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2-color QCD is the simplest QCD-like theory which is accessible to lattice simulations at finite density.
It therefore plays an important role to test qualitative features and to provide benchmarks to other methods
and models, which do not suffer from a sign problem. To this end, we determine the minimal-Landau-gauge
propagators and 3-point vertices in this theory over a wide range of densities, the vacuum, and at both finite
temperature and density. The results show that there is essentially no modification of the gauge sector in the
low-temperature, low-density phase. Even outside this phase only mild modifications appear, mostly in the
chromoelectric sector.
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I. INTRODUCTION

It has been argued for a long time that nuclear matter
at high density and (relatively) low temperature would
undergo a transition to a phase where quarks are the main
degrees of freedom. More precisely, at high densities the
overlap of the baryonic wave functions becomes substan-
tial, leading to direct interactions of the quarks and in this
sense quarks become bulk degrees of freedom. Due to the
attractive strong interaction, it is expected that the Fermi
surface will easily be disturbed leading to various pairing
patterns of quarks and different phases [1–7].
To firmly establish these qualitative features demands a

first-principles calculation of QCD at low temperature and
high densities. Unfortunately, this is the regime where
perturbative methods fail, as high energy excitations would
cost too much energy for the system and therefore the
physics will be dominated by the low energy excitations.
Thus, a nonperturbative treatment is mandatory. Lattice
QCD, as the mainstay of nonperturbative methods of
studying QCD, suffers from the infamous sign problem.
It arises as a result of introducing a quark-chemical
potential in combination with the complex color represen-
tation of the quarks in QCD, which leads to a complex
action in the path-integral. In turn, this has up to now made
lattice Monte-Carlo simulations too inefficient. See [8,9]
for summaries of recent progress on this problem. An
alternative is to use nonlattice methods, either functional

methods, see e.g., [10–19], or models/effective field the-
ories, see e.g., [1,7,20,21]. However, these also require
assumptions.
One way to circumvent the sign problem on the lattice is

to study QCD-like theories [22–24] that share important
features with real QCD [24], but are accessible on the
lattice at finite density. Among those are two-color QCD
with an even number of fundamental quarks [25–32], also
known as QC2D, G2-QCD [31,33–35], and QCD with
adjoint quarks [22,36]. In fact, such studies can even be
pushed to study neutron stars in such theories [37],
allowing for a macroscopic test of the implications of
gauge interactions. Furthermore, while such theories will
certainly differ quantitatively from QCD, they allow us to
test qualitative mechanisms, e.g., the aforementioned pair-
ing, and provide reliable benchmarks for the assumptions
of models and functional methods. Especially the latter has
already been done successfully in the vacuum and at finite
temperature [38].
To provide such benchmarks, we will here study the

gauge sector of QC2D at finite density, i.e., the minimal
Landau-gauge [38] gluon and ghost propagators as well as
their 3-point vertices on the lattice. This extends previous
studies of the gluon propagator alone [25,28]. In addition,
as a derived quantity, we will determine the running
coupling in the miniMOM scheme [39]. For comparison,
we study the same theory in the vacuum and in the interior
of the phase diagram, as well as pure Yang-Mills theory.
The details of the simulations are laid out in Sec. II.

A study of systematic errors is relegated to Appendix A.
Results in the vacuum will be discussed in Sec. III and at
finite temperature in Sec. IV.
The main results at finite density and zero temperature

are shown in Sec. V and at both finite density and
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temperature in Sec. VI. Unexpectedly, we do not observe
any substantial dependence of the correlation functions
on the density, even in regions where quark-related
quantities are affected [25–30,32]. In particular, the
running coupling remains strong throughout the whole
density range. Only above a critical, chemical-potential-
dependent, temperature do we observe any change. This
change is essentially identical to the one observed at zero
chemical potential. This agrees with results from simu-
lations using staggered fermions [40,41] that no phase
transitions occurs at zero temperature in the chemical-
potential range studied here. These findings will be
summarized in Sec. VII.
On the one hand, our findings imply that keeping the

gauge sector only slightly modified in continuum calcu-
lations at low temperatures, as was done in [10–13,15–19],
is well justified. On the other hand, this implies that the
physics observed is driven by the quarks, and that the
investigated region in the phase diagram is not dominated
by weak coupling physics. This is in line with observations
made for the Wilson potential [25–28]. This result should
be contrasted with the observation that at low densities the
matter is an essentially free diquark superfluid after the
silver blaze point at not too high chemical potentials
[21,25–28,42].
Some preliminary results for β ≤ 1.9 have been pre-

sented in [43]. Note that we find here that some of the
results on such coarse lattices appear to be lattice artifacts,
and thus the preliminary conclusions of [43] are superseded
by the ones presented here.

II. SETUP, OBSERVABLES, AND
TECHNICAL DETAILS

A. Configurations

In the following we use ensembles which have been
created using the methods described in [25,27,28] for the
temperatures and densities plotted in Fig. 1. Most of these
configurations have also been used in these works. They
were created using an unimproved Wilson gauge action
with 2 flavors of unimproved Wilson quarks.1 The details
of the employed lattice parameters and the number of
configurations are listed in Table I in Appendix B. The
quark mass parameter at finite density was fixed to κ ¼
0.1680 and κ ¼ 0.1577 at β ¼ 1.9 and β ¼ 2.1, respec-
tively. This corresponds to rather heavy pions with mass
mπ ¼ 717ð25Þ MeV. In comparison, at β ¼ 1.7 and κ ¼
0.178 it is 668(6) MeV [27].
For the finer lattices at β ¼ 1.7, β ¼ 1.9, and β ¼ 2.1

lattice spacings have been determined using hadronic
observables in [25,27,28], corresponding to a¼0.229 fm,

a ¼ 0.186 fm, and a ¼ 0.138 fm, respectively. Using vari-
ous observables to extrapolate, most notably the running
coupling to be discussed below, we estimate the lattice
spacing at β ¼ 1.6 to be a ¼ 0.266 fm, which we will be
using throughout.
Temperature is introduced by using asymmetric lattices

Nt × Ns, where Nt is the temporal extent and Ns is the
spatial extent. The temperature is then given by 1=ðaNtÞ for
Nt < Ns. If Nt ≥ Ns, we set the temperature to zero in the
main text. This ignores a “residual lattice temperature” due
to the finite lattice extent. This systematic error is inves-
tigated in Appendix A 4, and no severe implications for the
main text are found. The chemical potential is added
explicitly to the action [25,27,28,45]. Because of the
pseudoreality of SU(2) the quark determinant remains real
[22]. With two degenerate quark flavors, the square of the
determinant enters, and the action is therefore real and
positive. Thus, the sign problem is avoided.
At finite density a diquark condensation is expected to

take place in 2-color QCD [24]. As this is a spontaneous
symmetry breaking, this requires a limiting process of
explicit breaking on a lattice [46,47]. To this end, a diquark
source j is introduced [28], and varied over a range given in
Table I. In principle, an extrapolation to zero j is then
necessary. However, as discussed in Appendix A 2, essen-
tially no statistically significant dependence on j is found
for the quantities investigated here.
The configurations have afterwards been fixed to min-

imal Landau gauge using an adaptive stochastic over-
relaxation algorithm [48]. This minimizes the quantity
−
P

x;μtrUμðxÞ, where UμðxÞ are the link variables, which
is equivalent to ∂μAa

μ ¼ 0 in the continuum. Concerning
Gribov copies, we used the first Gribov copy found, which
corresponds to a flat average over all Gribov copies within
the first Gribov horizon, i.e., the Gribov copies with
positive semidefinite Faddeev-Popov operator [38].
Details of stochastic overrelaxation are given in [49].
The algorithm adapts the tuning parameter of [49] by
changing it such that during configuration creation the
number of iteration steps is reduced, based on information
from already gauge-fixed configurations.
We will occasionally compare to results from pure Yang-

Mills theory. For this purpose, we will use results from
[44,50–52], using as far as possible the same physical
volumes and lattice spacings. This will allow us to estimate
the unquenching effects as well as the influence of the
finite-density environment. At finite temperature, we will
compare to results at roughly the same ratio T=Tc, where
Tc ¼ 217ð23Þ MeV in the QC2D case [28].

B. Observables

Our primary interest here is the gauge sector. To this end,
we determined the longitudinal [(chromo)electric] and
transverse [(chromo)magnetic] dressing functions of the
gluon propagator [53]

1Note that for these lattice parameters there are potentially
various bulk issues [31]. However, the gauge quantities inves-
tigated here have not shown any sensitivity to such problems [44],
and are therefore probably safe.
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DTðp0; p⃗2Þ ¼ 1

ðd − 2ÞNg

×

�X3
μ¼1
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μð−pÞ −
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�
;

ð1Þ
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�
hAa

0ðpÞAa
0ð−pÞi;

Aa
μðxÞ ¼

1

2i
trðτaUμðxÞÞ ð2Þ

with respect to the heat bath, and both soft modes (p0 ¼ 0)
and hard modes (p0 ¼ nπT). Here, d ¼ 4 is the dimen-
sionality and Ng ¼ 3 is the number of gluons. In the
vacuum, both coincide, DT ¼ DL ¼ D. We define corre-
sponding screening masses

mT=L ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT=Lð0Þ

p ; ð3Þ

which are also called curvature or constituent masses.
We also determine the corresponding dimensionless sus-
ceptibility χμ ¼ ∂m=∂μ of (3) by numerical derivation of

mðμÞ with respect to the chemical potential in the zero
temperature case. The screening mass can be quite different
from a, possibly not even existing, pole mass. The latter can
potentially be obtained from the corresponding effective
mass mðtÞ [38]

mT=LðtÞ ¼ − ln
ΔT=Lðtþ aÞ
ΔT=LðtÞ

ΔT=LðtÞ ¼
1

aπ
1

Nt

XNt−1

P0¼0

cos

�
2πtP0

Nt

�

×DT=L

�
2

a
sin

�
2πtP0

Nt

�
; 0

�
;

where Δ is the Schwinger function, and which we also
have investigated. If mðt → ∞Þ is positive and time-
independent, this defines a pole mass. In the vacuum, this
effective mass is not compatible with an ordinary pole [38].
Here, statistical noise precludes any conclusion either from
the long-time behavior or from any fit. Thus we concentrate
on the screening mass (3).
We also investigated the scalar ghost propagator,

given by

DGðp0; p⃗2Þ ¼ 1

V
hðM−1ÞaaðpÞi;

Mðy; xÞabωbðxÞ ¼ c

�X
x

�
GabðxÞωbðxÞ þ

X
μ

Aab
μ ðxÞωbðxþ eμÞ þ Bab

μ ðxÞωbðx − eμÞ
��

GabðxÞ ¼
X
μ

trðfτa; τbgðUμðxÞ þUμðx − eμÞÞÞ

Aab
μ ðxÞ ¼ −2trðτaτbUμðxÞÞ

Bab
μ ðxÞ ¼ −2trðτaτbU†

μðx − eμÞÞ; ð4Þ
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FIG. 1. Location of the lattice configurations in the phase diagram, see Table I for details. The indicated transitions are the silver-blaze
transition, the finite-temperature transition and the (likely spurious coarse-lattice) finite-density transition discussed in the text. Note that
the temperature is set to zero if Nt ≥ Ns in the lattice setup.
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where M is the Faddeev-Popov operator [53,54], again for
both hard modes and soft modes. We usually plot its
dressing function Gðp0; p⃗2Þ ¼ ðp2

0 þ p⃗2ÞDGðp0; p⃗2Þ. The
necessary inversion of the Faddeev-Popov operator has
been done using a standard conjugate gradient algorithm on
a point source for the propagator and on a plane-wave
source for the vertex below [48].

From these propagators the running coupling in the
miniMOM scheme [39,55] can be derived. In the vacuum,
it is given by

αðp2Þ ¼ αða−2Þp6D2
Gðp2ÞDðp2Þ;

αða−2Þ ¼ 1

πβ
: ð5Þ
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FIG. 2. The quenched and unquenched gluon dressing function (top-left panel), Schwinger function (top-right panel), gluon
propagator (middle panels, logarithmic and linear), ghost dressing function (bottom-left panel) and running coupling (bottom-right
panel). Quenched data are from [44]. Error bars are partly smaller than the symbol size. Results have not been renormalized.
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We now define longitudinal and transverse couplings in a
thermodynamic environment as

αTðp0; p⃗2Þ ¼ αða−2Þðp2
0 þ p⃗2Þ3D2

Gðp0; p⃗2ÞDTðp0; p⃗2Þ;
ð6Þ

αLðp0; p⃗2Þ ¼ αða−2Þðp2
0 þ p⃗2Þ3D2

Gðp0; p⃗2ÞDLðp0; p⃗2Þ;
ð7Þ

describing the strength of coupling of the longitudinal and
the transverse degrees of freedom, respectively.
Finally, we study the two three-point vertices, the ghost-

gluon vertex and the three-gluon vertex. In the vacuum, we
follow the procedures in [48]. Accordingly, we determine
the dressing-function of the ghost-gluon vertex and the
dressing-function of the tree-level tensor of the three-gluon
vertex as

GX ¼ ΓVX

ΓD1D2D3Γ
: ð8Þ

Here Γ is the (lattice-improved) [56] tree-level vertex, and
V are the three-point vertices

Vcc̄A ¼ hAa
μMbc−1i;

VA3 ¼ hAa
μAb

νAc
ρi;

for the ghost-gluon and the three-gluon vertex, respectively.
The Di are the corresponding propagators to amputate the
lattice vertex [57]. We use the same momentum configu-
rations, one gluon momentum vanishing, two momenta
orthogonal, and all momenta equal, as in [48].
In a thermodynamic environment many more tensor

structures would arise. We follow here [52] and only
consider the full transverse zero-modes of the tree-level
vertices, which corresponds to evaluating (8) with all
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FIG. 3. The ghost-gluon vertex dressing for different momentum configurations in comparison to quenched data from [51]. See text
for details. Results have not been renormalized. The lower-right hand-plot is the unquenched set at a−1 ¼ 0.74 GeV.
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Matsubara frequencies vanishing and using only the trans-
verse propagators for amputation.

III. VACUUM RESULTS

The effects of unquenching on the gauge sector of
QCD has been studied to some extent on the lattice
[58–60]. In continuum methods, this is a well-
established topic, see e.g., [61,62] for reviews, and
[63,64] for recent determinations. All these results show
no qualitative differences in the gauge sector, the main
effect being a suppression of the gluon propagator at
mid-momentum.
In the present case of two-color QCD the pattern is

similar, as can be seen in Fig. 2. The gluon dressing
function is substantially suppressed at mid-momentum
and in the infrared. It is also observed that there is a
substantial difference, due to lattice artifacts, between the
two coarser lattices on the one hand and the next finer

one. The finest lattice is even more different, but it is on
a substantially smaller physical volume.
The ghost sector, which does not have a direct

coupling to the matter sector, is notably less affected.
Since the dressing function enters the running coupling
(5) quadratically, this also pushes through to the runn-
ing coupling. It shows very little difference between
Yang-Mills theory and two-color QCD, except for its
large-momentum running. In particular, its behavior in
the momentum range between a half to about one GeV
is almost unchanged. This is of considerable import-
ance, as this region dominates hadron phenomenology
[17,61,64–66].
That the ghost sector is quite unaffected by unquenching

is also seen for the ghost-gluon vertex in Fig. 3. Within
errors no significant deviations are observed from the
quenched case.
The three-gluon case is notoriously affected much

more strongly by statistical fluctuations [48]. Thus, given
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plot is the unquenched set at a−1 ¼ 1.4 GeV.

BOZ, HAJIZADEH, MAAS, and SKULLERUD PHYS. REV. D 99, 074514 (2019)

074514-6



the rather low statistics available, the results shown in
Fig. 4 can be taken to be indicative at best. However,
within their errors they also do not show a marked
difference compared to the quenched case. Also, no
exceptional behavior, e.g., in the statistics dependence,
is seen.

IV. FINITE-TEMPERATURE RESULTS

At finite temperature the gauge sector of Yang-Mills
theory shows a markedly different behavior above and
below the critical temperature. In the low-temperature
phase both polarizations of the gluon show only small,
or possibly even no, dependence on the temperature
[50,67–71]. Above the phase transition especially the
longitudinal part shows a marked temperature depend-
ence [50,53,70–73], with possibly critical behavior
around the phase transition [50]. Due to the crossover
nature of the phase change in full QCD there this
behavior becomes softened [58]. Besides some isolated
nonzero temperatures at large volumes, we have for the

finest set a range of temperatures at fixed spatial volume
available.
The results for the propagators are shown in Fig. 5 for

the large volumes and in Fig. 6 for fixed β ¼ 2.1. While
the overall scale is much more attenuated in the
unquenched case a very similar behavior is seen for
both the quenched and unquenched case. The magnetic
gluon propagator shows very little influence due to the
temperature, except for the usual suppression at very
high temperatures. The electric one is quite different.
The result in Fig. 5 shows a strong change at low
momenta, but this is on different spatial volumes.
Keeping the spatial volume fixed, as in Fig. 6, this is
no longer the case. Then only a quick onset of a strong
infrared suppression around the phase transition is
observed. Both effects, the enhanced volume depend-
ence and the temperature dependence agree with the
situation in the quenched theory [50,67–71].
This is in line with observations from 3-color QCD

[58]. Thus, the same pattern seems to emerge as in
ordinary QCD. While not shown explicitly, the hard
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modes of Matsubara frequency n behave essentially as
the soft modes evaluated at ð2πnTÞ2 þ p⃗2, as was
already observed in the quenched case [50,69]. In the
regime up to about t ¼ 1 fm the Schwinger function did
not show any significant changes with temperature.
At larger times the statistical noise precluded any
statements. The only exception is, as also shown in
Fig. 5, that in the longitudinal case the Schwinger
function decays more slowly at the highest temperature,
just as for the quenched case.

The soft mode ghost dressing function,2 also shown in
Figs. 5 and 6, shows no qualitative deviation from the
quenched case in that it is essentially not responding to
temperature, except for some very slight overall sup-
pression with increasing temperature [50,53,73]. The
same also applies again to the not-shown hard modes,
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FIG. 6. The soft mode of the magnetic gluon propagator (top-left panels), the soft mode of the electric gluon propagator (top-right
panels), the ghost dressing function (lower-left panel), and the running longitudinal coupling (lower-right panel) at finite temperature.
Results have not been renormalized.

2The statistically not significant oscillatory behavior at
T ¼ 0.1Tc is an artifact of using a point-source for inversion,
and would vanish with increasing statistics [48].
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which can be described approximately as for the gluonic
hard modes.
As described in Eqs. (6) and (7) the running coupling

also splits into a magnetic and an electric one. The results
are shown in Figs. 6 and 7. The results are essentially
identical, at low temperatures. At high temperatures the
almost unaffected ghost propagator in combination with the
strong suppression of the gluon propagator induces a
suppression of the running coupling, which is much
stronger for the electric one.
The results for the soft magnetic ghost-gluon vertex

are shown in Fig. 8. The results show essentially no
temperature-dependence, as in the quenched case [52].
The only visible effect seems to be at vanishing gluon
momentum, and then again in the same way as for the
quenched case. However, this may actually be a finite-
volume effect [51], and should therefore not be over-
stated. This is especially seen in the β ¼ 2.1 case, where
at fixed spatial volume no such effect occurs. Thus, also
at finite temperature in the unquenched case this vertex
is almost tree-level.
Because of the much larger statistical noise for the three-

gluon vertex [48] its results, shown in Fig. 9, are much less
conclusive. Essentially, no results with reasonable statis-
tical errors have been obtained at 0.1Tc. However, the
results at 0.6Tc are reasonable, and again rather close to the
quenched case. In particular, they differ only weakly from
zero temperature, and thus the three-gluon vertex is also in
the unquenched case not substantially affected by low
temperatures. In the case at β ¼ 2.1 a slight suppression
above the phase transition is observed, which is in line with
the quenched case [52]. However, this lattice setting does
not probe far enough into the infrared to be also sensitive to
the substantial changes seen for this vertex in a narrow
temperature interval around the phase transition, where it
changes sign [52].

V. FINITE DENSITY RESULTS

As is discussed in Appendix A the diquark source
seems to have no statistically significant effect, while
the volume has a slight effect. Thus, only volume effects
will be discussed here. Note also that the gluon
propagator has been investigated in detail already in
[28] for the cases with β ≤ 1.9. With respect to these
results we present them here for completeness, as they
enter crucially both the running coupling and the three-
gluon vertex. We also checked that the results in [28]
coincide with the ones presented here, as both have been
calculated using different numerical codes.
The first result is the development of the screening

masses with density, which is shown3 in Fig. 10.
In accordance with previous investigations at β ≤ 1.9
[27,28], no pronounced change is seen, except for a
slow increase after a transition at μ ≈ 750 MeV, espe-
cially in the magnetic sector. In contrast, at β ¼ 2.1 no
such increase is seen.4 However, also no abrupt change
is seen at the silver-blaze point at about μ ≈ 375 MeV,
which is a phase transition. The latter is in marked
contrast to the finite-temperature transition, see Sec. IV
and [50], where in particular in the high-temperature
phase magnetic and electric screening mass differ
substantially, and at least the electric one strongly
depends on the temperature. Thus, the absence of a
signal at higher densities should not be taken as an
indication that no phase change or transition takes place.
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FIG. 7. The transverse (left panel) and longitudinal (right panel) running coupling at finite temperature. Quenched results are from
[50]. Note that the lowest momentum point of the longitudinal coupling in the quenched case is likely strongly affected by finite-volume
and discretization effects [50,68].

3Note that electric and magnetic screening masses do not
coincide at zero chemical potential as the lattice is asymmetric
and elongated in time direction. If a symmetric lattice is used they
coincide, as do the propagators for all momenta.

4In fact, at the two-σ level there is still a systematic increase
visible for the magnetic screening mass only, see Fig. 21 in
Appendix A 2. But there is no statistically reliable effect anymore.
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However, the absence of such a transition would be
consistent with the observations in [40,41]. Thus, the
gluon propagator seems to show no density dependence.
But because it also does not react to the phase transition
at the silver-blaze point this cannot be taken as an
indication of the absence of a phase transition itself.
It is in itself remarkable that a discontinuity in the
free energy is not also inducing a discontinuity in the

gauge-fixed correlation functions. This implies that they
cannot be used to determine the phase structure of a
theory reliably on their own. The alternative is, of
course, that the critical region becomes so narrow at
β ¼ 2.1 that our spacing in μ is not sensitive to the
transition. However, the absence of a trend at large
chemical potentials in comparison to the β ¼ 1.9 case
makes this interpretation unlikely.
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FIG. 8. The ghost-gluon vertex dressing for different momentum configurations at finite temperature in comparison to quenched data
from [52]. The lower two panels contain the results at β ¼ 2.1. See text for details. Results have not been renormalized.
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The same pattern is repeated in the full momentum
dependence shown in Fig. 11. The only exception is a dip in
the magnetic screening mass around μ ≈ 450 MeV at
β ¼ 1.9, which creates an infrared enhancement for the
magnetic propagator. Note that for larger volumes, see

Appendix A 3, no trend toward such a dip is observed, and
neither is this the case at β ¼ 2.1. Hence, this is likely a
statistical fluctuation and/or a lattice artifact. At finite
momenta there is no discernible trend with chemical
potential visible, except for the infrared suppression due
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FIG. 9. The three-gluon vertex dressing for different momentum configurations at finite temperature in comparison to quenched data
from [52]. The lower two panels contain the results at β ¼ 2.1. See text for details. Results have not been renormalized.
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FIG. 11. The dependence of the transverse (left panels) and longitudinal (right panels) gluon propagator on the chemical potential at
β ¼ 1.9 and fixed volume 24 × 123 (top panels) and 24 × 163 or 324 (middle panels) and at β ¼ 2.1 and 32 × 163 (bottom panels).
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to the increase in screening mass on the coarser lattice at
β ¼ 1.9. This is also emphasized on the larger volume at
fixed β and the finer lattices at fixed spatial volume, where
the evolution is smoother and essentially independent of
chemical potential. Again, there is no visible difference in
the transverse and longitudinal sector.
Also due to the limited statistics, it is only possible to

state regarding the Schwinger function that it does not
substantially change before the zero crossing, which
appears to remain at all densities, and at about the same
timescale of 1 fm.
The results for the ghost dressing function are shown in

Fig. 12. Overall, the dressing function is almost unaffected
by the chemical potential. However there seems to be a
slight trend at β ¼ 1.9 at low momenta that the dressing
function becomes somewhat steeper at larger chemical
potentials, but the effect is smaller when increasing the
volume from Ns ¼ 12 to Ns ¼ 16, and is also not visible
on the finer lattices at β ¼ 2.1 except for μ > 1 GeV.
Hence, this may move to even larger chemical potentials on
even finer lattices, if this is a lattice artifact. This would fit
with the effect for the gluon propagator, where the effect
also vanishes, or at best is moved toward much larger
chemical potentials when making the lattice finer. Thus, if

there is any effect, substantially more systematics will be
needed to establish it.
These features of the gluon propagator and the ghost

propagator are reflected in the running couplings shown
in Fig. 13. Quite visible are strong finite-volume effects
in comparison between L ≈ 2.2 fm and L > 2.2 fm,
especially the appearance of a maximum. Apart from
this, there is almost no density-dependence, except a
slight infrared suppression which results from the
enhancement of the gluonic screening masses seen in
Fig. 10 at β ¼ 1.9. This effect is again gone at β ¼ 2.1 at
the same volume.
This result is probably the most remarkable result of the

present study. While the Polyakov loop and the Wilson
potential, both relevant to the properties of quarks, do show
a pronounced density dependence5 [27,28] at β ¼ 1.9, the
running coupling derived from the ghost-gluon vertex,
encoding pure gauge dynamics, does not show any such
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FIG. 12. The dependence of the ghost dressing function on the chemical potential at fixed volume 24 × 123 at β ¼ 1.9 (top-left panel),
at 24 × 163 or 324 at β ¼ 1.9 (top-right panel), and at 32 × 163 at β ¼ 2.1 (bottom panel).

5Preliminary results at β ¼ 2.1 show that also this is likely a
lattice artifact for the Polyakov loop, while results for the Wilson
potential are yet inconclusive because of limited statistics [74,75].
This is in line with the previously referred to absence of a
transition at low chemical potentials.
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effects at any β. The gauge sector at finite density appears to
be largely inert. This includes the transition to a condensate
at the silver-blaze point. This will also be confirmed below
for the interaction vertices themselves.
In particular, this also implies that approxima-

tions using a vacuum gauge sector and containing all

density-dependence in the quark sector alone, like
[10–13,19,76], are probably much better than should
naively be expected. This would simplify calculations
in other nonperturbative methods, like functional meth-
ods, substantially. Of course, whether this carries over to
full QCD is an assumption so far. A test with other
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FIG. 13. The dependence of the transverse (left panels) and longitudinal (right panels) running coupling on the chemical potential at
fixed volume 24 × 123 at β ¼ 1.9 (top panels), 24 × 163 and 324 at β ¼ 1.9 (middle panels), and 32 × 163 at β ¼ 2.1 (bottom panels).
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models, like G2-QCD [33], which shows a much more
complicated pattern at finite density [35], will be an
important cross check. See [76] for first steps in this
direction.

The results for the ghost-gluon vertex for the larger
volumes of β ¼ 1.9 and for β ¼ 2.1 are shown in
Fig. 14. On the smaller volume at β ¼ 1.9, which is
denser in the chemical potential, the fluctuations are
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FIG. 14. The ghost-gluon vertex dressing for different momentum configurations at finite density in different momentum
configurations for spatial size Ns ¼ 16 and Ns ¼ 32 and β ¼ 1.9 (top and middle panels). The middle-right panel is at the largest
chemical potential of 954 MeV. The bottom panels are at β ¼ 2.1.
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substantially larger. These obscure that there is no
statistically significant dependence on the density, as
is visible for the larger volume and for the finer lattice.
This is in line with the observations on the running

coupling above which, after all, is derived from this
vertex.
The results for the soft, magnetic three-gluon vertex are

finally shown in Fig. 15. Within errors, no change with
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FIG. 15. The three-gluon vertex dressing for different momentum configurations at finite density in different momentum
configurations for spatial size Ns ¼ 16 and β ¼ 1.9 (top and middle panels). The middle-right panel is at the largest chemical
potential of 954 MeV. The bottom panels are at β ¼ 2.1. Points with relative errors larger than 100% have been suppressed.
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FIG. 16. The magnetic (left panel) and electric (right panel) screening mass in the phase diagram at β ¼ 2.1. Note the different scale on
the left-hand side and on the right-hand side.
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FIG. 17. The soft mode of the magnetic gluon propagator (top-left panels), the soft mode of the electric gluon propagator (top-right
panels), the ghost dressing function (lower-left panel), and the running longitudinal coupling (lower-right panel) as a function of
temperature at fixed chemical potential μ ¼ 705 MeV from the β ¼ 2.1 data. Results have not been renormalized.
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chemical potential is seen. This is in marked contrast to the
situation at finite temperature [52], where the same quantity
shows a substantial dependence on the temperature around
the phase transition. Note that, in contrast to Sec. IV, at least
at β ¼ 1.9 the volumes are large enough to reach into the
relevant momentum regime. This inertness was not a
foregone conclusion: after all, also at finite temperature
the magnetic gluon propagator shows (almost) no depend-
ence on the temperature, while the magnetic vertex does.
Thus, this could not have been inferred from the behavior
of the gluon propagators.

VI. FINITE DENSITY AND TEMPERATURE

In total, the results show so far that unquenching
leaves the qualitative behavior at zero density and finite
temperature unchanged. At the same time, the gauge
sector is essentially inert with respect to density at zero
temperature. This leaves the interesting question whether
the gauge correlation functions potentially reflect other

structures in the phase diagram, e.g., a possible critical
endpoint [28]. As a first check, the electric and magnetic
screening mass for the points shown in Fig. 1 are shown
in Fig. 16.
The magnetic screening mass is essentially constant

throughout the phase diagram, except for a slight increase
at high temperature, which can already be inferred from
Fig. 6. The electric screening mass, however, is only
constant within a range which roughly traces out the
“hadronic” phase of two-color QCD [28]. Beyond that,
it rises rapidly, i.e., chromoelectric correlators become
strongly suppressed. This happens at lower temperature
at larger chemical potentials. Thus, this seems to follow the
conjectured curvature of the phase separation between the
high-temperature phase and the hadronic low temperature
phase. There is, however, no behavior which could be
interpreted as any kind of critical endpoint.
Thus, the behavior of the screening mass at finite

chemical potential seems to be driven by the same
mechanism as at zero chemical potential. This pattern
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FIG. 18. The ghost-gluon vertex dressing (top panels) and three-gluon vertex dressing (lower panels) for different momentum
configurations as a function of temperature at fixed chemical potential μ ¼ 705 MeV from the β ¼ 2.1 data. Results have not been
renormalized.
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repeats itself in all correlation functions, as is visible in
Figs. 17 and 18 at fixed μ ¼ 705 MeV and varying
temperatures for propagators and vertices, respectively.
Conversely, at fixed temperature eventually a point is

reached in chemical potential where the correlation
functions show the same behavior as when increasing
the temperature. This is shown in Figs. 19 and 20 for
the propagators and vertices, respectively, for fixed
temperature T ¼ 118 MeV and varying chemical

potential. Eventually, the electric propagator becomes
suppressed. The other correlation functions show no
pronounced dependence. But again, neither is the
chemical potential mesh fine enough nor the spatial
volume large enough to resolve effects like the ones
seen around the finite-temperature phase transition.
As is visible in Fig. 16, this behavior occurs at larger

and larger chemical potentials the lower the temperature.
Eventually, the results indicate that at zero (low)
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FIG. 19. The soft mode of the magnetic gluon propagator (top-left panels), the soft mode of the electric gluon propagator (top-right
panels), the ghost dressing function (lower-left panel), and the running longitudinal coupling (lower-right panel) as a function of
chemical potential at fixed temperature T ¼ 118 MeV from the β ¼ 2.1 data. Results have not been renormalized.
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temperature, this occurs either at chemical potentials
larger than the ones accessible here of about 1.1 GeV, or
the effect ceases. Given the results in [40,41], the former
explanation seems more plausible. An eventual confir-
mation will require explicit tests.

VII. CONCLUSIONS

Summarizing, we have studied the behavior of the
gauge sector in two-color QCD both in the vacuum and
at nonzero temperature and chemical potential. At zero
chemical potential the behavior is as expected from
corresponding results for three-color QCD as well as
Yang-Mills theory. At zero temperature and finite
chemical potential no statistically and systematically
significant change is seen as compared to the vacuum
up to a chemical potential of about 1.1 GeV. Thus, the
gauge sector is essentially inert. This is in marked
contrast to quark sector observables, like the Wilson
loop and the Polyakov loop, which show on coarse

lattices6 a dependence on the chemical potential [27,28].
This suggests that approximation schemes which assume
such a behavior [10–13,19,76] are probably much better than
expected. Inside the full phase diagram, the results indicate
that this behavior persists everywhere in the low-temperature,
low-density domain. Only outside the “hadronic” region
established in [27,28] do the gauge correlation functions
show a different behavior. This difference is essentially only a
suppression of the electric interactions at low momenta. The
magnetic and ghost interactions stay virtually vacuumlike
throughout thephasediagram. In fact, it appears that thegauge
sector effectively only depends on some fixed combination
aTn þ bμm, rather than on T and μ separately. However, the
electric screening mass seems to be, as at zero chemical
potential, a useful tool to track the phase diagram.
Unfortunately, given our coarse temperature and chemical-
potentialmesh,wecannotdecideyetwhether thesecorrelation
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FIG. 20. The ghost-gluon vertex dressing (top panels) and three-gluon vertex dressing (lower panels) for different momentum
configurations as a function of chemical potential at fixed temperature T ¼ 118 MeV from the β ¼ 2.1 data. Results have not been
renormalized.

6Compare footnote 5.
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functions show particular behaviors close to the transition
region, especially with respect to any critical endpoint.
These results are stringent benchmarks for any calcu-

lations of the gauge sector. Their usefulness for QCD
phenomenology will rest on whether these results are
generic, and thus applicable also to three-color QCD.
There are two possible approaches to do so. One would
be to consider other theories which are accessible at finite
density in lattice calculations. In particular, G2-QCD,
which shows a substantially more involved phase structure
at zero temperature [35], would be a candidate. The other
one would be to work with this assumption in other
methods, and eventually push them to calculate observable
quantities, e.g., neutron star properties. If they would
provide reasonable accuracy in their description, this would
provide an independent check of the inertness of the gauge
sector, at least at intermediate densities.
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APPENDIX A: SYSTEMATIC ERRORS

There are several sources of systematic errors in our lattice
calculations. Besides the usual vacuum source of finite
volume and finite lattice spacing, thermodynamics introdu-
ces in addition the finite aspect ratio [50]. In addition, in the
investigated system an explicit diquark source j was intro-
duced to induce diquark condensation [27,28]. The actual
desired results would be obtained in the limit of j → 0.
As is seen in Secs. V and VI, essentially the only

quantities substantially influenced by the thermodynamics
are the screening masses. We will therefore concentrate
here on the effects of the systematic errors sources on this
quantity. However, we have, in detail, also investigated the
impact on all other quantities, and did not find any cases in
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FIG. 21. The dependence of the magnetic (left panels) and electric (right panels) screening masses on the diquark sources at fixed
volume at β ¼ 1.9 and 123 × 24 (top panels) and at β ¼ 2.1 and 163 × 32 (bottom panels).
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which stronger effects are present than the ones in the
screening masses.

1. Discretization

The impact of discretization at fixed spatial volumes is
already studied in the main text, especially in Fig. 10. At
small chemical potentials the results for both β ¼ 1.9 and
β ¼ 2.1 show essentially the same behavior. However, at
chemical potentials above aμ⪆0.7 differences start to
appear. This suggests that this marks the onset of discre-
tization artifacts. Almost all our data for the finer lattices
are not exceeding this range. Especially, all relevant effects
arise already below this bound. Thus, we consider the fine
results reasonably unaffected by discretization artifacts, but
would assume that the results on the coarser lattices cannot
be fully trusted above this, see also footnote. However,
most quantities agree even above this threshold between
both discretizations, suggesting that this is often a mild
effect.

2. Diquark source

The dependence of the screening masses on the
diquark source as a function of chemical potential is
shown in Fig. 21. There is no statistically significant

dependence on the diquark source visible at any chemical
potential or for the different β values, nor is there a
difference between the magnetic and electric screening
masses. Thus, within the available statistical accuracy
there is no effect, and thus any extrapolation to zero
diquark sources [27,28] is not meaningful for the inves-
tigated observables. Hence, the dependence on the
diquark source is neglected throughout.

3. Volume dependence

The situation is somewhat different when it comes to
finite-volume effects, as shown in Fig. 22. In the magnetic
case a slight, but significant, dependence is seen, especially
when it comes to the, almost ten times larger, largest
volume. In the electric case, no such effect is seen once at
finite density. Still, within errors no qualitative effect is
seen even in the magnetic case, and even the quantitative
effect is only moderate. Still, this provides a clear moti-
vation for investigating the volume dependence more
closely in the main text.

4. Aspect ratio

Formally, the aspect ratio between the lattice time
extent and spatial extent ðaNtÞ=ðaNsÞ should tend to
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FIG. 22. The dependence of the magnetic (top panels) and electric (bottom panels) screening masses (left panels) and susceptibility
(right panels) on the physical volume and aspect ratio at β ¼ 1.9.
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zero at finite temperature and 1 at zero temperature, the
latter for any chemical potential. At a finite number
of lattice points, this can only be approximated, which
can have substantial impact [50]. At finite tempera-
ture this requires an investigation of the temperature
dependence for different β values, which is not possible
here except for a very few temperatures below the phase
transition, which were displayed in Sec. IV, and did not
yield an effect within the other uncertainties. At finite
densities already the results displayed in Fig. 22 suggest
an impact at β ¼ 1.9 for the magnetic case. Moreover,
as long as Nt is finite, a lattice system is not really at
zero temperature, but there is a residual temperature.
While we set this residual temperature to zero in the
main text if Nt ≥ Ns, this is therefore strictly speaking
not true. This effect will mix at finite Nt with the aspect
ratio effects, and thus we cannot disentangle both of
them. Thus, the following should be considered to be a

combination of the systematic influence of both
of them.
At β ¼ 2.1 several different values of Nt at fixed Ns, and

thus different aspect ratios and residual temperatures, are
available, and the results are shown in Fig. 23. All results at
an aspect ratio larger than 1 agree within statistical errors,
without any systematic trend. The only difference arises for
an aspect ratio of 1. While the effect is still not statistically
significant there is a systematic trend that the magnetic
screening mass above μ ≈ 0.5 GeV is smaller than the one
at an aspect ratio larger than one, and the reverse for the
electric screening mass. However, the rise of the electric
screening mass is at chemical potentials where the rela-
tively high residual temperature may already indicate the
effect seen in Fig. 16. Still, the effect is comparatively small
when considering the statistical errors, such that in the main
text only the aspect ratio of two is considered, for which the
finest mesh in chemical potential is available.

APPENDIX B: CONFIGURATIONS

The list of configurations and lattice parameters used is given in Table I.
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FIG. 23. The dependence of the magnetic (left panel) and electric (right panel) screening masses on the aspect ratio/residual
temperature Tr at β ¼ 2.1 at fixed spatial volume.

TABLE I. Employed lattice parameters and number of configurations. Note that all lattices with Ns ≤ Nt will be
considered to be at zero temperature.

Ns Nt β κ a−1 [GeV] L [fm] T [MeV] μ [MeV] (aμ) aj Configuration

32 32 1.6 0.1820 0.741 8.51 0 0 0 2000
32 32 1.7 0.1780 0.857 7.36 0 0 0 1014
12 24 1.9 0.1680 1.06 2.23 0 0 0 313
32 32 1.9 0.1680 1.06 5.95 0 0 0 640
16 16 2.1 0.1577 1.41 2.21 0 0 0 200
16 20 0 200
16 32 0 2060

(Table continued)
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TABLE I. (Continued)

Ns Nt β κ a−1 [GeV] L [fm] T [MeV] μ [MeV] (aμ) aj Configuration

16 32 2.1 0.1577 1.41 2.21 0 141 (0.100) 0.02 41
0.03 102

16 32 2.1 0.1577 1.41 2.21 0 212 (0.150) 0.01 207
0.03 104

12 24 1.9 0.1680 1.06 2.23 0 265 (0.250) 0.02 50
0.04 127

16 16 2.1 0.1577 1.41 2.21 0 282 (0.200) 0.02 126
0.03 197

16 18 0.03 220
16 20 0.03 200
16 32 0.01 66

0.02 202
0.03 100

12 24 1.9 0.1680 1.06 2.23 0 318 (0.300) 0.02 102
0.03 54
0.04 160

16 24 1.9 0.1680 1.06 2.98 0 318 (0.300) 0.04 1960
32 32 1.9 0.1680 1.06 5.95 0 318 (0.300) 0.04 299
12 24 1.9 0.1680 1.06 2.23 0 345 (0.325) 0.02 48

0.04 128
16 32 2.1 0.1577 1.41 2.21 0 353 (0.250) 0.01 211

0.02 96
0.03 100

12 24 1.9 0.1680 1.06 2.23 0 371 (0.350) 0.02 49
0.04 284

12 24 1.9 0.1680 1.06 2.23 0 392 (0.370) 0.04 126
12 24 1.9 0.1680 1.06 2.23 0 398 (0.375) 0.02 52

0.04 153
12 24 1.9 0.1680 1.06 2.23 0 403 (0.380) 0.04 126
16 16 2.1 0.1577 1.41 2.21 0 423 (0.300) 0.02 204

0.03 200
16 18 0.03 204
16 20 0.03 210
16 32 0.01 204

0.02 60
0.03 102

12 24 1.9 0.1680 1.06 2.23 0 424 (0.400) 0.02 42
0.04 138

16 24 1.9 0.1680 1.06 2.98 0 424 (0.400) 0.04 100
12 24 1.9 0.1680 1.06 2.23 0 451 (0.425) 0.02 52

0.04 136
12 24 1.9 0.1680 1.06 2.23 0 477 (0.450) 0.02 68

0.04 181
0.06 34

12 24 1.9 0.1680 1.06 2.23 0 488 (0.460) 0.04 60
16 32 2.1 0.1577 1.41 2.21 0 494 (0.350) 0.01 200

0.02 60
0.03 100

12 24 1.9 0.1680 1.06 2.23 0 498 (0.470) 0.04 158
12 24 1.9 0.1680 1.06 2.23 0 504 (0.475) 0.04 50
12 24 1.9 0.1680 1.06 2.23 0 509 (0.480) 0.04 164
12 24 1.9 0.1680 1.06 2.23 0 519 (0.490) 0.04 165
12 24 1.9 0.1680 1.06 2.23 0 530 (0.500) 0.02 49

0.03 54
0.04 158

16 24 1.9 0.1680 1.06 2.98 0 530 (0.500) 0.04 2000

(Table continued)
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TABLE I. (Continued)

Ns Nt β κ a−1 [GeV] L [fm] T [MeV] μ [MeV] (aμ) aj Configuration

32 32 1.9 0.1680 1.06 5.95 530 (0.500) 0.04 126
12 24 1.9 0.1680 1.06 2.23 0 557 (0.525) 0.04 283
16 16 2.1 0.1577 1.41 2.21 0 564 (0.400) 0.02 200

0.03 216
16 18 0.03 212
16 20 0.03 204
16 32 0.01 200

0.02 63
0.03 100

12 24 1.9 0.1680 1.06 2.23 0 583 (0.550) 0.02 52
0.04 52
0.06 36

12 24 1.9 0.1680 1.06 2.23 0 610 (0.575) 0.04 166
16 32 2.1 0.1577 1.41 2.21 0 635 (0.450) 0.02 61

0.03 100
12 24 1.9 0.1680 1.06 2.23 0 636 (0.600) 0.02 50

0.04 31
16 24 1.9 0.1680 1.06 2.98 0 636 (0.600) 0.04 100
12 24 1.9 0.1680 1.06 2.23 0 689 (0.650) 0.02 52

0.04 149
16 16 2.1 0.1577 1.41 2.21 0 705 (0.500) 0.02 64

0.03 200
16 18 0.03 210
16 20 0.03 200
16 32 0.02 60

0.03 100
12 24 1.9 0.1680 1.06 2.23 0 742 (0.700) 0.02 50

0.03 50
0.04 116

16 24 1.9 0.1680 1.06 2.98 0 742 (0.700) 0.04 2000
16 32 2.1 0.1577 1.41 2.21 0 776 (0.550) 0.02 60

0.03 100
12 24 1.9 0.1680 1.06 2.23 0 795 (0.750) 0.02 50
16 24 1.9 0.1680 1.06 2.98 0 795 (0.750) 0.04 120
16 16 2.1 0.1577 1.41 2.21 0 846 (0.600) 0.02 60

0.03 200
16 20 0.03 203
16 32 0.02 60

0.03 100
12 24 1.9 0.1680 1.06 2.23 0 848 (0.800) 0.02 50

0.04 142
16 24 1.9 0.1680 1.06 2.98 0 848 (0.800) 0.04 120
12 24 1.9 0.1680 1.06 2.23 0 901 (0.850) 0.02 50
16 32 2.1 0.1577 1.41 2.21 0 917 (0.650) 0.02 60

0.03 100
12 24 1.9 0.1680 1.06 2.23 0 954 (0.900) 0.02 48

0.03 51
0.04 67

16 24 1.9 0.1680 1.06 2.98 0 954 (0.900) 0.04 1100
16 20 2.1 0.1577 1.41 2.21 0 987 (0.700) 0.03 200
16 32 0.02 60

0.03 104
12 24 1.9 0.1680 1.06 2.23 0 1007 (0.950) 0.02 50
16 32 2.1 0.1577 1.41 2.21 0 1058 (0.750) 0.03 102
12 24 1.9 0.1680 1.06 2.23 0 1060 (1.000) 0.02 50

0.04 126

(Table continued)
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TABLE I. (Continued)

Ns Nt β κ a−1 [GeV] L [fm] T [MeV] μ [MeV] (aμ) aj Configuration

16 32 2.1 0.1577 1.41 2.21 0 1128 (0.800) 0.03 100
12 24 1.9 0.1680 1.06 2.23 0 1166 (1.100) 0.02 50

0.04 88
48 32 1.7 0.1780 0.857 8.10 27 0 0 302
32 8 1.9 0.1680 1.06 5.95 133 0 0 2000
16 12 2.1 0.1577 1.41 2.21 118 0 0 200
16 10 2.1 0.1577 1.41 2.21 141 0 0 200
16 9 2.1 0.1577 1.41 2.21 157 0 0 400
16 8 2.1 0.1577 1.41 2.21 176 0 0 200
16 7 2.1 0.1577 1.41 2.21 201 0 0 400
16 6 2.1 0.1577 1.41 2.21 235 0 0 200
16 5 2.1 0.1577 1.41 2.21 282 0 0 200
16 4 2.1 0.1577 1.41 2.21 353 0 0 200
16 14 2.1 0.1577 1.41 2.21 101 282 (0.200) 0.03 216
16 14 2.1 0.1577 1.41 2.21 101 423 (0.300) 0.02 206

0.03 220
16 14 2.1 0.1577 1.41 2.21 101 564 (0.400) 0.02 210

0.03 200
16 14 2.1 0.1577 1.41 2.21 101 705 (0.500) 0.02 100

0.03 209
16 13 2.1 0.1577 1.41 2.21 108 282 (0.200) 0.03 200
16 13 2.1 0.1577 1.41 2.21 108 423 (0.300) 0.02 310

0.03 200
16 13 2.1 0.1577 1.41 2.21 108 564 (0.400) 0.02 214

0.03 218
16 13 2.1 0.1577 1.41 2.21 108 705 (0.500) 0.02 100

0.03 200
16 12 2.1 0.1577 1.41 2.21 118 282 (0.200) 0.02 214

0.03 200
16 12 2.1 0.1577 1.41 2.21 118 423 (0.300) 0.02 204

0.03 216
16 12 2.1 0.1577 1.41 2.21 118 564 (0.400) 0.02 216

0.03 216
16 12 2.1 0.1577 1.41 2.21 118 705 (0.500) 0.02 208

0.03 200
16 12 2.1 0.1577 1.41 2.21 118 846 (0.600) 0.02 213

0.03 224
16 12 2.1 0.1577 1.41 2.21 118 987 (0.700) 0.03 192
16 12 2.1 0.1577 1.41 2.21 118 1128 (0.800) 0.03 235
16 12 2.1 0.1577 1.41 2.21 118 1269 (0.900) 0.03 200
16 11 2.1 0.1577 1.41 2.21 128 282 (0.200) 0.03 204
16 11 2.1 0.1577 1.41 2.21 128 423 (0.300) 0.03 200
16 11 2.1 0.1577 1.41 2.21 128 564 (0.400) 0.03 220
16 11 2.1 0.1577 1.41 2.21 128 705 (0.500) 0.03 200
16 10 2.1 0.1577 1.41 2.21 141 282 (0.200) 0.03 200
16 10 2.1 0.1577 1.41 2.21 141 423 (0.300) 0.02 240

0.03 240
16 10 2.1 0.1577 1.41 2.21 141 564 (0.400) 0.02 300

0.03 227
16 10 2.1 0.1577 1.41 2.21 141 705 (0.500) 0.02 210

0.03 210
16 9 2.1 0.1577 1.41 2.21 157 282 (0.200) 0.03 204
16 9 2.1 0.1577 1.41 2.21 157 423 (0.300) 0.03 500
16 9 2.1 0.1577 1.41 2.21 157 564 (0.400) 0.03 500
16 9 2.1 0.1577 1.41 2.21 157 705 (0.500) 0.03 400
16 8 2.1 0.1577 1.41 2.21 176 282 (0.200) 0.03 200

(Table continued)
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