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We show that the decoherence phenomena applied to the neutrino system could lead to an observable
breaking of the fundamental CPT symmetry. We require specific textures of nondiagonal decoherence
matrices, with nonzero δCP, for making such observations. Using the information from the CPT conjugate
channels νμ → νμ and ν̄μ → ν̄μ and their corresponding backgrounds, we have estimated the sensitivity of
the DUNE experiment for testing CPT under the previous conditions. Four scenarios for energy-dependent
decoherence parameters, ΓEν

¼ Γ × ðEν=GeVÞn, n ¼ −1, 0, 1, and 2, are taken into account, and for most

of them, DUNE is able to achieve a 5σ discovery potential, having Γ in Oð10−23 GeVÞ for δCP ¼ 3π=2.
Meanwhile, for δCP ¼ π=2, we reach 3σ for Γ in Oð10−24 GeVÞ.
DOI: 10.1103/PhysRevD.99.075022

I. INTRODUCTION

Neutrino oscillation is provoked by the existence of non-
zero neutrino masses allied with the mismatch between the
corresponding eigenstates and the neutrino flavor eigenstates.
This phenomenon is supported by overwhelming experimen-
tal evidence which spans more than two decades [1–10].
Notwithstanding neutrino oscillation being well established,
the coexistence of new physics as a subleading effect of it has
not been yet ruled out. In some occasions, this new physics
brings about the option of breaking fundamental laws of
nature—for instance, the violation of the equivalence princi-
ple [11–13] or the violation of Lorentz invariance [14–16].
The latter is described within the Lagrangian of the Standard
Model extension (SME) [17], where one can find terms that
explicitly violate the combined action of the conjugation (C),
the parity-inversion (P), and the time-inversion (T) sym-
metries, known in short as theCPT symmetry. This combined
symmetry holds for a local, Lorentz-invariant, and unitary
quantum field theory. There has been a lot of work on testing
CPT violation (CPTV) on the side of the SME [18–21]. We
must remark that there is CPTV in the neutrino oscillation in
matter, originated by the unequal number of particles and
antiparticles in ordinary matter [22].
On the other hand, there is a set of theoretical hypotheses

such as strings, branes [23,24], and quantum gravity [25],
whose effects can be encoded behind an omnipresent
environment that could be weakly interacting with neutrinos

[26,27]. This type of interaction is written according to the
open system formalism and has as a typical trait (in its
simplistic version) the appearance of decoherence (damping)
factors exp−Γt within the neutrino oscillation probabilities
[28–35]. Here arises another type of CPTV rooted in the
impossibility of defining a CPT operator by virtue of the
evolution from pure states to mixed states, caused by
decoherence [36,37]. In the open system approach, the
effects of the environment are enclosed, in a model-
independent way, in the so-called dissipative or decoherence
matrix (after tracing out the environment’s degrees of
freedom). Thereby, it is uncertain to claim that this type
of CPTV is genuine—i.e., that there is a fundamental arrow
of time—or that it is only an apparent CPTV, in view of our
lack of knowledge of the complete system. One way or
another, an eventual observation of CPTV will shake our
current understanding of fundamental physics.
In this paper, we will focus on different nondiagonal

textures of the dissipative matrix, paying special attention
to those which can produce an observable nonzero CPTV.
An equal response of the environment for neutrinos and
antineutrinos will be one of our working hypotheses. This
stands in contrast to the hypothesis used, for instance, in
Ref. [31]. We will also consider the possibility that the
parameters of the dissipative matrix can be energy depen-
dent [38,39]. We will use the DUNE experiment [40,41] as
the scenario for assessing how significant a CPTV sig-
nature caused by quantum decoherence would be.

II. THEORETICAL APPROACH

A. Neutrino as open quantum system

Our aim is to treat the neutrino as a subsystem interacting,
weakly, with a large (unknown) environment. In situations of
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this kind, the linear evolution of the reduced density matrix
of the subsystem is represented by means of the Lindblad
master equation [26,27]:

∂ρðtÞ
∂t ¼ −i½H; ρðtÞ� þD½ρðtÞ�; ð1Þ

where ρðtÞ is the neutrino density matrix, H is the
Hamiltonian of the neutrino subsystem, and D½ρðtÞ� is the
dissipative term where the decoherence phenomena is
encoded. This dissipative factor is written as follows:

D½ρðtÞ� ¼ 1

2

X
j

ð½Aj; ρðtÞA†
j � þ ½AjρðtÞ; A†

j �Þ: ð2Þ

Considering a three-level system, we can expand the
operators in Eq. (1) in the basis of the Gell-Mann matrices
from the SUð3Þ group plus the identity matrix:

ρ ¼
X

ρμtμ; H ¼
X

hμtμ; Aj ¼
X

ajμtμ; ð3Þ

where μ is running from 0 to 8, with t0 being the identity
matrix and tk being the Gell-Mann matrices (k ¼ 1;…; 8),
which satisfy ½ta; tb� ¼ i

P
cfabctc, where fabc are the struc-

ture constants of SUð3Þ. Imposing the von Neumman
entropy, which increases with time, the Hermiticity of the
Âj is assured, having, as a consequence, that the dissipative
matrix can be expressed as [30]

Dkj ¼
1

2

X
l;m;n

ðanlÞfknmfmlj; anl ¼ a⃗n:a⃗l; ð4Þ

with the matrixD≡Dkj being symmetric, with components
Dμ0 ¼ D0μ ¼ 0, and a⃗r ¼ fa1r ; a2r ;…; a8rg. The complete
positivity condition requires that the eigenvalues of the
mixing matrix ρðtÞ be positive at any time; this is achieved
by demanding that the matrix A≡ anl be positive [26,27].
The scalar product structure present in the elements Dkj

causes them to respect the Cauchy-Schwartz inequalities.
Gathering the conservation of probability to all that we have
said, we have that the evolution equation of ρðtÞ is given by

_ρ0 ¼ 0; _ρk ¼ ðHkj þDkjÞρj ¼ Mkjρj; ð5Þ

where Hkj ¼
P

ihifijk. The solution of Eq. (5) written in
matricial form is

ϱðtÞ ¼ eMtϱð0Þ; ð6Þ

where ϱ is an eight-column vector composed by ρk and
M≡Mkj. Therefore, we can obtain a general expression for
the neutrino oscillation probability να → νβ:

Pνα→νβ ¼
1

3
þ 1

2
ðϱβÞTϱαðtÞ ¼ 1

3
þ 1

2

X
i;j

ρβi ρ
α
j ½eMt�ij: ð7Þ

Since in our analytical approach we will use the vacuum
case, the ραi ’s are already defined, and they are given by

ρα0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
;

ρα1 ¼ 2ReðU�
α1Uα2Þ;

ρα2 ¼ −2 ImðU�
α1Uα2Þ;

ρα3 ¼ jUα1j2 − jUα2j2;
ρα4 ¼ 2ReðU�

α1Uα3Þ;
ρα5 ¼ −2 ImðU�

α1Uα3Þ;
ρα6 ¼ 2ReðU�

α2Uα3Þ;
ρα7 ¼ −2 ImðU�

α2Uα3Þ;

ρα8 ¼
1ffiffiffi
3

p ðjUα1j2 þ jUα2j2 − 2jUα3j2Þ; ð8Þ

where Uαj refers to an element of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [42,43]. If we want to
solve Eq. (7) for the antineutrino case, it is enough to
make Uαj → U�

αj.

B. CPT violation and quantum decoherence

We will test the CPT symmetry in the context of DUNE
using the simulated total rates associated with the νμ and the
ν̄μ survival channels, where the matter effects are unim-
portant. The latter fact implies that the vacuum probability
formulas for oscillation (plus decoherence) are going to be
sufficient for understanding the corresponding features of
CPTVeffects. Thus, all the formulas in this section will be
developed under the vacuum framework. Before starting, it
is of the utmost importance to remark that the decoherence
phenomena entails the transition from pure to mixed states,
which implies that the time-reversal operation is, as itself,
meaningless for this situation [36]. The tool for revealing
these implicit CPTVeffects is the difference between the νμ
and ν̄μ survival probability channels, which, written for a
generic flavor να, is

ΔPCPT ¼ Pνα→να − Pν̄α→ν̄α : ð9Þ

With the aim of simplifying the analytical form of the latter
expression, we work under three assumptions: that the
diagonal elements (damping parameters) of the dissipative
matrix D are all equal to a single parameter Γ; that the
dissipative matrix for neutrinos is equal to the correspond-
ing for antineutrinos, D ¼ D̄; and that the D matrix con-
tains no more than one nondiagonal element at the time we
study the ΔPCPT . As a general feature, we have that a
nonzero ΔPCPT is obtained when in the survival neutrino
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oscillation probability there is a term with βij (nondiagonal
term) coupled to ραi ρ

α
j that contains sin δCP; therefore, when

its corresponding antineutrino term is subtracted in order to
get ΔPCPT , they do not cancel each other because of the
flipping of the sign of sin δCP. We find that the aforemen-
tioned situation (i.e., non-null ΔPCPT) is fulfilled by 15
βij’s: those where one coefficient in the product ραi ρ

α
j is ρ

α
2 ,

ρα5 , or ρα7, and the other one is ρα1 , ρα3 , ρα4 , ρα6 , or ρα8,
summarizing in total 15 cases. The remaining βij’s do not
produce non-null ΔPCPT , given that they are not connected
with ραi ρ

α
j terms that contain sin δCP, similar to what

happens for the survival probabilities; in the pure oscil-
lation case, where there are no terms involving sin δCP,
these do not flip sign when we switch neutrinos to
antineutrinos, conserving CPT.
Based on the similarities of the structure of the form for

ΔPCPT , we can divide these 15 cases into two groups, each
group related to different set of βij ’s, which we present as
follows.

1. ΔPCPT for group 1

The ΔPCPT expression for the first group is given by

ΔPCPT ¼ βij
ðeΩβij

t − e−Ωβij
tÞ

Ωβij

ραi ρ
α
j e

−Γt; ð10Þ

where Ωβij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2ij − Δβij

2
q

, with Δβij ¼ Δm2
βij
=2E, where

E is energy and Δm2
βij

corresponds to standard mass-

squared differences of neutrino masses, according to its
indices ij (see Table I). This formula applies for nine βij’s,
and the details are given in Table I. On the other hand, in
Appendix A, as an example, we display in Eq. (A2) the
exact probability from which we can extrapolate theΔPCPT
for β12.

2. ΔPCPT for group 2

The ΔPCPT for the remaining six βij’s—β15, β24, β17,
β26, β47, and β56—is also proportional to βij, but it is rather
a cumbersome expression in comparison to the one in
Eq. (10). In fact, it is the addition of two terms, one of them
proportional to ραi ρ

α
j , and the other proportional to ραkρ

α
l .

For a given set of ij indices, there is a specific kl, with each

one of these indices associated with an specific mass-
squared difference value; for the complete details, see
Table II. The six expressions for the CPTV formula are
obtained per each pair ij; kl plus exchanging ij ↔ kl, with
all the correspondent terms associated with them. The
explicit formula is given by

ΔPCPT ¼βij
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω4−4Δ2
βij
Δ2

βkl

q

×

�
ðΩþðeΩþt−e−ΩþtÞ−Ω−ðeΩ−t−e−Ω−tÞÞραi ραj

þΔβijΔβkl

�
eΩþt−e−Ωþt

Ωþ
−
eΩ−t−e−Ω−t

Ω−

�
ραkρ

α
l

�
e−Γt;

ð11Þ

where Ω2 ¼ β2ij − Δ2
βij

− Δ2
βkl

and Ω� ¼ 1ffiffi
2

p ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω4 − 4Δ2

βij
Δ2

βkl

qr
. As in the case of group 1, the

probability for β24 is shown in Appendix A in Eq. (A3).
From there, the corresponding ΔPCPT can be extracted.

3. ΔPCPT analytical results

It is important to point out that from now on, in all the
results that we will present, ΔPCPT will be calculated for
α ¼ μ. In Fig. 1, we present ΔPCPT in two separated plots:

TABLE I. Each group of indices ði; jÞ that corresponds to one
of the nine βij’s. The ði; jÞ’s in the same row are associated with
the Δβij in the right column of the same line.

ði; jÞ Δβij

(1, 2), (2, 3), (2, 8) Δ12

(4, 5), (5, 3), (5, 8) Δ13

(6, 7), (7, 3), (7, 8) Δ23

TABLE II. The relations between the six indices ði; jÞ and
ðk; lÞ, each of them associated with its corresponding β and its
neutrino mass-squared differences.

fði; jÞ;Δβijg ↔ fðk; lÞ;Δβklg
fð1; 5Þ;Δ12g ↔ fð2; 4Þ;Δ13g
fð1; 7Þ;Δ12g ↔ fð2; 6Þ;Δ23g
fð4; 7Þ;Δ13g ↔ fð5; 6Þ;Δ23g

FIG. 1. ΔPCPT vs Eν, evaluated for Γ ¼ 10−23 GeV and
δCP ¼ 3π=2. (a) Group 1 with β28, β53, β73 ¼ Γ=

ffiffiffi
3

p
, β58,

β78 ¼ Γ=
ffiffiffi
7

p
, β12, β23, β45, β67 ¼ Γ=3. (b) Group 2 with all

β’s equal to Γ=
ffiffiffi
3

p
. The remaining parameters are given in

Table III.
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all β’s for group 1 and group 2, for neutrino energies
from 0.1 to 20 GeV, which encloses the DUNE energy
range. We have evaluated this effect in an isolated
manner per each β (i.e., considering all the rest of the
β’s to be zero), considering its maximum value, which is
obtained from the inequalities and positivity conditions
given in Appendix B, having the following results: β28,
β53, β73 ¼ Γ=

ffiffiffi
3

p
, β58, β78 ¼ Γ=

ffiffiffi
7

p
, β12, β23, β45,

β67 ¼ Γ=3, and the remaining β’s with Γ=
ffiffiffi
3

p
, where

we have taken their positive values. For all these plots,
it is also fixed that δCP ¼ 3π=2 and Γ ¼ 10−23 GeV, and
the remaining parameters are displayed in Table III. The
parameters given in Table III will be used throughout
this paper. We note for group 1 that β28 is producing the
highest amplitude for ΔPCPT in the entire energy range,
with β12 being second. In the case of group 2, β47 and
β56 give the maximum values of amplitudes of ΔPCPT
up to neutrino energies a bit less than 5 GeV.
In Fig. 2, we have four plots which show isocontour

curves of ΔPCPT at the plane Γ vs δCP: two of them
correspond to the vacuum oscillation case (top), and the
other two to the matter oscillation case (bottom). For all
plots, the neutrino energy is fixed at 2.4 GeV, keeping the
remaining parameters at the same values as those used for
Fig. 1. Two plots are for β28 (group 1) for vacuum and
matter, and the corresponding other two are for β56 (group
2). All β’s are equal to Γ=

ffiffiffi
3

p
. We have chosen these

particular β’s since they are the ones that generate the
biggest amplitudes for ΔPCPT for each group. Among the
general features, we have that other than the maximum (and
minimum) value of the ΔPCPT , the behavior of all plots is
rather equal. Another common detail is that ΔPCPT grows
with Γ until reaching a region where the maximum
amplitude is located, and then starts to decrease. Outside
the regions around the peaks, i.e., for lower and higher
values than the Γ at the peak, the ΔPCPT is zero. The
vacuum and the matter case exhibit a very similar pattern,
and there is not a qualitative difference between the plots
for β28 (group 1) and β56 (group 2). Therefore, to get a full
understanding of what happens, we can use the vacuum
formula given for group 1 in Eq. (10). Hence, from
Eq. (10), we see that ΔPCPT is suppressed for low values

of Γ, which implies low values of β28ð¼ Γ=
ffiffiffi
3

p Þ that are
directly proportional to the value of ΔPCPT . On the other
hand, ΔPCPT is reduced for higher values of Γ, given that
the latter diminishes the factor exp−Γt. From the maximi-
zation of the Eq. (10), the value of Γ at the peak can be
extracted: for β28, the peak is at Γ ∼ 1.7 × 10−22 GeV.
Similarly, if we maximize Eq. (11), we obtain the peak for
β56 at Γ ∼ 1.6 × 10−22 GeV. In general, a very reasonable
estimation for the value of Γ at the peak is obtained from
ΓL ∼ 1 (and then Γ ∼ 1=L), which for L ¼ 1300 km gives
∼1.5 × 10−22 GeV. The corresponding values of δCP ¼
π=2 and 3π=2, for β28, can be directly inferred from the
unique presence of sin δCP in the factor ρμ2ρ

μ
8; the values of

δCP for β56 are very close to π=2 and 3π=2 for similar
reasons, but they are slightly distorted due to ρμ6 being
composed by two terms, with one of them proportional to
cos δCP. In spite of this, the vacuum and matter cases look
nearly alike. We must note that the matter effects produce a
ΔPCPT ≠ 0 even in the absence of decoherence. Actually,
in the experimental (simulated) searches of CPTV that we
will present in the following sections, the CPTV, due to
matter effects, will play the role of normalization factor.

4. Decoherence parameters with energy dependency

From a more general view, the entries of the decoherence
matrix could be energy dependent; particularly, in this
paper, we will adopt this dependence as follows:

TABLE III. DUNE baseline and values for standard oscillation
parameters taken from Ref. [44].

Parameter Value

θ12 33.63°
θ13ðNHÞ 8.52°
θ23ðNHÞ 48.7°
Δm2

21 7.4 × 10−5 eV2

Δm2
31ðNHÞ 2.515 × 10−3 eV2

Baseline 1300 km

FIG. 2. Isocontour curves of ΔPCPT at the plane Γ vs δCP
evaluated for β28 ¼ Γ=

ffiffiffi
3

p
and β56 ¼ Γ=

ffiffiffi
3

p
and for a fixed

Eν ¼ 2.4 GeV. The two plots at the top correspond to the vacuum
oscillation case, while the two plots at the bottom correspond to
the matter oscillation case.
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ΓEν
¼ Γ

�
Eν

GeV

�
n
; ð12Þ

where n can be −1, 0, 1, or 2. The value n ¼ −1 is taken
because it imitates the oscillation energy dependence,
while the motivation for n ¼ 1 and n ¼ 2 can be found
in Refs. [38,39], respectively.
In Fig. 3, we studyΔPCPT for the aforementioned energy

dependences, and we set β28 ¼ Γ=
ffiffiffi
3

p
, the neutrino energy

in 2.4 GeV (the DUNE energy peak) and δCP ¼ 3π=2, for
both the vacuum and matter oscillation cases. In these
figures, we note that the energy’s dependency on Γ only
changes their values at the peak but does not affect the
amplitude of ΔPCPT . As we have discussed in Sec. II B 3,
the value at the peak satisfies approximately the relation
ΓEν

L ∼ 1, and then Γ ∼ 1=ðLEnÞ, which turns out to be
Γ ∼ f4.0; 1.5; 0.6; 0.3g × 10−22 GeV for n ¼ −1, 0, 1, and
2, respectively. As expected, we have a non-negligible
negative value of ΔPCPT when Γ goes to zero for the matter
oscillation case.

5. Optimal ΔPCPT

For maximizing ΔPCPT , we simultaneously turn on β28,
β12, β56, and β47 with the following values: β28 ¼ Γ=

ffiffiffi
3

p
,

β12 ¼ ð ffiffiffiffiffiffiffiffi
2=3

p ÞΓ=3, and β56 ¼ −β47 ¼ Γ=3. These values
has been set according to the following steps: First, we fix
β28 ¼ Γ=

ffiffiffi
3

p
, given that this β produces the major effect on

ΔPCPT . Second, once β28 has been defined, we obtain the
maximum allowed value for β12, which is second in
importance regarding its impact on ΔPCPT . Finally, with
β28 and β12 already set up, we get the maximum values of
β56 and β47, where we take β56 ¼ −β47 in order to obtain a
constructive effect between them. The restrictions imposed
by the Schwarz inequalities and positivity conditions, fully
described in Appendix B, have been considered in getting
the aforementioned values of the β’s.

6. CPT violation in matter

As we have already mentioned, when the neutrinos are
traveling throughmatter, we have a nonzero CPTV value for
pure standard oscillation, even for zeroCP phase. Fromnow
on, when we refer to the term standard oscillation (SO), it
means that the matter effects are included. If we add the
decoherence to SO, the nonzero value of CPTV is still
preserved, but it has a different magnitudewith respect to its
corresponding value in the pure SO, because, as expected,
it is distorted by the presence of the quantum decoherence
parameters. In particular, it is interesting to note that this
happens even when a single-parameter diagonal
decoherence matrix (DDM) (proportional to the identity)
is considered, in contrast with the DDM case in vacuum,
where a nonzero CPTV is not brought to light. The matter
neutrino oscillation probabilities for a single-parameter
DDM can be derived only by replacing the vacuum mixing
angles and mass squared with the corresponding ones
in matter—in, for instance, the three-generation formula
displayed in Ref. [30]. Of course, this also includes the
replacement of a singular decoherence parameter. The
application of the latter procedure is fully justified and
has been very well explained in Ref. [35]. Therefore, we
have that the structure of the formula is given by

PSO⊕DDM
νανρ ¼ 1

3
ð1 − e−ΓtÞ þ e−ΓtPSO

νανρ ; ð13Þ

where α, ρ are neutrino flavours, and SOðSO ⊕ DDMÞ
stands for standard oscillation (standard oscillation plus
diagonal decoherence). It is clear that ΔPSO⊕DDM

CPT ¼
e−ΓtΔPSO

CPT , which goes to zero for high values of Γ.
Nonetheless, when we deal with a real situation, the latter
does not occur, since we have to convolute the neutrino
(antineutrino) oscillation probabilities with the neutrino
(antineutrino) fluxes, cross sections, efficiencies, and reso-
lution, being that, for this context, the 1=3 from the first term
on the rhs in Eq. (13) is the only one that survives for high
values of Γ, leading us to find a nonzero constant value. We
will see this type of behavior further ahead in our results
section.
In this paper, we are not going to derive analytical

formulas for the neutrino matter oscillation probabilities
of the nondiagonal decoherence matrix (NDM) cases that
we have presented before. This is because it is a rather
complicated task, and besides, as we have already
argued, the vacuum oscillation probability formulas are
going to be enough to give us a qualitative understanding of
our results.

III. EXPERIMENT, SIMULATION,
AND RESULTS

The DUNE experiment will be able to unravel several
nonstandard neutrino physics scenarios through oscillation

FIG. 3. ΔPCPT vs Γ, evaluated for different energy dependences
n ¼ −1, 0, 1, 2; Eν ¼ 2.4 GeV; δCP ¼ 3π=2; and fixing β28 ¼
Γ=

ffiffiffi
3

p
. We have (a) the vacuum oscillation case, and (b) the

matter oscillation case. In both plots we use the same scale.
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measurements [45–47]. It will consist of a muon neutrino
(antineutrino) beam traversing the Earth from Fermilab to
Sanford Underground Research Facility (SURF), which
comprises a distance of 1300 km and an average matter
density of ρDUNE ¼ 2.96 g=cm3. At SURF, the neutrino
beam will hit a massive liquid argon time-projection
chamber (LArTPC) of 40 Ktons [40].
For this work, it is assumed that the configuration used

is 80 GeV energy with 1.07 MW power in the primary
proton beam from the main injector running over 5 years
for exposure for each mode, the forward horn current
(FHC) and the reverse horn current (RHC). In our
simulation of DUNE, the GLoBES package [48,49] is
used, and it is fed with the information of the cross
section, neutrino fluxes, resolution function, and effi-
ciency extracted from Ref. [41]. Meanwhile, the matter
neutrino oscillation probabilities plus decoherence was
calculated with nuSQuIDS [50].
For testing the CPTVeffects, the following experimental

observable is defined:

R ¼ ΔNSO⊕DEC

ΔNSO ; ð14Þ

where ΔNSOðSO⊕DECÞ ¼ Nνμ − Nν̄μ is the difference
between the total event rates for neutrinos and antineu-
trinos, respectively, and DEC stands for any case of
decoherence.
The total event rates have been calculated using the

prescription given in Ref. [40], where the signal is
composed of νμ þ ν̄μ charge current event rates, while
the background is composed of neutral current event rates
and the ντ þ ν̄τ charge current event rates. Our observable
is normalized with the SO difference of events ΔNSO,
which is nonzero due to matter effects plus the intrinsic
differences between the cross sections, fluxes, etc., for
neutrinos and antineutrinos. Given our definition, when
decoherence is absent, R ¼ 1.
To give an idea of the impact of decoherence on SO

physics, we display in Table IV the total rates for

four energy-dependent decoherence scenarios. We are
not considering within this table the tau contamination
[51,52], since this contribution is negligible.
Using the values of this table, we display in Fig. 4 the

evaluation of R for the signal and background event rates,
separately. We clearly see that the size of R for the
backgrounds is very small in comparison with the corre-
sponding one for the signal.
We also display in Fig. 5 two plots: θ23 vs θ12 and θ23 vs

θ13, varying the mixing angles within the 3σ range,
showing the percentual variation ofR (ΔR%) with respect
to the value obtained for the best-fit oscillation parameters

TABLE IV. Total rates for the signals of νμ and ν̄μ disappear-
ance channels and their corresponding background. We consider
δCP ¼ 3π=2.

Γ ¼ 10−23 GeV Std n ¼ −1 n ¼ 0 n ¼ 1 n ¼ 2

Neutrino mode
νμ þ ν̄μ CC signal 11749 11841 11965 11573 11932
NC background 109 109 109 109 109
ντ þ ν̄τ CC background 43 43 46 74 87

Antineutrino mode
ν̄μ þ νμ CC signal 5903 5897 5846 5237 4816
NC background 58 58 58 58 58
ντ þ ν̄τ CC background 27 27 29 50 60

FIG. 4. Here we display R vs Γ for the four energy depend-
ences n ¼ −1, 0, 1, and 2, showing the signal (blue) and
background (red). We consider δCP ¼ 3π=2.

FIG. 5. Here we have two plots: θ23 vs θ12 and θ23 vs θ13,
varying the mixing angles within the 3σ range, showing the
percentual variation of R with respect to the value obtained
for the best-fit oscillation parameters given in Table III. The
mixing angle that does not appear in the corresponding plot is
fixed at its best-fit value. In all the plots, we fix Γ ¼ 10−23 GeV
and δCP ¼ 3π=2.
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given in Table III for Γ ¼ 10−23 GeV and δCP ¼ 3π=2.
We observe in the two plots that the ΔR% varies at
maximum ∼2.3%. We do not display the case of θ13 vs
θ12 since the variation is much lower.
In Fig. 6, we show isocontour curves for the observable

R in the plane Γ vs δ for four plots, which correspond to
n ¼ −1, 0, 1, and 2. In these plots, the maximum
amplitudes are located at similar δCP, δCP ≃ π=2, and
3π=2 to those presented in Fig. 2. In relation to Fig. 2,
there is a dislocation between the values of Γ at the
maximum amplitudes for δCP ≃ π=2 and 3π=2. This is
mainly because of the differences in the inputs used when
we convolute the probabilities for the neutrino and anti-
neutrino modes. In addition, the Γ for δCP ≃ π=2 and 3π=2
is shifted to lower values whenever n increases, gaining
more sensitivity to lower values of Γ. This latter behavior
is expected and resembles what we have seen for ΔPCPT
in Fig. 3 (but here is a one-dimensional view). Moreover,
we also see the existence of degeneracies in (Γ, δ) like those
we have seen in Ref. [35].
In Fig. 7, we present the observable R, with its

corresponding error bands for 1σ, 3σ, and 5σ, vs Γ,
for n ¼ −1, 0, 1, and 2. We take δCP ¼ 3π=2, given that
we learn from Fig. 6 that one of the maximum ampli-
tudes of ΔPCPT is obtained at this δCP. The behavior
displayed in this plot for small and medium values of Γ,
at the given scale, is rather similar to that observed in
Fig. 3. However, for large values of Γ, the observable

R ∼ 1.17, and not ∼1.0, since within the signal for νμ
(ν̄μ) we are including ν̄μðνμÞ with their different fluxes
and cross sections. Therefore, the link between these
plots and those from Fig. 3 is not transparent. In order to
make a comparison, we introduce in this plot the R
corresponding to the single parameter DDM. We see that
at small and large values of Γ, R tends to be ∼1 and
∼1.17 for the DDM and NDM, respectively, regardless of
the dependency on n, as well. As we have anticipated in
Sec. II B 6, the diagonal case also produces nonzero
ΔPCPT , but with a lower magnitude than the NDM case.
In fact, we have that for the NDM case a 5σ discrepancy,
with respect to the expectation value for SO (R ¼ 1),
is reached at Γ ¼ f13.1; 4.6; 2.1; 0.8g × 10−23 GeV for
n ¼ −1, 0, 1, and 2, respectively. It is interesting to note
that at these values of Γ, the DDM is compatible with the
SO prediction. Thus, here we would be able to distin-
guish the NDM from the DDM.
An analogous result is shown in Fig. 8, but taking

δCP ¼ π=2. In this case, the following values of Γ
achieve 3σ significance: f21.6; 6; 0.8; 0.09g × 10−23 GeV
for n ¼ −1, 0, 1, and 2, respectively. All of them have
R < 1. For the cases n ¼ −1, 0, we can discriminate
between the NDM and DDM, since we have R < 1 and
R > 1, respectively. For n ¼ 1, the DDM case is congruent
with the SO; meanwhile, for n ¼ 2, the DDM and NDM
can be confused.

FIG. 6. We analyze the confidence levels for the maximum
values forR. For δCP ∼ π=2we have 2.9σ, 3.4σ, 4.7σ, and 5.5σ of
confidence for n ¼ −1, 0, 1, and 2, respectively. On the other
hand, for δCP ∼ 3π=2 we have 10.3σ, 9.8σ, 9.6σ, and 9.7σ of
confidence for n ¼ −1, 0, 1 and 2, respectively.

FIG. 7. The black horizontal dashed line is the expected value
in the SO. The blue dashed line corresponds to the case of a
DDM. Meanwhile, the solid black line corresponds to the case of
a NDM, with both cases evaluated at δCP ¼ 3π=2. The red fringes
(small, medium, and large) represent the statistical error for 1σ,
3σ, and 5σ (respectively). The β’s used correspond to the ones
given in Sec. II B 5. The intersection between the black horizontal
dashed line and the vertical one marks the 5σ significance of the
NDM case relative to the SO case.
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IV. SUMMARY AND CONCLUSIONS

We have shown that an apparent breakdown of the
fundamental CPT symmetry can take place when the
neutrino system is affected by the environment. This
CPTV is produced by the combination of having δCP in
the neutrino sector with a certain set of some non-null
coherence terms in the dissipative matrix. Furthermore,
we have quantified a possible measurement of this
CPTV using the disappearance channels νμ → νμ and
ν̄μ → ν̄μ, with their corresponding backgrounds, and an
observable R, all in the context of the DUNE experi-
ment. The simulated measurements of R have been
performed considering four hypothesis of energy depen-
dence on the decoherence parameters: n ¼ −1, 0, 1, and
2, where ΓEν

¼ ΓðEν=GeVÞn. For δCP ¼ 3π=2, which is
rather close to the current value of δCP given by the
global fit [44], and a NDM, we achieve a signifi-
cance of 5σ for R with respect to its expectation value
at the SO case, R ¼ 1, for the following Γ:
f13.1; 4.6; 2.1; 0.8g × 10−23 GeV, for n ¼ −1, 0, 1,
and 2, respectively. At all these points, the DDM is
compatible with the SO case. For δCP ¼ π=2, we reach
discrepancies of the order of 3σ. In our best case for
n ¼ 2 we have Γ ≃ 10−24 GeV, but with the inability to
discriminate from the DDM case. We have to keep in
mind that the aforementioned observations of CPTV
appear when the neutrino system is treated as an open
system. This means that it is likely that if we had access
to the information of the environment—i.e., to the whole
system—the overall CPT symmetry would be con-
served. For this reason, it requires a more profound

discussion to ascertain if this CPTV is a breaking at the
fundamental level or if it is only an apparent one,
because of our lack of information from the environ-
ment. In some way, this CPTV represents a loss of
information such that in order to show that this
information is not destroyed, we need to know how
this CPTV is compensated with the environment, by
probing the conservation of the information.
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APPENDIX A: SOME PROBABILITY
FORMULAS

The dissipative matrix defined by Eq. (4) can be para-
meterized, in general, by 36 free parameters in the
following form:

D ¼

0
BBBBBBBBBBBBB@

−γ1 β12 β13 β14 β15 β16 β17 β18

β12 −γ2 β23 β24 β25 β26 β27 β28

β13 β23 −γ3 β34 β35 β36 β37 β38

β14 β24 β34 −γ4 β45 β46 β47 β48

β15 β25 β35 β45 −γ5 β56 β57 β58

β16 β26 β36 β46 β56 −γ6 β67 β68

β17 β27 β37 β47 β57 β67 −γ7 β78

β18 β28 β38 β48 β58 β68 β78 −γ8

1
CCCCCCCCCCCCCA

:

ðA1Þ

However, we will focus on the survival probabilities for
only two cases: β12 and β24. Below, we display these
probabilities:
For β12,

Pνανα ¼
1

3
þ1

2

�
ððρα1Þ2þðρα2Þ2Þ

ðeΩ12tþe−Ω12tÞ
2

þððρα4Þ2þðρα5Þ2ÞcosΔ13tþððρα6Þ2þðρα7Þ2ÞcosΔ23t

þðρα3Þ2þðρα8Þ2þβ12
ðeΩ12t−e−Ω12tÞ

Ω12

ρα1ρ
α
2

�
e−Γt:

ðA2Þ

FIG. 8. Similar to Fig. 7, but for δCP ¼ π=2. Here, the
intersection between the black horizontal dashed line and the
vertical one marks the 3σ significance of the NDM case relative to
the SO case.
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For β24,

Pνανα ¼
1

3
þ e−Γt

2

� ðeΩþt þ e−ΩþtÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω4 − 4Δ2

12Δ2
13

p × g−;1þ;2

þ ðeΩ−t þ e−Ω−tÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω4 − 4Δ2

12Δ2
13

p gþ;1
−;2 þ

ðeΩþt þ e−ΩþtÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω4 − 4Δ2

12Δ2
13

p gþ;4
−;5

þ ðeΩ−t þ e−Ω−tÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω4 − 4Δ2

12Δ2
13

p g−;4þ;5 þ ððρα6Þ2 þ ðρα7Þ2Þ cosΔ23t

þ ðρα3Þ2 þ ðρα8Þ2 þ β24
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω4 − 4Δ2
12Δ2

13

p

×

�
ðΩþðeΩþt − e−ΩþtÞ−Ω−ðeΩ−t − e−Ω−tÞÞρα2ρα4

þΔ12Δ13

�
eΩþt − e−Ωþt

Ωþ
−
eΩ−t − e−Ω−t

Ω−

�
ρα1ρ

α
5

��
;

ðA3Þ

where

g
ð�Þup;i
ð�Þdown;j ¼ ðð�ÞupðΔ2

12 þΩ02
ð�ÞupÞðραi Þ2

ð�ÞdownðΔ2
13 þ Ω02

ð�ÞdownÞðραj Þ2Þ;

with Ω02
� ¼ 1

2
ðΩ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω4 − 4Δ2

12Δ2
13

p
Þ.

APPENDIX B: CONSTRAINTS FOR THE
DECOHERENCE MATRIX ELEMENTS

For the two-flavor and three-flavor cases, the conditions
for the decoherence entries can be found in Refs. [27,53],
respectively. Here, we display the latter:

0 ≤ ja⃗1j ¼ −γ1 þ γ2 þ γ3 −
1

3
γ8;

0 ≤ ja⃗2j ¼ γ1 − γ2 þ γ3 −
1

3
γ8;

0 ≤ ja⃗3j ¼ γ1 þ γ2 − γ3 −
1

3
γ8;

0 ≤ ja⃗4j ¼ −γ4 þ γ5 þ
2

3
γ8 −

2ffiffiffi
3

p β38;

0 ≤ ja⃗5j ¼ γ4 − γ5 þ
2

3
γ8 −

2ffiffiffi
3

p β38;

0 ≤ ja⃗6j ¼ −γ6 þ γ7 þ
2

3
γ8 þ

2ffiffiffi
3

p β38;

0 ≤ ja⃗7j ¼ γ6 − γ7 þ
2

3
γ8 þ

2ffiffiffi
3

p β38;

0 ≤ ja⃗8j ¼ −
1

3
γ1 −

1

3
γ2 −

1

3
γ3

þ 2

3
γ4 þ

2

3
γ5 þ

2

3
γ6 þ

2

3
γ7 − γ8; ðB1Þ

with the following Schwartz inequalities:

4β12
2 ≤

�
γ3 −

γ8
3

�
2

− ðγ1 − γ2Þ2;

4β13
2 ≤

�
γ2 −

γ8
3

�
2

− ðγ1 − γ3Þ2;

4β23
2 ≤

�
γ1 −

γ8
3

�
2

− ðγ2 − γ3Þ2;

4β45
2 ≤

�
2γ8
3

−
2β38ffiffiffi

3
p

�
2

− ðγ4 − γ5Þ2;

4β67
2 ≤

�
2γ8
3

þ 2β38ffiffiffi
3

p
�

2

− ðγ6 − γ7Þ2;
�
2

3
β38 þ

1ffiffiffi
3

p γ4 þ
1ffiffiffi
3

p γ5 −
1ffiffiffi
3

p γ6 −
1ffiffiffi
3

p γ7

�
2

≤ ja⃗3jja⃗8j;
�

1ffiffiffi
3

p β16 −
1ffiffiffi
3

p β27 þ
1ffiffiffi
3

p β34 þ
5

3
β48

�
2

≤ ja⃗4jja⃗8j;
�

1ffiffiffi
3

p β17 þ
1ffiffiffi
3

p β26 þ
1ffiffiffi
3

p β35 þ
5

3
β58

�
2

≤ ja⃗5jja⃗8j;
�

1ffiffiffi
3

p β14 þ
1ffiffiffi
3

p β25 −
1ffiffiffi
3

p β36 þ
5

3
β68

�
2

≤ ja⃗6jja⃗8j;
�

1ffiffiffi
3

p β15 −
1ffiffiffi
3

p β24 −
1ffiffiffi
3

p β37 þ
5

3
β78

�
2

≤ ja⃗7jja⃗8j;
�
β14 − β25 þ β36 þ

1ffiffiffi
3

p β68

�
2

≤ ja⃗1jja⃗4j;
�
β15 þ β24 þ β37 þ

1ffiffiffi
3

p β78

�
2

≤ ja⃗1jja⃗5j;
�
β16 þ β27 − β34 þ

1ffiffiffi
3

p β48

�
2

≤ ja⃗1jja⃗6j;
�
β17 − β26 − β35 þ

1ffiffiffi
3

p β58

�
2

≤ ja⃗1jja⃗7j;
�
2

3
β18 −

2ffiffiffi
3

p β46 −
2ffiffiffi
3

p β57

�
2

≤ ja⃗1jja⃗8j;
�
β15 þ β24 − β37 −

1ffiffiffi
3

p β78

�
2

≤ ja⃗2jja⃗4j;
�
β14 − β25 − β36 −

1ffiffiffi
3

p β68

�
2

≤ ja⃗2jja⃗5j;
�
β17 − β26 þ β35 −

1ffiffiffi
3

p β58

�
2

≤ ja⃗2jja⃗6j;
�
β16 þ β27 þ β34 −

1ffiffiffi
3

p β48

�
2

≤ ja⃗2jja⃗7j;
�
2

3
β28 þ

2ffiffiffi
3

p β47 −
2ffiffiffi
3

p β56

�
2

≤ ja⃗2jja⃗8j;
�
β16 − β27 − β34 −

1ffiffiffi
3

p β48

�
2

≤ ja⃗3jja⃗4j;
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�
β17 þ β26 − β35 −

1ffiffiffi
3

p β58

�
2

≤ ja⃗3jja⃗5j;
�
β14 þ β25 þ β36 −

1ffiffiffi
3

p β68

�
2

≤ ja⃗3jja⃗6j;
�
β15 − β24 þ β37 −

1ffiffiffi
3

p β78

�
2

≤ ja⃗3jja⃗7j;
�
β46 − β57 −

2ffiffiffi
3

p β18

�
2

≤ ja⃗4jja⃗6j;
�
β47 þ β56 þ

2ffiffiffi
3

p β28

�
2

≤ ja⃗4jja⃗7j;
�
β47 þ β56 −

2ffiffiffi
3

p β28

�
2

≤ ja⃗5jja⃗6j;
�
β46 − β57 þ

2ffiffiffi
3

p β18

�
2

≤ ja⃗5jja⃗7j: ðB2Þ

Moreover, in order to analyze the positivity for the
matrixA, we use for simplicity our optimal case, composed
by β12, β28, β56, and β47:

D ¼

0
BBBBBBBBBBBBB@

−Γ β12 0 0 0 0 0 0

β12 −Γ 0 0 0 0 0 β28

0 0 −Γ 0 0 0 0 0

0 0 0 −Γ 0 0 β47 0

0 0 0 0 −Γ β56 0 0

0 0 0 0 β56 −Γ 0 0

0 0 0 β47 0 0 −Γ 0

0 β28 0 0 0 0 0 −Γ

1
CCCCCCCCCCCCCA

:

ðB3Þ
Then, the matrix A≡ ½akj� is

A ¼

0
BBBBBBBBBBBBB@

−Γ0 β012 0 0 0 0 0 0

β012 −Γ0 0 0 0 0 0 β028
0 0 −Γ0 0 0 0 0 0

0 0 0 −Γ0 0 0 β047 0

0 0 0 0 −Γ0 β056 0 0

0 0 0 0 β056 −Γ0 0 0

0 0 0 β047 0 0 −Γ0 0

0 β028 0 0 0 0 0 −Γ0

1
CCCCCCCCCCCCCA

;

ðB4Þ

with

Γ0 ¼ −
2

3
Γ; β012 ¼ 2β12;

β028 ¼
2

3
ðβ28 þ

ffiffiffi
3

p
ðβ47 − β56ÞÞ;

β056 ¼ β47 þ β56 −
2ffiffiffi
3

p β28;

β047 ¼ β47 þ β56 þ
2ffiffiffi
3

p β28: ðB5Þ

We get its corresponding eigenvalues:

λ1;2 ¼
2

3
Γ ≥ 0;

λ3;4 ¼
1

3
ð2Γ − 3ðβ47 þ β56Þ ∓ 2

ffiffiffi
3

p
β28Þ ≥ 0;

λ5;6 ¼
1

3
ð2Γþ 3ðβ47 þ β56Þ ∓ 2

ffiffiffi
3

p
β28Þ ≥ 0;

λ7;8 ¼
2

3
ðΓ ∓ ð9β212 þ β228 þ 3ðβ247 þ β256Þ

þ 2
ffiffiffi
3

p
β28ðβ47 − β56Þ − 6β47β56Þ1=2Þ ≥ 0: ðB6Þ

Thus, using Eqs. (B6) and (B2), we can obtain the fol-
lowing individual maximum values for said β’s: jβ28j ¼
1=

ffiffiffi
3

p
, jβ12j ¼ 1=3, jβ56j ¼ 1=

ffiffiffi
3

p
, and jβ47j ¼ 1=

ffiffiffi
3

p
.

When we set all the aforementioned β’s together and
follow the procedure described in Sec. II B 5, we get
afterwards β28 ¼ Γ=

ffiffiffi
3

p
, β12 ¼ ð ffiffiffiffiffiffiffiffi

2=3
p ÞΓ=3, and β56 ¼

−β47 ¼ Γ=3.
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