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Experimental processes that are sensitive to partonWigner distributions provide a powerful tool to advance
our understanding of proton structure. In this work, we compute gluon Wigner and Husimi distributions of
protons within the color glass condensate framework, which includes a spatially dependent McLerran-
Venugopalan initial configuration and the explicit numerical solution of the Jalilian-Marian–Iancu–
McLerran–Weigert–Leonidov–Kovner equations. We determine the leading anisotropy of the Wigner and
Husimi distributions as a function of the angle between the impact parameter and transverse momentum.We
study experimental signatures of these angular correlations at a proposed electron-ion collider by computing
coherent diffractive dijet production cross sections in eþ p collisions within the same framework.
Specifically, we predict the elliptic modulation of the cross section as a function of the relative angle
between the nucleon recoil and dijet transversemomentum for awide kinematical range.We further predict its
dependence on the collision energy, which is dominated by the growth of the proton with decreasing x.
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I. INTRODUCTION

Diffractive processes in deep inelastic scattering of
electrons off protons or heavier nuclei can provide impor-
tant information on the target’s structure in coordinate and
momentum space [1]. For example, diffractive vector-
meson production is sensitive to the spatial profile and
fluctuations in the target for the coherent and incoherent
cross sections, respectively [2–6].
Diffractive dijet production has been argued to provide

access to the gluonWigner distribution of nuclei [7]. Wigner
distributions [8–10] encode all quantum information about
partons, including information on both generalized parton
distributions [11,12] and transverse-momentum-dependent
parton distributions [13–16]. They contain essential infor-
mation on the partonic spatial and momentum distributions,
as well as the distribution of orbital angular momentum
inside the nucleon [10,17–23]. It has further been suggested
to useWigner distributions to quantify entanglement entropy
in the proton wave function probed in high-energy processes

[24–32]. Wigner distributions are quantum distributions and
not positive definite, but have a probabilistic interpretation in
certain semiclassical limits [33–36]. Other quantum phase-
space distributions can be constructed, such as Husimi [37]
and generalized P distributions, which are routinely used in
quantum optics [38,39].
A future electron-ion collider (EIC) [40–42] will allow

proton tomography with unprecedented precision, meas-
uring parton position, momentum and spin inside protons
and nucleons. The EIC would open up vast possibilities for
understanding the gluon Wigner distribution by measuring
diffractive dijet production as a function of the nucleon
recoiled momentum and the dijet transverse momentum.
Similar research directions may be explored at a possible
Large Hadron Electron Collider [43].
Theoretical descriptions of diffractive cross sections

in deep inelastic scattering (DIS) follow two main
approaches: a collinear factorization theorem exists for
inclusive diffraction, relying on the existence of a single
hard scale to factorize diffractive cross sections into
process-dependent hard scattering coefficient functions
and a set of process-independent diffractive parton distri-
bution functions [1,44]. For exclusive processes, like
the production of jets in diffractive hadron-hadron
collisions, this factorization fails [45,46]. This is because
of the noncancellation of soft interactions (“Glauber” or
“Coulomb” gluons) between the incoming hadrons
and/or their remnants in the initial and final state. Our main
focus in this work is diffractive jet production, previously
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studied at HERA [47–51], where large differences between
next-to-leading-order (NLO) calculations and experimental
data from ZEUS [52] and H1 [53–58] have been attributed
to factorization breaking [59–61].1
Another approach is kT-dependent factorization [64–67]

of diffractive cross sections where diffraction occurs via
“Pomeron exchange,” which in the perturbative regime can
be understood as a two-gluon color-singlet exchange. The
umbrella term “kT-dependent factorization” encompasses a
wide range of approaches, includingBalitsky-Fadin-Kuraev-
Lipatov evolution [68,69], the dipole model [70–73], the
color glass condensate (CGC) [74–78], Balitsky-Kovchegov
(BK) evolution [79,80] and high-energy factorization [81].
At very small x the color glass condensate effective

theory, describing quantum chromodynamics (QCD) in
the high-energy limit, is a suitable framework to compute
diffractive processes. In this framework, slow modes
in the fast-moving target are highly occupied gluon fields,
which can be described classically by the Yang-Mills
equations. Fast modes act as sources for these slow modes.
Renormalization group equations govern the evolution of the
separation between hard and soft modes towards lower
momentum fractions. These are the Jalilian-Marian–
Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK)
equations [82–88], which in the limit of a large number of
colors simplify to the Balitsky-Kovchegov equations
[79,80]. The JIMWLK equations resum all terms enhanced
by large logarithms in 1=x, resulting in leading logarithmic
accuracy. Next-to-leading-order corrections were included
several years ago [89–92], but, as opposed to the leading
logarithmic case [93,94], at this point no (numerical) solution
of the NLO JIMWLK equations has been explored.
The CGC provides the necessary ingredients to compute

coherent diffraction in the dipole picture. Here, color-
singlet Pomeron exchange is understood as the color-
diagonal [2] interaction of a dipole with a stochastic
ensemble of classical color fields in the eikonal limit. A
stochastic average over target color configurations is
required, which when performed on the level of the
scattering amplitude is equivalent to assuming that the
target remains intact (“coherent diffraction”).
In the dipole picture, hard diffractive dijet production in

small-x DIS has been considered in Ref. [7] and in
Ref. [95]. Related work includes Ref. [96], where it was
suggested to study forward diffractive quarkonia produc-
tion in pþ p collisions to probe the Weizsäcker-Williams
gluon distribution and Ref. [97], where access to the gluon
Wigner distributions via ultraperipheral pþ A collisions
was discussed. Exclusive double production of pseudosca-
lar quarkonia and its relation to the gluon Wigner distri-
butions in nucleon-nucleon collisions was explored in

Ref. [98]. Exclusive diffractive two- and three-jet produc-
tion in photon-hadron scattering within kT factorization and
the cancellation of IR, collinear and rapidity singularities
for the two-jet cross section was studied in Ref. [99].
In this manuscript, we present calculations of the gluon

Wigner and Husimi distributions in the proton within the
CGC framework at leading logarithmic order. We introduce
a spatially dependent color charge distribution of the
proton, constrained by DIS data from HERA. The energy
dependence of the corresponding Wigner distribution is
determined by numerically solving the JIMWLK evolution
equations. We compute correlations between the impact
parameter and transverse momentum and extract the elliptic
anisotropy coefficient of Wigner and Husimi distributions.
In order to connect the Wigner distribution to exper-

imental observables, we perform an extensive study of
diffractive dijet production cross sections in eþ p colli-
sions at typical EIC kinematics within the same framework.
We focus on dijet kinematics in the so-called correlation
limit and predict the dependence of elliptic modulations as
a function of the relative angle between the nucleon recoil
and dijet transverse momentum on collision energy and
kinematics, which can be tested at a future EIC.
This manuscript is organized as follows. In Sec. II A we

illustrate how gluon Wigner distributions can be directly
computed within the CGC in the small-x limit. In Sec. II B
we discuss the production cross section for dijets in virtual
photon-nucleus scattering, for arbitrary photon virtuality
and quark mass. In Sec. III we compute gluon Wigner and
Husimi distributions from the CGC and study correlations
between the impact parameter and transverse momentum.
In Sec. IV we present our results for diffractive dijet

production cross sections in eþ p collisions at typical EIC
energies. First, in Sec. IVA we present a simple baseline
study based on the impact parameter-dependent saturation
(IP-Sat) model and disentangle genuine correlations from
kinematic effects. We then compute diffractive cross
sections for charm jets from the CGC in Sec. IV B and
study the dependence of the elliptic Fourier coefficient on
the dijet momentum, photon virtuality and collision energy.
Our findings are supplemented by multiple appendices.

In Appendix A we present details of the Wigner function
derivation from the CGC and a practical approach to
numerically compute Wigner and Husimi distributions in
this framework. In Appendix B we discuss conventions for
transverse dijet momentum variables and in Appendix C we
investigate the dependence of azimuthal dijet correlations
on the proton size.

II. WIGNER DISTRIBUTIONS FROM COHERENT
DIFFRACTIVE DIJET PRODUCTION

A. The structure of nucleons fromWigner distributions

Five-dimensional quantum phase-space Wigner distri-
butions contain complete information of partons inside a

1We note that the HERA data referred to here is not fully
exclusive, allowing for additional (unidentified) particles in the
final state (in addition to a dijet and proton). Similar processes are
considered in ultraperipheral collisions at ATLAS [62,63].
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hadron. In this study we focus on gluon distributions in the
small-x limit and, following the conventions of Ref. [7], we
write the gluon Wigner distribution,

xWðx;k;bÞ ¼
Z

d2Δ
ð2πÞ2 e

iΔ·bxGDPðx;k;ΔÞ; ð1Þ

as the Fourier transform of the generalized transverse-
momentum-dependent (GTMD) dipole gluon distribution
[100–102],

xGDPðx;k;ΔÞ ¼ 2

Z
dz−d2z
ð2πÞ3Pþ e−ik·z−ixP

þz−

×

�
Pþ Δ

2

����Tr
�
Fþi

�
z
2

�
U−†Fþi

×

�
−
z
2

�
Uþ

�����P −
Δ
2

�
: ð2Þ

Here, Fþið�z=2Þ ¼ Fþið�z−=2;�z=2Þ is the non-Abelian
field strength tensor and U� are future- and past-oriented
Wilson lines. Boldfaced variables denote two-dimensional
transverse coordinates or momenta. In the CGC limit
Eq. (2) can be written as2 [7,103]

xGDPðx;k;ΔÞ ¼
2Nc

αs

Z
d2xd2y
ð2πÞ4 eik·rþiΔ·b

× ½∇x⊥ ·∇y⊥ �
1

Nc
hTrUðxÞU†ðyÞi; ð3Þ

where the matrix elements hPþ Δ
2
j…jP − Δ

2
i are replaced

by an average over classical target color configurations.
The properties of the target at small x enter through the
energy-dependent dipole amplitude,

N ðr;b; xPÞ≡ 1 −
1

Nc
tr

�
U

�
bþ r

2

�
U†

�
b −

r
2

��
; ð4Þ

where r ¼ x − y is the dipole size and b≡ ðxþ yÞ=2
is the impact parameter. Equation (4) can be directly
computed from the fundamental Wilson lines UðxÞ in the
CGC effective theory. Alternatively, one can parameterize
Eq. (4), e.g., as in theGolec-Biernat–Wüsthoff [104–107], or
IP-Sat [108] model.
The dipole amplitude is widely used to compute cross

sections of various DIS processes in the small-x limit.
Within the dipole model, proton structure functions [109–
112], single [111,113–117] and double inclusive [118–121]
particle production in proton-proton collisions, and dif-
fractive processes [5,6,122–126], including those in ultra-
peripheral nucleus-nucleus and proton-nucleus collisions
[127–131] have been computed.

Most inclusive processes are not very sensitive to the full
momentum and spatial structure of the nucleon, as the
impact parameter and/or transverse momenta are usually
integrated over. In contrast, more exclusive cross sections
can provide access to five-dimensional gluon Wigner
distributions and diffractive dijet production is particularly
well suited for this task [7]. To probe impact-parameter-
and transverse-momentum-dependent gluon dipole distri-
butions, the authors of Ref. [7] proposed to study coherent
diffractive dijet production off a nuclear target in the
correlation limit (defined below), a process which can
be probed at the future electron-ion collider.

B. Diffractive dijet production in the dipole picture

In this section, we outline the basic elements for the
calculation of coherent diffractive dijet production in DIS
off a nuclear target,

lðlÞ þ NðPÞ → l0ðl0Þ þ N0ðP0Þ þ q̄ðp0Þ þ qðp1Þ; ð5Þ

where l, l0 (P, P0) are in- and outgoing lepton (target) four-
momenta, q≡ l0 − l and p0 ≡ ðpþ

0 ; p
−
0 ;p0Þ and p1 ≡

ðpþ
1 ; p

−
1 ;p1Þ are the four-momenta of the produced dijet.

In particular, pþ
0 ≡ zqþ, pþ

1 ≡ z̄qþ denote the light-cone
momenta of the jets, where qþ is the photon longitudinal
momentum and z̄ ¼ 1 − z.
The scattering process occurs via the exchange of a

virtual photon between the target and a lepton, and can be
interpreted as photon-nucleon scattering for given lepton
kinematics, γ�ðqÞ þ NðPÞ → N0ðP0Þ þ q̄ðp0Þ þ qðp1Þ. In
the dipole approximation, the scattering then entails the
virtual photon fluctuating into a quark-antiquark color
dipole, which in turn interacts with the color field of the
nucleus. In the eikonal approximation the quarks exchange
color with the target and receive a “kick” of transverse
momentum. In coherent diffractive scattering no net color is
exchanged between the projectile and target and the target
stays intact. Below, we call outgoing quarks and antiquarks
“jets,” but a fully phenomenological study requires frag-
mentation via event generators [132].
Following Refs. [95,133], we write the S-matrix element

for the diffractive process γ�N → q̄qN0 as

S ≡ hq̄f0;h0;a;p0
; qf1;h1;b;p1

jŜjγ�λ;qi
¼ −8π2qf

ffiffiffiffiffi
zz̄

p
δðzþ z̄ − 1Þδf0;f1δh0;−h1

×
Z
x0

Z
x1

eip0x0eip1x1Ψλðr; Q2Þ½Uðx0ÞU†ðx1Þ�ab ð6Þ

where qf ¼ Zfe, f0;1, h0;1; a; b are the charge, flavor,
helicity and color of the outgoing dijets, UðxÞ are the
Wilson lines in the fundamental representation (discussed
below) and

R
x0;1

≡ R
d2x0;1. Here, Ψλðr; Q2Þ is the photon

light-cone wave function with longitudinal or transverse2Details can be found in Appendix A.
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polarization λ ¼ 0;�1 describing the splitting into a dipole
of size and orientation r ¼ x0 − x1 [133,134].
For the coherent diffractive process, the target remains

intact and we average over target color configurations on
the amplitude level. The production cross section of a dijet
pair with momenta (pþ

0=1, p0=1) can be written as

pþ
0 p

þ
1

dσ
dpþ

0 dp
þ
1 d

2p0d2p1

¼ δðpþ
0 þpþ

1 −qþÞ
ð2πÞ52jqþj jhMij2; ð7Þ

where M is the scattering amplitude, defined as
S ¼ I þ ð2πÞjqþjδðpþ

0 þ pþ
1 − qþÞiM, where S is the

S-matrix. A diffractive process is characterized by color
neutral exchange (“Pomeron exchange”) and the resulting
rapidity gap between the outgoing dijet system and the
struck target, where no particles are produced. The scatter-
ing matrix is color diagonal and allows us to write the
dipole-target interaction as [2]

½Uðx0ÞU†ðx1Þ�ab →
1

Nc
tr½Uðx0ÞU†ðx1Þ�δab: ð8Þ

In this study, we express dijet production cross sections in
the transverse momentum variables3

Δ≡ p0 þ p1;

P≡ 1

2
ðp0 − p1Þ: ð9Þ

In these coordinates, the dijet production cross section for
transversely polarized photons reads [95,133]

pþ
0 p

þ
1 dσT

dpþ
0 dp

þ
1 d

2Δd2P
¼ 2NcαEMZ2

f

ð2πÞ6 δðpþ
0 þ pþ

1 − qþÞjqþjzz̄

×



ζ2
X
λ

����
Z
b

Z
r
eib·Δþir·P ϵλðqÞ · r

jrj

× Q̄K1ðQ̄jrjÞN ðr;b; xPÞ
����
2

þm2
q

����
Z
b

Z
r
eib·Δþir·PK0ðQ̄jrjÞ

×N ðr;b; xPÞ
����
2
�
; ð10Þ

where N is given by Eq. (4) and we abbreviated
Q̄≡ ðzz̄Q2 þm2

qÞ1=2, αEM ¼ e2=4π and ζ2 ≡ z2 þ z̄2.

Here, ϵλðqÞ ¼ 1=
ffiffiffi
2

p ð1; λiÞ are light-cone photon polariza-
tion vectors and K0;1 are modified Bessel functions of the
second kind. The longitudinal momentum fraction of the
“Pomeron” is defined by

xP ≡ M2 þQ2 − t
W2 þQ2 −m2

N

¼
1
zz̄ ðm2

q þ 1
4
Δ2 þ P2 þ ½z̄ − z�Δ · PÞ þQ2

W2 þQ2 −m2
N

; ð11Þ

where Q2 ≡ −q2 ¼ −ðl − l0Þ2 is the virtuality of the
photon, W2 ¼ ðPþ qÞ2 is the center-of-mass energy
squared of the photon-target system, mN is the target mass,
M2 is the invariant mass-squared of the dijet system and
t≡ −ðP0 − PÞ2 ¼ −Δ2 is the Mandelstam variable.
Analogously, the cross section for photons with longi-

tudinal polarization reads

pþ
0 p

þ
1 ;dσL

dpþ
0 dp

þ
1 d

2Δd2P

¼ 8NcαEMZ2
f

ð2πÞ6 Q2jqþjδðpþ
0 þpþ

1 − qþÞ

× ðzz̄Þ3
����
Z
b

Z
r
eib·Δþir·PK0ðQ̄jrjÞN ðr;b; xPÞ

����
2

: ð12Þ

Angular correlations can be parametrized by azimuthal
Fourier decomposition,

dσT=L
dΩ

≡ pþ
0 p

þ
1 dσT=L

dpþ
0 dp

þ
1 d

2Δd2P
¼ v0ð1þ2v2 cos½2θðP;ΔÞ�þ…Þ:

ð13Þ

Here,

θðP;ΔÞ≡ θðPÞ − θðΔÞ ð14Þ

is the relative angle between the dijet and target recoil
momentum. The coefficients vn are experimentally meas-
urable by analysis of the azimuthal distribution of dijets. By
Fourier transformation, the angular correlation in the
dijet cross section is sensitive to the relative orientation
between r and b.
Here, we study the dijet cross section in the correlation

limit, jPj ≫ jΔj, where the individual jets are almost back to
back. In this limit, one is most sensitive to dipole contribu-
tions from the peripheral region at large jbj. In Ref. [97] it
was further shown that in the correlation limit for Q2 ¼ 0, a
direct relation between the diffractive dijet cross section and
the gluon Wigner distribution can be established.

C. The dipole amplitude at small xP
In this section, we discuss two approaches to compute the

dipole amplitude, Eq. (4). The first will be a model para-
metrization from the IP-Sat model [108], which has been
successfully used to describe a range of data, from HERA
inclusive and diffractive eþ p DIS data [110,112,135] to
n-particle multiplicity distributions in pþ p and pþ A3An alternative coordinate choice is discussed in Appendix B.
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collisions at RHIC and LHC [113,136,137]. The second one
will be aCGCcomputation,where the dipole interactionwith
the target is directly encoded in fundamental Wilson lines.

1. IP-Sat model

In the IP-Sat model the dipole amplitude is given by

N ðr;b; xPÞ≡ 1 − exp



−π2

2Nc
r2αsðμ2ÞxPgðxP; μ2ÞTpðbÞ

�
:

ð15Þ

Its impact parameter dependence arises from the transverse
spatial color profile of the proton, assumed to be Gaussian,

TpðbÞ ¼
1

2πBp
exp



−

b2

2Bp

�
: ð16Þ

The IP-Sat model is xP-dependent through the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) [138–141]
evolved gluon distribution function xPgðxP; μ2Þ at the scale
μ2 ¼ μ20 þ 4=r2. The proton width Bp, the initial scale μ0
and the initial conditions for xPgðxP; μ2Þ are obtained from
fits to HERA DIS data [112]. Note that, independent of jbj,
the IP-Sat model always parametrizes the long-distance
behavior as N → 1 for jrj → ∞, in contrast to the CGC
computation for finite systems [107,142].
The IP-Sat model is not useful when studying azimuthal

correlations in diffractive dijet production, because it does
not depend on r · b, but only on r2 and b2 separately.
Consequently, it cannot reproduce any angular correlation
between P and Δ. In addition, the IP-Sat model contains
only DGLAP evolution and we expect it cannot capture
important features of the full JIMWLK CGC computation.
However, by artificially introducing angular correlations,
we can consider the IP-Sat parametrization as a simple
baseline test,

N Cðr;b; xPÞ

≡ 1 − exp



−π2r2

2Nc
αsðμ2ÞxPgðxP; μ2ÞTpðbÞCθðb;rÞ

�
;

ð17Þ

where we included a θðr;bÞ≡ θðrÞ − θðbÞ-dependent term

Cθðb;rÞ ≡ 1 − c̃

�
1

2
− cos2½θðr;bÞ�

�
: ð18Þ

Varying the parameter c̃ allows one to regulate the amount
of anisotropy in the gluon Wigner distribution by hand and
to study the effects on dijet cross sections. A similar
parametrization was used in Ref. [95], and a more sophis-
ticated analytic expression, albeit with no xP dependence,
was discussed for example in Ref. [143]. In the latter study,

in accordance with our expectations, cos½2θðr;bÞ� corre-
lations occurred in connection with gradients of the target
color charge density. Specifically, these correlations vanish
in the homogeneous regime at small b and r, a feature not
reproduced by our Eq. (17).
Instead of performing further modifications of the IP-Sat

model, we set out to compute the gluon dipole distribution
directly from the color glass condensate effective theory at
small xP, including its energy evolution via the JIMWLK
renormalization group equations in the next subsection.

2. Color glass condensate computation

In this section, we discuss the derivation of the
dipole amplitude from the color glass condensate effective
theory [74–78]. For an initial xP, it is computed as a
stochastic average from fundamental Wilson lines UðxÞ,
which are obtainedby solving classicalYang-Mills equations
with target color sources sampled from a local Gaussian
distribution

hρaðx−;xÞρbðz−;zÞi¼ðgμÞ2δabδ2ðx−zÞδðx−−z−Þ; ð19Þ

where the color charge density is related to the IP-Sat value
for the saturation scale at moderately large xP,

QsðxÞ ¼ cg2μðxÞ: ð20Þ
An impact-parameter-independent target allows to compute
the value of the parameter c directly [144], and we will vary
the parameter between 0.75–0.85 in the impact-parameter-
dependent case.
For a given target color configuration, the solutions of

the Yang-Mills equation specify Wilson lines,

UðxÞ ¼ P exp

�
−ig

Z
dx−

ρðx−;xÞ
∇2 þ m̃2

�
: ð21Þ

Here, an IR cutoff m̃ ∼ 0.2–0.4 GeV has been introduced to
avoid nonphysical Coulomb tails at distances∼Λ−1

QCD where
nonperturbative effects become important.
After computing Wilson lines at some initial xP, we

determine the energy evolution of the dipole amplitude
using the JIMWLK equations [82–88]. At leading loga-
rithmic order, the JIMWLK renormalization group equa-
tions can be written as a functional Fokker-Planck equation
[93] and explicitly expressed as a Langevin equation for the
stochastic Wilson lines UðxÞ,

dUðxÞ
dy

¼UðxÞðitaÞ

Z

d2zϵab;iðx;zÞξbi ðz;yÞþσaðxÞ
�
;

ð22Þ

where dy ¼ dxP=xP is the rapidity and ta are SUðNcÞ
generators in the fundamental representation. The drift term
in Eq. (22) reads

DIFFRACTIVE DIJET PRODUCTION AND WIGNER … PHYS. REV. D 99, 074004 (2019)

074004-5



σaðxÞ ¼ −i
αs
2π2

Z
d2z

1

ðx − zÞ2 Tr½T
aŨ†ðxÞŨðzÞ�; ð23Þ

where the Wilson lines ŨðzÞ, Ũ†ðxÞ and generators Ta are
in the adjoint representation. The ξbi ðz; yÞ’s are stochastic
and are sampled from a Gaussian distribution with zero
mean and variance given by

hξai ðz; yÞξbj ðz0; y0Þi ¼ δabδijδð2Þðz − z0Þδðy − y0Þ: ð24Þ

The kernel in Eq. (22) is

ϵab;iðx; zÞ ¼
ffiffiffiffiffi
αs
π

r
Ki½1 − Ũ†ðxÞŨðzÞ�ab; ð25Þ

where we abbreviated Ki ≡ ðxi − ziÞ=ðx − zÞ2. It is pos-
sible to eliminate the drift term by writing [145]

Uðx; yþ dyÞ ¼ exp



−i

αsdy
π

Z
d2zK · ðUξU†ÞðzÞ

�

×Uðx; yÞ exp


i
αsdy
π

Z
d2zK · ξðzÞ

�
:

ð26Þ

Within the CGC JIMWLK evolution, long-distance tails are
encountered in the Coulomb kernel Ki. These lead to an
exponential growth of the cross section with rapidity
[107,146,147], ultimately violating the Froissart unitarity
bound [148,149] unless regulated by nonperturbative
physics at large distance scales. To regularize the non-
perturbative regime, we follow the prescription of
Ref. [142] and instead use the kernel

K̃iðxÞ≡mjxjK1ðmjxjÞ x
i

x2
; ð27Þ

where m ∼ ΛQCD and K1 is a modified Bessel function.
We include running coupling effects in our analysis and

evaluate the coupling constant as follows [145]:

αsðrÞ ¼
12π

ð11Nc − 3NfÞ log
h�

μ2
0

Λ2
QCD

1
χ þ

�
4

r2Λ2
QCD

1
χ

iχ ; ð28Þ

where r≡ jx − zj, μ0 ¼ 0.28 GeV and χ ¼ 0.2 [6]. In
practice, we fix the initial condition for the JIMWLK
evolution at xP ¼ 0.01 from the IP-Sat model. We then
evolve towards smaller xP by solving the JIMWLK
evolution equations. We study different choices of IR
regulators m̃ and m, in a range which is constrained by
and consistent with data [5,6], and we compare fixed vs
running coupling αs, cf. Eq. (28). For more details, we refer
the reader to Ref. [6].

III. GLUON WIGNER AND HUSIMI
DISTRIBUTIONS AT SMALL x FROM
THE COLOR GLASS CONDENSATE

In the CGC approach, angular correlations between the
impact parameter and dipole orientation in the dipole
amplitude N ðr;b; xÞ emerge naturally and need not be
modeled, in contrast to e.g., the situation in the IP-Sat
model (17).
In this section, we present a CGC study with fixed

αs ¼ 0.21 and infrared regulators m̃ ¼ 0.4 GeV and
m ¼ 0.2 GeV as in Ref. [6], and obtain the dipole
amplitude by solving the JIMWLK evolution equations
with the rapidity defined as

xðyÞ ¼ xð0Þe−y; ð29Þ

where xð0Þ ¼ 10−2. In Fig. 1, we show the normalized
dipole amplitude as a function of the relative angle θðr;bÞ
between the impact parameter b and dipole orientation r.
We present results for the initial condition (y ¼ 0) and after
y ¼ 1.5 and y ¼ 3 units of rapidity evolution. Here, the
dipole amplitude is largest whenever the dipole is oriented
along the impact parameter, which is expected as this
configuration is most sensitive to (radial) color gradients
(for a similar analysis using impact-parameter-dependent
BK evolution, see Ref. [147]).
To quantify this behavior, the elliptic component v2 of

the dipole amplitude is defined as

N ðr;b; xÞ ¼ v0½1þ 2v2 cosð2θðr;bÞÞ�; ð30Þ

where v0 is the average dipole amplitude. We plot the x
dependence of v2 for different impact parameters in Fig. 2
and find that the energy (rapidity or x) evolution suppresses
the elliptic component significantly. This is a consequence
of the proton’s growth with energy, leading to smoother

FIG. 1. The dipole scattering amplitude in the color glass
condensate framework as a function of the angle θðr;bÞ between
the dipole size r and impact parameter b, at y ¼ 0 and after the
JIMWLK evolution up to y ¼ 1.5 and y ¼ 3.0. The results are
normalized by the average, v0.
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density gradients for fixed impact parameter. We observe a
similar trend for the energy dependence of diffractive dijet
cross sections presented in Sec. IV B. Further discussion of
the proton size dependence can be found in Appendix C.
Next, we study the Wigner and Husimi gluon distribu-

tions, which encode information about the transverse
momentum and coordinate dependence of the small-x
gluons, as discussed in Sec. II A. The quasiprobabilistic
gluon Wigner distribution xWðx;P;bÞ is real but not
necessarily positive; following Ref. [23] its small-x
(CGC) limit can be computed from Eq. (3), and reads

xWðx;P;bÞ ¼ −
2Nc

αs

Z
d2r
ð2πÞ2 e

iP·r

×

�
1

4
∇2

b þ P2

�
N ðr;b; xÞ: ð31Þ

The Husimi distribution is positive semidefinite and can
be computed from the Wigner distribution by Gaussian
smearing of the transverse momentum and impact param-
eter. Following Ref. [23], it can be written as

xHðx;P;bÞ ¼ 1

π2

Z
d2b0d2P0e−

1

l2
ðb−b0Þ2−l2ðP−P0Þ2

× xWðx;P0;b0Þ; ð32Þ

where l is an arbitrary smearing parameter.
We investigated various values for l and present results

for l ¼ 1 GeV−1 only. This is a reasonable choice, as it
ensures that the spatial smearing scale is smaller than the
proton, but also keeps the (inversely proportional) momen-
tum smearing scale small enough to resolve the transverse
momentum spectrum of soft gluons in the proton’s wave
function. However, the dependence on this smearing scale
is a disadvantage for interpretations of the Husimi distri-
bution. We argue below that while Husimi and Wigner
distributions agree in certain limits where smearing has no
effect, some of the former’s features can be l dependent,

making it more favorable to work with the Wigner
distribution instead.
Similarly as for the dipole amplitude, we study the

elliptic modulation of Wigner and Husimi distributions.
Because v2 [in Eq. (30)] is not defined at zero crossings of
the respective distribution (recall that the Wigner distribu-
tion is not positive definite), we proceed with a different
parametrization [23]4

xWðP;b; xÞ ¼ xW0 þ 2xW2 cosð2θðP;bÞÞ; ð33Þ

and similarly for the Husimi distribution,

xHðP;b; xÞ ¼ xH0 þ 2xH2 cosð2θðP;bÞÞ: ð34Þ

In Fig. 3, we show the lowest moments xW0 and xH0 of
Wigner and Husimi distributions as a function of transverse
momentum and for different rapidities y ¼ 0 and y ¼ 1.5.
The effect of smearing is most prominent at small
momenta, where jPjl ≪ 1. At large momenta, where both
Husimi and Wigner distributions are positive, smearing has
no effect and the distributions agree. The presented Wigner
distribution should be contrasted with the results of a
previous analysis of gluon Wigner distributions [23], with
results relatively similar to ours. Overall we find qualitative
agreement for jPj⪆ 0.1 GeV; however we do not find that
the position of the characteristic peak in Fig. 3 evolves
with energy in our study. We also do not recover a feature,
seen in Ref. [23], where the Wigner distribution rises from
below to zero at very small momentum.
We are not surprised by the differences between the

model study [23] and our numerical CGC computation. At
small momentum, (nonperturbatively) large dipoles (as
large as a few fm) give a significant contribution to the

FIG. 2. Energy (x or rapidity) dependence of the elliptic
component of the dipole amplitude N ðr;b:xÞ over 3 units of
rapidity for different values of jbj.

FIG. 3. Wigner and Husimi distributions from the CGC at
y ¼ 0 (lower black lines) and after 1.5 units of rapidity evolution
(upper blue lines) as a function of transverse momentum jPj.
These results are averaged over the azimuthal angle between the
transverse momentum and the impact parameter.

4In Appendix A we outline a practical computation of these
coefficients.
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Wigner distribution, while the only effective regulator of
these contributions is the proton size. In our framework this
extreme IR behavior is parametrized by the infrared
regulators m and m̃ [see Eqs. (21) and (27)], which are
constrained to some degree by HERA data.5 In contrast, the
authors of Ref. [23] introduced an explicit exponential
suppression factor (by hand) to cut off contributions from
this regime.6

In Fig. 4 we show the elliptic components xW2 and xH2

as a function of transverse momentum. We find the
magnitude of xW2 to be on the percent level when
compared to xW0, similar as in Ref. [23]. We observe that
the elliptic part of the Wigner distribution is much larger
than that of the Husimi distribution for jPj≲ 2 GeV. It is
numerically difficult to extract xH2 at larger momentum,
but we find that the distributions agree in this regime within
error bands shown in Fig. 4. The small-jPj behavior of xW2

and xH2 is again sensitive to infrared regularization and
deserves further study.
In order to gain intuition and to illustrate some of the

difficulties in its interpretation, we study the Husimi
distribution in more detail. For better comparison with
the v2 component of the dipole amplitude and of the dijet
cross section studied below, we present the normalized
elliptic coefficient in Fig. 5,

vH2 ¼ xH2

xH0

: ð35Þ

Here, we show the momentum dependence of vH2 for y ¼ 0

(x ¼ 10−2) at different impact parameters. As expected,
vH2 vanishes at small jbj where the average proton
color profile is nearly homogeneous and cannot have
any angular dependence. The elliptic component peaks

at a characteristic moderately large jPj (the exact position
of the peak depends on the parameter l) and approaches
zero at small and large momentum.
In Fig. 6, we show the energy (rapidity) dependence of

vH2 at fixed impact parameter, where again the growth of the
proton with energy leads to a decrease of vH2 , which may be
compared to the v2 component of the dipole amplitude and
of the dijet cross section studied below. Remarkably, the
decrease of jvH2 j with energy, caused by the decreasing
density gradients, is not uniform for all jPj. In the small-
momentum regime, the decrease of jvH2 j is prevented by the
fact that when the proton grows, one first starts to include
dipoles with transverse separation jrj ∼ jPj−1 with large
elliptic modulation. Eventually, the proton grows larger
than these dipoles and the probed density gradients become
smaller, resulting in a (delayed) decrease of jv2j at small
transverse momentum.
This behavior exemplifies some of the difficulties

in assigning a physical interpretation to the Husimi dis-
tribution. For example, with smaller l (less smearing
in transverse coordinate space), the dipole sizes would
be more strongly limited and jvH2 j would uniformly

FIG. 4. Elliptic components xW2 and xH2 of Wigner and
Husimi distributions at y ¼ 0 (black lines) and after 1.5 units of
rapidity evolution (blue lines), as a function of transverse
momentum.

FIG. 5. Elliptic coefficient vH2 of the Husimi distribution at
y ¼ 0.0 for different impact parameters, shown as a function of
transverse momentum jPj.

FIG. 6. Rapidity evolution of the elliptic part of the Husimi
distribution as a function of transverse momentum jPj.

5A more detailed discussion of the IR regulator dependence
can be found in Sec. IV.

6Note that large distance contributions to the Husimi distri-
bution are suppressed by the smearing scale l.
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decrease for all jPj.7 While the positivity of the distribution
might be an appealing argument for a probabilistic inter-
pretation, we wish to argue that more robust information
can be extracted from the Wigner distribution.
In the next section we compute diffractive coherent dijet

production cross sections in electron-proton scattering at
typical EIC energies. Here, we study angular correlations
between the dijet transverse momentum and proton recoil,
which are directly sensitive to correlations between the
impact parameter and transverse momentum in the gluon
Wigner and Husimi distributions.

IV. COHERENT DIFFRACTIVE
DIJET PRODUCTION

In this section, we present results for coherent diffractive
dijet production in virtual photon-proton scattering. We
investigate angular correlations between transverse dijet
momenta and target recoil. We focus on typical EIC
kinematics and for most of our study we fix the proton
beam energy Ep ¼ 250 GeV, and the center-of-mass
energy to be W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ qÞ2

p
¼ 100 GeV. Our results

are presented in the analysis frame, where the photon
and incoming nucleon have no transverse momentum and
our convention is that the photon (proton) has a largeþ (−)
momentum. Below, we first discuss results from the IP-Sat
parametrization, which we use to disentangle kinematic
effects from genuine correlations in the underlying gluon
dipole distribution.

A. Baseline study: Angular correlation
in the modified IP-Sat model

We begin with an overview of our results for coherent
diffractive dijet production from the IP-Sat parametrization,
with [Eq. (17)] and without [Eq. (15)] angular correlations
between the impact parameter and dipole orientation. We
present results for typical EIC kinematics, where
Ep ¼ 250 GeV, W ¼ 100 GeV and Q2 ¼ 1 GeV2.
In Fig. 7 we show the cross section for longitudinally and

transversely polarized photons as a function of transverse
dijet momentum jPj, where we have set jΔj ¼ 0.1 GeV and
θðΔ;PÞ ¼ π. These results are for light flavor jets with
quark massmq ¼ 0.03 GeV and symmetric longitudinal jet
momenta z ¼ z̄ ¼ 0.5. As expected, the cross section is
steeply falling with increasing jet momentum jPj, and the
total cross section is dominated by the transversely polar-
ized photons at small jPj and by longitudinal photons at
larger jPj.

In Fig. 8, we show normalized dijet cross sections as a
function of the relative angle θðΔ;PÞ between the jet
transverse momentum P and target recoil Δ. Here, we
integrate over the longitudinal momentum fraction
z; z̄ ∈ ½0.1; 0.9�. We compare results from the conventional
IP-Sat parametrization, Eq. (15), without angular correla-
tions between the impact parameter and dipole orientation
(thin lines), with those obtained from the modified IP-Sat
model (17), including angular correlations (thick lines).
Here, we have set c̃ ¼ 1, which induces a nonzero dijet v2
of the order of a few percent. The elliptic correlation has
opposite sign for longitudinal (v2;L < 0) and transverse
photons (v2;T > 0).
In Fig. 9 we present the longitudinal, transverse and total

v2 as a function of the dijet momentum jPj with kinematics
as in Fig. 8. For all presented jPj, longitudinal and
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FIG. 7. Angle-integrated transverse (dashed), longitudinal
(dash-dotted) and total cross sections (solid) for dijets with either
up or down quarks, as a function of jPj, where jΔj ¼ 0.1 GeV
and z ¼ z̄ ¼ 0.5.
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FIG. 8. Normalized transverse (dashed), longitudinal (dash-
dotted) and total cross sections (solid) for light quarks as a
function of the relative angle θðΔ;PÞ, from the IP-Sat dipole
with (thick lines) and without (thin lines) angular correlation
between r and b, cf. Eq. (17). Here jPj¼1GeV, jΔj ¼ 0.1 GeV,
Q2 ¼ 1 GeV2. The cross section is integrated over z ∈ ½0.1; 0.9�
and over the direction of the proton recoil θðΔÞ.

7One could optimize the choice of l for each y, thereby finding
the optimal resolution for a given proton size and characteristic
transverse momentum scale Qs. In this way one could reduce the
parameter dependence of the elliptic modulation in the Husimi
distribution, but this is not a very attractive option.
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transverse components have opposite sign and the total v2
is partially cancelled between the two contributions.
Figure 10 shows the normalized transverse (left),

longitudinal (center) and total (right) dijet cross sections
as a function of θðΔ;PÞ, separately for different values of
z. Remarkably, a nonzero v1ðzÞ≡ hcos½θðΔ;PÞ�iz is
observed (most visible in the left panel) whose origin
we discuss below. To illustrate this feature, we plot v1ðzÞ
and v2ðzÞ in Figs. 11 and 12 for transversely (dashed)
and longitudinally polarized (dash-dotted) photons
with (thick lines) and without (thin lines) correlations
between the impact parameter and dipole orientation.
The nonzero v1ðzÞ is independent of the angular corre-
lation in Eq. (17). Its emergence is due to the energy
dependence of the dipole amplitude [Eq. (11)]. To show
this, we Taylor expand the dipole amplitude, close to but
away from the asymptotic correlation limit to linear order
in jΔj=jPj,

N ðr;b; xPÞ ≈N ðr;b; x0PÞ þ
∂N ðr;b; xPÞ
∂ðjΔj=jPjÞ

����jΔj
jPj¼0

jΔj
jPj

¼ N ðr;b; x0PÞ þ
∂N
∂xP

∂xP
∂ðjΔj=jPjÞ

����jΔj
jPj¼0

jΔj
jPj :

ð36Þ
The linear term can be computed from Eq. (11),

∂xP
∂ðjΔj=jPjÞ

����jΔj
jPj¼0

¼ z̄− z
zz̄

jPj2
W2þQ2−m2

N
cos½θðΔ;PÞ�: ð37Þ

If we insert Eq. (37) into Eq. (36) and use it to compute
the dijet cross section, the latter must have a nonzero v1ðzÞ
at OðjΔj=jPjÞ, vanishing only in the exact correlation
limit. However, because v1ðzÞ ¼ −v1ðz̄Þ, v1ðzÞ can be
eliminated by z-symmetric integration; see for example
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FIG. 9. Elliptic Fourier coefficient v2 for light quark dijets as a
function of jPj, integrated over z ∈ ½0.1; 0.9�, for the IP-Sat model
with angular correlations. Here, jΔj ¼ 0.1 GeV, Q2 ¼ 1 GeV2.

FIG. 10. Cross sections for transversely (left) and longitudinally (center) polarized photons and the total cross section (right), as a
function of the longitudinal momentum fraction of one jet z ¼ pþ

0 =q
þ. A sizable v1 is induced by kinematic effects, because xP is not

constant along θðΔ;PÞ for fixed z, according to Eq. (11). This effect isOðjΔj=jPjÞ and vanishes only in the asymptotic correlation limit.
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FIG. 11. Azimuthal Fourier coefficient v1 ¼ hcosðθðP;ΔÞÞi for
light quark dijets as a function of z for the IP-Sat model with
(thick lines) and without (thin lines) angular correlation. Here,
jPj ¼ 1 GeV, jΔj ¼ 0.1 GeV, Q2 ¼ 1 GeV2.
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Fig. 8 where z ∈ ½0.1; 0.9�. This effect might have prac-
tical implications in experiments where finite detector
acceptance (in the laboratory frame) might not allow to
eliminate v1.

8

Figure 12 shows that a finite v2 only appears for c̃ ≠ 0.
For longitudinal polarization v2 is negative for all z and jv2j
is maximal at z ¼ 0.5. In contrast, for transverse polariza-
tion, v2 is positive for all z and maximal in the most
asymmetric cases z → 0 and z → 1.
Next we compute the dijet cross section for the case of

charm quarks. A simple analysis of Eq. (10) and Eq. (12)
shows that dipoles with size jrj⪆Λ−1

QCD contribute to the
dijet cross section for light quarks and small photon
virtuality of only a few GeV2. While the IP-Sat dipole
parametrization reports this limit as N ðjrj → ∞Þ → 1, no
reliable theoretical description of angular correlations
exists in this regime. Here, nonperturbative hadronic effects
must be taken into account. From now on we focus on
charm dijets, which by means of the large mass scale,
allows us to predict cross sections for photon virtuality
down to Q2 ∼ 0 without unconstrained contributions from
large distances ∼Λ−1

QCD.
Results for the charmdijet cross section from themodified

IP-Sat model are shown in Fig. 13. Here, we plot the jPj
dependence of the transverse, longitudinal and total diffrac-
tive charm-dijet production cross sections for charm quark
mass mc ¼ 1.28 GeV, photon virtuality Q2 ¼ 1 GeV2,
jΔj ¼ 0.1 GeV, θðΔ;PÞ ¼ π and z ¼ z̄ ¼ 0.5. In the shown
range of jPj the transverse charm dijet cross section is
significantly larger than the longitudinal component. A novel

feature is the sharp drop of the longitudinal cross section
around jPj ∼ 1.5 GeV. A similar, but less drastic, dip is
visible for the transverse cross section.
Theseminima reflect sensitivity to the size of the projectile

jrj and are understood from Fourier transformation to
momentum space. A simple estimate of the characteristic
inverse “size” of the photon from its wave function in
coordinate space yields jrγj−1 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ zz̄Q2
p

≈ 1.4 GeV,
which roughly coincides with the minima of Fig. 13.9

In Fig. 14, we show the jPj dependence of the transverse
and longitudinal v2 for charm jets from the modified IP-Sat
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FIG. 12. Elliptic Fourier coefficient v2 for light quark dijets
as a function of z for the IP-Sat model with (thick lines) and
without (thin lines) angular correlation. Here, jPj ¼ 1 GeV,
jΔj ¼ 0.1 GeV, Q2 ¼ 1 GeV2.
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FIG. 13. jPj dependence of the angle-integrated diffractive dijet
production cross section for charm quarks from the modified
IP-Sat model for c̃ ¼ 1. Here, jΔj ¼ 0.1 GeV, and z ¼ z̄ ¼ 0.5.
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FIG. 14. jPj dependence of the elliptic Fourier coefficient v2 for
charm jets (integrated over z ∈ ½0.1; 0.9�), where jΔj ¼ 0.1 GeV,
Q2 ¼ 1 GeV2.

8We note that a different choice of dijet and target recoil
transverse momenta, P̃≡ z̄p0 − zp1 and Δ̃ ¼ p0 þ p1, discussed
in Appendix B, avoids the cos½θðΔ;PÞ� dependence [132]. These
variables cannot be interpreted as Fourier conjugates to the
impact parameter and dipole orientation and other kinematic
effects must be considered.

9The interpretation of these features is thereby analogous to the
origin of minima usually observed in the t ¼ −jΔj2 spectrum of
diffractive cross sections. Here, diffractive minima indicate the
size of the target, not the projectile. We also note that the light-
quark photon wave function is “larger” than that for charm quarks
where we expect a similar feature below 1 GeV (not shown in
Fig. 7). We emphasize that the photon is “nonperturbatively
large” for light quarks and small virtuality.
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model with c̃ ¼ 1. We keep the kinematics as in the light
quark case, jΔj ¼ 0.1 GeV, Q2 ¼ 1 GeV2, z ∈ ½0.1; 0.9�.
A consequence of the minima shown in Fig. 13 is a strong
increase of the longitudinal v2;L at jPj ∼ 1.5 GeV where
it changes sign, with v2;L > 0 for jPj≲ 1.5 GeV and
v2;L < 0 for jPj≳ 1.5 GeV. The transverse component,
too, changes sign which we attribute to the relative
importance of the two terms in Eq. (10). Specifically, in
Eq. (10) the second, mass-dependent term dominates for
large jPj. Because this term behaves similarly as the
corresponding contribution to the longitudinal cross sec-
tion, it also results in a negative overall v2.
In the following section, we compute the dipole amplitude

directly from the color glass condensate effective theory
where angular correlations are included ab initio and wewill
reliably extract the energy dependence of our results.

B. CGC computation

In this section, we compute dijet cross sections from the
CGC, as outlined in Sec. II C 2. For this quantitative study,
we do not show light quark results because of the afore-
mentioned sensitivity to large jrj ∼ Λ−1

QCD contributions
which are not under good control theoretically.
We plot transverse, longitudinal and total cross sections

in Fig. 15, where jΔj ¼ 0.1 GeV, Q2 ¼ 1 GeV2, z ¼ z̄ ¼
0.5 and θðΔ;PÞ ¼ π. We vary the infrared regulators m; m̃
[see Eqs. (21) and (27)] and the value of the constant
coupling αs, as well as the parametrization with a running
coupling (28). We match the value of the saturation scale
according to Eq. (20) with c ¼ 0.75 for an IR regulator
m̃ ¼ 0.4 GeV, and c ¼ 0.85 for m̃ ¼ 0.2 GeV, thus ensur-
ing a consistent overall dipole normalization. We further
adjust the value of the fixed αs, when we change m in the
JIMWLK kernel (27) to ensure comparable energy evolu-
tion speed. We use this specific parameter range, because it
has been used to compute proton structure functions and
diffractive vector meson cross sections in Ref. [6], and was
shown to be consistent with HERA data.
Shown in Fig. 15, the CGC-parameter dependence is

very small for charm-dijet cross sections, indicating a
negligible sensitivity to large distances jrj ∼ Λ−1

QCD. For
comparison we include the IP-Sat results (gray dashed
curve), which differ significantly from the CGC in magni-
tude, but show similar qualitative features. We attribute the
different normalization to the fact that in the CGC the
small-jrj regime of the dipole amplitude carries a larger
relative weight, compared to IP-Sat, as shown in Fig. 5 of
Ref. [6]. For charm dijets the relevance of this small-jrj
regime is enhanced.
In Fig. 16 we plot the v2 obtained from the CGC

computation for transverse, longitudinal, and total cross
sections as a function of jPj, integrated over azimuthal
angle θðΔÞ and z; z̄ ∈ ½0.1; 0.9�. Figure 16(a) shows the
transverse v2;T for all CGC parameter sets discussed above.
All parametrizations agree qualitatively and the results are

robust under variation of the JIMWLK evolution param-
eters (stars, circles, and triangles). Including the running
coupling αs via Eq. (28), vs a fixed coupling only
minimally effects the JIMWLK evolution. Results with
different IR regulators m̃ differ by up to 20% (squares vs
stars, circles, and triangles). Both values m̃ ¼ 0.2 GeV and
m̃ ¼ 0.4 GeV are in agreement with HERA data [6] and
further comparison with data is necessary to reduce this
systematic uncertainty.
In Fig. 16(b) we show results for the longitudinal

anisotropy coefficient v2;L, where the most prominent
feature is the rapid growth of v2;L in the jPj region where
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FIG. 15. Angle-integrated transverse (a), longitudinal (b), and
total (c) cross sections for charm dijets from the CGC for
jΔj ¼ 0.1 GeV, Q2 ¼ 1 GeV2, z ¼ z̄ ¼ 0.5.
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the longitudinal cross section drops; see Fig. 15(b). All
CGC parametrizations give qualitatively and quantitatively
similar results, and we attribute the largest uncertainty to
the dependence on m̃.
The total v2, which is a weighted sum of transverse and

longitudinal components, is shown in Fig. 16(c). At small
jPj, longitudinal and transverse cross sections have positive
v2 and the total cross section is dominated by the transverse
component. At large jPj ∼ 2.5 GeV, the longitudinal v2;L is
negative while again the total v2 is dominated by photons
with transverse polarization.

In Fig. 17 we study the energy dependence of v2, by
varying the center-of-mass energy W, while keeping the
dijet kinematics fixed (at jPj ¼ 1 GeV,Δ ¼ 0.1 GeV, with
photon virtuality Q2 ¼ 1). We integrate over z ∈ ½0.1; 0.9�
and over the azimuthal angle θðΔÞ. Shown are results for
three different energies W ¼ 60, 100, 150 GeV. Because
our results are integrated over z and θðΔ;PÞ, we plot them
as a function of the average xP in the respective integration
range z ∈ ½0.1; 0.9� and θðΔ;PÞ ∈ ½0; 2π� [see Eq. (11)],
where horizontal bars denote the standard deviation of xP in
this range. We compare results from the full CGC compu-
tation for m̃ ¼ 0.4, m ¼ 0.2 with fixed αs ¼ 0.21 (squares)
to results without JIMWLK evolution (circles), where the
xP dependence is entirely determined from the IP-Sat
parametrization of HERA data. In the latter case, only
the saturation scale Qs changes with energy, while in the
full CGC computation the transverse size of the proton
increases as well. This growth is accompanied by a relative
change in the gradients of the target color density.
Consequently, we expect a decrease of v2 with energy,
as is in fact the case. Remarkably, the same effect is directly
observed in the gluon Wigner and Husimi distributions
computed in Sec. III. We further examine and validate this
interpretation by studying variations of the proton size in
Appendix C.
Finally, we study the dependence of the dijet cross

section and v2 on the photon virtuality Q2. In Fig. 18 we
show longitudinal and transverse cross sections as a
function of Q2, where jPj ¼ 1 GeV, Δ ¼ 0.1 GeV and
W ¼ 100 GeV, integrated over z and the azimuthal angles,
θðΔÞ and θðPÞ. We choose a CGC parametrization
with m ¼ 0.2 GeV, m̃ ¼ 0.4 GeV, c ¼ 0.75 and αs ¼
0.21 (cf. black curves in Figs. 15–16). While the
longitudinal cross section vanishes at Q2 ∼ 0 (photopro-
duction), it becomes dominant for Q2 ≥ 30 GeV2. Overall,
the total cross section decreases at large Q2. The inset
shows the ratio of the longitudinal to the transverse cross
section.
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In Fig. 19, we show theQ2 dependence of the transverse,
longitudinal and total v2 with kinematics as in Fig. 18.
Individually, both the transverse and longitudinal v2
decrease with Q2. This is understood, since small dipoles
contribute at large Q2 which are less sensitive to correla-
tions in the gluon dipole distribution. Interestingly, the v2 of
the transverse component turns negative at approxi-
mately Q2 ¼ 15 GeV2.

V. CONCLUSIONS

We have computed gluon Wigner and Husimi distribu-
tions of the proton from the color glass condensate effective
theory, at leading logarithmic order and including energy
evolution by means of the JIMWLK renormalization group
equations. We have studied angular correlations between
the impact parameter and transverse momentum in Wigner
and Husimi distributions, as well as between the impact
parameter and dipole orientation in the dipole amplitude at
small x. Our results qualitatively agree with the model
calculations of Ref. [23], but differ at small jPj where

nonperturbative contributions are most important. We
studied the energy dependence of azimuthal correlations
in gluon distributions, finding a decrease of these corre-
lations with decreasing x, related to the geometric growth of
the proton. We investigated differences between Wigner
and Husimi distributions and pointed out difficulties for a
physical interpretation of the latter due to its dependence on
a smearing parameter.
A possible experimental consequence of elliptic corre-

lations in the gluon Wigner distribution is corresponding
elliptic modulations in the diffractive dijet production cross
sections in eþ p collisions. We computed these within the
color glass condensate framework for typical electron-ion
collider energies in the correlation limit and studied angular
correlations between the dijet transverse momentum and
target recoil.
Starting from a simple modification of the IP-Sat model,

we first established a baseline to disentangle purely
kinematical correlations from those originating in the gluon
distribution. We found a sizable hcos θðΔ;PÞi modulation
in addition to the expected elliptic contribution. This
kinematic effect is due to the energy dependence of the
dipole amplitude and vanishes asymptotically in the corre-
lation limit. Further, we presented dijet cross sections for
charm jets, avoiding nonperturbative contributions from
large dipoles.
We computed charm-dijet cross sections directly from

the CGC by solving the JIMWLK renormalization equa-
tions for fundamental Wilson lines with initial conditions
constrained by HERA data at relatively large xP. We
studied the dependence of the elliptic correlation on
relative transverse (jPj) dijet momentum, separately for
both photon polarizations. We predicted the energy depend-
ence of the elliptic anisotropy parameter and found a
decrease towards smaller x, related to the growth of the
proton with energy.
We computed the Q2 dependence of the dijet cross

section and elliptic modulation and observed a decrease of
longitudinal and transverse elliptic modulations with pho-
ton virtuality, due to the suppression of larger dipoles in the
photon wave function with increasing Q2. The transverse
v2;T turns negative at approximately Q2 ¼ 15 GeV2.
Establishing a direct quantitative equivalence between

correlations in dijet cross sections and gluon Wigner
distributions is possible in restricted cases, such as for
dijet production from real (Q2 ∼ 0) photons in pþ A
collisions [97]. In contrast, at the electron-ion collider
one probes a wide range of photon virtualities, beam
energies and dijet kinematics. Our study illustrates that
many kinematic effects must be considered when trying to
extract information about gluon Wigner and Husimi dis-
tributions in the proton from dijet cross sections. This might
be further complicated in a more refined phenomenological
analysis, where fragmentation, detector acceptances and
other effects are included, and by parameter dependences of
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those distributions themselves, as we illustrated for the
Husimi distribution.
Nevertheless, in our work we have predicted features of

the elliptic modulation of gluon distribution functions, such
as its energy dependence, which are manifest in the
diffractive dijet cross section and can be easily verified
in experiments. The extension of the presented formalism
to nuclear targets is straightforward.
Constraining the gluon Wigner distribution at small x is

also important for future experimental investigation of the
proton spin structure at the EIC [10,20–22,41]. Work to
extend the CGC framework to consistently include parton
spin in a generalized Wigner function formulation is
ongoing [150,151].
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APPENDIX A: WIGNER FUNCTIONS
IN THE CGC

In thisAppendix, we provide details on the computation of
gluon Wigner and Husimi distributions from the CGC. The
GTMD gluon distribution is defined by Eq. (2) [100–102],

xGDPðx;k;ΔÞ ¼ 2

Z
dz−d2z
ð2πÞ3Pþ e−ik·z−ixP

þz−

×

�
Pþ Δ

2

����Tr
�
Fþi

�
z
2

�
U−†

× Fþi

�
−
z
2

�
Uþ

�����P −
Δ
2

�
; ðA1Þ

where z ¼ ðz−; zÞ. Here,

U−† ≡ Uz−
2
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2
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2
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2
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2
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2
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−
2
;z
2

ðA3Þ

are Wilson lines in the fundamental representation.
Assuming xPþ ≈ 0 in the small-x regime and using the
cyclicity of the trace, we write

xGDPðx;k;ΔÞ≈2

Z
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We now define z ¼ x − y and introduce an irrelevant center
coordinate Z ¼ ðxþ yÞ=2, inserting 1 ¼ ð1=VÞ R dZ−d2Z
into Eq. (A4). We then use d3Zd3z ¼ d3xd3y and obtain

xGDPðx;k;ΔÞ ¼
4

2VPþ

Z
dx−dy−d2x d2y e−ikðx−yÞ
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Further, using

∂iUðxÞ ¼ ig
Z

∞

−∞
dz−U−∞;z−;x∂iAþðz−;xÞUz−;∞;x ðA6Þ

and replacing the quantum-mechanical matrix elements
by a stochastic average in the CGC effective theory,
hPþ Δ

2
j…jP − Δ

2
ji=ð2VPþÞ → h…ix, yields the final result

xGDPðx;k;ΔÞ ¼
2

α

Z
d2x d2y e−ikðx−yÞ

× ð∇x ·∇yÞhTrUðxÞU†ðyÞix; ðA7Þ

where α ¼ g2=4π. A similar derivation was presented in
Ref. [103].
An effective method to compute the Wigner distribution

numerically was developed in Ref. [23]. We include only
the first two nonzero harmonic components in the expan-
sion, and write the Wigner distribution as

xWðx;P;bÞ ¼ xW0 þ 2xW2 cosð2θðP;bÞÞ: ðA8Þ
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The coefficients read

xW0ðx; P; bÞ ¼ −
Nc

2αsπ
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�
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and
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Similarly, in case of the Husimi distribution defined in
Eq. (32), we use the decomposition

xHðP;b; xÞ ¼ xH0 þ 2xH2 cosð2θðP;bÞÞ: ðA11Þ

Now, following again Ref. [23] the components are
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In our numerical study we use αs ¼ 0.3.

APPENDIX B: COORDINATE CONVENTIONS

In this Appendix, we discuss different transverse coor-
dinate definitions to study angular correlations in coherent

diffractive dijet production. In the main part of this manu-
script we follow the convention of Ref. [7] [Eq. (9)], but a
different convention was used in Ref. [132] (albeit for a
different process),

P̃≡ z̄p0 − zp1;

Δ̃≡ p0 þ p1: ðB1Þ

For our study, in view of the kinematic effects discussed in
Sec. IVA, an advantage of this convention is that the energy
dependence of the dipole amplitude is independent of
θðΔ̃; P̃Þ in these coordinates,

x̃P ¼
1
zz̄ ½m2 þ ˜̄P2� þ Δ2 þQ2

W2 þQ2 −m2
N

: ðB2Þ

One may conclude that these variables are more suitable
for our study, potentially allowing to extract the gluon
distribution at a fixed xP. However, now the cross section
for dijet production cannot be written as a Fourier integral
over the product of the photon wave function and dipole
distribution. This is because r, b and P̃, Δ̃ are not Fourier
conjugates. Instead, if we naively evaluate the cross
sections (10) and (12) for the IP-Sat model at fixed jP̃j,
jΔ̃j we find a nonzero v2 even if there are no such
correlations on the level of the gluon dipole distribu-
tion. This result is illustrated in Fig. 20, where we plot
the normalized dijet cross section at jΔ̃j ¼ 0.1 GeV,
jP̃j ¼ 1 GeV, integrated over z ∈ ½0.1; 0.9� and with pho-
ton and proton beam kinematics as in Fig. 8. Figure 21
shows the z dependence of the v2 using this convention,
where nonzero dijet correlations are seen even in the
absence of correlations in the gluon dipole distribution.
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To remedy this situation, one might alternatively para-
metrize the gluon Wigner distribution in Fourier conjugates
to Eq. (B1),

b̃ ¼ z̄x0 þ zx1

r̃ ¼ x0 − x1; ðB3Þ

thereby mixing longitudinal and transverse coordinates.

APPENDIX C: PROTON SIZE DEPENDENCE

An important consequence of JIMWLK evolution is the
growth of the proton with energy. In this Appendix we
investigate the dependence of v2 on proton size. Here,
instead of evolving using the JIMWLK equations, we
directly match the xP dependence of the saturation scale

Qs from the IP-Sat model, cf. Eqs. (19)–(20). In this
matching procedure, we manually change the proton profile
(16) by hand thus mimicking a geometric growth of the
target, while keeping the saturation scale fixed.
Our results for jPj ¼ 1 GeV, jΔj ¼ 0.1 GeV, W ¼

100 GeV,Q2 ¼ 1 GeV2 are shown in Fig. 22. Here we plot
the z-integrated total v2 as a function of the proton size in
Eq. (16) forBp ¼ 4, 6,16 GeV−2. For largerBp thegradients
of the color charge density become smoother, thus reducing
the dependence of the cross section on the relative orientation
between the dipole orientation and impact parameter.
These results suggest that the growth of the proton with

energy is the most important effect behind the dependence
shown in Fig. 17, while the change of the saturation scale
Qs with energy has a minor effect on v2.
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[22] E. Leader and C. Lorcé, Phys. Rep. 541, 163 (2014).
[23] Y. Hagiwara, Y. Hatta, and T. Ueda, Phys. Rev. D 94,

094036 (2016).
[24] A. Kovner and M. Lublinsky, Phys. Rev. D 92, 034016

(2015).
[25] A. Kovner, M. Lublinsky, and M. Serino, Phys. Lett. B

792, 4 (2019).
[26] P. Calabrese and J. L. Cardy, J. Stat. Mech. (2004),

P06002.
[27] D. E. Kharzeev and E. M. Levin, Phys. Rev. D 95, 114008

(2017).
[28] Y. Hagiwara, Y. Hatta, B.-W. Xiao, and F. Yuan, Phys. Rev.

D 97, 094029 (2018).
[29] K. Kutak, Phys. Lett. B 705, 217 (2011).
[30] J. Berges, S. Floerchinger, and R. Venugopalan, Phys. Lett.

B 778, 442 (2018).
[31] H.-T. Elze, Nucl. Phys. B436, 213 (1995).
[32] R. Peschanski, Phys. Rev. D 87, 034042 (2013).
[33] J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).
[34] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P.

Wigner, Phys. Rep. 106, 121 (1984).
[35] A. Polkovnikov, Ann. Phys. (Amsterdam) 325, 1790

(2010).
[36] N. Mueller and R. Venugopalan, Phys. Rev. D 99, 056003

(2019).
[37] K. Husimi, Proc. Phys. Math. Soc. Jpn. 22, 264 (1940).
[38] P. D. Drummond and C.W. Gardiner, J. Phys. A 13, 2353

(1980).
[39] P. D. Drummond, C. W. Gardiner, and D. F. Walls, J. Phys.

A 24, 914 (1981).
[40] D. Boer et al., arXiv:1108.1713.
[41] A. Accardi et al., Eur. Phys. J. C 52, 268 (2016).
[42] E. C. Aschenauer, S. Fazio, J. H. Lee, H. Mäntysaari, B. S.

Page, B. Schenke, T. Ullrich, R. Venugopalan, and P.
Zurita, Rep. Prog. Phys. 82, 024301 (2019).

[43] J. L. Abelleira Fernandez et al. (LHeC Study Group), J.
Phys. G 39, 075001 (2012).

[44] J. C. Collins, Phys. Rev. D 57, 3051 (1998); 61, 019902(E)
(1999).

[45] J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Lett. B
307, 161 (1993).

[46] J. Collins, Cambridge Monogr. Part. Phys., Nucl. Phys.,
Cosmol., 32, 1 (2011).

[47] M. Diehl, Z. Phys. C 66, 181 (1995).
[48] J. Bartels, H. Lotter, and M. Wüsthoff, Phys. Lett. B 379,

239 (1996); 382, 449(E) (1996).
[49] J. Bartels, C. Ewerz, H. Lotter, and M. Wusthoff, Phys.

Lett. B 386, 389 (1996).
[50] J. Bartels, H. Jung, and M. Wusthoff, Eur. Phys. J. C 11,

111 (1999).
[51] G. Wolf, Rep. Prog. Phys. 73, 116202 (2010).
[52] S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C

55, 177 (2008).
[53] C. Adloff et al. (H1 Collaboration), Eur. Phys. J. C 20, 29

(2001).

[54] A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 50, 1
(2007).

[55] F. D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 70,
15 (2010).

[56] F. D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 72,
1970 (2012).

[57] V. Andreev et al. (H1 Collaboration), J. High Energy Phys.
03 (2015) 092.

[58] V. Andreev et al. (H1 Collaboration), J. High Energy Phys.
05 (2015) 056.

[59] A. B. Kaidalov, V. A. Khoze, A. D. Martin, and M. G.
Ryskin, Phys. Lett. B 567, 61 (2003).

[60] M. Klasen and G. Kramer, Eur. Phys. J. C 38, 93
(2004).

[61] M. Klasen and G. Kramer, Mod. Phys. Lett. A 23, 1885
(2008).

[62] ATLAS Collaboration, CERN Report No. ATLAS-CONF-
2017-011, 2017.

[63] V. Guzey and M. Klasen, arXiv:1811.10236.
[64] S. Catani, M. Ciafaloni, and F. Hautmann, Nucl. Phys.

B366, 135 (1991).
[65] J. C. Collins and R. K. Ellis, Nucl. Phys. B360, 3

(1991).
[66] E. M. Levin, M. G. Ryskin, Yu. M. Shabelski, and A. G.

Shuvaev, Yad. Fiz. 53, 1059 (1991) [Sov. J. Nucl. Phys. 53,
657 (1991)].

[67] B. I. Ermolaev and S. I. Troyan, Eur. Phys. J. C 77, 167
(2017).

[68] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp.
Teor. Fiz. 72, 377 (1977) [Sov. Phys. JETP 45, 199
(1977)].

[69] I. I. Balitsky and L. N. Lipatov, Yad. Fiz. 28, 1597 (1978)
[Sov. J. Nucl. Phys. 28, 822 (1978)].

[70] B. Z. Kopeliovich, L. I. Lapidus, and A. B. Zamolodchikov,
Pis’ma Zh. Eksp. Teor. Fiz. 33, 612 (1981) [JETP Lett. 33,
595 (1981)].

[71] G. Bertsch, S. J. Brodsky, A. S. Goldhaber, and J. F.
Gunion, Phys. Rev. Lett. 47, 297 (1981).

[72] A. H. Mueller, Nucl. Phys. B335, 115 (1990).
[73] N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607

(1991).
[74] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49,

2233 (1994).
[75] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49,

3352 (1994).
[76] L. D. McLerran and R. Venugopalan, Phys. Rev. D 50,

2225 (1994).
[77] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan,

Annu. Rev. Nucl. Part. Sci. 60, 463 (2010).
[78] J. L. Albacete and C. Marquet, Prog. Part. Nucl. Phys. 76,

1 (2014).
[79] I. Balitsky, Nucl. Phys. B463, 99 (1996).
[80] Y. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).
[81] S. Catani and F. Hautmann, Nucl. Phys. B427, 475

(1994).
[82] J. Jalilian-Marian, A. Kovner, L. D. McLerran, and H.

Weigert, Phys. Rev. D 55, 5414 (1997).
[83] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H.

Weigert, Nucl. Phys. B504, 415 (1997).

MÄNTYSAARI, MUELLER, and SCHENKE PHYS. REV. D 99, 074004 (2019)

074004-18

https://doi.org/10.1103/PhysRevD.85.114006
https://doi.org/10.1103/PhysRevD.85.114006
https://doi.org/10.1142/S2010194512009129
https://doi.org/10.1142/S2010194512009129
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1103/PhysRevD.94.094036
https://doi.org/10.1103/PhysRevD.94.094036
https://doi.org/10.1103/PhysRevD.92.034016
https://doi.org/10.1103/PhysRevD.92.034016
https://doi.org/10.1016/j.physletb.2018.10.043
https://doi.org/10.1016/j.physletb.2018.10.043
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1103/PhysRevD.95.114008
https://doi.org/10.1103/PhysRevD.95.114008
https://doi.org/10.1103/PhysRevD.97.094029
https://doi.org/10.1103/PhysRevD.97.094029
https://doi.org/10.1016/j.physletb.2011.09.113
https://doi.org/10.1016/j.physletb.2018.01.068
https://doi.org/10.1016/j.physletb.2018.01.068
https://doi.org/10.1016/0550-3213(94)00523-H
https://doi.org/10.1103/PhysRevD.87.034042
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1016/0370-1573(84)90160-1
https://doi.org/10.1016/j.aop.2010.02.006
https://doi.org/10.1016/j.aop.2010.02.006
https://doi.org/10.1103/PhysRevD.99.056003
https://doi.org/10.1103/PhysRevD.99.056003
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1088/0305-4470/13/7/018
http://arXiv.org/abs/1108.1713
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1088/1361-6633/aaf216
https://doi.org/10.1088/0954-3899/39/7/075001
https://doi.org/10.1088/0954-3899/39/7/075001
https://doi.org/10.1103/PhysRevD.57.3051
https://doi.org/10.1103/PhysRevD.61.019902
https://doi.org/10.1103/PhysRevD.61.019902
https://doi.org/10.1016/0370-2693(93)90206-W
https://doi.org/10.1016/0370-2693(93)90206-W
https://doi.org/10.1007/BF01496592
https://doi.org/10.1016/0370-2693(96)00412-1
https://doi.org/10.1016/0370-2693(96)00412-1
https://doi.org/10.1016/0370-2693(96)00840-4
https://doi.org/10.1016/0370-2693(96)81071-9
https://doi.org/10.1016/0370-2693(96)81071-9
https://doi.org/10.1007/s100529900081
https://doi.org/10.1007/s100529900081
https://doi.org/10.1088/0034-4885/73/11/116202
https://doi.org/10.1140/epjc/s10052-008-0598-2
https://doi.org/10.1140/epjc/s10052-008-0598-2
https://doi.org/10.1007/s100520100634
https://doi.org/10.1007/s100520100634
https://doi.org/10.1140/epjc/s10052-006-0206-2
https://doi.org/10.1140/epjc/s10052-006-0206-2
https://doi.org/10.1140/epjc/s10052-010-1448-6
https://doi.org/10.1140/epjc/s10052-010-1448-6
https://doi.org/10.1140/epjc/s10052-012-1970-9
https://doi.org/10.1140/epjc/s10052-012-1970-9
https://doi.org/10.1007/JHEP03(2015)092
https://doi.org/10.1007/JHEP03(2015)092
https://doi.org/10.1007/JHEP05(2015)056
https://doi.org/10.1007/JHEP05(2015)056
https://doi.org/10.1016/j.physletb.2003.06.019
https://doi.org/10.1140/epjc/s2004-02016-y
https://doi.org/10.1140/epjc/s2004-02016-y
https://doi.org/10.1142/S0217732308027461
https://doi.org/10.1142/S0217732308027461
http://arXiv.org/abs/1811.10236
https://doi.org/10.1016/0550-3213(91)90055-3
https://doi.org/10.1016/0550-3213(91)90055-3
https://doi.org/10.1016/0550-3213(91)90288-9
https://doi.org/10.1016/0550-3213(91)90288-9
https://doi.org/10.1140/epjc/s10052-017-4724-x
https://doi.org/10.1140/epjc/s10052-017-4724-x
https://doi.org/10.1103/PhysRevLett.47.297
https://doi.org/10.1016/0550-3213(90)90173-B
https://doi.org/10.1007/BF01483577
https://doi.org/10.1007/BF01483577
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1103/PhysRevD.49.3352
https://doi.org/10.1103/PhysRevD.49.3352
https://doi.org/10.1103/PhysRevD.50.2225
https://doi.org/10.1103/PhysRevD.50.2225
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1016/j.ppnp.2014.01.004
https://doi.org/10.1016/j.ppnp.2014.01.004
https://doi.org/10.1016/0550-3213(95)00638-9
https://doi.org/10.1103/PhysRevD.60.034008
https://doi.org/10.1016/0550-3213(94)90636-X
https://doi.org/10.1016/0550-3213(94)90636-X
https://doi.org/10.1103/PhysRevD.55.5414
https://doi.org/10.1016/S0550-3213(97)00440-9


[84] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H.
Weigert, Phys. Rev. D 59, 014014 (1998).

[85] E. Iancu and L. D. McLerran, Phys. Lett. B 510, 145
(2001).

[86] E. Ferreiro, E. Iancu, A. Leonidov, and L. McLerran, Nucl.
Phys. A703, 489 (2002).

[87] E. Iancu, A. Leonidov, and L. D. McLerran, Phys. Lett. B
510, 133 (2001).

[88] E. Iancu, A. Leonidov, and L. D. McLerran, Nucl. Phys.
A692, 583 (2001).

[89] I. Balitsky and G. A. Chirilli, Phys. Rev. D 77, 014019
(2008).

[90] I. Balitsky and G. A. Chirilli, Phys. Rev. D 88, 111501
(2013).

[91] A. Kovner, M. Lublinsky, and Y. Mulian, Phys. Rev. D 89,
061704 (2014).

[92] A. Kovner, M. Lublinsky, and Y. Mulian, J. High Energy
Phys. 08 (2014) 114.

[93] H. Weigert, Nucl. Phys. A703, 823 (2002).
[94] K. Rummukainen and H. Weigert, Nucl. Phys. A739, 183

(2004).
[95] T. Altinoluk, N. Armesto, G. Beuf, and A. H. Rezaeian,

Phys. Lett. B 758, 373 (2016).
[96] R. Boussarie, Y. Hatta, B.-W. Xiao, and F. Yuan, Phys.

Rev. D 98, 074015 (2018).
[97] Y. Hagiwara, Y. Hatta, R. Pasechnik, M. Tasevsky, and O.

Teryaev, Phys. Rev. D 96, 034009 (2017).
[98] S. Bhattacharya, A. Metz, V. K. Ojha, J.-Y. Tsai, and J.

Zhou, arXiv:1802.10550.
[99] R. Boussarie, A. V. Grabovsky, L. Szymanowski, and S.

Wallon, J. High Energy Phys. 11 (2016) 149.
[100] S. Meissner, A. Metz, and M. Schlegel, J. High Energy

Phys. 08 (2009) 056.
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