
 

Nature of the Y(4260): A light-quark perspective

Yun-Hua Chen,1 Ling-Yun Dai,2 Feng-Kun Guo,3,4 and Bastian Kubis5
1School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

2School of Physics and Electronics, Hunan University, Changsha 410082, China
3CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,

Chinese Academy of Sciences, Beijing 100190, China
4School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

5Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics,
Universität Bonn, 53115 Bonn, Germany

(Received 4 March 2019; published 16 April 2019)

The Yð4260Þ has been one of the most puzzling pieces among the so-called XYZ states. In this paper, we
try to gain insights into the structure of the Yð4260Þ from the light-quark perspective. We study the dipion
invariant mass spectrum of the eþe− → Yð4260Þ → J=ψπþπ− process and the ratio of the cross sections
σðeþe− → J=ψKþK−Þ=σðeþe− → J=ψπþπ−Þ. In particular, we consider the effects of different light-
quark SU(3) eigenstates inside the Yð4260Þ. The strong pion–pion final-state interactions as well as the KK̄
coupled channel in the S-wave are taken into account in a model-independent way using dispersion theory.
We find that the SU(3) octet state plays a significant role in these transitions, implying that the Yð4260Þ
contains a large light-quark component. Our findings suggest that the Yð4260Þ is neither a hybrid nor a
conventional charmonium state, and they are consistent with the Yð4260Þ having a sizeable D̄D1

component which, however, is not completely dominant.

DOI: 10.1103/PhysRevD.99.074016

I. INTRODUCTION

The nature of the vector charmoniumlike state Yð4260Þ
has remained controversial since its discovery in the initial-
state radiation process eþe− → γISRJ=ψπþπ− [1]. There is
no room for the Yð4260Þ in the charmonium spectrum
predicted in the naive quarkmodel [2], and theYð4260Þ does
not show strong couplings to ground-state open-charm
decay modes [3], which is unexpected for conventional
vector cc̄ states above the DD̄ threshold. Such peculiar
properties have initiated a lot of theoretical and experimental
studies, see Refs. [4–14] for recent reviews. On the theo-
retical side, models have been proposed to interpret the
Yð4260Þ as a hybrid state [15–17], an excited charmonium
[18–20], a baryonium [21], a hadrocharmonium [22,23], a
tetraquark state [24–26], a hadronicmolecule of D̄D1ð2420Þ
[27–30] or ωχc0 [31], or an interference effect [32,33].
On the experimental side, resonant structures with a Breit–
Wigner mass ranging from 4.21 to 4.26 GeV have been
observed and analyzed in different channels such as eþe− →
J=ψπþπ− [1,34], hcπþπ− [35], ωχc0 [36], Xð3872Þγ [37],

ψ 0πþπ− [38], andD0D�−πþ þ c:c: [39]. The signals from all
of these channels could be from the Yð4260Þ. The last one is
the first observation in an open-charm channel, and the final
stateDD̄�π is as expected from theDD̄1 hadronic molecular
model [30,40].
In this work, we will study the possible light-quark

components of the Yð4260Þ to help reveal its internal
structure. We will focus on the ππ invariant mass spectrum
of the reaction eþe− → Yð4260Þ → J=ψππ, which is one of
the most accurately measured channels and is the discovery
channel of the Yð4260Þ. In this process, the dipion invariant
mass reaches above theKK̄ threshold, and thus allows us to
extract the information of the light-quark SU(3) flavor-
singlet and flavor-octet components. The ratio of the cross
sections σðeþe− → J=ψKþK−Þ=σðeþe− → J=ψπþπ−Þ is
relevant to the strange-quark component, and will also be
taken into account. If the Yð4260Þ contains no light quarks
(as in the hybrid state or the charmonium scenarios), the
light-quark source provided by the Yð4260Þ has to be in the
form of an SU(3) singlet state. Thus the determination of
the contributions fromdifferent SU(3) eigenstate components
is instructive to clarify the structure of theYð4260Þ, especially
in the case if a nonzero SU(3) octet component is found
to be indispensable to reproduce the experimental data.
The conservation of parity and C-parity constrains the

dipion system in eþe− → Yð4260Þ → J=ψππ to be in even
partial waves. The dipion invariant mass mππ goes up to
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more than 1.1 GeV. In this energy region, there are strong
coupled-channel final-state interactions (FSIs) in the
S-wave, which include the scalar resonances f0ð500Þ and
f0ð980Þ and can be taken into accountmodel-independently
using dispersion theory. Based on unitarity and analyticity,
the modified Omnès representation is used in this study,
where the left-hand-cut contributions are approximated by
the sum of the Zcð3900Þ-exchange mechanism and the tri-
angle diagrams Yð4260Þ→D̄D1ð2420Þ→D̄D�πðD̄D�

sKÞ→
J=ψππðJ=ψKK̄Þ [30,41,42].1 At low energies, the
amplitude should agree with the leading chiral results,
so the subtraction terms in the dispersion relations can
be determined by matching to the chiral contact terms.
For the leading contact couplings for Yð4260ÞJ=ψππ and
Yð4260ÞJ=ψKK̄, we construct the chiral Lagrangians in
the spirit of the chiral effective field theory (χEFT) and the
heavy-quark nonrelativistic expansion [43]. The parame-
ters are then fixed from fitting to the BESIII data.
A diagrammatic representation of all contributions is
given in Fig. 1.
This paper is organized as follows. In Sec. II,

we describe the theoretical framework and elaborate
on the calculation of the amplitudes as well as the
dispersive treatment of the FSI. In Sec. III, we present
the fit results and discuss the light-quark components of
the Yð4260Þ and its structure. A brief summary is given
in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Lagrangians

In general, the Yð4260Þ can be decomposed into
SU(3) singlet and octet components of light quarks,

jYð4260Þi ¼ ajV1i þ bjV8i; ð1Þ

where jV1i≡V light
1 ⊗Vheavy¼ 1ffiffi

3
p ðuūþdd̄þss̄Þ⊗Vheavy and

jV8i≡V light
8 ⊗Vheavy¼ 1ffiffi

6
p ðuūþdd̄−2ss̄Þ⊗Vheavy, and the

ratio of the component strengths r≡ b=a can be deter-
mined through fitting to the data. Expressed in terms of a
3 × 3 matrix in the SU(3) flavor space, it is written as

affiffiffi
3

p V1 · 1þ bffiffiffi
6

p V8 · diagð1; 1;−2Þ: ð2Þ

The effective Lagrangian for the Yð4260ÞJ=ψππ and
Yð4260ÞJ=ψKK̄ contact couplings, at leading order in the
chiral expansion and respecting the heavy-quark spin
symmetry, reads [43–45]

LYψΦΦ ¼ g1hVα
1J

†
αihuμuμi þ h1hVα

1J
†
αihuμuνivμvν

þ g8hJ†αihVα
8uμu

μi þ h8hJ†αihVα
8uμuνivμvν

þ H:c:; ð3Þ

where h…i denotes the trace in the SU(3) flavor space,
J ¼ ðψ= ffiffiffi

3
p Þ · 1, and vμ ¼ ð1; 0Þ is the velocity of the

heavy quark. The lightest pseudoscalar mesons, being the

(a1)

(a2) (b2)

(b1)

FIG. 1. Feynman diagrams considered for eþe− → Yð4260Þ → J=ψππ. (a1) and (a2) denote the contributions of the chiral contact
YψΦΦ terms. (b1) and (b2) correspond to the contributions of the Zc-exchange terms. (c1) and (c2) denote the triangle diagrams. The
crossed diagrams of (b1), (c1), (b2), and (c2) are not shown explicitly. The gray blob denotes the effects of FSI.

1We also need to take account of the Yð4260Þ → J=ψKK̄
process in the coupled-channel FSI.
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pseudo-Goldstone bosons from the spontaneous breaking
of chiral symmetry, can be filled nonlinearly into

uμ ¼ iðu†∂μu − u∂μu†Þ; u ¼ exp

�
iΦffiffiffi
2

p
F

�
; ð4Þ

with the Goldstone fields

Φ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 K0

K− K̄0 − 2ffiffi
6

p η8

1
CCCA: ð5Þ

Here F is the pion decay constant in the chiral limit, and we
take the physical value 92.1 MeV for it.
We need to define the ZcYð4260Þπ and the ZcJ=ψπ

interacting Lagrangians to calculate the contribution of the
intermediate Zc states, namely Yð4260Þ → Zcπ → J=ψππ.
Note that there is no hint so far for the existence of a
hidden-charm strange partner of the Zc state [46]. We thus
parametrize the Zc states in a matrix as

Zi
c ¼

0
BB@

1ffiffi
2

p Z0i
c Zþi

c 0

Z−i
c − 1ffiffi

2
p Z0i

c 0

0 0 0

1
CCA: ð6Þ

The leading-order Lagrangians are [47]

LZcYπ ¼ CZcYπY
ihZi

c
†uμivμ þ H:c:;

LZcψπ ¼ CZcψπψ
ihZi

c
†uμivμ þ H:c:; ð7Þ

which give the S-wave pionic vertices proportional to the
pion energy. Note that the SU(3) singlet and octet compo-
nents of the Yð4260Þ are not distinguishable in the
ZcYð4260Þπ interaction, as the strange-quark component
is irrelevant here.
In order to calculate the triangle diagrams Yð4260Þ →

D̄D1ð2420Þ → D̄D�πðD̄D�
sKÞ → J=ψππðJ=ψKK̄Þ,2 we

need the Lagrangians for the coupling of the Yð4260Þ to
D̄D1 as well as the couplings of the D1 to D�π and D�

sK
[28,48,49],

LYD1D ¼ yffiffiffi
2

p YiðD̄†
aD

i†
1a − D̄i†

1aD
†
aÞ þ H:c:;

LD1D�P ¼ i
h0

F
½3Di

1að∂i∂jΦabÞD�j†
b

−Di
1að∂j∂jΦabÞD�i†

b þ � � �� þ H:c:; ð8Þ

where P denotes the pseudoscalar meson π or K. We also
need the Lagrangian for the J=ψD�Dπ and J=ψD�

sDK

vertices, which at leading order in heavy-meson chiral
perturbation theory is [50]

LψD�DP ¼ gψP
2

hψH̄†
aH

†
biu0ab; ð9Þ

where the charm mesons are collected inHa ¼ Va · σþ Pa

with PaðVaÞ ¼ ðDð�Þ0; Dð�Þþ; Dð�Þþ
s Þ, and H̄a ¼ −V̄a · σþ

P̄a with P̄aðV̄aÞ ¼ ðD̄ð�Þ0; Dð�Þ−; Dð�Þ−
s Þ [51].

The gauge-invariant γ�ðμÞ and Yð4260ÞðνÞ two-point
coupling is given by

iVγ�μYν ¼ 2iðgμνp2 − pμpνÞcγ; ð10Þ
where p is the momentum of the virtual photon γ�.

B. Amplitudes of Yð4260Þ → J=ψPP processes

First we consider the decay amplitude of Yð4260ÞðpaÞ→
J=ψðpbÞPðpcÞPðpdÞ, which is described in terms of the
Mandelstam variables

s¼ðpcþpdÞ2; tP¼ðpa−pcÞ2; uP¼ðpa−pdÞ2;
3s0P≡sþ tPþuP¼M2

YþM2
ψ þ2m2

P: ð11Þ

The variables tP and uP can be expressed in terms of s and
the scattering angle θ according to

tP ¼ 1

2
½3s0P − sþ κPðsÞ cos θ�;

uP ¼ 1

2
½3s0P − s − κPðsÞ cos θ�;

κPðsÞ≡ σPλ
1=2ðM2

Y;M
2
ψ ; sÞ;

σP ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
P

s

r
; ð12Þ

where θ is defined as the angle between the positive
pseudoscalar meson and the Yð4260Þ in the rest frame
of the PP system, and λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ
acþ bcÞ is the Källén triangle function. We define q as the
3-momentum of final J=ψ in the rest frame of the Yð4260Þ
with

jqj ¼ 1

2MY
λ1=2ðM2

Y;M
2
ψ ; sÞ: ð13Þ

For the Yð4260Þ → J=ψπþπ− process, since the crossed-
channel exchanged Zc and DD� can be on-shell, the left-
hand cut (l.h.c.) produced intersects and overlaps with the
right-hand cut (r.h.c.). Implementing the modified Omnès
solution method to obtain the amplitude including FSI
relies on the ability to separate the amplitude into two parts
having either l.h.c. or r.h.c. only. A way of separating the
two has been proposed in Ref. [52], using the spectral
representation of the resonance propagator as well as a
consistent application of the iϵ prescription for the energy

2Here and in the following, D̄D1 always means the negative
C-parity combination of D̄D1 and DD̄1.
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variables.3 Similarly we use the spectral representations of
the Zc propagator and the D1 propagator [52],

gBWRðxÞ ¼
1

π

Z
∞

xthrR

dx0
Im½BWRðx0Þ�

x0 − x
; ð14Þ

where BWRðx0Þ ¼ ðM2
R − x0 − iMRΓRðx0ÞÞ−1, and R

denotes Zc or D1. The off-shell-width effects of the broad
intermediate resonances could play a role in the process
discussed [30,40], and we construct the energy-dependent
widths for the broad vector resonances. Taking into account
that the ZcJ=ψπ vertex is in an S-wave and proportional to
the energy of the pion, and the D1 → D�π decays in a
D-wave, the energy-dependent widths of Zc and D1 read

ΓZc
ðsÞ ¼ ΓZc

E2
ψπðsÞ

E2
ψπðM2

Zc
Þ
kψπðsÞMZc

kψπðM2
Zc
Þ ffiffiffi

s
p ;

ΓD1
ðsÞ ¼ ΓD1

k5D�πðsÞMD1

k5D�πðM2
D1
Þ ffiffiffi

s
p ; ð15Þ

where kQPðsÞ ¼ λ1=2ðM2
Q;m

2
P; sÞ=ð2

ffiffiffi
s

p Þ is the magnitude
of the three-vector momentum of the pion, and

EQPðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2QPðsÞ
q

. The thresholds in Eq. (14) are

xthrD1
¼ ðMD þmπÞ2 and xthrZc

¼ ðMψ þmπÞ2, respectively.4
Notice that the integration convolves with other parts of the
amplitude. Now the Zc-exchange amplitude reads

M̂Zc;πðs; cos θÞ ¼ 2

F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MYMψ

p
MZc

CYψp0
cp0

d

×
�gBWZc

ðtÞ þ gBWZc
ðuÞ

�
¼

X∞
l¼0

M̂Zc;π
l ðsÞPlðcos θÞ; ð16Þ

where CZc
Yψ ≡ CZcYπCZcψπ is the product of the coupling

constants for the exchange of the Zc. The amplitude has
been partial-wave decomposed, and Plðcos θÞ are the
standard Legendre polynomials. Parity and C-parity con-
servation (or isospin conservation combined with Bose
symmetry) require the pion pair to be in even angular
momentum partial waves. We only take into account the S-
and D-wave components in this study, neglecting the
effects of higher partial waves. Explicitly, the projections
of S- and D-waves of the Zc-exchange amplitude read

M̂Zc;π
0 ðsÞ ¼ −

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MYMψ

p
MZc

πF2κπðsÞ
CYψ

Z
∞

xthrZc

dx0
MZc

ΓZc
ðx0Þ

ðx0 −M2
Zc
Þ2 þM2

Zc
Γ2
Zc
ðx0Þ fðsþ jqj2ÞQ0ðyðs; x0ÞÞ

− jqj2σ2π½y2ðs; x0ÞQ0ðyðs; x0ÞÞ − yðs; x0Þ�g; ð17Þ

and

M̂Zc;π
2 ðsÞ ¼ −

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MYMψ

p
MZc

πF2κπðsÞ
CYψ

Z
∞

xthrZc

dx0
MZc

ΓZc
ðx0Þ

ðx0 −M2
Zc
Þ2 þM2

Zc
Γ2
Zc
ðx0Þ f½sþ jqj2 − jqj2σ2πy2ðs; x0Þ�

× ½ð3y2ðs; x0Þ − 1ÞQ0ðyðs; x0ÞÞ − 3yðs; x0Þ�g; ð18Þ

respectively, where yðs; x0Þ≡ ð3s0 − s − 2x0Þ=κπðsÞ, and Q0ðyÞ is the Legendre function of the second kind,

Q0ðyÞ ¼
1

2

Z
1

−1

dz
y − z

P0ðzÞ ¼
1

2
log

yþ 1

y − 1
: ð19Þ

Notice that the analytic continuation of Q0ðyÞ should be taken into account since the Zc can be on-shell in the physical
region. There are two finite branch points in Q0ðyðs; x0ÞÞ,

s�ðx0Þ ¼
1

2x0
fðM2

Y þM2
ψ Þðm2

π þ x0Þ −M2
YM

2
ψ − ðx0 −m2

πÞ2 � λ1=2ðM2
Y; x

0; m2
πÞλ1=2ðM2

ψ ; x0; m2
πÞg: ð20Þ

In the range of s− < s < sþ, the argument of the logarithm in Eq. (19) becomes negative, and the continuation reads
[57–59]

3As discussed in Ref. [53], the l.h.c. is in fact in the unphysical Riemann sheet. The proper iϵ helps to locate the l.h.c. in the right
position so that it does not overlap with the r.h.c. in the physical Riemann sheet.

4In this paper we aim at describing the dipion invariant mass spectrum. The Zc enters only through providing parts of the l.h.c.. In this
case, we can neglect the subtlety due to the closeness of the Zc mass to theDD̄� threshold in the spectral function. On the contrary, if we
want to fit to the Zc line shape, such an effect has to be taken into account properly, see Refs. [42,54–56].
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Q0ðyÞ ¼
1

2
log

���� yþ 1

y − 1

����þ i
π

2
: ð21Þ

Now we briefly discuss the calculation of the triangle diagrams. We only keep the terms proportional to ϵY · ϵψ , and omit
the remaining terms proportional to contractions of momenta with the polarization vectors, which are suppressed in the
heavy-quark nonrelativistic expansion [45]. Explicitly, the partial-wave projections of the triangle amplitude for the
Yð4260Þ → J=ψππðJ=ψKK̄Þ process read

M̂loop;πðKÞ
l ðsÞ ¼ 2lþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MYMψ

p
MD1

MDMD�
ðsÞ

4πF2
Cloop
Yψ

Z
1

−1
d cos θPlðcos θÞ

Z
∞

xthrD1

dx0Im½BWD1
ðx0Þ�

×
Z

ddl
ð2πÞd

�
ijpdj2p0

c

ðl2 − x0 þ iϵÞ½ðpa − lÞ2 −M2
D þ iϵ�½ðl − pdÞ2 −M2

D�
ðsÞ
þ iϵ�

þ ijpcj2p0
d

ðl2 − x0 þ iϵÞ½ðpa − lÞ2 −M2
D þ iϵ�½ðl − pcÞ2 −M2

D�
ðsÞ
þ iϵ�

	
; ð22Þ

where Cloop
Yψ ≡ yh0gψP is the product of the coupling constants for the triangle diagrams.

For the chiral contact terms, using the Lagrangians in Eq. (3), we have

Mχ;πðs; cos θÞ ¼ −
4

F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MYMψ

p 
�
g1 þ

g8ffiffiffi
2

p
�
pc · pd þ

�
h1 þ

h8ffiffiffi
2

p
�
p0
cp0

d

�
;

Mχ;Kðs; cos θÞ ¼ −
4

F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MYMψ

p 
�
g1 −

g8
2

ffiffiffi
2

p
�
pc · pd þ

�
h1 −

h8
2

ffiffiffi
2

p
�
p0
cp0

d

�
: ð23Þ

The projections of the S- and D-waves of the chiral contact terms are given by

Mχ;π
0 ðsÞ ¼ −

2

F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MYMψ

p ��
g1 þ

g8ffiffiffi
2

p
�
ðs − 2m2

πÞ þ
1

2

�
h1 þ

h8ffiffiffi
2

p
�


sþ q2

�
1 −

σ2π
3

��	
;

Mχ;K
0 ðsÞ ¼ −

2

F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MYMψ

p ��
g1 −

g8
2

ffiffiffi
2

p
�
ðs − 2m2

KÞ þ
1

2

�
h1 −

h8
2

ffiffiffi
2

p
�


sþ q2

�
1 −

σ2K
3

��	
;

Mχ;π
2 ðsÞ ¼ 2

3F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MYMψ

p �
h1 þ

h8ffiffiffi
2

p
�
jqj2σ2π: ð24Þ

For theD-wave, where the ππ scattering is almost elastic in
the energy range considered here, we only give the
amplitude of the process involving pions.

C. Final-state interactions with a dispersive
approach, Omnès solution

There are strong FSI in the ππ system in particular in the
isospin-0 S-wave, which can be taken into account model-
independently using dispersion theory. Since the invariant
mass of the pion pair reaches above the KK̄ threshold, we
will consider the coupled-channel (ππ and KK̄) FSI for the
dominant S-wave component, while for the D-wave only
the single-channel (ππ) FSI will be considered.
For Yð4260Þ → J=ψπþπ−, the partial-wave expansion of

the amplitude including FSI reads

ℳfullðs; cos θÞ ¼
X∞
l¼0

½Mπ
l ðsÞ þ M̂π

l ðsÞ�Plðcos θÞ; ð25Þ

where Mπ
l ðsÞ contains the r.h.c. part and accounts for

the s-channel rescattering, and the “hat function” M̂π
l ðsÞ

represents the l.h.c., contributed by the crossed-channel
pole terms or the open-flavor loop effects. In this study, we
approximate the l.h.c. by the sum of the Zc-exchange
diagram and the triangle diagrams, i.e., M̂π

l ðsÞ ¼ M̂Zc;π
l ðsÞþ

M̂loop;π
l ðsÞ. The method of approximating the l.h.c. in

dispersion relations by including the most relevant reso-
nance exchanges (in the case of no loops) has been applied
previously e.g., in Refs. [44,60–66].
For the S-wave, we will take into account the

two-channel rescattering effects. The functions M̂lðsÞ
do not have a r.h.c., so the two-channel unitarity
condition leads to the discontinuity of the production
amplitudes as

discM0ðsÞ ¼ 2iT0�
0 ðsÞΣðsÞ½M0ðsÞ þ M̂0ðsÞ�; ð26Þ
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where the two-dimensional vectorsM0ðsÞ and M̂0ðsÞ stand
for the r.h.c. and the l.h.c. parts of both the ππ and the KK̄
final states, respectively,

M0ðsÞ ¼
� Mπ

0ðsÞ
2ffiffi
3

p MK
0 ðsÞ

�
; M̂0ðsÞ ¼

� M̂π
0ðsÞ

2ffiffi
3

p M̂K
0 ðsÞ

�
:

ð27Þ

The two-dimensional matrices T0
0ðsÞ and ΣðsÞ are given by

T0
0ðsÞ ¼

0
B@

η0
0
ðsÞe2iδ00ðsÞ−1
2iσπðsÞ jg00ðsÞjeiψ

0
0
ðsÞ

jg00ðsÞjeiψ
0
0
ðsÞ η0

0
ðsÞe2iðψ00ðsÞ−δ00ðsÞÞ−1

2iσKðsÞ

1
CA; ð28Þ

and ΣðsÞ≡diagðσπðsÞθðs−4m2
πÞ;σKðsÞθðs−4m2

KÞÞ. Three
input functions enter the T0

0ðsÞ matrix: the ππ S-wave
isoscalar phase shift δ00ðsÞ, and the modulus and phase of
the ππ → KK̄ S-wave amplitude g00ðsÞ ¼ jg00ðsÞjeiψ

0
0
ðsÞ. To

estimate the uncertainty due to the dispersive input for the
ππ=KK̄ rescattering, we will use two different T0

0ðsÞ
matrices, the Dai–Pennington (DP) [64–66] and the Bern/
Orsay (BO) [67,68] parametrizations, and compare the
results. Note that the inelasticity parameter η00ðsÞ in
Eq. (28) is related to the modulus jg00ðsÞj by

η00ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4σπðsÞσKðsÞjg00ðsÞj2θðs − 4m2

KÞ
q

: ð29Þ

These inputs are used up to
ffiffiffiffiffi
s0

p ¼ 1.3 GeV, below the onset
of further inelasticities from the 4π intermediate states,
where the f0ð1370Þ and f0ð1500Þ resonances become
important that couple strongly to 4π [69,70]. Above s0,
the phases δ00ðsÞ and ψ0

0 are guided smoothly to 2π bymeans
of [71]

δðsÞ ¼ 2π þ ðδðs0Þ − 2πÞ 2

1þ ðs=s0Þ3=2
: ð30Þ

The solution of the inhomogeneous coupled-channel
unitarity condition in Eq. (26) is given by

M0ðsÞ ¼ ΩðsÞ
�
Pn−1ðsÞ

þ sn

π

Z
∞

4m2
π

dx
xn

Ω−1ðxÞTðxÞΣðxÞM̂0ðxÞ
x − s

	
; ð31Þ

where ΩðsÞ satisfies the homogeneous coupled-channel
unitarity relation

ImΩðsÞ ¼ T0�
0 ðsÞΣðsÞΩðsÞ; Ωð0Þ ¼ 1; ð32Þ

and its numerical results have been computed, e.g., in
Refs. [71–74].
For theD-wave, the single-channel FSI will be taken into

account. In the elastic ππ rescattering region, the partial-
wave unitarity condition reads

ImM2ðsÞ ¼ ½M2ðsÞ þ M̂2ðsÞ� sin δ02ðsÞe−iδ
0
2
ðsÞ; ð33Þ

where the phase of the isoscalar D-wave amplitude δ02
coincides with the ππ elastic phase shift, as required by
Watson’s theorem [75,76]. The modified Omnès solution of
Eq. (33) can be obtained as [44,77]

M2ðsÞ ¼ Ω0
2ðsÞ

�
Pn−1
2 ðsÞ þ sn

π

Z
∞

4m2
π

dx
xn

M̂2ðxÞ sin δ02ðxÞ
jΩ0

2ðxÞjðx − sÞ
	
;

ð34Þ

where the polynomial Pn−1
2 ðsÞ is a subtraction function, and

the Omnès function is defined as [78]

Ω0
2ðsÞ ¼ exp

�
s
π

Z
∞

4m2
π

dx
x
δ02ðxÞ
x − s

	
: ð35Þ

We will use the result given by the Madrid–Kraków group
[79] for δ02ðsÞ, which is smoothly continued to π for s → ∞.
In order to determine the necessary number of subtrac-

tions that guarantees the convergence of the dispersive
integrals in Eqs. (31) and (34), we need to investigate the
high-energy behavior of the integrands. First, it is known
that for a phase shift δIlðsÞ approaching kπ at high energies,
the corresponding single-channel Omnès function falls
asymptotically as s−k. As a consequence, we have Ω0

2ðsÞ ∼
1=s at large s. Furthermore, the coupled-channel Omnès
function ΩI

lðsÞ is found to fall asymptotically as 1=s for
large s [71], provided the asymptotic condition

P
δIlðsÞ ≥

2π for s → ∞, where
P

δIlðsÞ is the sum of the eigenphase
shifts. Second, we have checked that in the intermediate
energy region of 1 GeV2 ≲ s ≪ M2

Yð4260Þ, the inhomoge-

neity contributed by the Zc-exchange and the triangle
diagrams grows at most linearly in s. So we conclude that
in the dispersive representations of Eqs. (31) and (34), three
subtractions for each of them are sufficient to make the
dispersive integrals convergent. On the other hand, at low
energies the amplitudes M0ðsÞ and M2ðsÞ should match to
those from χEFT. Namely, in the limit of switching off the
FSI at s ¼ 0, Ωð0Þ ¼ 1 and Ω0

2ð0Þ ¼ 1, the subtraction
terms should agree well with the low-energy chiral ampli-
tudes given in Eq. (24). Therefore, for the S-wave, the
integral equation takes the form
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M0ðsÞ ¼ ΩðsÞ
�
Mχ

0ðsÞ

þ s3

π

Z
∞

4m2
π

dx
x3

Ω−1ðxÞTðxÞΣðxÞM̂0ðxÞ
x − s

	
; ð36Þ

where Mχ
0ðsÞ ¼ ðMχ;π

0 ðsÞ; 2= ffiffiffi
3

p
Mχ;K

0 ðsÞÞT , while for the
D-wave, it can be written as

Mπ
2ðsÞ ¼ Ω0

2ðsÞ
�
Mχ;π

2 ðsÞ þ s3

π

Z
∞

4m2
π

dx
x3

M̂π
2ðxÞ sin δ02ðxÞ

jΩ0
2ðxÞjðx − sÞ

	
:

ð37Þ

The amplitude for Yð4260Þ → J=ψπþπ− can be
expressed in terms of the ingredients discussed above as

Mdecayðs; cos θÞ ¼ Mπ
0ðsÞ þ M̂π

0ðsÞ þ ½Mπ
2ðsÞ

þ M̂π
2ðsÞ�P2ðcos θÞ: ð38Þ

The polarization-averaged modulus-square of the eþe− →
Yð4260Þ → J=ψπþπ− amplitude can be written as

jM̄ðE2; s; cos θÞj2 ¼ 4παc2γ jMdecayðs; cos θÞj2
3jE2 −M2

Y þ iMYΓY j2M2
ψ

× ½8M2
ψE2 þ ðs − E2 −M2

ψÞ2�; ð39Þ

where E is the center-of-mass energy of the eþe− colli-
sions, and we set the γ�Yð4260Þ coupling constant cγ to 1
since it can be absorbed into the overall normalization
when we fit to the event distributions. Here we use the
energy-independent width for the Yð4260Þ, and the values
of the Yð4260Þ mass and width are taken as 4222 MeVand
44.1 MeV, respectively, which are the central values of the
BESIII fit in Ref. [34]. We also have tried to allow the mass
and width to float freely, and found that the fit quality
changes only slightly. At last, the ππ invariant mass
distribution of eþe− → J=ψπþπ− reads

dσ
dmππ

¼
Z

1

−1

jM̄ðE2; s; cos θÞj2jk�
3jjk5j

128π3jk1jE2
d cos θ; ð40Þ

where k1 and k5 denote the 3-momenta of e� and J=ψ
in the center-of-mass frame, respectively, and k�

3 is the
3-momenta of π� in the rest frame of the ππ system. They
are given as

jk1j ¼
E
2
; jk�

3j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

π

q
;

jk5j ¼
1

2E
λ1=2ðE2; s;M2

ψ Þ: ð41Þ

For eþe− → Yð4260Þ → J=ψKþK−, the relevant Feynman
diagrams can be obtained by replacing all external pions by

kaons in Fig. 1 (for (c1), the exchanged D� needs to be
replaced by D�

s), but without diagram (b1) due to the
absence of the ZcψK vertex. Most ingredients of the
amplitude of eþe− → Yð4260Þ → J=ψKþK− have been
given in the above.

III. PHENOMENOLOGICAL DISCUSSION

A. Characteristics of singlet and octet contributions

The two pions in the final state must come from light-
flavor sources. It is instructive to discuss what would
be expected for the dipion invariant mass distributions
produced from pure SU(3) flavor singlet and octet
sources, which are proportional to ðūuþ d̄dþ s̄sÞ= ffiffiffi

3
p

and ðūuþ d̄d − 2s̄sÞ= ffiffiffi
6

p
, respectively, without consider-

ing the left-hand-cut contribution. It is well known that the
nonstrange and strange scalar pion form factors, h0jðūuþ
d̄dÞjπþπ−i and h0jss̄jπþπ−i, behave very differently. The
former has a broad bump around 0.5 GeV, and has a narrow
dip at around 1 GeV, while the latter has a narrow peak at
around 1 GeV. The narrow structures are manifestations of
the scalar meson f0ð980Þ, which couples differently to the
nonstrange and strange sources [74,80]. It is therefore
natural to expect that the SU(3) singlet and octet pion scalar
form factors should also be dramatically different.
To demonstrate the characteristic structures in the dipion

mass spectrum from the singlet and octet sources for the
current problem, we need to take into account the energy
dependence in the chiral contact terms. Their contributions
are separately shown with varying hi=gi in Fig. 2. We
consider a large range for the ratio hi=gi (i ¼ 1, 8). The
black solid, magenta dash-dot-dotted, red dot-dashed, blue
dashed, and green dotted curves in the figure correspond to
the ratio taking values of 0.1, 0.3, 1, 3, and 10, respectively.
For an easy comparison, the maxima of the curves in each
plot are normalized to 1. One observes that the basic
characteristic structures of both the singlet and octet spectra
are stable against the variation of hi=gi: the singlet spectra
display a broad bump below 1 GeV, and around 1 GeV
there is a dip for h1=g1 ≲ 1; the octet spectra have little
contribution below 0.9 GeV, and show a sharp peak around
1 GeV, corresponding to the f0ð980Þ. It is also worthwhile
to notice that both of them have different behaviors from
both the nonstrange and the strange pion scalar form
factors. Therefore, one expects that precise measurements
of the dipion invariant mass distributions can provide
valuable information about the light-quark content of the
source, considering the J=ψ to be a SU(3) flavor singlet.

B. Fitting to the BESIII data

In this work we perform fits taking into account the
experimental data sets of the ππ invariant mass distributions
of eþe− → J=ψπþπ− and the ratios of the cross sections
σðeþe− → J=ψKþK−Þ=σðeþe− → J=ψπþπ−Þmeasured at
two energy points E ¼ 4.23 GeV and E ¼ 4.26 GeV by
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the BESIII Collaboration [81,82]. As in Refs. [56,81], we
regard the measurements at E ¼ 4.23 GeV and E ¼
4.26 GeV as independent, and thus the coupling constants
are allowed to be different in the fits of these two data sets.
For the normalization factor for each dataset, we choose to
absorb it into the coupling constants. There are six free
parameters in our fits: g1;8, h1;8, CZc

Yψ , and Cloop
Yψ . The

parameters g1 and h1 correspond to the low-energy con-
stants in the YψΦΦ Lagrangian in Eq. (3) for the SU(3)
singlet component of the Yð4260Þ, g8 and h8 are the
corresponding parameters for the SU(3) octet component.
CZc
Yψ and Cloop

Yψ are related to the Zc-exchange contribution
5

and triangle-diagram contribution, respectively. To illus-
trate the effect of the SU(3) octet component, we perform
two fits for each data set (Fits Ia and Ib for E ¼ 4.23 GeV,
and Fits IIa and IIb for E ¼ 4.26 GeV). To be specific, in
Fits Ia and IIa we only consider the SU(3) singlet
component, the Zc-exchange terms, and the triangle dia-
grams, while in Fits Ib and IIb, the SU(3) octet components
are taken into account in addition. The coupled-channel FSI
is considered in all the fits.

The uncertainty due to the dispersive input for the
ππ=KK̄ rescattering is estimated by comparing the fits
with the two different T0

0ðsÞ matrices (DP [64–66] vs BO
[67,68]). In Fig. 3, the best fit results of the ππ mass
spectrum in eþe− → J=ψπþπ− are shown, where the
borders of the bands represent the fit results using these
two different T0

0ðsÞ matrix parametrizations. The fit results
of the ratios of the cross sections σðeþe− → J=ψKþK−Þ=
σðeþe− → J=ψπþπ−Þ are given in Table I. The fitted
parameters as well as the χ2=d:o:f. are shown in
Tables II and III for the DP and BO parametrizations,
respectively. As can be seen from Fig. 3 as well as Tables II
and III, the fit quality to the data set at E ¼ 4.23 GeV is
worse than that at E ¼ 4.26 GeV, in particular in the region
close to the lower kinematical boundary and for the highest
data point. Notice that by using the inputs from known
scattering observables in the dispersion relations, the
effects of resonances in the considered partial waves,
i.e., the f0ð500Þ, f0ð980Þ, and f2ð1270Þ, are included
automatically. Since the dataset at E ¼ 4.26 GeV has a
larger phase space to reveal the nontrivial structure and the
fits are better, we discuss the fit results of this data set in
more details.
It is interesting to compare Fits IIa and IIb. In Fit IIa, the

SU(3) octet chiral contact terms are not included. The
experimental data, especially the broad peak in the region
lower than 0.6 GeV, cannot be described well. In contrast,
in Fit IIb, including the SU(3) octet chiral contact terms, the
fit quality is improved significantly. A similar improvement
is also observed comparing Fits Ib and Ia. We also perform

FIG. 2. The shapes of the ππ invariant mass spectra contributed from the singlet (left) and octet (right) chiral contact terms using the
DP (top) or the BO (bottom) parametrizations. The black solid, magenta dash-dot-dotted, red dot-dashed, blue dashed, and green dotted
lines correspond to the contributions with hi=gi (i ¼ 1, 8) fixed at 0.1, 0.3, 1, 3, and 10, respectively. For the normalizations we set the
highest point to be 1 for each group.

5The parameter CZc
Yψ , as a product of the YZcπ and Zcψπ

couplings, is related to the partial widths of the Y → Zcπ and
Zc → J=ψπ. In principle, it can be determined from a thorough
analysis of the Zc and Y line shapes; such an analysis that takes
into account the ππ FSI is not available yet. Thus, here we make a
compromise by focusing on the ππ distribution and taking CZc

Yψ as
a free parameter.
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two further Fits IIc and IId for the E ¼ 4.26 GeV dataset,
considering only the contact terms and switching off the
left-hand cuts: in Fit IIc we only retain the SU(3) singlet
component, while in Fit IId, both the SU(3) singlet and
octet components are taken into account. The result is
shown in Fig. 4, and the fit couplings are also listed in
Table II. Comparing Fits IIc and IId, one also finds that
adding the SU(3) octet component increases the fit quality
significantly.
It is instructive to analyze the ratio of the parameters for

the SU(3) octet component relative to those for the SU(3)
singlet component. Using the results of Fit IIb as shown in
Tables II and III, we have g8=g1 ¼ 1.2� 0.2 and h8=h1 ¼
57� 76 in the DP parametrization and g8=g1 ¼ 1.1� 0.1
and h8=h1 ¼ 102� 152 in the BO one, which agree well
with each other within errors. Note that h8=h1 is not as
stable as g8=g1: the reason is that h1 is small in most fits. In
the D̄D1 hadronic molecule scenario of Yð4260Þ, one has

jYð4260Þi ¼ 1

2
½jD0

1D̄
0i þ jDþ

1 D
−i� þ c:c:; ð42Þ

from which the light-quark component reads juūþ dd̄i=ffiffiffi
2

p ¼ ð ffiffiffi
2

p
V light
1 þ V light

8 Þ= ffiffiffi
3

p
, where the definitions of the

singlet and octet components V light
1 and V light

8 have been
given below Eq. (1). They thus give the ratio of 1=

ffiffiffi
2

p
.

Certainly our results (values of g8=g1) differ significantly
from the result of the pure D̄D1 hadronic molecule
scenario. In addition to the D̄D1 hadronic molecule, the
Yð4260Þ may contain other SU(3) singlet sources, e.g.,

from jcc̄i or a hybrid. Assuming in the transition Y →
ψΦΦ the strengths of the light-quark components from the
D̄D1 hadronic molecule and the other SU(3) singlet source
are α and β, respectively, namely,6

αffiffiffi
3

p ð
ffiffiffi
2

p
V light
1 þ V light

8 Þ þ βV light
1 ; ð43Þ

we can estimate the ratio of β=α ¼ −0.30� 0.05 based on
our results of g8=g1. Thus we conclude that there is a large
light-quark SU(3) octet component in the Yð4260Þ, and
scenarios of a hybrid or conventional charmonium are
disfavored since the light quarks have to be produced in the
SU(3) singlet state in such states. Also our study shows that
the D̄D1 component of the Yð4260Þmay not be completely
dominant. This is not unnatural, as the Yð4260Þmass, being
around 4.22 GeV, is about 70 MeV below the D̄D1

threshold.
In Fig. 5, we plot the moduli of the S- and D-wave

amplitudes from the chiral contact terms, the Zc-exchange
terms, and the triangle diagrams for Fit IIb. An interesting
feature is that the D-wave contribution is comparable to
the S-wave contribution in almost the whole phase space.
Such a large D-wave contribution in the YψΦΦ transition
again indicates that the Yð4260Þ cannot be a conventional
charmonium state, for which the ππ S-wave should be
dominant. Notice that in the D̄D1 hadronic molecule

FIG. 3. Fit results of the ππ invariant mass spectra in eþe− → J=ψπþπ− for Fits Ia (top left), Ib (top right), IIa (bottom left), and IIb
(bottom right). The borders of the bands represent our best fit results using two different T0

0ðsÞmatrices. The background-subtracted and
efficiency-corrected experimental data are taken from Ref. [81].

6Notice that any isoscalar pair of nonstrange charm and
anticharm mesons has the same SU(3) structure.
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TABLE II. Fit parameters from the best fits of the ππ mass spectrum in eþe− → J=ψπþπ− and the ratios σðeþe− →
J=ψKþK−Þ=σðeþe− → J=ψπþπ−Þ at E ¼ 4.23 GeV (Fit Ia and Ib) and E ¼ 4.26 GeV (Fit IIa, IIb, IIc, and IId), respectively, using
the DP T-matrix parametrization.

Fit Ia, DP Fit Ib, DP Fit IIa, DP Fit IIb, DP Fit IIc, DP Fit IId, DP

g1 [GeV−1] −0.29� 0.04 1.87� 0.13 0.21� 0.04 −0.99� 0.11 0.52� 0.02 0.20� 0.08
h1 [GeV−1] −0.29� 0.02 −0.31� 0.06 −0.32� 0.02 0.03� 0.04 0.02� 0.01 0.09� 0.04
g8 [GeV−1] 0 (fixed) 1.25� 0.11 0 (fixed) −1.18� 0.03 0 (fixed) 1.01� 0.10
h8 [GeV−1] 0 (fixed) −1.96� 0.10 0 (fixed) 1.70� 0.18 0 (fixed) −1.28� 0.08

CZc
YΨ × 102 0.7� 0.6 2.0� 0.8 4.6� 0.3 6.9� 0.3 0 (fixed) 0 (fixed)

Cloop
YΨ [GeV−3] 4.5� 1.0 38.8� 2.5 12.5� 0.8 −19.4� 2.1 0 (fixed) 0 (fixed)

χ2=d:o:f: 405.1
ð44−4Þ ¼ 10.13 102.1

ð44−6Þ ¼ 2.69 182.7
ð46−4Þ ¼ 4.35 63.9

ð46−6Þ ¼ 1.60 428.9
ð46−2Þ ¼ 9.75 148.2

ð46−4Þ ¼ 3.53

TABLE III. Fit parameters from the best fits of the ππ mass spectrum in eþe− → J=ψπþπ− and the ratios
σðeþe− → J=ψKþK−Þ=σðeþe− → J=ψπþπ−Þ at E ¼ 4.23 GeV (Fit Ia and Ib) and E ¼ 4.26 GeV (Fit IIa, IIb, IIc,
and IId), respectively, using the BO T-matrix.

Fit Ia, BO Fit Ib, BO Fit IIa, BO Fit IIb, BO Fit IIc, BO Fit IId, BO

g1 [GeV−1] −0.20� 0.04 1.34� 0.08 0.30� 0.04 −1.24� 0.05 0.57� 0.02 0.32� 0.11
h1 [GeV−1] −0.32� 0.02 −0.07� 0.03 −0.35� 0.01 0.02� 0.03 −0.02� 0.01 −0.01� 0.06
g8 [GeV−1] 0 (fixed) 1.65� 0.15 0 (fixed) −1.31� 0.05 0 (fixed) 0.85� 0.12
h8 [GeV−1] 0 (fixed) −2.37� 0.02 0 (fixed) 2.03� 0.06 0 (fixed) −1.14� 0.11

CZc
YΨ × 102 6.3� 0.6 3.4� 0.7 6.5� 0.2 8.0� 0.2 0 (fixed) 0 (fixed)

Cloop
YΨ [GeV−3] 8.0� 0.8 40.9� 3.6 8.7� 1.0 −34.0� 1.9 0 (fixed) 0 (fixed)

χ2=d:o:f: 308.7
ð44−4Þ ¼ 7.72 121.4

ð44−6Þ ¼ 3.19 170.4
ð46−4Þ ¼ 4.06 94.3

ð46−6Þ ¼ 2.36 446.5
ð46−2Þ ¼ 10.15 176.7

ð46−4Þ ¼ 4.21

TABLE I. Experimental and theoretical values for the cross sections ratios σðeþe− → J=ψKþK−Þ=σðeþe− →
J=ψπþπ−Þ × 102. The experimental data are taken from Ref. [82]. The theoretical results are obtained with two
different T0

0ðsÞ matrices (DP vs BO).

Experiment Fit Ia, DP Fit Ib, DP Fit Ia, BO Fit Ib, BO

σðJ=ψKþK−Þ
σðJ=ψπþπ−Þ × 102; E ¼ 4.23 GeV 6.44� 1.15 7.82� 0.83 7.75� 1.10 5.88� 0.82 2.83� 1.05

Experiment Fit IIa, DP Fit IIb, DP Fit IIa, BO Fit IIb, BO

σðJ=ψKþK−Þ
σðJ=ψπþπ−Þ × 102; E ¼ 4.26 GeV 4.99� 1.10 4.46� 0.82 4.67� 0.98 5.37� 1.03 5.38� 0.82

FIG. 4. Fit results of the ππ invariant mass spectra in eþe− → J=ψπþπ− for Fits IIc (left) and IId (right). The borders of the bands
represent our best fit results using two different T0

0ðsÞ matrices. The background-subtracted and efficiency-corrected experimental data
are taken from Ref. [81].
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interpretation [30,83], the ππ D-wave emerges naturally
since the D1 decays dominantly into D-wave D�π. Also
one observes that the contributions from the chiral contact
terms and the l.h.c. contributions are of the same order.
Amongst the l.h.c. contributions, both the Zc term and
the triangle diagrams appear far from negligible. A better
distinction of the effects of the Zc and the open-charm
loops requires a detailed analysis of the J=ψπ distribution
and is beyond the scope of the present paper.

IV. CONCLUSIONS

We have used dispersion theory to study the processes
eþe− → Yð4260Þ → J=ψππðKK̄Þ. In particular, we have
analyzed the roles of the light-quark SU(3) singlet state and
SU(3) octet state in these transitions. The strong FSI,
especially the coupled-channel (ππ and KK̄) FSI in the
S-wave, has been considered in a model-independent way,
and the leading chiral amplitude acts as the subtraction
function in the modified Omnès solution. Through fitting to
the data of the ππ invariant mass spectra of eþe− →
Yð4260Þ → J=ψππ and the ratios of the cross sections
σðeþe− → J=ψKþK−Þ=σðeþe− → J=ψπþπ−Þ, we find
that the light-quark SU(3) octet state plays a significant
role in the Yð4260ÞJ=ψΦΦ transition, which indicates that
the Yð4260Þ contains a large light-quark component. Thus
we conclude that the Yð4260Þ is in all likelihood neither a
hybrid nor a conventional charmonium state. Furthermore,
through an analysis of the ratio of the light-quark SU(3)
octet and singlet components, we show that the Yð4260Þ
does not behave like a pure D̄D1 hadronic molecule.

We also find that there is a large D-wave component in
the ππ invariant spectrum of the Yð4260Þ. We close this
manuscript by anticipating a combined analysis of both the
Yð4260Þ and Zcð3900Þ data. Such an analysis is a neces-
sary step toward revealing the nature of both states, as there
is evidence that the Zcð3900Þ events in the J=ψππ are only
produced when the latter is constrained in the Yð4260Þ
region [84].
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FIG. 5. The moduli of the S- (left) and D-wave (right) amplitudes for eþe− → J=ψπþπ− in Fit IIb, using the DP (top) or the BO
(bottom) parametrizations. The red solid lines represent our best fit results, while the blue dot-dashed, darker green dashed, and magenta
dotted lines correspond to the contributions from the chiral contact terms, Zc-exchange, and the triangle diagrams, respectively.
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