with
ΩCDMh2 ¼ 0.1186� 0.002, while the right column shows the fraction of DM that consists of vector particles. The dashed lines in the
left column show the unitarity bound for g̃ which is

ffiffiffiffiffi
4π

p
, and the dashed lines in the right column show the maximum value that fA can

take, which is 1. Plots (a) and (b) show the results for scenario A, plots (c) and (d) show the results for scenario B, and plots (e) and
(f) show the results for scenario C.
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achieved by dividing the experimental values by the
exposure. For XENON1T, this is 1.0 t·yr (ton-year). At
the 95% confidence level, the resulting limit on the rate is
1.58 × 10−4 kg−1 day−1 [51].
For the cross section, our benchmark points have two

mediating particles between the dark and visible sectors,
namely, h1 and h3. The cross section for DM species i and a
nucleon is thus given by

σ0in ¼
f2N
4π

�
giih1cθ
m2

h1

þ giih3sθ
m2

h3

�
2 m2

n

ðmn þmiÞ2v2
; ð100Þ

where cθ and sθ are cos θ and sin θ, respectively; fN is the
SM Higgs effective coupling to nucleons, which is approx-
imately 0.30� 0.03 [52];mn is the nucleon mass which we
take to be 0.93895 GeV; mi is the mass of the DM species
in question; v is the SM vev; and giih1 and giih3 are the
couplings between the DM and h1 and h3, respectively. In
the case of scalar DM, we take the Feynman rule to be of
the form −ig, and in the case of vector DM, the Feynman
rule is of the form −iggμν. To transform Eq. (100) to a cross
section with the entire nucleus, we use [15]

σ0iN ¼ σ0in
A2μ2iN
μ2in

; ð101Þ

where A is the atomic number of the nucleus, μiN is the
reduced mass between the nucleus and the DM particle, and
μin is the reduced mass between the nucleon and the DM
particle. The scalar DM particles ( χ and H) interact weakly
with the nuclear target. This is because the scalar-h1
coupling is weak due to our choice of λH11 ¼ 0 and λH22

to be small and h3 interacts with nucleons via its SM Higgs
component which is small (recall sin θ ¼ 0.1). As a conse-
quence, when DM is mainly scalar, it is weakly constrained
by direct detection. The results for each benchmark point are
shown in Fig. 4. Again, the gap between half the Higgs mass
and roughly 90 GeV for benchmark point A is because the
value of the coupling that gives the correct relic abundance is
not allowed because it violates the unitarity constraint. In
Fig. 4(a), we see that there is an allowed region at high mass
and in the Higgs resonance region. In Fig. 4(b), the gauge
coupling is quite small and has a large fraction of scalar DM,
so direct detection does not impose any significant con-
straints on benchmark point B. In Fig. 4(c), we see that direct
detection excludes most of the mass region due to the large
vector fraction and large gauge coupling. There is, however,
the tip of a resonance which allows for efficient annihilation
of vectors around 340 GeV, which remains allowed. This
corresponds to when the mass of A30 is just below 300 GeV
and where there is significant annihilation of A30 through the
600 GeV h2.
We see that fA is nontrivial in each case; that is to say, it

is not close to being exactly 1 or exactly 0. This nontrivial
behavior tells us that it is important to consider all the

relevant particles when doing the freeze-out calculation, not
just the lightest or most weakly coupled. In the cases where
a resonance effect is present, it is particularly important to
be precise, as these regions require quite different couplings
constants to obtain the observed relic density.

C. DM indirect detection

Dwarf spheroidal satellite galaxies (dSphs) are typically
DM dominated and so are a good place to study DM [53,54].
The Fermi Collaboration [55] has acquired six years of data
from observing 15 dSphs and has released bounds for
weakly interacting massive particle DM annihilation based
on the observed gamma ray flux. They considered the
following representative final states for the DM annihilation:
eþe−, μþμ−, τþτ−, uū, bb̄, and WþW− [55].

(a)

(b)

(c)

FIG. 4. The direct detection event rate as a function of the
DM mass. Plots (a), (b), and (c) show the results for benchmark
points A, B and C, respectively. The allowed points are below
the dashed line at 1.58 × 10−4 kg−1 day−1. In all the cases, the
regions where the coupling constant g̃ was large to give the
allowed relic density are ruled out by these direct detection
constraints. These are also the regions where a significant portion
of the DM is composed of scalars.
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We translate these bounds into constraints on our model
by considering the cross sections of pairs of identical DM
particles into the above final states scaled by their fraction
squared and their branching ratio. Explicitly, we will
compare

σscaled ¼
�

Ωi

ΩDM

�
2 ðσii→SMþSMÞ2

σtotii
; ð102Þ

where σii→SMþSM is the cross section from two identical
DM particles to one of the SM final states considered by the
Fermi Collaboration and σtotii is the sum of the cross sections
to all possible final states. Of all the final states considered by

Fermi, only the WþW− final state has the potential to
provide useful constraints as the scaled cross sections to the
other final states are orders of magnitude below the Fermi
constraints. This is because the cross sections to these
fermions are proportional to the mass squared of the fermion,
which are small compared to the W mass squared. Figure 5
shows the results for each of the benchmark points. In all
cases, the scalar DM ends up having a significantly larger
scaled cross section to WþW− than any vector DM because
the vector DM annihilates preferentially to other DM
particles. We see that, although the constraint is close,
indirect detection does not impose any constraints. For
benchmark point A, the experimental limits are quite close
to the theoretical predictions, while for benchmark points B
and C, the experimental limits are about an order of
magnitude above the theoretical predictions. Thus, in all
three cases, there is the potential to rule out large regions of
parameter space with moderate improvements to the exper-
imental bounds. It should also be noted that a more
sophisticated analysis that considers the resulting spectrum
from multiple DM species coannihilating to the same final
state could result in more stringent constraints.
These results lead to the interesting observation that if

the DM is dominated by vector species then it will be more
easily detected in direct detection experiments, while if the
DM is dominated by scalar species then it would more
likely to be detected by indirect detection experiments. This
could lead to an observation in one type of experiment, but
no signal in the other, and emphasizes the importance of the
complementarity of multiple types of searches. Arcadi et al.
[31] and many others have also pointed this out, e.g.,
Refs. [1–5,15,20,35].
To end this section, we note that the constraints used are

conservative. We only considered constraints from the
annihilation of one species at a time. This bound could
be improved with a more detailed study of the gamma-ray
spectrum [56,57] or cosmic-ray spectra [58] resulting from
multiple species annihilating or coannihilating and compar-
ing this to the observed spectrum from dSphs [23].

VI. SUMMARY AND CONCLUSIONS

This paper reported a study of multispecies DM, in
particular, the hidden gauged SU(3) model. We calculated
the DM relic density to constrain the parameters of the
model. Using the resulting allowed values of the param-
eters, we studied the prospects for observing multispecies
DM in direct detection and indirect detection measure-
ments. Before examining the hidden gauged SU(3) model,
we studied the relic abundance of simplified scenarios to
gain some insight into how adding different types of
interactions between the DM species would affect the relic
abundance. We then examined a specific model, the hidden
gauged SU(3) model of Arcadi et al. [31]. With many DM
particles, it was not possible to implement a detailed scan of
the parameter space. Instead, we studied three representa-
tive benchmark points. In all cases, we fixed the gauge

(a)

(b)

(c)

FIG. 5. Indirect detection constraints for the WþW− final state.
(a), (b), and (c) show the results for benchmark points A, B, and C,
respectively. The line colors are as follows: red for χχ → WþW−;
blue for HH → WþW−; green for A10A10 → WþW− or A20A20 →
WþW−, which have identical results; purple for A30A30 → WþW−;
and orange for A40A40 → WþW− or A50A50 → WþW−, which have
identical results. The dashed lines are the constraints from Fermi
[55], while the solid lines are the predictions of the model. Note
that the purple and green dashed lines are almost superimposed
because they have very similar masses leading to similar con-
straints. We also note that the solid orange line does not appear
because it is too small.
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coupling to give the observed relic density. When the relic
density was dominated by vector particles, we found that
it could more easily be constrained by direct detection
experiments, while if the relic abundance were dominated
by scalars, indirect detection would have the potential to
be more constraining in the future, even with conservative
bounds. This reinforces the need to search for DM with a
broad experimental program. An important result was that
for the different benchmark points the required value for
the gauge coupling could vary quite significantly based on
the choice of parameter values. This can lead to signifi-
cantly different relic abundances among particle species,
which in turn changes the detection prospects of a
particular parameter point. We also saw that for each
benchmark point the ratios of vectors to scalars were never
dominated by either scalars or vectors and that the DM
consisted of some nontrivial mixture of both. This shows
the importance of not only including the lightest stable
particle in the freeze-out calculation but including all
relevant particles.
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APPENDIX: DETAILS OF THE λ4 = − λ5 CASE

For completeness, we give the details of the λ4 ¼ −λ5
case below. In this case, the unitary gauge is given by

H ¼ 1ffiffiffi
2

p
�

0

hþ v

�
;

Φ1 ¼
1ffiffiffi
2

p

0
BB@

0
v1v2φ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv2
1
þv2

2
Þðv2

1
þv2

2
þv2

3
Þ

p − v3φ2ffiffiffiffiffiffiffiffiffi
v2
1
þv2

3

p − i v2φ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1
þv2

2
þv2

3

p

v1 þ φ4 − i v3φ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1
þv2

2
þv2

3

p

1
CCA; Φ2 ¼

1ffiffiffi
2

p

0
BBBBB@

0

v2 þ v1φ2ffiffiffiffiffiffiffiffiffi
v2
1
þv2

3

p − v2v3φ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2

1
þv2

2
Þðv2

1
þv2

2
þv2

3
Þ

p

v3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1
þv2

3

v2
1
þv2

2
þv2

3

r
φ3 þ i v1φ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
1
þv2

2
þv2

3

p

1
CCCCCA: ðA1Þ

We write down the scalar mass matrix with λ4 ¼ −λ5 in the form L ⊃ 1
2
ΦTm2

scalarΦ, where ΦT ¼ ðh;φ4;φ2;φ3;φ1Þ are the
scalars in the model and where
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This case also results in more mixing between the gauge bosons. They are described by the following mass terms:

L ⊃
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We note that the mixing between A1
μ − A4

μ and A2
μ − A5

μ pairs is the same and vanishes when v3 ¼ 0. Similarly, A6
μ becomes

an eigenstate degenerate with A7
μ when v3 ¼ 0; however, there is still mixing between A3

μ and A8
μ.
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