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We study properties of SUð2Þ Yang-Mills theory on a four-dimensional Euclidean spacetime in which
two directions are compactified into a finite two-dimensional torus T2 while two others constitute a large
R2 subspace. This Euclidean T 2 × R2 manifold corresponds simultaneously to two systems in a (3þ 1)
dimensional Minkowski spacetime: a zero-temperature theory with two compactified spatial dimensions
and a finite-temperature theory with one compactified spatial dimension. Using numerical lattice
simulations we show that the model exhibits two phase transitions related to the breaking of center
symmetries along the compactified directions. We find that at zero temperature the transition lines cross
each other and form the Greek letter γ in the phase space parametrized by the lengths of two compactified
spatial dimensions. There are four different phases. We also demonstrate that the compactification of
only one spatial dimension enhances the confinement property and, consequently, increases the critical
deconfinement temperature.
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I. INTRODUCTION

Lattice simulations indicate that quantum chromody-
namics at zero density possesses a deconfining crossover
transition at temperature Tc ≃ 155 MeV [1]. This important
number sets a temperature scale, for example, in heavy-
ion collisions. In a thermal equilibrium, a quantum field
system, such as QCD, may be studied on a Euclidean space
R3 × S1

T where the time coordinate is Wick-rotated into
imaginary time which is further compactified into a circle
of the length L ¼ 1=T related to temperature T.
In our article we discuss Yang-Mills theory on the

Euclidean manifold T 2 ×R2, where two (out of total four)
Euclidean dimensions are compactified. The Euclidean
T2 ×R2 theory may be treated as a theory at zero
temperature with two compactified spatial dimensions.
Alternatively, one may consider it as a finite-temperature
theory with one compactified spatial dimension. In the
latter interpretation, and for a small radius of compactified
spatial dimension, a similar model, the deformed Yang-
Mills theory, is expected to possess the Berezinskii-
Kosterlitz-Thouless phase transition [2] in a limit of a
large number of colors [3]. There are indications [3,4] that
the temperature of the phase transition should increase with

the shrinking radius of the compactification. The phase
diagram of a related T2þD theory with small radii of the D
dimensions has been studied in a large-N limit with the use
of a 1=D expansion in Ref. [5].
Properties of Yang-Mills theory at Euclidean T2 ×R2

spacetime are also interesting because this system suffers
from the Linde problem [6] which is much stronger
compared to the one at finite temperature S1 ×R3 [4].
In addition, the compactified spatial coordinates were
suggested to affect the stabilization properties of the
chromomagnetic vacuum [7].
The associated equilibrium system would require geo-

metrically constrained spatial dimensions. Influence of
finite geometry of the spacetime (such as spatial boundaries
or spatial compactifications [8]) on properties of quantum
fields are usually associated with the Casimir effect.
In (2þ 1) dimensions the non-Abelian Casimir effect in

a spatial geometry bound by parallel “chromometallic”
plates (wires) induces a smooth deconfining transition
and leads to a new mass scale, the Casimir mass [9].
The Casimir mass is related to the mass of the magnetic
gluon in ð3þ 1ÞD Yang-Mills theory at finite-temperature
[10]. The deconfining effect of the Casimir geometry and
the effects of the mass gap are well understood in the
confining compact Abelian gauge theory [11–13].
In (3þ 1) dimensions the thermodynamics of the pure

Yang-Mills theory in a finite box T3 × S1
T was studied

numerically in Ref. [14] where all spatial dimensions of the
spatial torus T3 were kept of the same length. It turned
out that for periodic boundary conditions the critical
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temperature T decreases slowly as the volume of the spatial
torus T3 is diminished. This property matches well with the
asymptotic freedom of Yang-Mills theory: In a shrinking
finite volume with periodic boundary conditions the lowest
momentum of gluon rises and eventually reaches the
perturbative scale where the gluons are weakly coupled
so that the confinement is lost. On the contrary, in an open
finite box with the confined (disordered) exterior of gluons
the phase transition temperature shifts rapidly to higher
values as the size of the box shrinks to zero [14,15].
The interest in the Euclidean lattices with more than one

compactified dimensions may also be understood in the
context of the large-N theories (in the planar limit). These
studies were done both for 3þ 1 and 2þ 1 SUðNÞ gauge
theories, both with asymmetrically compactified lattices
possessing a sequence of the phase transitions [16] which
were argued to match the structure of the phase transitions
in the large-N gauge theory at symmetric but finite-size T 4

lattice at different values of the lattice coupling [17]. The
transitions are related to the patterns of the broken Z4ðNÞ
center symmetry group associated with all four directions
of the T4 torus. Contrary to a finite-N gauge theory, in a
large-N limit finite volume effects disappear provided the
size of the lattice exceeds certain critical value, as sug-
gested in Ref. [17] with further numerical evidence
presented in Ref. [18]. The related reviews may be found
in Refs. [19–21]. Our work may be regarded as a comple-
ment of the above large-N studies with the focus on the
smallest possible value, N ¼ 2.
The structure of our paper is as follows: in Sec. II we

briefly describe SUð2Þ Yang-Mills theory that shares many
properties of its QCD counterpart with three colors. We
discuss the symmetries and the order parameters of the
lattice theory. In Sec. III we present the numerical results on
the phase diagram and spacetime anisotropy of the gluon
fields. We discuss two mentioned Minkowski realizations
of the same Euclidean T 2 ×R2 model (a zero temperature
model with two compactified spatial dimensions and a
finite-temperature model with one compactified spatial
dimension). Our conclusions are summarized in the last
section.

II. MODEL AND SYMMETRIES

A. Lattice Yang-Mills theory on a torus

The Yang-Mills (YM) theory is described by the follow-
ing Lagrangian,

LYM ¼ −
1

4
Fa
μνFμν;a; ð1Þ

which is expressed via the field-strength tensor Fa
μν ¼

∂μAa
ν − ∂νAa

μ þ gfabcAb
μAc

ν of the non-Abelian (gluon)
field Aa

μ with a ¼ 1;…N2
c − 1, and fabc are the structure

constants of the SUðNcÞ gauge group related via

½Ta; Tb� ¼ 2ifabcTc to the generators Ta of the SUðNcÞ
group. In our paper we consider the simplest case of two
colors, Nc ¼ 2.
The lattice version of the SUð2Þ Yang-Mills theory (1) is

given in terms of the SUð2ÞmatricesUl defined at the links
l≡ fx; μg of the four-dimensional Euclidean cubic lattice
with periodic boundary conditions in all four directions.
The lattice matrix fields Ul and the continuum vector fields
Âμ ¼ TaAa

μ are related as follows:

Ux;μ ¼ Peig
R

xþaμ̂

x
dxν ÂνðxÞ ≃ eiagÂμðxÞ; ð2Þ

where P is the path-ordering operator and a is the physical
lattice spacing (equal to the length of the lattice links).
For the lattice version of the Yang-Mills theory (1) we

use the standard Wilson plaquette action:

SP ¼ β
X
P

�
1 −

1

2
TrUP

�
; ð3Þ

where UPx;μν
¼ Ux;μUxþμ̂;νU

†
xþν̂;μU

†
x;ν is the plaquette field

strength and μ̂ is a unit lattice vector in the positive μ
direction. The sum in Eq. (3) is taken over all plaquettes of
the lattice. For Nc ¼ 2 gauge theory the lattice coupling
constant β is related to the continuum coupling g as follows:

β ¼ 4

g2
: ð4Þ

We perform our simulations at lattices of the geometries
N1 × N2 × N2

s , where the physical lengths1

L1 ¼ aN1; L2 ¼ aN2; ð5Þ

determine the compactified directions of the torus T2 while
the other two dimensions of the lengthNs correspond to the
infinite plane R2. The lengths N1 and N2 of compactified
torus T 2 are always substantially smaller than the lengths
Ns of the plane R2. In an ideal case, the extension of the
lattice in the R2 dimensions should be taken infinitely
large, Ns → ∞ (and we take Ns ≫ N1;2 in our work).
Technically, our simulations are completely analogous to

the finite-temperature case which corresponds to the lattice
geometry Nt × N3

s, where the physical length Lt ¼ aNt of
the single compactified dimension Nt ≪ Ns is related to
the finite temperature in the standard way: T ¼ 1=Lt.
Physically, our simulations at the Euclidean lattice

N1 × N2 × N2
s may be attributed to two different systems

in Minkowski spacetime. Firstly, the Euclidean lattice
corresponds to a zero-temperature Yang-Mills theory

1Notice that we use the notation Nμ for the lattice lengths
expressed in lattice units and we reserve the notation Lμ notations
for the same lengths expressed in physical units.
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defined in (3þ 1) dimensional spacetime, in which two of
the three spatial dimensions are compactified into a torus
with the lengths L1 and L2 given in Eq. (5). As the third
spatial direction remains infinite, the spatial three-dimen-
sional manifold is T 2 × R. Secondly, our simulations
correspond to the Yang-Mills theory at a spatial manifold
S1 ×R2 at a finite temperature T ¼ 1=L1, where the length
of the compactified spatial dimension S1 is L2 (obviously,
with the permutation symmetry L1 ↔ L2).

B. Order parameters

1. Finite temperature: One compactified dimension

The Yang-Mills theory in (3þ 1) dimensional spacetime
possesses a color confinement phase at low temperatures
and a deconfinement phase at sufficiently high temperature.
For the SUð2Þ gauge theory these phases are separated
by a second order phase transition at the critical
temperature [22]

Tc ≡ T∞
c ¼ 0.69ð2Þ ffiffiffi

σ
p

; ð6Þ

where σ is the tension of the string which confines color
charges in fundamental representations (for instance, a test
quark and a test antiquark) at zero temperature T ¼ 0. The
string tension σ defines the physical mass and length scales
in the theory. The superscript “∞” in Eq. (6) indicates that
the critical temperature T∞

c corresponds to the thermody-
namic limit of the system.
The order parameter of the deconfinement phase tran-

sition is the expectation value of the Polyakov line Pwhich
is given by an ordered product of the non-Abelian matrices
Ul along the compactified (traditionally, μ ¼ 4) “temper-
ature” direction:

Px ¼
1

2
Tr

YL−1
t¼0

Ux;x4;4; ð7Þ

where x≡ ðx1; x2; x3Þ is the spatial three-dimensional
coordinate. Equation (7) defines a gauge-invariant object
because of the periodic boundary condition imposed along
the compactified direction. The physical length of the
compactified dimension is given by the inverse temper-
ature, Lt ¼ 1=T.
The expectation value of the Polyakov line (7) deter-

mines the free energy F of a single heavy quark, hPi ¼
e−F=T . In the low-temperature phase the expectation value
of the line is vanishing, hPi ¼ 0, indicating that the free
energy of an isolated quark is infinite and quarks cannot
exist as single objects. Thus, the low-temperature phase is
confining: the quarks are confined inside hadrons that are
colorless bound states of the quarks. In the deconfinement
phase the Polyakov line acquires a nonzero value, hPi ≠ 0,

implying the deconfinement property: the isolated quarks
may exist.
The apparent existence of an order parameter implies

also a presence of a symmetry which is spontaneously
broken in one of the phases and unbroken in the other one.
In the case of the deconfinement phase transition the
relevant symmetry is represented by the center subgroup
of the non-Abelian gauge group. Indeed, the lattice link
fields (2) transform under the gauge transformations
Ω ∈ SUðNcÞ as follows:

Uxμ → U0
xμ ¼ ΩxUxμΩ

†
xþμ̂: ð8Þ

On a lattice with a compactified direction μ of the lengthNμ

the gauge transformations (8) leave the gauge action (3)
invariant provided the gauge transformation matrix Ωx is a
quasiperiodic function of the compactified coordinate xμ:

Ωx → Ωxþμ̂Nμ
¼ CμΩx; ð9Þ

where Cμ is an element of the center subgroup of the gauge
group SUðNcÞ (the center subgroup is formed by all
elements of the group of which commute with themselves
and as well as with other elements of the group).
The Polyakov line (7) is sensitive to the transformations

with respect to the center subgroup ZNc
of the SUðNcÞ

gauge group:

P → CμP; Cμ ∈ Z2: ð10Þ

In the confinement phase the expectation value of the line is
vanishing, hPi ¼ 0, so that the center subgroup is unbro-
ken. In the deconfinement phase the Polyakov line acquires
a nonzero value, hPi ≠ 0, thus signaling the spontaneous
breaking of the center symmetry.

2. Two compactified dimensions

In case of two compactified dimensions x1 and x2 it is
natural to identify two Polyakov lines defined along the
directions μ ¼ 1, 2:

PðμÞ
x ¼ 1

2
Tr

YL−1
t¼0

Ux;xμ;μ; ð11Þ

where x corresponds to the remaining three coordinates.
The expectation values of the corresponding Polyakov

lines are as follows:

PðμÞ ¼ Nμ

N1N2N2
s

�����
X
x

PðμÞ
x

����
�
; μ ¼ 1; 2: ð12Þ

Given the topological isomorphism of the two-
dimensional torus with the Cartesian product of two circles,
T2 ≃ S1 × S1, one could suspect the existence of two phase
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transitions associated with breaking of two different Z2

symmetries that can be probed by the Polyakov lines along
the corresponding compactified directions. In the next
section we will check this hypothesis explicitly.

III. PHASE STRUCTURE

A. Probing phase structure with Polyakov lines

We studied the phase structure of Yang-Mills theory at
the lattices N1 × N2 × N2

s with the extensions N1; N2 ¼
4;…8 in T2 torus dimensions and with the fixed Ns ¼ 32

extension in the “infinite” R2 directions. For the finite-
temperature case we also considered the additional lattice
configuration with N1 ¼ 4;…8 and N2 ¼ Ns ¼ 32. We
generated configurations of the lattice gauge fields using
the hybrid Monte Carlo algorithm [23,24]. We took 3
overrelaxation steps [23] between trajectories in order to
decrease an autocorrelation length between the configura-
tions. We used 5 × 105 trajectories for each sets of
parameters. All observables were computed at every
trajectory. Also we used binning for correct error estima-
tion. We scanned the range of the lattice couplings β ∈
½2.1; 4.5�with the accuracy δβ ¼ 0.01. All simulations were
performed on Nvidia GPU cards.

1. Expectations values of Polyakov lines

Typical examples of the expectation values of the
Polyakov lines (12) at the T2 ×R2 geometry N1 × N2 ×
N2

s are shown in Fig. 1. In the figure we choose N1,
N2 ¼ 4, 6 for two short compactified dimensions and
Ns ¼ 32 for two large (noncompactified in a thermody-
namic limit) dimensions.
One may immediately notice from Fig. 1 that the

Polyakov lines along the large (noncompactified) dimen-
sions with μ ¼ 3, 4 are predictably insensitive to the
compactification of other dimensions. On the contrary,
each of the Polyakov lines closed along the compactified
directions does experience of a transitionlike behavior.

A common feature of the order parameters in the
compactified directions is that they are small at low-β
region (hinting to an existence of a “confinementlike”
phase at small β) and large in the high-β limit (signaling a
presence of the “deconfinementlike” region at large β). Of
course, in our case of the spatial compactified dimensions
these (de)confinementlike phases have nothing to do the
real (de)confinement, and they should be characterized by
the appropriate Z2 spatial symmetries.
Given our experience of the single-compactified “tem-

perature” dimension, the very existence of these transitions
is not surprising by itself. Moreover, it is natural that the
transitions associated with the compact dimension of
different lengths are taking place at different critical
couplings β, as it is indicated by the case of N1 ¼ 4,
N2 ¼ 6 and μ ¼ 1, 2. What is interesting, however, is the
interrelation of the transitions: Fig. 1 indicates that the
compactification of one dimension influences the transition
associated with the other compactified dimension. For
example, the slope of the Polyakov line along the N ¼ 6
direction is shifting towards smaller β as the other direction
takes values 4,6, and 32.

2. Susceptibilities of Polyakov lines and critical couplings

In a finite volume the points of a (pseudo) critical phase
transition correspond to maxima of the susceptibility of the
order parameter:

suscðPÞ ¼ 1

Vol
ðhjPj2i − hjPji2Þ: ð13Þ

In Fig. 2 we show an example of the susceptibilities of the
Polyakov lines defined along the shorter (μ ¼ 1) and longer
(μ ¼ 2) compactified directions on the lattice with N1 ¼ 4,
N2 ¼ 6 and Ns ¼ 32. The two peaks appear at different
coupling constant β signaling the expected splitting of the
phase transitions associated with breaking of the center
symmetries along unequal directions. In Fig. 3 we show all
pseudocritical lattice couplings βcμ for the lattices with
N1; N2 ¼ 4;…8 and Ns ¼ 32.

FIG. 1. Expectations values of Polyakov loops (12) in various
directions at different lattice geometries (the detailed description
is given in the text).

FIG. 2. Examples of the susceptibilities of the Polyakov lines
(13) defined along the compactified directions μ ¼ 1 and μ ¼ 2
of unequal length (N1 ¼ 4 and N2 ¼ 6, respectively).
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3. Lattice spacing vs lattice coupling

The position of the pseudocritical lattice couplings, shown
in Fig. 3, correspond certain physical sizes (lengths L1 and
L2) of the compactified dimensions (5). In order to translate
the lattice quantities to their continuum counterparts we need
to know the physical value of the lattice spacing a as the
function of the lattice coupling β. To this end we follow
Ref. [25]: in the low-β region (at strong and moderate
coupling) we interpolate the data for the lattice string
tension, obtained in Ref. [25] as well, using a spline function.
In the scaling window at the weak coupling (g ≪ 1 or
β ≫ 1) the dependence of the lattice spacing a on the SUð2Þ
coupling constant g may be determined by the renormaliza-
tion group equation. In two loops (see, e.g., Ref. [22]):

aðg2ÞΛL ¼ exp

�
−
12π2

11g2
þ 51

121
ln
24π2

11g2

	
; ð14Þ

where ΛL is a mass scale. The two approaches are matched
at β ¼ 2.8, and the result for the lattice spacing is shown
in Fig. 4.

B. Zero-temperature SUð2Þ gauge theory with two
compactified spatial dimensions

In this section we consider the interpretation of our
Euclidean results in terms of a zero-temperature SUð2Þ

gauge theory in Minkowski spacetime with two compacti-
fied spatial dimensions.

1. Phases of SUð2Þ YM at T2 ×R spatial
manifold at T = 0

Using the results for the critical couplings βc1 and βc2
(given in Fig. 3) and the dependence of the lattice spacing a
on the lattice coupling β (presented in Fig. 4) we may
reconstruct the phase diagram of the model in terms of the
physical lengths of the compactified dimensions L1 and L2,
Eq. (5). The phase diagram is shown in Fig. 5.
In the phase diagram there are two critical lines corre-

sponding to the breaking of the center symmetry in each of
the compactified dimensions. Both these lines start at the
pointO at the origin, L1 ¼ L2 ¼ 0, then cross each other at
the point C, follow a common line till the point C0 and then
deviate from each other in the appropriate limits L1;2 → ∞.
Notice that in each of these limits, either at L1 → ∞ or at
L2 → ∞, the Euclidean T 2 × R2 space reduces to the finite-
temperature case S1 ×R3 for which the point of the phase
transition is well known (6). Given the identification of the
length of the single compactified dimension with temper-
ature, L ¼ 1=T, one gets the compactification transitions at
L2 ¼ L∞

c (point A in Fig. 5) and L1 ¼ L∞
c (point B),

respectively. Here the critical length of the compactification
transition is given by Eq. (6):

L∞
c ¼ 1

T∞
c
¼ 1.45ð4Þ 1ffiffiffi

σ
p : ð15Þ

In Fig. 5 the transition lines resemble the Greek letter γ.
The phase diagram possesses four phases marked by the
Roman numerals in Fig. 5. These phases are characterized
by different patterns of spontaneous breaking of spatial
center symmetries associated with the two compactified
dimensions:

FIG. 3. The critical lattice couplings associated with μ ¼ 1
(top) and μ ¼ 2 (bottom) compactified dimensions on N1 × N2 ×
322 lattice as a function of the lattice extensionN2 at the fixed sets
of the lattice extension N1 in the other direction. The dashed lines
of are shown to guide the eye.

FIG. 4. Lattice spacing a expressed via the physical string
tension σ and the lattice coupling β. The data points are taken
from Ref. [25]. The dashed line corresponds to a spline
interpolation of the data, while the solid line is given by the
two-loop renormalization group relation (14) and Eq. (4).
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(I) Pð1Þ ≠ 0 and Pð2Þ ≠ 0 (both spatial center sym-
metries Z2 are broken spontaneously);

(II) Pð1Þ ≠ 0 and Pð2Þ ¼ 0 (one Zð1Þ
2 is broken while the

other Zð2Þ
2 is unbroken);

(III) Pð1Þ ¼ 0 and Pð2Þ ≠ 0 (unbroken Zð1Þ
2 , broken Zð2Þ

2 );
(IV) Pð1Þ ¼ 0 and Pð2Þ ¼ 0 (both spatial center sym-

metries Z2 are unbroken).
We expect that in the continuum limit the line of the

common phase transition C − C0 should shrink into a
single point since all the data points at this line are
represented by the lattices with equal compactified lengths
N1 ¼ N2. The length of the C − C0 segment gives the order
of our systematic accuracy due to finite-volume effects
at L1 ∼ L2 ∼ 1=

ffiffiffi
σ

p
.

The phase diagram (5) of the SUð2Þ gauge theory
qualitatively agrees with the diagram of a SUðNÞ Yang-
Mills theory in the limit of the large number of colors
N → ∞ on the T 2þD torus obtained in Ref. [5] with the use
of a 1=D expansion assuming that the radii of the D ¼ 2
dimensions are small.
Our results indicate that compactification of one or two

spatial dimensions does not induce a real deconfinement
transition. Indeed, we consider the theory at zero temper-
ature while the Polyakov lines along any of the non-
compactified dimension are effectively zero. The two
discussed transitions break only the spatial Z2 symmetries
while the temporal Z2 symmetry, which is responsible for
the color confinement phenomenon, remans unbroken. The
system always resides in the color confinement phase.

2. Anisotropy in gluon fields

One may expect that the fluctuations of the gluon fields
should be affected by the anisotropic nature of the
spacetime [7]. In order to explore the anisotropic in the
gluon fluctuations we calculate the following gauge invari-
ant quantity (no sum over the indices μ and ν is implied):

δhF2
μνi ¼ hF2

μνi −
1

12

X4
α;β¼1

hF2
αβi: ð16Þ

This quantity compares the field-strength fluctuations hF2
μνi

(with fixed μ and ν) to the mean fluctuations (averaged over
all possible geometrical orientations). An additive quarti-
cally divergent ultraviolet contribution to the field-strength
tensor squared drops out in the difference (16). Below we
call the quantity (16) “the gluon anisotropy” for shortness.
In Fig. 6 we show the gluon anisotropy (16) along the

straight path in the phase space of Fig. 5 which keeps
the ratio L1=L2 ¼ 0.8 constant. This path first crosses the

FIG. 5. The phase diagram of the zero-temperature SUð2Þ
Yang-Mills theory with two compactified spatial dimensions L1

and L2. The colored arrows point to the asymptotic critical
lengths (15) of compactification transition related to a finite-
temperature phase transition (6). The colored points correspond
to the numerical data, the dashed blue line (the dot-dashed red
line) is the L1 (L2) compactification transition. A detailed
description is given in the text.

FIG. 6. The natural logarithm of the gluon anisotropy (16) vs
the length of the compactified direction L1 for fixed ratios
between the compactification lengths L1=L2 ¼ 0.8. All three
representative phases are shown. The notation for the labels
“�μν” is as follows: “�” implies a positive or negative value of
the anisotropy δF2

μν and μ ¼ ⊥ denotes the long direction, either
μ ¼ 3 or μ ¼ 4. The lower figure is a zoom in on the I–II
transition of the whole plot (the upper figure). The vertical dot-
dashed red and dashed blue lines mark the positions of the phase
transition lines of Fig. 5.
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transition corresponding to the longer compactification
length L2 (the dot-dashed red line) and then it goes through
the transition corresponding to the shorter compactification
length L1 (the dashed blue line).
Let us consider the proportionally increasing lengths of

the compactified dimensions L1 and L2, with L1=L2 ¼ 0.8
fixed, Fig. 6. At sufficiently small dimensions of the
compactified directions we are in the phase “I,” where
both spatial Z2 symmetries are broken, and the hierarchy of
the gluon asymmetries is well visible in Fig. 6 (bottom): the
gluon anisotropy in the compactified T 2 and noncompac-
tified R2 dimensions are, respectively, positive- and neg-
ative- valued, and equal in the absolute values. The mixed
S1 ×R are positive- and negative-valued for S1 corre-
sponding to the shorter (L1) and longer (L2) length,
respectively (and they both have the same absolute value
as well). Thus, (the absolute value of) the gluon anisotropy
has a double-degenerate structure.
With increasing proportionally the size of the compacti-

fied dimensions we cross the first transition point between
the phases “I”–“II,” where Z2 of the longer compactifica-
tion L2 gets restored. According to Fig. 6 this transition
does not seem to affect the gluon asymmetries.
As we increase the compactified length even further, we

move along the phase “II,” approach the transition line
“II”–“IV” and then cross to the phase “IV” where both Z2

symmetries are restored. At the second transition point the
mentioned double degeneracy disappears in a continuous
manner: all four gluon asymmetries possess different
strengths in the vicinity of the second transition and in
the whole “IV” phase.
The series of transitions on T 3 tori were discussed earlier

in the context of the large but finite-N gauge theories on
very asymmetric lattices in Ref. [16]. Interestingly, these
transition were conjectured in Ref. [16] to be related to the
series of the finite-volume infinite-N phase transitions on
symmetric T 4 lattices, as conjectured in Ref. [17] with
further numerical support obtained in Ref. [18]. Here we
concentrate on the phase diagram of the SUðNÞ gauge
with the smallest possible value N ¼ 2 on the torus T4 with
two compactified dimensions and two noncompactified
(formally, infinite-lengths, T 2 → R2) dimensions.

C. Finite-temperature SUð2Þ gauge theory with one
compactified spatial dimension

1. Phases of SUð2Þ YM at S1 ×R2 spatial
manifold at T > 0

Now let us turn to the second interpretation of our
numerical results by considering the finite-temperature
SUð2Þ Yang-Mills model with one compactified spatial
dimension. Taking the phase diagram of Fig. 5 as a starting
point and setting L1 ¼ L as the size of the single com-
pactified spatial dimension and L2 ¼ 1=T as the imaginary
time, we get the phase diagram shown in Fig. 7. For the

sake of clearness we omitted the numerical data points in
this figure and we show the spline interpolations only. The
agreement of the numerical data and the interpolations is as
good as in Fig. 5.
Figure 7 shows that the compactification of one of the

spatial dimensions increases the deconfinement temper-
ature. This observation may indicate that the compactifi-
cation of only one dimension enhances the confinement
property of the vacuum as one needs stronger thermal
fluctuations to destroy the color confinement.
At large compactified dimensions L the deconfinement

temperature is almost independent of L and, obviously,
TcðLÞ → T∞

c as L → ∞.
As the compactified length decreases to the critical

length L ¼ L∞
c , given in Eq. (15), the spatial Z2 gets

broken at zero temperature. At the point ðLs; TsÞ ≃
ð1.1= ffiffiffi

σ
p

; 0.9
ffiffiffi
σ

p Þ the two transitions lines cross and the
confinement region (with unbroken temporal Z2 sym-
metry) is always accompanied by the breaking of the
spatial Z2 symmetry. Then the diminishing length of the
compactified dimension L leads to a rapid increase of
the deconfinement temperature, in agreement with analyti-
cal arguments of Refs. [3,4]. Thus, we conclude that the
breaking of the spatial Z2 symmetry of the compactified
direction enhances the stability of the color confinement
against the thermal fluctuations. In other words, the
confinement of color is enhanced by compactification of
one of the spatial dimensions into a periodic circle.

2. Non-Abelian Casimir effect and magnetic
sector of QCD

The enhancement of the critical deconfinement temper-
ature with the compactification of one of the spatial

FIG. 7. The phase diagram of finite-temperature SUð2Þ Yang-
Mills theory with one compactified spatial dimension of the
length L. The thick red line is the deconfinement phase transition
and the thin blue line represents the critical line of the breaking of
the global Z2 symmetry associated with the compactified spatial
dimension. The red- and blue-shaded areas are the confinement
and spatial-Z2 restored phases, respectively. The critical temper-
ature (6) and the critical compactified length (15) are shown by
the arrows.
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coordinates may be treated as a nonperturbative feature of a
non-Abelian version of the Casimir effect. We would like to
stress that the enhancement of the critical temperature
comes as a result of the restricted Casimir-type geometry
and not as a finite-volume effect, as the total volume is still
large (and, moreover, we are formally close to the infinite
volume limit).
Consider a finite-temperature 3þ 1 dimensional Yang-

Mills theory with one compactified spatial direction. The
corresponding manifold is S1

S × S1
T × R2, where S1

S cor-
responds to the compactified spatial direction and S1

T is
the imaginary time (temperature) dimension. Let us take a
limit where the compactified spatial direction tends to
zero, L → 0, so that the spatial submanifold S1

S gradually
shrinks to a point. We may now treat the shrinking spatial
dimension as if it is a compactified imaginary time
dimension in the limit of infinitely high temperatures.
We immediately arrive to the picture of the dimensional
reduction, in which the gluon components corresponding to
the compactified directions become infinitely heavy and we
are left with a finite-temperature 2þ 1Yang-Mills theory at
the three-dimensional manifold S1

T ×R2. The gauge cou-
pling g3 of the resulting three dimensional theory is a
quantity of the dimension of mass1=2:

g3ðLÞ ¼
gffiffiffiffi
L

p ; ð17Þ

where L plays a role of the new “inverse temperature 1=T.”
Indeed, if the small spatial dimension would be a finite-
temperature direction when we would call the quantity (17)
as the “magnetic constant” (with the appropriate redefini-
tion L → 1=T) which would then set up a nonperturbative
scale for the magnetic gluons. The corresponding magnetic
mass would be proportional to the three-dimensional
coupling (17) and it would give a mass scale for the spatial
(magnetic) string tension σ3 in (2þ 1) dimensional SUð2Þ
gauge theory.
The first-principle numerical simulations indicate that

the critical temperature of the deconfining phase transition
in (2þ 1) dimensions is related to the (2þ 1)-dimensional
string tension σ3 as follows [26]:

T3;c ¼ CT
ffiffiffiffiffi
σ3

p
; CT ¼ 1.121ð8Þ; ð18Þ

while the string tension is proportional to the magnetic
coupling squared [27]:

ffiffiffiffiffi
σ3

p ¼ Cσg23; Cσ ¼ 0.3353ð18Þ: ð19Þ

These two relations, along with Eq. (17), give us the
following prediction for the critical temperature in
ð3þ 1ÞD Yang-Mills theory with one compactified spatial
coordinate of sufficiently short length L:

TS1×R2ðLÞ ¼ CS1×R2

g2

L
; L → 0; ð20Þ

where g is the coupling of the original ð3þ 1ÞDYang-Mills
theory and

Cth
S1×R2 ≡ CTCσ ¼ 0.376ð9Þ; ð21Þ

is a phenomenological dimensionless constant which is
determined by the critical temperature of the (2þ 1) Yang-
Mills theory, Eqs. (18) and (19).
Our numerical data of Fig. 7 indicate that the asymptotic

relation (20) indeed works with Cnum
S1×R2 ¼ 0.44ð4Þ which is

reasonably close to the estimation in Eq. (21). The small
difference between these quantities may be attributed to
systematic numerical errors in the limit L → 0. A careful
treatment this small discrepancy would require significant
numerical simulations, and therefore we leave it beyond the
scope of the present paper.
We also conclude that in the limit of a small compacti-

fication L → ∞ of the spatial dimension the phase tran-
sition in the SUð2Þ gauge theory should be of the second
order with the Ising type of the universality class similarly
to the case of the SUð2Þ lattice gauge theory in (2þ 1)
dimensions [26]. In the large Nc limit the phase transition
of Berezinskii-Kosterlitz-Thouless [2] is expected [3].

IV. CONCLUSIONS

In our paper we study, using first-principle numerical
simulations, a SUð2Þ Yang-Mills theory in a four-
dimensional Euclidean spacetime with two compactified
spatial dimensions of unequal lengths. The other two
dimensions were chosen to be sufficiently large, so that
the geometry of our spacetime corresponds to a direct
product of a two-dimensional torus and flat two-
dimensional space T2 ×R2. In Minkowski spacetime this
geometry may be associated to two different systems. We
may interpret it either as a zero-temperature theory in the
three-dimensional manifold with two compactified spatial
dimensions T 2 × R or as a finite-temperature theory on
T2 ×R spatial manifold with one compactified dimension.
Our work may be regarded as an N ¼ 2 complement of the
studies of the SUðNÞ gauge theories in large-N limit on
symmetrically [17,18] and asymmetrically [16] compacti-
fied lattices featuring sequence of the finite-size-free phase
transitions in a finite volume.
In our work, we show that the phase diagram of the zero-

temperature Yang-Mills theory on a T2 ×R spatial mani-
fold possesses two critical transitions associated with
breaking of two different center (Z2 × Z2) spatial sym-
metries. The compactifications R2 → S1 × S1 ≃ T 2 lead to
the breaking of the appropriate Z2 symmetries, which are
probed with the help of the spatial Polyakov lines. Both
transitions affect each other so that the resulting phase
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diagram, parametrized by the lengths of the compactified
dimensions, resembles the Greek letter γ, as shown in
Fig. 5. In addition, our results have revealed that the
compactification of two out of three spatial dimensions
does not lead to a color deconfinement at zero temperature.
These results also reveal the phase diagram of a finite-

temperature Yang-Mills theory on a spatial manifold
S1 ×R2 in which only one spatial dimension is compacti-
fied to a circle of the length L while two other dimensions
remain (infinitely) large. The system possesses two phase
transitions in the T–L plane: one transition line is a true
deconfinement phase transition while the second line is
associated with the breaking of the spatial Z2 symmetry,
Fig. 7. These two transition lines form the Greek letter χ. We
see that the compactification of one spatial dimension
increases the critical deconfinement temperature thus
enhancing the color-confinement property. We argue that

the enhancement of the critical temperature is not a finite-
volume effect and it comes as a result of the restricted
Casimir-type spatial geometry of an infinite-volume system.
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