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Using the Zubarev quantum-statistical density operator, we calculated the corrections to the energy-
momentum tensor of a massless fermion gas associated with acceleration. It is shown that when fourth-
order corrections are taken into account, the energy-momentum tensor in the laboratory frame is equal to
zero at a proper temperature measured by a comoving observer equal to the Unruh temperature.
Consequently, the Minkowski vacuum is visible to the accelerated observer as a medium filled with a heat
bath of particles with the Unruh temperature, which is the essence of the Unruh effect.
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I. INTRODUCTION

According to the standard formulation of the Unruh
effect, an accelerated observer sees the Minkowski vacuum
state as a thermal bath of particles with a temperature
TU ¼ a

2π, depending on the proper acceleration a [1–4].
The Unruh effect is most easily derived for scalar

particles from consideration of the change in the ratio
between positive and negative frequency modes of scalar
fields in the proper time of the accelerated observer [1,4].
However, the Unruh effect was also established in the
general case of theories with arbitrary spin and with
interaction on the basis of the algebraic approach [5,6].
Also, the Unruh effect was established for fermions in the
framework of quantum field theory in terms of path
integrals [7].
The phenomena associated with the acceleration and the

Unruh effect also continue to be the subject of modern
research. In particular, the critical accelerations for the
spontaneous symmetry breaking of Uð1Þ in the λϕ4 theory
and the chiral symmetry breaking in the Nambu-Jona-
Lasiniomodel have been analysed inRefs. [8,9] respectively.
The critical acceleration of the Bose-Einstein condensate
in accelerated systems has been also analyzed [10]. Spin
dynamics under the joint action of the gravitational, inertial,

and electromagnetic fields is also considered in Ref. [11]
from the point of view of quantum mechanics.
There were also indications that the Unruh effect may be

significant when considering the collisions of elementary
particles. In Refs. [12,13], it was shown that the hadroni-
zation process can be accompanied by accelerated particle
motion, which can be a source of thermalization in
elementary processes such as eþe− annihilation or pp
and pp̄ collisions, just due to the Unruh effect, and also
allows one to explain some features in the multiplicities of
hadrons. So, in the elementary processes of electron-
positron annihilation or proton-(anti)proton collisions,
tremendous accelerations can occur, which may open the
way for observing the effects associated with acceleration,
while in heavy ion collision also large vorticity may arise,
and polarization in heavy ion collisions provides informa-
tion about both vorticity and acceleration [14–17].
An interesting new look at the Unruh effect was recently

obtained from the standpoint of quantum relativistic stat-
istical mechanics [18,19]. In Ref. [18], it was shown by
calculating the values of quantum correlators for scalar
fields at a finite temperature that the average value of any
local operator turns out to be zero after subtracting of the
vacuum contribution at the proper temperature, measured
by a comoving observer, equal to the Unruh temperature.
This fact means that the Minkowski vacuum is perceived by
the accelerated observer as a medium filled with a thermal
bath of particles with an Unruh temperature a

2π, which is the
essence of the Unruh effect.
The analysis in Ref. [18] is given for scalar particles.

Our main result is a generalization of Ref. [18] for the
case of massless fermions: we show that for gas of massless
fermions with chemical potentials equal to zero, the
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energy-momentum tensor in the laboratory frame is zero at
the proper temperature, measured by a comoving observer,
equal to the Unruh temperature.
We use a fundamental approach based on the quantum-

statistical density operator of Zubarev [20–24] (see also in
Ref. [25] the current review of Zubarev’s approach and its
connection with the Kubo formulas and in Refs. [18,19]
discussion of thermodynamic equilibriumwith acceleration,
as well as the derivation of the entropy current). The effects
associatedwith acceleration in this operator are described by
a term with the boost operator and can be investigated in the
framework of quantum field perturbation theory. So, the
first- and second-order corrections in acceleration (and other
velocity derivatives) were calculated in Refs. [22–24], while
the third-order corrections in the axial current were analyzed
in Ref. [26]. In particular, it was shown that the standard
formula for the chiral vortical effect is reproduced [22,24],
and corrections to it were obtained [24,26].
The values calculated in this way did not vanish at the

Unruh temperature. We show that when fourth-order
corrections are taken into account in the energy-momentum
tensor, this vanishing occurs. Thus, we generalize the result
[18] to the case of fermions (at least on the level of energy-
momentum tensor of massless fermions) and at the same
time confirm that the Unruh effect can be obtained in the
Zubarev approach.
We also proposed a formula for energy density in

the form of momentum integrals. The motivation for
the introduction of this formula is an exact match with

the result of the perturbative calculation based on the
density operator in the T > TU region and the correct
limit at a → 0. We also derive the energy density using the
covariant Wigner function. The proposed integral repre-
sentation can be considered as a modification of this
formula resulting from the Wigner function.

II. UNRUH EFFECT FROM DENSITY OPERATOR

The most fundamental object describing a medium in a
state of local thermodynamic equilibrium is the density
operator, introduced by Zubarev [20–25]. In the case of
zero vorticity ωμ ¼ 0, zero chemical potentials μ ¼ μ5 ¼ 0,
and global thermodynamic equilibrium with acceleration
[18,24,27], this operator is reduced to the next form
[18,22,24]

ρ̂ ¼ 1

Z
expf−βμP̂μ − αμK̂

μ
xg; ð2:1Þ

where P̂μ is a four-momentum operator, K̂μ
x is a boost

operator translated to the vector xμ, and αμ ¼ aμ
T is the vector

of thermal acceleration, which is proportional to the usual
kinematic acceleration vector in the case of global equi-
librium. The considered case of global equilibrium corre-
sponds to motion with constant proper acceleration.
In the fourth order of perturbation theory, the operator

(2.1) leads to the energy-momentum tensor of the follow-
ing form,

hT̂μνi ¼ ðρ0 þ A1a2T2 þ A2a4Þuμuν − ðp0 þ B1a2T2 þ B2a4ÞΔμν þ ðA3T2 þ A4a2Þaμaν þOða6Þ Δμν ¼ gμν − uμuν;

ð2:2Þ

where we assume a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−aμaμ

p
and ρ0, p0, A1, A2, A3, A4,

B1, B2 are coefficients to be defined. The formula (2.2) is
the most general expression allowed by parity requirements
in the fourth order of perturbation theory (see Ref. [19]). In
Ref. [22], coefficients up to the second order of the
perturbation theory were calculated. In the chiral limit
m → 0 and at μ ¼ μ5 ¼ 0,

ρ0 ¼
7π2T4

60
; A1 ¼

1

24
; p0 ¼

ρ0
3
¼ 7π2T4

180
;

B1 ¼
A1

3
¼ 1

72
; A3 ¼ 0: ð2:3Þ

Obviously, in the second order of the perturbation theory,
the energy-momentum tensor does not vanish. For exam-
ple, the corresponding expression for energy density (index

Den means that the value is calculated using the density
operator)

ρDen ¼
7π2T4

60
þ T2a2

24
þOða4Þ; ð2:4Þ

and it is obvious that it is always positive and does not
vanish at T ¼ TU.
We show that taking into account the fourth-order

corrections leads to hT̂μνiðT ¼ TUÞ ¼ 0 (third-order cor-
rections are forbidden by parity). Next, we follow the
algorithm for calculating corrections in thermal vorticity in
quantum statistical averages using the density operator
(2.1), described in Refs. [22,24] and also in Ref. [26]. So,
for A2, we have

A2 ¼
1

4!

Z jβj

0

dτxdτydτzdτfhTτK̂
3
−iτxuK̂

3
−iτyuK̂

3
−iτzuK̂

3
−iτfuT̂

00ð0ÞiβðxÞ;c; ð2:5Þ
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where the appearance of four boost operators K̂ corre-
sponds to an expansion of up to the fourth-order perturba-
tion theory, and the operator T̂00 appears, since we calculate
the mean value of the energy density. The index βðxÞ; c
means that averaging is performed by means of the operator

(2.1) with αμ ¼ 0 and only connected correlators are taken,
Tτ means ordering by inverse temperature, and jβj ¼ 1

T.
Expressing K̂ through the energy-momentum tensor, we
obtain that the coefficients will be expressed in terms of the
quantities (compare with Refs. [22,24,26])

Cα1α2jα3α4jα5α6jα7α8jα9α10jijkl ¼
Z jβj

0

dτxdτydτzdτfd3xd3yd3zd3f

× xiyjzkflhTτT̂
α1α2ðτx;xÞT̂α3α4ðτy; yÞT̂α5α6ðτz; zÞT̂α7α8ðτf; fÞT̂α9α10ð0ÞiβðxÞ;c; ð2:6Þ

where the operator of the energy-momentum tensor is the
Belinfante energy-momentum tensor for fermions in the
split form

T̂αβðXÞ¼ lim
X1;X2→X

Dαβ
abð∂X1

;∂X2
ÞΨ̄aðX1ÞΨbðX2Þ;

Dαβ
abð∂X1

;∂X2
Þ¼ iδ0αþδ0β

4
½γ̃αabð∂X2

−∂X1
Þβþ γ̃βabð∂X2

−∂X1
Þα�;

ð2:7Þ

where γ̃ are Euclidean gamma matrices and X ¼ ðτx;xÞ.
Then, we obtain for the coefficients arising in the fourth
order of perturbation theory

A2 ¼
1

4!
C00j00j00j00j00j3333; B2 ¼

1

4!
C00j00j00j00j33j2222;

A4 ¼ −B2 þ
1

4!
C00j00j00j00j33j3333: ð2:8Þ

The calculation of the quantities C differs from the similar
calculation in Refs. [22,24,26] only by the larger number of
operators under the averaging. We give the final answer
right away:

A2 ¼ −
17

960π2
; B2 ¼

A2

3
¼ −

17

2880π2
; A4 ¼ 0:

ð2:9Þ

Now, it is easy to see that the energy-momentum tensor
(2.2) with coefficients (2.3) and (2.9) vanishes at TU,

hT̂μνi ¼ 0 ðT ¼ TUÞ: ð2:10Þ

In particular, the energy density takes the form

ρDen ¼
7π2T4

60
þ T2a2

24
−

17a4

960π2
þOða6Þ

¼ 1

240

�
T2 −

�
a
2π

�
2
�
ð17a2 þ 28π2T2Þ þOða6Þ

ð2:11Þ

and goes to zero at T ¼ TU. The pressure, as it should,
satisfies the equation of state for massless particles p ¼ ρ

3
and is also equal to 0 at T ¼ TU.
Other observables are zero due to parity requirements. In

particular, in the case of zero vorticity, which we consider,
the axial current turns out to be zero—this follows from the
direct calculation [26], as well as from parity consider-
ations. When calculating the coefficients (2.3) and (2.9),
the Belinfante energy-momentum tensor (2.7) was used,
which corresponds to the spin-tensor Sλ;μν ¼ 0 equal to
zero. However, the canonical spin tensor is also zero—this
is evident from the fact that it is expressed through an axial
current. The vector current is also equal to zero, since we
consider the simplest case of μ ¼ 0, and the vector current
is an odd quantity in chemical potential.
The equality to zero of the observables corresponds to

the Minkowski vacuum. Thus, from (2.10), it follows that
the Minkowski vacuum corresponds to the proper temper-
ature TU ¼ a

2π, which is the essence of the Unruh effect.
From Eq. (2.11), one can express temperature as a

function of acceleration and energy density. Normalizing
the temperature and acceleration to the temperature value in
the absence of acceleration, we obtain

FIG. 1. Temperature (2.12) as a function of acceleration
corresponds to a blue solid line. The orange dashed line
corresponds to T̃ ¼ ã.
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T̃ðãÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 144

49
ã4

r
−
5

7
ã2

s
; T̃ ¼ T

T0

;

ã ¼ a
2πT0

; T0 ¼ Tða ¼ 0Þ ¼
�
60ρ

7π2

�
1=4

: ð2:12Þ

Function (2.12) is shown in Fig. 1. It has a minimum at the
point ã ¼ 1

2
ð175=153Þ1=4 ≃ 0.52. From Fig. 1, one can see

that the temperature becomes equivalent to acceleration at
ρ → 0, that is, when there is a vacuum in the laboratory
system.

III. INTEGRAL REPRESENTATION
AND WIGNER FUNCTION

The formula (2.11) has the form of a polynomial with
rather unusual numerical coefficients obtained as a result of
calculating quantum correlators of the form (2.6). However,
it can be shown that these coefficients can be obtained
naturally from integrals with Fermi and Bose distributions.
One can check that in the region T > TU equality

ρ ¼ 7π2T4

60
þ T2a2

24
−

17a4

960π2

¼ 2

Z
d3p
ð2πÞ3

� jpj þ ia

1þ e
jpj
T þ ia

2T

þ jpj − ia

1þ e
jpj
T −

ia
2T

�

þ 4

Z
d3p
ð2πÞ3

jpj
e
2πjpj
a − 1

ðT > TUÞ ð3:1Þ

is exactly satisfied.
The uniqueness of the integral representation (3.1) shall

be the subject of special investigation. However, it looks
natural and simple. Also, this representation leads to the
correct result in the limit a → 0. In this case, only the first
term in (3.1) remains, which for a ¼ 0 has the form of the
integral of the product of particle energy and the Fermi
distribution, as it should, according to statistical physics.
On the other hand, Eq. (3.1) can be motivated from the

point of view of another approach, based on the covariant
Wigner function for particles with spin 1=2 [28] (see also
Refs. [26,29–33]). In particular, according to (3.1), there is
a substitution μ → μ� ia

2
, which means that the acceler-

ation plays the role of an imaginary chemical potential,
which was previously also observed for axial current in the
approach with the Wigner function [33].
Using the Wigner function from Ref. [28], one can

calculate the mean values of different observables. In
particular, in Refs. [32,33], a method for obtaining exact
nonperturbative formulas is described using the example of
axial current. In our case, it is necessary to calculate the
energy density. According to Ref. [32], it is necessary to
decompose the energy density twice into a Taylor series,

ρWig ¼
1

2

Z
d3p
ð2πÞ3 ε

�X∞
n¼0

ð−1Þn exp½tðnþ lÞðβ · p − ξÞ�

×
X∞
m¼0

1

m!

�
−
1

2
tðnþ lÞ

�
m
tr½ðϖ∶ΣÞm�

þ ðξ → −ξ;ϖ → −ϖÞ
�
; ð3:2Þ

where index Wig means that the value is calculated using
the Wigner function [28]; ϖμν ¼ − 1

2
ð∂μβν − ∂νβμÞ is

thermal vorticity tensor; ξ ¼ μ
T is chemical potential divided

by temperature; t ¼ 1, l ¼ 0 or t ¼ −1, l ¼ 1; and in
brackets there is the contribution of antiparticles, distin-
guished by signs of chemical potential and vorticity. Next,
one needs to calculate a trace in each term of the series and
sum up them back. As a result, we obtain the following
expression for the energy density,

ρWig ¼ 2

Z
d3p
ð2πÞ3 ε

�
1

1þ e
ε
Tþ ia

2T
þ 1

1þ e
ε
T−

ia
2T

�
; ð3:3Þ

where the result is given for the case of ξ ¼ 0 and global
thermodynamic equilibrium. As far as we know, the result
(3.3) is new and has never appeared before.
The form of the expression (3.3) is the motivation for the

integral representation (3.1). Note that in (3.3), the con-
dition ρðT ¼ TUÞ ¼ 0 cannot be achieved, unlike (3.1).
This fact was previously shown in Ref. [29], where the
Boltzmann limit was investigated.1 Apparently, this indi-
cates the limited possibility of using the Wigner function
[28] in describing the effects associated with acceleration
(while it works well for the effects of vorticity, as was
shown in Ref. [26]). In (3.1), the condition ρðT ¼ TUÞ ¼ 0
is ensured by adding the second integral with the Bose
distribution with a temperature equal to the Unruh temper-
ature, and the number of bosonic degrees of freedom is
equal to the number of fermion ones. In general, the integral
representation (3.1) can be considered as a modification of
the formula (3.3) obtained from the Wigner function.
Let us discuss the properties of energy density, following

from (3.1). Integrals in (3.1) lead to an additional con-
tribution at T < TU, containing the function b·c, which
takes the integer part

ρ ¼ 7π2T4

60
þ T2a2

24
−

17a4

960π2
þ
�
πT3a
3

þ Ta3

4π

��
1

2
þ a
4πT

�

−
�
T2a2

2
þ 2π2T4

��
1

2
þ a
4πT

�
2

−
4πT3a

3

�
1

2
þ a
4πT

�
3

þ 4π2T4

�
1

2
þ a
4πT

�
4

: ð3:4Þ

1We are grateful to W. Florkowski and E. Speranza for the
discussion.
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The appearance of an additional contribution at T < a
2π does

not contradict (2.11), since the formula (2.11) was obtained
in the framework of the perturbative approach.
The formula (3.1) admits an interesting interpretation. In

the first term, describing fermions, the effects of motion of
the medium lead to the appearance of an imaginary
contribution to the energy ε → ε� ia and the chemical
potential μ → μ� i a

2
. The latter leads to the fact that at

T ¼ TU=ð2kþ 1Þ; k ¼ 0; 1…, in (3.4) instabilities arise;
namely, discontinuities appear in second-, third-, and
fourth-order derivatives with respect to temperature ∂2ρ

∂T2,∂3ρ
∂T3,

∂4ρ
∂T4, which is typical for the theories with imaginary

chemical potential [34,35]. The instability at T ¼ TU can
be considered as a manifestation of the Unruh effect. The
same situation was in the case of axial current in Ref. [33],
in which the acceleration also played the role of an
imaginary chemical potential, which led to the appearance
of instabilities at T < a

2π due to terms with an integer part.
The appearance of an additional contribution with the

integer part in (3.4) leads to the fact that below TU the
behavior of (2.11) and (3.4) is different, which is shown in
Fig. 2. Formula (3.4) in contrast to (2.11) leads to a

nonmonotonic oscillating behavior, which is associated
with additional terms with an integer part. However,
according to Ref. [18], the Unruh temperature has to be
considered as minimal, and the region T < TU is forbidden.
Note that according to (3.1) and (3.4), when T > TU, the

maximum power of acceleration in the energy density is 4.
This is also supported by the fact that, starting with the
sixth order in acceleration, negative powers of temperature
would have arisen, which is necessary to preserve the
correct dimension. Thus, we would expect that the pertur-
bative result (2.11) is exact at T > TU and all the
corrections above TU are zero, although this fact requires
more rigorous justification.

IV. CONCLUSIONS

We have shown on the basis of the Zubarev density
operator that in the fourth order of perturbation theory, the
energy-momentum tensor of the inertial observer vanishes
at the proper temperature, measured by a comoving
observer, equal to the Unruh temperature. Also in the case
under consideration of zero chemical potentials and zero
vorticity, the spin tensor and the vector and axial currents
are also equal to zero. Thus, the Minkowski vacuum is
visible to the accelerated observer as a medium filled with a
thermal bath with a temperature TU ¼ a

2π, which is the
essence of the Unruh effect and generalizes the results of
Ref. [18] to the case of fermions.
We present the obtained perturbative result in the form of

momentum integrals. The proposed formula exactly coin-
cides with the perturbative result at T > TU and can be
motivated by a formula derived from the Wigner function.
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