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We introduce and develop the theory of metaparticles. At the classical level, this is a world-line theory
with the usual reparametrization invariance and two additional features. The theory is motivated by string
theory on compact targets and can be thought of, at least at the noninteracting level, as a theory of particles
at a given string level, or as a particle model for Born geometries. The first additional feature of the model is
the presence of an additional local symmetry, which from the string point of view corresponds to the
completion of worldsheet diffeomorphism invariance. From the particle world-line point of view, this
symmetry is associated with an additional local constraint. The second feature is the presence of a nontrivial
symplectic form on the metaparticle phase space, also motivated by string theory [L. Freidel, R. G. Leigh,
and D. Minic, Noncommutativity of closed string zero modes, Phys. Rev. D 96, 066003 (2017)., L. Freidel,
R. G. Leigh, and D. Minic, Intrinsic non-commutativity of closed string theory, J. High Energy Phys. 09
(2017) 060.]. Because of its interpretation as a particle model on Born geometry, the spacetime on which
the metaparticle propagates is ambiguous, with different choices related by what, in string theory, we would
call T-duality. In this paper, we define the model and explore some of its principle classical and quantum
properties, including causality and unitarity.
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I. INTRODUCTION

The advent of Born geometry [1,2], as describing a target
geometry of string theory upon which T-duality acts as a
linear symmetry [3], presents us with many deep conceptual
issues. Born geometries [3,4] may be viewed as the proper
generalization of double field theory (see the review [5]) and
generalized geometry [6] and has recently been understood
in terms of globally well-defined para-Hermitian structures
[7–9]. With such structure, (meta)strings propagate gener-
ally on a target space forwhich our usual notion of spacetime
is a subspace, usually of half-dimension; under suitable
circumstances, this subspace is a Lagrangian subspace with
respect to a symplectic form which is part of the defining
structure of a para-Hermitian geometry and whose presence
and significance in string theory has only recently been
realized. It is natural to wonder about the mechanisms for
localization of strings (or their corresponding particlelike
states) on such submanifolds.

One related, but conceptually different, motivation for the
work we present here goes back to the fundamental
challenge of quantum gravity: Is it possible to reconcile
Lorentz invariancewith the presence of a fundamental length
scale? We understand that, at some level, the reconciliation
of these two seemingly incompatible concepts comes about
through accepting that locality itself can be observer (or
probe) dependent; in other words, that locality is relative
[10,11]. Recently, a fundamentally new model of space
calledmodular space [4,12] was proposed as a template for a
space incorporating these ideas organically into its fabric.
Modular spaces appear as a choice of polarization
(a commutative subalgebra) of quantum Weyl algebras that
do not have any classical analogue but possess a covariant
built-in length scale. Since the notion of relativistic space-
time naturally leads, upon quantization, to the concept of
relativistic particles and fields, it is then natural to wonder
what is the proper notion of matter compatible with modular
spaces. The connection between modular spaces and string
theory stems from the fundamental results that the closed
string theory target is intrinsically noncommutative for the
compactified modes [13,14]).
In this paper, we begin an exploration of such matters by

introducing the metaparticle theory which may be thought
of as a particle model that retains the principle zero-mode
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structure of the string and, thus, propagates on a Born
geometry. Alternatively, we hope to understand the meta-
particle as a modular particle, the natural relativistic
fundamental excitation supported by modular space.
Although its origins are in string theory, it is, in fact, an
attractive new model in its own right, and we take
significant effort to explain some of its classical aspects
and how causality and unitarity in the corresponding
quantum theory are maintained, which, from several points
of view, seems problematic.
A general Born geometry P is endowed with three

geometric structures (η, ω, H). In this paper, we consider
only the simplest “flat” Born geometry ∼R2d for which
(η, ω, H) are constant in local coordinates

XA ¼
�
xμ

x̃μ

�
; μ ¼ 0; 1;…; d − 1:

In this coordinate space, we understand the (free) classical
propagation of a particle as a world-line γ∶ R → P, that is
γ∶ τ → XAðτÞ. Much as for an ordinary relativistic free
particle propagating in spacetime, there is an equivalent
phase space formulation in which reparametrization invari-
ance of the world line is ensured by the presence of a
Hamiltonian constraint, which generates a corresponding
canonical transformation on the phase space variables
XAðτÞ, PAðτÞ. At first sight, such a model must surely
be sick, as there are two timelike directions, x0 and x̃0.
However, as we describe below, the metaparticle theory is
endowed with a second local constraint whose origins lie in
world-sheet diffeomorphism invariance of the parent string
theory. This second constraint is in particular responsible
for the restoration of causality and unitarity in the meta-
particle theory.
The paper is organized as follows. In Sec. II, we define

the metaparticle theory and present key features of its
quantum propagator. In Sec. III, we revisit the notion of
causality for the usual relativistic particle and present the
relationship between the causality property of the meta-
particle and the positivity property of the Lagrange multi-
pliers associated with the two local constraints. We also
present a decisive proof that the dispersion relations for the
metaparticle do not violate unitarity. In Sec. IV, we present
the symmetries of the metaparticle. We show that we have a
doubling of both the Lorentz symmetry group and the
world-line diffeomorphism group, establishing that meta-
particles are fundamentally relativistic. In Sec. V, we
present a preliminary discussion of the coupling of meta-
particles to background fields.

II. THE METAPARTICLE DEFINED

Recall that the classical dynamics of a relativistic particle
can be described in phase space coordinates fxμðτÞ; pμðτÞg
on a world line coordinatized by τ

S ¼
Z

dτðpμðτÞ_xμðτÞ − eðτÞHðτÞÞ;

HðτÞ ¼ 1

2
ðhμνpμðτÞpνðτÞ þm2Þ: ð1Þ

where hμν is a target space metric that we take to be the
constant Minkowski metric. Here, eðτÞ acts as a Lagrange
multiplier for the Hamiltonian constraint. We can see by
inspection that configurations upon which the constraint
vanishes correspond to on-shell particle propagation, the
momentum satisfying1p2 ¼ −m2. In this construction, xμðτÞ
act asLagrangemultipliers forcing the conservation ofpμðτÞ.
Passing to the Lagrangian formulation by integrating out pμ

through its equation of motion _xμðτÞ ¼ eðτÞhμνpνðτÞ, yields
the action

S ¼ 1

2

Z
dτ

�
1

eðτÞ hμν _x
μðτÞ_xνðτÞ −m2eðτÞ

�
ð2Þ

and by integrating out eðτÞ the familiar coordinate space
action

S ¼ −m
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hμν _xμðτÞ_xνðτÞ

q
ð3Þ

in terms of the induced length of the world line in target
space. The e equation of motion gives2

eðτÞ ¼ 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hμν _xμðτÞ_xνðτÞ

q
ð4Þ

and the quantity in the square root is minus the metric on the
world line induced by the embedding γ∶ τ → xμðτÞ. Thus,
we identify eðτÞ with the world-line “co-frame,” and on-
shell, the action computes the proper time along the
curve, S ¼ −m2ðlf − liÞ ¼ −m2

R
dτeðτÞ.

The metaparticle is defined in a doubled target phase
space of Lorentzian signature, whose coordinates we label
fxμ; pμ; x̃μ; p̃μg, with μ ¼ 0; 1;…; d − 1. If wewere simply
to write down the ordinary particle action on this phase
space, there would be a physical problem owing to the
signature of the coordinate space. So, in addition to the
Hamiltonian constraint, which now reads

H ¼ 1

2
ðp2 þ p̃2 þm2Þ

¼ 1

2
ðhμνpμpν þ hμνp̃μp̃ν þm2Þ; ð5Þ

1We use ‘mostly plus’ signature throughout the paper.
2Note that we have been compelled to make a choice of sign

for the square root, which here corresponds to assuming e > 0.
We will return later to a more complete discussion of this issue, as
it is closely related to causality.
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we introduce a second constraint

D ¼ pμp̃μ − μ; ð6Þ

along with a second Lagrange multiplier that we call ẽ. In
the analogous string theory, these two constraints are
associated with world-sheet diffeomorphism invariance,3

and setting them to zero on quantum states gives the on-
shell conditions for particle states4 whose oscillator levels
are associated with values of m2 and μ. Thus, in the string
theory analogue, the metaparticle theory corresponds (for
specific values ofm2, μ) to a formulation of the dynamics of
particle states at a fixed level. Later in the paper, we will
address positivity requirements on e and ẽ. We will also
discuss later the symmetries of the model; here we simply
note that the H-constraint is invariant under Oð2; 2d − 2Þ,
while the D-constraint breaks that to a subgroup which
includes an apparent doubling of the Lorentz group
Oð1; d − 1Þ.
The second ingredient in the specification of the meta-

particle is the symplectic structure, which we take to be

ω ¼ δpμ ∧ δxμ þ δp̃μ ∧ δx̃μ þ πα0δpμ ∧ δp̃μ: ð7Þ

This form of the symplectic structure is again motivated by
that of the zero modes of the Polyakov string on compact
spacetime [13,14]. The third term, which depends on an
additional parameter α0, leads to noncommutativity of xμ

and x̃μ, and so the phase space coordinates that we are using
here are not quite Darboux coordinates. One recovers the
Darboux parametrization in the limit α0 → 0. It may seem
artificial to not simply diagonalize the symplectic form, but
we choose not to do so as, in the context of string theory x, x̃
are preferred coordinates, and more generally we expect
that the introduction of interactions will single these out as
the most natural. The third term in the symplectic form has
interesting consequences for the dynamics of metapar-
ticles.5 Generally, for a function f on phase space, we
define the corresponding Hamiltonian vector field6 ξf via
−ωðξf; ·Þ ¼ δf. The Poisson bracket of functions f and g is
given by

ff; gg≡ ξfðgÞ ¼ δgðξfÞ ¼ ωðξf; ξgÞ: ð8Þ

The symplectic structure (7), therefore, implies the follow-
ing nontrivial equal-time brackets:

fpμ;xνg¼ δνμ; fp̃μ; x̃νg¼ δνμ; fx̃μ;xνg¼ πα0δνμ: ð9Þ

As mentioned above, we see that the effect of the α0 term
is to render the coordinates (x, x̃) noncommutative.
Consequently, if we were to reduce from phase space to
the Born geometry x, x̃, the resulting theory would be
nonlocal on the world line. We will not refer to this further
in the present paper, in favor of discussing the theory in a
particular Lagrangian subspace, which we will take to be
coordinatized by xμ, p̃μ. In the quantum theory, we specify
this as a choice of transition amplitude, related to world
lines with fixed x, p̃ at its endpoints. As we will see, this
has an interesting interpretation in which the xμ coordina-
tize spacetime, with p̃μ representing additional quantum
numbers. It should be clear though that there is nothing
special about the xμ; we could have taken any linear
subspace, such as x̃, p. Generally, other polarizations
can be obtained from our analysis by generalized
Fourier transforms and will be considered elsewhere.
Let us begin by exploring some classical aspects of the

metaparticle. The detailed form of the action depends on
the above-mentioned choice of boundary conditions, which
specifies a choice of presymplectic 1-formΘ, with ω ¼ δΘ.
In the present case, the metaparticle action is given by

S ¼
Z

dτ½p · _x − x̃ · _̃pþ πα0p · _̃p − eH − ẽD�: ð10Þ

Its variation leads to the equations of motion of the form

ehμνpν þ ẽp̃μ ¼ _xμ þ πα0 _̃pμ; H¼ 0; _pμ ¼ 0 ð11Þ

ehμνp̃ν þ ẽpμ ¼ _̃xμ − πα0 _pμ; D¼ 0; _̃pμ ¼ 0 ð12Þ

Thus, we see that in the case of a free classical
metaparticle, the effects of the α0 term drop out if we
impose the (x, x̃) equations of motion, that force the
momenta to be constant. Thus, were it not for the D gauge
constraint, the classical motion would apparently be that of
a particle in a doubled spacetime. The α0 term will however
have a nontrivial effect in the quantum theory, especially in
the presence of interactions. One of the reasons for the need
for an extra constraint is that the doubling of position
variables also implies a doubling of their time components.
We therefore need two constraints to saturate each of the
time directions and ensure that the metaparticle dynamics is
causal. We will provide much more detail on this point in
what follows.

3H and D are associated with world-sheet time and space
reparametrizations, respectively.

4By allowing (the eigenvalues of) p̃ to be nonzero, we are
effectively compactifying the target space. In standard notation,
we have α0m2=2 ¼ N þ Ñ − 2 and μα0 ¼ N − Ñ. Thus, in the
string interpretation, m2, μ are quantized in units of the string
length, although here we simply take them as continuous
parameters.

5It is useful to note that the Poisson brackets derived from (7)
are reminiscent of the Dirac brackets found for charged particles
in a magnetic field, reduced to the lowest Landau level. This
observation is useful in understanding the canonical quantization
of the system [12].

6When ω is closed and nondegenerate at least, this Hamiltonian
vector field is unique.
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A. Quantum propagator

To better understand the metaparticle, in this subsection,
we present an overview of the structure of the quantum
propagator. A more complete analysis, including a dis-
cussion of choices that will be made here, appears in a later
section. As we mentioned above, we will confine our
attention in this paper to the x, p̃ polarization, which in
the quantum theory means that we are considering a
specific set of transition amplitudes. Since we have two
constraints, the quantum states will be further labelled
by a pair of evolution parameters, which we call l, l̃. The
transition amplitude in the x, p̃ polarization has a canonical
interpretation

Kðxf; p̃f;lf; l̃f; xi; p̃i;li; l̃iÞ
¼ hxf; p̃f;lf; l̃fjxi; p̃i;li; l̃ii
¼ hxf; p̃fje−iðlf−liÞĤ−iðl̃f−l̃iÞD̂jxi; p̃ii: ð13Þ

As we will see later in more detail, causality imposes that
l ¼ lf − li > 0 while we will not restrict the sign of
l̃ ¼ l̃f − l̃i. The relativistic propagator, denoted G, is
obtained by integrating K over l and l̃. This comes about
when we introduce a parameter τ parametrizing the world
line and express the Hamiltonian parameters in terms of the
frame fields (e, ẽ)

l ¼
Z
C
jejðτÞ; l̃ ¼

Z
C
ẽðτÞ: ð14Þ

where C∶ τ → ðx; x̃; p; p̃; e; ẽÞðτÞ is a path in phase
space, with boundary conditions ðx; p̃ÞðτiÞ ¼ ðxi; p̃iÞ and
ðx; p̃ÞðτfÞ ¼ ðxf; p̃fÞ, and the modulus on e follows from
the causality requirement, which will be explained in detail
in the next section.
As in the usual derivation of the particle path integral, we

use factorization repeatedly to find a continuum expression
for G. Allowing for arbitrary parametrizations of the world
line yields the integration over e and ẽ, as is explained in
detail in Appendix. This in turn means that the propagator
G is obtained by integrating over all Lagrange parameters
and is independent of the coordinate times τi, τf. Thus,
we find

Gðxf; p̃f; xi; p̃iÞ

¼
Z

½dedẽ�
Z

xf;p̃f

xi;p̃i

½ddxddp̃�

×
Z

½ddpddx̃�ei
R
C
ðp·dx−x̃·dp̃þπα0p·dp̃−jejH−ẽDÞ; ð15Þ

The derivation of this path integral proceeds without
incident because the operators x̂; ˆ̃p commute. Computing
it, we find after gauge fixing, that the propagator in x; p̃
space is

Gðxf;p̃;xi;p̃iÞ

∼δðdÞðp̃− p̃iÞ
Z

ddp
ð2πÞd

Z
dldl̃e−ilH−il̃Deip·ðxf−xiÞ; ð16Þ

Integrating over l ∈ ð0;∞Þ and l̃ ∈ ð−∞;∞Þ, then yields
the metaparticle propagator

Gðx; p̃; 0; p̃iÞ ∼ δðdÞðp̃ − p̃iÞ
Z

ddp
ð2πÞd

eip·x

p2 þ p̃2 þm2 − iε

× δðp · p̃ − μÞ: ð17Þ

There are two differences compared to an ordinary rela-
tivistic particle propagator. One is the δ-function of the D
constraint, and the other is the presence of p̃ in the
denominator. We note that the propagator is invariant under
the change μ → −μ, if we simultaneously change p̃ → −p̃.
Consequently, we will, without loss of generality, assume
that μ > 0.
To come to an understanding of the metaparticle propa-

gator, suppose we take p̃ to be spacelike, p̃μ ¼ Pñμ, where
ñ2 ¼ 1, and we can parametrize p as pμ ¼ ðp · ñÞñμ þ pμ

⊥
with ñ · p⊥ ¼ 0 and similarly for x. This means in
particular that p⊥ can be timelike. The propagator (stripped
of the δ-function) then reads

Gðx;P; ñÞ∼
Z

dd−1p⊥
jPj

eið
μ
Pñþp⊥Þ·x

p2⊥ þ ðP − μ=PÞ2 þm2 þ 2μ− iε
:

ð18Þ

We see that the effect of theD-constraint is to effectively fix
the component of the momentum parallel to p̃.7 The
dispersion is relativistic since there are two energy poles,
albeit with a modified P-dependent dispersion relation,

p0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ P2 þm2 þ μ2=P2

q
: ð19Þ

These have a particle and antiparticle interpretation, with an
effective P-dependent pole mass.
Somewhatmore difficult to interpret is the case of timelike

or null p̃. Indeed, suppose that p̃ is timelike.8 We write
p̃μ ¼ Eñμ, where ñ2 ¼ −1 and E will be referred to as the
dual energy. We parametrize p as pμ ¼ −ðp · ñÞñμ þ pμ

⊥

7In the string analogue, the usual interpretation of this result
would be that the string state sees the dimensions transverse to p̃
as noncompact (or at least does not detect a compactification
radius), and the dimension parallel to p̃ as compact. The D-
constraint determines a discrete value of the momentum given μ
and p̃, but does not determine the compactification radius.

8In the string analogue, the only apparently available inter-
pretation is that we are introducing winding modes in a compact
Lorentzian time direction. We are certainly not advocating this
interpretation here, but instead are suggesting an alternative
causal and unitary interpretation.
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wherep⊥ is space-like and satisfies ñ · p⊥ ¼ 0, and similarly
for x. The propagator reads

Gðx;E; ñÞ∼
Z

dd−1p⊥
jEj

eið−
μ
Eñþp⊥Þ·x

−ðE−μ=EÞ2þp2⊥þm2−2μ− iε
:

ð20Þ

If one chooses the time to be t ¼ x · ñ, one sees that the phase
is given by ϕ ¼ Et − k⃗ · x⃗ with k⃗ ¼ p⃗⊥, x⃗≡ x⃗⊥ and the
effective energy E ¼ μ=E is inversely proportional to the
dual energy. Apparently then,Gðp; EÞ can be interpreted as a
relativistic propagator at fixed energy, albeit with a modified
pole structure—the μ parameter parametrizes a modification
of the dispersion relation affecting the energy itself. Indeed,
the modified dispersion relation reads

E2
k þ μ2=E2

k ¼ ω2
k; ð21Þ

where for brevity we have introducedωk ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
. One

recovers the usual relativistic dispersion in the limit μ → 0.
More generally, we have a fourth-order equation that
determines the energy poles. Although this would seem to
manifestly violate Lorentz invariance, this is a naive con-
clusion as wewill discuss later. In this regard, we should also
mention that unitarity seems in question here, even though
the quantum theory that we have described is manifestly
unitary, given the built-in factorization properties of the path
integral. We will address this issue directly in a later section.
Moreover, one sees that a mass gap develops when

m2 < 2μ since there is no static pole at real energy unless
m2 > 2μ. One can read from these relations the phase
velocity vφ ¼ Ek=k, the group velocity vg ¼ ∂kEk and the
refractive index nðkÞ ¼ k=Ek. Note that in the limit E → 0,
the effective energy Ek and momentum k both go to
infinity. This corresponds to an optical limit and one
recovers, in this limit, the usual relativistic dispersion
relations vφ ¼ vg ¼ 1. To analyze more precisely this limit,
consider the regime μ=ω2

k ≪ 1. Focusing on the positive
root that generalizes the relativistic particle (a full analysis
is presented later) we see that

EðþÞ
k ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þ 2μ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k − 2μ

q �

¼ ωk −
1

2

μ2

ω3
k

−
5

8

μ4

ω7
k
þ � � � ; ð22Þ

and so one recovers in this regime the usual dispersion
relation plus corrections. In general, the group velocity
differs from the phase velocity and the effective refractive
index is not unity. We will discuss the propagator more
completely in the following section.
Finally, when p̃ is null, it can be parametrized as p̃ ¼

Eð1; n⃗Þ with n⃗2 ¼ 1, and we find that the δ function fixes

the light-cone momentum. More precisely, we have
p ¼ p−ð1; n⃗Þ − μ

2E ð1;−n⃗Þ þ ð0; p⃗⊥Þ for any ðp−; p⃗⊥Þ with
n⃗ · p⃗⊥ ¼ 0. In this case, we find

Gðx;E; ñÞ∼
Z

dd−2p⊥
Z

dp−
eið−

μ
Ex

þþp−x−þp⃗⊥·x⃗⊥Þ

−2μp−þEp⃗2⊥ − iε
; ð23Þ

which contains a single nonrelativistic pole with an
effective mass μ=E. It is possible that this is related to
nonrelativistic strings [15], although we do not pursue this
here. All in all, we see that the metaparticle propagator has
very interesting structure that deserves further exploration.
Note that when μ is zero, it is possible to consider only

external states with p̃ ¼ 0. In this case, the δ function has
no restriction on the particle momenta, and the pole is the
same as in the relativistic particle. The same conclusion
applies when imposing μ ¼ 0 in the dispersion (46). This
shows that the usual relativistic particle can be viewed as a
metaparticle which is “massless” for the D constraint and
which possesses vanishing external dual momentum. This
sector corresponds to a consistent truncation of the theory
since the vanishing of p̃ is consistent with momentum
conservation and is preserved by the interactions. In the
analogue string theory, this is the consistent truncation of
the spectrum that occurs in the decompactification limit.
Note that if different metaparticles carry different non-

zero values of p̃, then they have different dispersion
relations and de facto effectively experience different
notions of spacetime even if they have the same mass.
Furthermore, since p̃ is conserved, the introduction of
interactions implies that there must be metaparticles with
distinct values of p̃. This is a manifestation of what has
been called relative locality [10,11], and it is a built-in
feature of the metaparticle theory.

III. CAUSALITY: FEYNMAN VS HADAMARD

We now explore more completely several physical
issues, including causality and unitarity. To begin, let us
return briefly to the world-line formulation of ordinary
particles in a spacetime M. As we have mentioned, the
proper time is obtained by integrating e along the world
line. More precisely, we have two choices for the relativistic
particle action. In the quantum theory, we interpret these
two choices as distinct choices of the measure of the
integration over eðτÞ, and, thus, the quantum transition
amplitude computes different things in each case. The first
option is to regard ê ≔ eðτÞdτ as a one-form on the world
line, and we take

SHðCÞ ¼ −m2

Z
C
ê: ð24Þ

We refer to this case as the Hadamard particle.
The second option, which we will refer to as the

Feynman particle (and is in fact the case considered in
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the previous section), is to consider instead the integral of
the density jêj associated with ê:

SFðCÞ ¼ −m2

Z
C
jêj: ð25Þ

Under diffeomorphisms, the coordinates transform as
scalars and ê as a one form:

τ → ξðτÞ; xμðτÞ → xμðξðτÞÞ;
eðτÞ → _ξðτÞeðξðτÞÞ; jêjðτÞ → jêjðξðτÞÞ: ð26Þ

The Feynman action SF is invariant under arbitrary diffeo-
morphisms, including those that reverse orientation of the
curve C. The Hadamard action SH is on the other hand
invariant under only orientation-preserving diffeomor-
phisms and requires the world line to be oriented. There
are two critical differences between these theories, which
are crucial at the quantum level. The first one is that the
symmetry group for the Feynman particle is bigger than the
one for the Hadamard particle by a Z2 factor. This affects
the construction of the propagator. Moreover, since the
Feynman particle action is always positive, it corresponds
to strictly causal propagation, while the Hadamard action
does not.
We see that the action (1) is the Hadamard action, while

in the Feynman case, we would refine the action to the form

SF ¼
Z
C
pμ _xμ −

Z
C
jêjH: ð27Þ

The difference is seen in the behavior under time reversal.
The Feynman action is time reversal invariant, i.e.,
TSFðCÞT−1 ¼ SFð−CÞ ¼ SFðCÞ. This means that at the
quantum level, time reversal is implemented as an anti-
unitary operator in order to satisfy TeiSFðCÞT−1 ¼ ½eiSFðCÞ��.
The Hadamard action changes sign under time reversal,
TSHðCÞT−1 ¼ SHð−CÞ ¼ −SHðCÞ and this allows time
reversal to be implemented unitarily instead. Once again
the key difference is in their causality properties. We will
return shortly to a similar but more involved discussion in
the context of the metaparticle.
The world-line formulation of the Feynman particle in

coordinate space is obtained after integrating p which leads
to the equation pμ ¼ jejhμν _xν. Demanding that the energy
p0 is positive solders the orientation of the target time x0 to
the orientation of the world line. To understand this fact
let’s first appreciate that the particle possesses in principle
two notions of time orientation. We have the world-line
orientation that tracks the flow of proper-time τ and the
target time orientation that tracks the motion of x0. So we
are at risk to have two notions of the future, the one
measured by world-line clocks and the one measured by
observers in spacetime.

The Feynman condition eliminates this possibility by
ensuring that positive energy particles are exactly the
particles that have identical notions of world-line and
target causality. Moreover, under a diffeomorphism that
changes the orientation of the world-line ðe; τÞ → ð−e;−τÞ
and the target time orientation x0 → −x0, the timelike
component of the velocity and the energy are unchanged
so that a particle is mapped onto an antiparticle. It is in this
sense that an antiparticle can be understood as a particle
moving backward in time as first understood by
Stueckelberg [16]. Therefore a nonorientable trajectory
(from the world-line point of view) corresponds to a
collection of pair creations or annihilations.
In the Hadamard version of the theory, we have instead

that pμ ¼ e_xμ and depending on the sign of e, a positive
energy particle does not necessarily correspond to a particle
having matching world-line and target time orientability. It
is instead the sign of e that controls these features. Thus, if
we demand that admissible Hadamard particles have
matching time orientation we are effectively considering
world lines that are positively oriented e > 0, while the
energy can be negative or positive. The first condition
means that we cannot create a loop and the second that we
would see negative energy excitations. This clearly rules
out this as a possible description of physical particles.
The path integral has a canonical interpretation as a

quantum transition matrix element. In order to perform this
integral, one has to divide out by the gauge symmetry
acting on e. For example, if we take Θ ¼ pμδxμ and fix the
field configurations xμðτi;fÞ ¼ xμi;f with the world line
parametrized by τ ∈ ½τi; τf�, we have

hxfjxii ∼
Z

½DeðτÞ�½DxμðτÞDpμðτÞ�jxfxi ei
R
C
ðpμdxμ−jêjHÞ:

ð28Þ

Alternatively, we could specify the momentum at the
endpoints of the world line, obtaining

hpfjpii ∼
Z

½DeðτÞ�½DxμðτÞDpμðτÞ�jpf
pi e

i
R
C
ð−xμdpμ−jêjHÞ:

ð29Þ

These, of course, are related by Fourier transform. Now,
what exactly these path integrals compute depends on the
details of the integral over the form e. This is easiest to
understand given the form (29). In that case, the free
integral over the xμðτÞ localizes the p-integrals on con-
figurations with _pμ ¼ 0. That is, the path integral vanishes
unless pf ¼ pi, and

hpfjpii ∼ δðdÞðpf − piÞ
Z

½DeðτÞ�e−i12ðp2
fþm2Þ

R
C
jêj: ð30Þ
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Thus, all but the zero mode l ¼ R
C jej for Feynman and

l ¼ R
C e for Hadamard decouples. Given the local sym-

metry (26), the nonzero modes are pure gauge and so can be
discarded from the path integral. Thus,

hpfjpii ∼ δðdÞðpf − piÞ
Z

dle−i
1
2
ðp2

fþm2Þl ð31Þ

For the Hadamard particle, one integrates over l∈ð−∞;∞Þ,
and we obtain

hpfjpii ∼ δðdÞðpf − piÞδðp2
f þm2Þ: ð32Þ

That is, in this case the path integral vanishes unless the states
are physical, satisfying the gauge constraint p2 þm2 ¼ 0
(which coincides with the classical on-shell condition).
On the other hand in the Feynman case, there is an extraZ2

symmetry that makes l positive and after integrating over
l ∈ ð0;∞Þ, we obtain the causal (Feynman) propagator

hpfjpii ∼ δðdÞðpf − piÞ
1

p2
f þm2 − iε

; ð33Þ

where we have included the convergence factor ε, necessary
for the convergence of the l integral. In this case, we must
interpret the external states as off-shell unphysical.
If we wish to think of the particle as living in spacetime

(coordinatized by xμ) rather than phase space, we could, of
course, reduce the (Gaussian) path integral (28) by integrat-
ing freely over the momenta, which leads to the usual
second-order form of the path integral, with Dirichlet
boundary conditions. In this case, the gauge fixing, although
standard, requires more elaborate methods. Alternatively,
we can simply take the above results and perform the Fourier
transform

hxfjxii∼
Z

ddpfddpi eipf ·xfþipi·xihpfjpii

∼
Z

ddpeip·ðxf−xiÞ
�δðp2þm2Þ; Hadamard

1
p2þm2−iε ; Feynman

: ð34Þ

A. Metaparticle causality

Let us now return to the metaparticle. As we have
discussed, we have to deal with two local symmetries,
generated by the two constraints H and D, with two
associated Lagrange multipliers e and ẽ, and consequently
the relationship between causality on the world line and in
phase space is more subtle. At the quantum level, we have
a priori a fourfold ambiguity due to the choice of
Hadamard or Feynman conditions for each multiplier.
We define the metaparticle theory as corresponding to
the Feynman choice for e and the Hadamard choice for ẽ.
This is consistent with the fact that H generates the time

evolution while D generates an internal symmetry (space
reparametrization in the string analogue). This means that
the metaparticle Hamiltonian is given by

H ¼ jejHþ ẽD: ð35Þ

In Appendix, we have given a careful derivation of the
discretized path integral, in the course of which it is clear
that the Lagrange multiplier ẽ can be integrated over all real
values, consistent with our choice of Hadamard for ẽ.
To appreciate the importance of the causal jej prescrip-

tion, notice that when no external fields are involved, it is
possible to kinematically decouple the metaparticle system
as a sum of two free relativistic particles. To do so, one
introduces chiral momenta p�

μ ¼ 1
2
ðpμ � hμνp̃νÞ. The total

Hamiltonian can bewritten as the sumH ¼ eþHþ þ e−H−,
where we define e� ¼ e� ẽ and9

H� ≔ ðp�
μ hμνp�

ν þm2
�Þ; m2

� ¼ 1

4
ðm2 ∓ 2μÞ: ð36Þ

The symplectic potential contains a coupling of the two
chiral components through the α0 term.Written like this, it is
clear that the metaparticle prescription, (i.e., Feynman for
H) is fundamentally different from the prescription that
would treat the two chiral particles as independent (that is,
the Feynman prescription for each chiral je�j). This means
that the metaparticle prescription jej creates a fundamental
“entanglement” of these chiral particles which prevents an
interpretation as two particle species. Remarkably, this is
very similar to the description of spin given as an entangled
biparticle model in [17,18].
To better understand this prescription, we perform an

analysis of the action similar to the analysis done for the
particle in Sec. II. We continue here the analysis in the
polarization in which ðx; p̃Þ are the configuration space
variables, leaving other choices [such as ðx; x̃Þ] to a future
publication. The metaparticle action for this polarization is
given by

S ¼
Z

dτ½p · _x − x̃ · _̃pþ πα0p · _̃p − jejH − ẽD�: ð37Þ

One can integrate the corresponding “momenta” ðp; x̃Þ
which leads to the equations

jejpμ ¼ ð_x − ẽp̃Þμ; _̃pμ ¼ 0: ð38Þ

9We should remark here that although one might have assumed
by notation that m2 is meant to be positive, it is not clear that m2

�
should be taken to be both positive. In the string analogue, we are
considering here the left- and right-movers, and in standard
notation we have α0m2=2 ¼ N þ Ñ − 2 and μα0 ¼ N − Ñ. Thus,
α0m2þ ¼ Ñ − 1 and α0m2

− ¼ N − 1.
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Using these to eliminate p; x̃ results in the configuration
space action

S ¼ 1

2

Z
dτ
�
1

jej ð_x − ẽp̃Þ2 − jejðp̃2 þm2Þ þ 2ẽμ
	

ð39Þ

which is the analogue of eq. (2). The frames ðe; ẽÞ can be
integrated out and expressed as functionals ½eðx; p̃Þ; ẽðx; p̃Þ�.
After integration, the action in terms of these functionals
simply reads

S ¼
Z

dτ½−ðp̃2 þm2Þjeðx; p̃Þj þ 2μẽðx; p̃Þ� ð40Þ

which upon substitution of eðx; p̃Þ and ẽðx; p̃Þ is the
analogue of eq. (3). Once again we see that the causality
requirement of jej being positive is paired with the positivity
of (an effective) mass squared, while the sign of ẽ and μ are
both unrestricted.
In order to get the explicit expressions of the frames in

terms of the configuration space variables, we need to
resolve the e; ẽ equations of motion

e2ðm2 þ p̃2Þ ¼ −ð_x− ẽp̃Þ2; jejμ¼ p̃ · ð_x− ẽp̃Þ: ð41Þ

When p̃2 ≠ 0 and μ > 0, one finds that

jej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̃ · _xÞ2 − p̃2 _x2

μ2 þm2p̃2 þ p̃4

s
;

ẽ ¼ p̃ · _x
p̃2

−
μ

p̃2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̃ · _xÞ2 − p̃2 _x2

μ2 þm2p̃2 þ p̃4

s
: ð42Þ

One sees that the choice of sign of the square root is
correlated with the positivity of the frame e, but does not fix
the sign of the dual frame, consistent with our choices
described above. Also one sees that jej is a measure of
proper distance in the hyperplane perpendicular to p̃, while
ẽ also contains a measure of the distance along p̃. As we
saw in Sec. II A, this is most simply interpreted in the case
where p̃ is spacelike, and there is a simple familiar classical
interpretation. More careful analysis is required for timelike
p̃, as we saw for the propagator above. The relativistic
distance can be expressed as

−_x2 ¼ m2e2 þ p̃2ðe2 − ẽ2Þ − 2μẽjej: ð43Þ

For completeness we mention that when p̃2 ¼ 0, one finds
that the solutions of eqs. (41) are

jej ¼ p̃ · _x
μ

; ẽ ¼ _x2

2μjej þ
m2jej
2μ

; ð44Þ

which also can be obtained from eqs. (42) by taking
p̃2 → 0. In this case, jej is a measure of the time density

while ẽ is the measure of a nonrelativistic energy density,
where μ plays the role of a nonrelativistic mass, whilem2=μ
plays the role of a nonrelativistic rest energy.

B. Metaparticle unitarity

We now analyse the question of unitarity. As we have
seen earlier in eq. (17), when we work in the ðx; p̃Þ
polarization with timelike p̃, the metaparticle propagator
becomes effectively a fixed energy propagator

Gðxf; p̃f; xi; p̃iÞ ∼ δðdÞðp̃f − p̃iÞ
Z

dd−1k
jEj
μ

×
e−iðEðtf−tiÞ−k⃗·ðx⃗f−x⃗iÞÞ

ðEþ μ=EÞ2 − ðk⃗2 þm2 þ 2μÞ þ iϵ
;

ð45Þ

where we have denoted p̃2¼− μ2

E2, t ¼ E
μ ðp̃ · xÞ and ðk⃗; x⃗Þ ¼

ðp⃗⊥; x⃗⊥Þ. In other words, the dispersion relation is

ðE� μ=EÞ2 ¼ ω2
k � 2μ: ð46Þ

One may worry that the dispersion relation is in fact quartic
and not simply quadratic, revealing a potential issue with
causality and unitarity. There are indeed four real roots
when10 ω2

k > 2μ. This is always satisfied for11 m2 > 2μ,
while a gap emerges for m2 < 2μ with no real solutions for
k⃗2 < 2μ −m2. Assuming that the reality conditionω2

k > 2μ
is satisfied, the two positive roots are

Ω�ðkÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þ 2μ

q
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k − 2μ

q
; ð47Þ

while the negative roots are simply −Ω�ðkÞ. Two facts that
will become relevant soon are that

ΩþΩ− ¼ μ; Ωþ >
ffiffiffi
μ

p
; Ω− <

ffiffiffi
μ

p
: ð48Þ

As is well established [19], the condition of unitarity
requires that the value of the measure dE

dk multiplied by the
residue of the propagator is positive for each pole. This is
due to the fact that the density dEGE, where GE is the
propagator at fixed energy, should be interpretable as a
probability distribution. This distribution localizes on the
poles as ∂kΩðkÞGΩðkÞ and can be interpreted as a proba-
bility distribution when it is positive.
In the usual relativistic case, this is true due to the fact

that the group velocity is inversely proportional to the phase
velocity:

10Recall that we have chosen μ > 0.
11In the string analogy, this condition is implied by the demand

that the oscillator numbers are greater than one N, Ñ ≥ 1, that
there are no tachyonic left- or right-movers.
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Res�ωk

� ∂kE
E2 − ω2

k

�
¼ � ∂kEj�ωk

2ωk
¼ k

2ω2
k

> 0: ð49Þ

Similarly, we can prove that this unitarity condition is
satisfied by the metaparticle propagator

Res�ΩϵðkÞ

� ∂kE
ðEþ μ=EÞ2 − ω2

k − 2μ

�

¼ �ϵΩϵ∂kEj�Ωϵ

2ðΩ2þ −Ω2
−Þ

¼ kΩ2
ϵ

2ðΩ2þ −Ω2
−Þ2

> 0; ð50Þ

where ϵ ¼ �1.
This establishes the unitarity of our prescription. It is

quite remarkable that all the factors conspire to give the
right sign overall. One of the fundamental reasons why
unitarity is respected is the fact that the two positive roots
are exchanged by the duality Ω� ¼ μ=Ω∓. This duality
corresponds to the exchange of pwith p̃. And under duality
the sign of the propagator pole and the sign of the group
velocity ∂kE change, so the sign of the product is
unmodified. As a summary we see that we have two
duality symmetries of the spectrum

E ↔ −E; E ↔
μ

E
: ð51Þ

Both symmetries change the sign of the propagator residue
and the sign of the measure Jacobian ∂kE. The first
inversion means that associated to each particle there is
a corresponding antiparticle, the second inversion likewise
means that, associated with a particl-antiparticle pair, there
is a corresponding dual particle, dual antiparticle pair.

IV. SYMMETRIES OF THE
METAPARTICLE THEORY

Having seen the relevance of discrete symmetries for
unitarity, let us now discuss more fully the global and
discrete symmetries of the metaparticle action. We follow
here the discussion in [3]. Let’s recall that the constraints
have the form

H¼ 1

2
ðpμhμνpνþ p̃μhμνp̃νþm2Þ; D¼pμp̃μ−μ: ð52Þ

H can be written in terms of a metric H ¼ diagðh; h−1Þ
which has signature ½2; 2ðd − 1Þ� andD in terms of a metric
of signature ðd; dÞ. Let us first note that there exists a
discrete Z2 duality transformation

K∶ ðp̃; pÞ → ð−p̃; pÞ; ð53Þ

which leaves invariantH and exchangesDμ → D−μ. As we
have seen the change μ → −μ is a symmetry of the
spectrum and K can therefore be understood as a duality12

symmetry.
The group of symmetries that preserves both

Hamiltonians is Oð1; d − 1Þ ⋉ Oð1; d − 1Þ. The first
Oð1; d − 1Þ component acts diagonally

RΛ∶ ðp̃μ; pμÞ → ðΛp̃; hΛh−1pÞ; ΛThΛ ¼ h: ð54Þ

The other Oð1; d − 1Þ component acts as

R̃Λ

�
p̃

p

�
¼ 1

2

� ð1þ ΛÞ ð1 − ΛÞh−1
hð1 − ΛÞ hð1þ ΛÞh−1

��
p̃

p

�
: ð55Þ

These two actions satisfy the relations

RΛ1
RΛ2

¼ RΛ1Λ2
; RΛ1

R̃Λ2
¼ R̃Λ1Λ2Λ−1

1
RΛ1

;

R̃Λ1
R̃Λ2

¼ R̃Λ1Λ2
: ð56Þ

A special element of this symmetry group is the T-duality
transformation J ≔ R̃−1, which generates, together with the
inversion −1, the center of the symmetry group. It is
explicitly given by

J ¼
�

0 hμν

hμν 0

�
∶
�
p̃μ

pμ

�
↦

�
pμ

p̃μ

�
; J2 ¼ 1: ð57Þ

It is well known that Oð1; d − 1Þ possesses four con-
nected components interchanged by the discrete operations
ð1; T; P; PTÞ. Accordingly, we have two different notions
of time reversal RT and R̃T . RT acts on both timelike
components

RT∶
�
x0

x̃0

�
↦

�−1 0

0 −1
��

x0

x̃0

�
ð58Þ

which we expect to be implemented by an antilinear
operator at the quantum level. The T-duality operation J
on the other hand is implemented unitarily.
There are additionally local symmetries. As in the

previous section, let us start with the discussion of
symmetries of the ordinary relativistic particle. The first
order relativistic particle Lagrangian

L ¼ p · _x −
1

2
eðp2 þm2Þ ð59Þ

possesses a canonical phase space gauge symmetry

δNxμðτÞ¼NðτÞpμðτÞ; δNpμðτÞ¼0; δNe¼ _NðτÞ ð60Þ

12In the string analogy, this transformation corresponds to the
exchange of left and right movers.
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with the Lagrangian transforming by a total derivative,
L → Lþ 1

2
d
dτ ðNðp2 −m2ÞÞ. This symmetry can be under-

stood to be a canonical symmetry. In order to do so, we
extend the symplectic structure of the theory by introducing
π, the momentum conjugate to e. Let us recall that the
particle action is given by

S ¼
Z

ðI∂τ θ −HÞdτ; ð61Þ

where θ ¼ pμδxμ is the symplectic potential and I∂τ
denotes the contraction with the time flow vector. It is
clear from this expression that one can add a canonical pair
extending the symplectic potential θext ¼ pμδxμ þ πδe, and
at the same time modify the hamiltonian Hext ¼ H þ π _e in
a manner that leaves the action unchanged. Using this
extension of the symplectic structure we can now see that
(60) is a canonical symmetry generated by the charge
associated with the constraint

HN ¼
Z �

1

2
Nðp2 þm2Þ þ _Nπ

�
: ð62Þ

It is also possible to understand the introduction of π as the
Lagrange parameter imposing a gauge condition _e ¼ T,
where Tðp; xÞ is a gauge fixing functional.
In order to understand the gauge fixed action, we need to

extend the phase space to include also the ghost and
antighost sectors (see [20] for more details). We add to
the extended symplectic potential the ghost potential θgh ≔
bδcþ b̄δc̄where the ghost variables are fermionic. The full
set of conjugate pairs are

fpa; xbg ¼ δba; fπ; eg ¼ fc; bg ¼ fc̄; b̄g ¼ 1: ð63Þ

The Hamiltonian of the gauge fixed theory can be simply
described as the graded Poisson bracket H ¼ fΘ;Θ0g, of
two fermionic elements

Θ ≔ cH þ b̄π; Θ̄ ≔ c̄T þ be; ð64Þ

that are both nilpotent, fΘ;Θg ¼ 0 ¼ fΘ̄; Θ̄g. The gauge-
fixed action has the form

Sgf ¼
Z

I∂τðθext þ θghÞ − fΘ; Θ̄g: ð65Þ

The gauge-fixed Hamiltonian H ¼ eH þ πT þ b̄bþ
cfH; Tgc̄ is obviously invariant under the BRST trans-
formation QH ¼ fΘ;Hg since Θ is nilpotent and
H ¼ fΘ; Θ̄g. Moreover, since this is a canonical trans-
formation, the symplectic potential, and hence the action,
transforms by a total time derivative. The pair ðc; c̄Þ are the
ghost and antighost, respectively, and the pair ðb; b̄Þ are
their fermionic conjugates. The bosonic part of the action is

the usual relativistic action plus a gauge fixing term
πð_e − TÞ, where π appears as a Lagrange multiplier, as
promised.
The action is also invariant under the world-line diffeo-

morphism symmetry

δ0ϵxμðτÞ ¼ ϵðτÞ_xμðτÞ; δ0ϵpμðτÞ ¼ ϵðτÞ _pμðτÞ;

δ0ϵeðτÞ ¼
d
dτ

ðϵðτÞeðτÞÞ: ð66Þ

However, this symmetry differs from the canonical sym-
metry (60) by a trivial symmetry.13 Indeed, if we consider
the difference Δϵ ¼ δ0ϵ − δN¼ϵe, we find that this is a trivial
symmetry:

Δϵxμ ¼ ϵð_xμ − epμÞ ¼ ϵ
δL
δpμ

; Δϵpμ ¼ ϵ _pμ ¼ −ϵ
δL
δxμ

;

Δϵe ¼ 0: ð67Þ

This shows that the reparametrization symmetry is a
combination of a Hamiltonian symmetry and a trivial
symmetry. This is responsible for the fact that when the
theory is reduced to coordinate space, the remaining
symmetry is the diffeomorphism invariance of the coor-
dinate space curve.
We recall that the metaparticle Lagrangian is given by

L ≔ ½p · _xþ p̃ · _̃xþ πα0p · _̃p − eH − ẽD� ð68Þ

Since we have two constraints, there are two canonical
symmetries of the form

δðα;α̃Þx¼ αpþ α̃ p̃; δðα;α̃Þx̃¼ αp̃þ α̃p;

δðα;α̃Þp¼ δðα;α̃Þp̃¼ 0; δðα;α̃Þe¼ _α; δðα;α̃Þẽ¼ _̃α: ð69Þ

These are generated by the charges

Hα ¼
Z

ðαHþ _απÞdτ; Hα̃ ¼
Z

ðα̃Dþ _̃α π̃Þdτ: ð70Þ

where ðπ; π̃Þ are variables conjugate to ðe; ẽÞ. The action is
also invariant under the world-line diffeomorphism sym-
metry generated by the Lie derivative Lϵ

Lϵxμ ¼ ϵ_xμ; Lϵx̃ ¼ ϵ _̃xμ Lϵpμ ¼ ϵ _pμ;

Lϵp̃μ ¼ ϵ _̃pμ; Lϵe ¼ ∂τðϵeÞ; Lϵẽ ¼ ∂τðϵẽÞ: ð71Þ

13A trivial symmetry of an action SðφaÞ is a transformation of
the form Δϵφ

a ¼ ϵabEb where Eb ¼ δL
δφb − ∂μP

μ
a with Pμ

a ¼
ð δL
δ∂μφaÞ, are the equations of motion and ϵab ¼ −ϵba is an arbitrary
skew-symmetric tensor. The action is unchanged by such trans-
formations while the Noether current for such a trivial symmetry
is Jμ ¼ Pμ

aϵabEb. This current vanishes on-shell.
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Fortunately, we can show that this symmetry differs from
the canonical symmetry (69) by a trivial symmetry. To see
this, consider the transformations

Δϵx ¼ ϵð_x − ep − ẽp̃Þ; Δϵx̃ ¼ ϵð _̃x − ep̃ − ẽpÞ;
Δϵp ¼ ϵ _p; Δϵp̃ ¼ ϵ _̃p; Δϵe ¼ Δϵẽ ¼ 0: ð72Þ

On the one hand, this is a trivial symmetry since

Δϵx¼ ϵ

�
δL
δp

þπα0
δL
δx̃

�
; Δϵx̃¼ ϵ

�
δL
δp̃

−πα0
δL
δx̃

�
; ð73Þ

Δϵp ¼ −ϵ
δL
δx

; Δϵp̃ ¼ −ϵ
δL
δx̃

: ð74Þ

On the other hand, it represents the difference between a
world-line diffeomorphism and a canonical symmetry with
parameter ðα; α̃Þ ¼ ðϵe; ϵẽÞ

Δϵ ¼ Lϵ − δðϵe;ϵẽÞ: ð75Þ

Interestingly, the action is also invariant under a T-dual
version of reparametrization invariance

L̃ϵ̃xμ ¼ ϵ̃ _̃xμ; L̃ϵ̃x̃μ ¼ ϵ _̃xμ L̃ϵ̃pμ ¼ ϵ̃ _̃pμ;

L̃ϵ̃p̃μ ¼ ϵ̃ _pμ; L̃ϵ̃e¼ ∂τðϵ̃ ẽÞ; L̃ϵẽ¼ ∂τðϵ̃eÞ: ð76Þ

This symmetry is just the composition of the usual
reparametrization with T-duality L̃ϵ̃ ¼ Lϵ̃J. Interestingly,
this combination can be expressed as a canonical symmetry
where the role of α and α̃ is interchanged. In other words,
the transformation Δϵ̃ ¼ Lϵ̃J − δðϵ̃ ẽ;ϵ̃eÞ given by

Δϵ̃x ¼ ϵ̃ð _̃x − ep̃ − ẽpÞ; Δϵ̃x̃ ¼ ϵ̃ð_x − ep − ẽp̃Þ;
Δϵ̃p ¼ ϵ̃ _̃p; Δϵ̃p̃ ¼ ϵ̃_p; Δϵ̃e ¼ 0 ¼ Δϵ̃ẽ; ð77Þ

is also a trivial symmetry. This shows that for diffeo-
morphism symmetry, the target space duality given by J
can be reabsorbed into a world-line duality ðe; ẽÞ → ðẽ; eÞ.
In this sense, the two canonical symmetries could be
thought of as equivalent to ‘chiral diffeomorphisms’.
However, it is interesting to note that these chiral diffeo-
morphisms would be the separate world-line symmetries of
independent ‘chiral particles’ that we referred to previously
in Sec. III A. We saw there that this interpretation is
impossible because it is impeded by both the α0 term in
the symplectic potential as well as the causal choice of
integration domain in ðe; ẽÞ. Indeed, the world-line duality
ðe; ẽÞ → ðẽ; eÞ is not available in a restricted domain.

V. INTERACTIONS AND BACKGROUNDS

Finally, we would like to point to some issues involved in
introducing interactions in the metaparticle theory. Here,

we could have two things in mind. First, we might consider
interactions that change particle number, corresponding to
bifurcating world lines. Usually, this is side-stepped in
favor of introducing a multi-particle field theory in target
space. In the case of the metaparticle theory, what would
such a field theory be? Perhaps it is a truncation of a string
field theory in some sense (as we have discussed in
[13,14]). We will leave discussion of this physics to future
work, and point to a second notion of interactions, in which
we couple the theory to background fields.
This structure is reminiscent of a similar procedure that

would introduce a gauge field into the ordinary free particle
theory. Indeed, let’s review that here. Given an action

S ¼
Z

dτ

�
p · _x −

1

2
eðp2 þm2Þ

�
ð78Þ

wemay introduce a background gauge field by a shift of the
symplectic potential

S ¼
Z

dτ

�
p · _xþ AðxÞ · _x − 1

2
eðp2 þm2Þ

�
. ð79Þ

We notice that a gauge transformation AμðxÞ ↦ AðxÞ −
∂μφðxÞ has an interpretation as a canonical transformation
with generating function φðxÞ, under which the action
changes by a total derivative. Denoting the canonical
momentum by P ¼ pþ AðxÞ, we obtain

S ¼
Z

dτ

�
P · _x −

1

2
eððP − AÞ2 þm2Þ

�
ð80Þ

which is the usual form of gauging in which the kinematic
momentum appearing in the Hamiltonian is shifted to
P − AðxÞ, with P the canonical momenta (instead of a
shift to the symplectic term).
Following this well-known procedure we might try to

extend the gauging procedure to the metaparticle counter-
part. There is a possible ambiguity in this gauging which
depends on which configuration variables one decides to
work with. If one take ðx; x̃Þ as configuration variables, one
obtains a gauging which could also be motivated by the
presence of a “stringy gauge field” in metastring theory [3]

S →
Z

ððpμ þ Aμðx; x̃ÞÞ_xμ þ ðp̃μ þ Ãμðx; x̃ÞÞ _̃xμ
þ 2πα0pμ

_̃pμ − eHðp; p̃Þ − ẽDðp; p̃ÞÞ. ð81Þ

Indeed, if we introduce canonical momenta

Pμ ¼ pμ þ Aμðx; x̃Þ; P̃μ ¼ p̃μ þ Ãμðx; x̃Þ ð82Þ

we obtain then
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S →
Z �

Pμ _xμ þ P̃μ _̃xμ

þ 2πα0ðPμ − Aμðx; x̃ÞÞ
�
_̃P
μ −

d
dt

Ãμðx; x̃Þ
�

ð83Þ

− eHðP − Aðx; x̃Þ; P̃ − Ãðx; x̃ÞÞ

− ẽDðP − Aðx; x̃Þ; P̃ − Ãðx; x̃ÞÞ
�

ð84Þ

but, now, because of the α0 term we see that _̃A contains _̃x.
Another way to proceed is to choose a Lagrangian

subspace, say ðx; p̃Þ and introduce a background which
is form-valued on the Lagrangian. This would mean
taking

S ¼
Z

ððpμ þ Aμðx; p̃ÞÞ_xμ − ðx̃μ þ Bμðx; p̃ÞÞ _̃pμ

þ 2πα0pμ
_̃pμ − eHðp; p̃Þ − ẽDðp; p̃ÞÞ. ð85Þ

As usual, this is gauge invariant under Aμ ↦
Aμ þ ∂

∂xμ Λðx; p̃Þ, Bμ ↦ Bμ þ ∂
∂p̃μ Λðx; p̃Þ, under which

S ↦ Sþ R
dτ d

dτΛðx; p̃Þ. A change of variables P ¼
pþ Aðx; p̃Þ takes this to

S ¼
Z

ðPμ _xμ − ðx̃μ þ Bμðx; p̃Þ þ 2πα0Aμðx; p̃ÞÞ _̃pμ

þ 2πα0Pμ
_̃pμ − eHðP − Aðx; p̃Þ; p̃Þ

− ẽDðP − Aðx; p̃Þ; p̃ÞÞ. ð86Þ

So we see that in fact it is convenient to introduce
Q̃ ¼ x̃þ Bþ 2πα0A

S ¼
Z

ðPμ _xμ − Q̃μ
_̃pμ þ 2πα0Pμ

_̃pμ

− eHðP − Aðx; p̃Þ; p̃Þ − ẽDðP − Aðx; p̃Þ; p̃ÞÞ ð87Þ

with Q̃ acting as a Lagrange multiplier forcing p̃ to be
constant along the world line. Notice the interesting result
that Bμ has decoupled and the gauge field Aμ appears only
in the Hamiltonian.
We will explore these different options and discuss more

general interactions of metaparticles, as well as their
physical interpretations, in a separate publication.

VI. CONCLUSION

In this paper, we have begun an exploration of a new
quantum particle model motivated by Born geometry in
string theory. The model has been formulated as a world-
line theory, in which a second local constraint, in addition
to reparametrization invariance, is present. Although its

origins in string theory are important, we regard the
metaparticle as a new interesting theory in its own right.
Indeed, one of our principle motivations is to study a theory
that is Lorentz invariant in the presence of a fundamental
length scale. It is natural to formulate such a theory in the
context of Born geometry, in which the usual notion of
spacetime (and, thus, locality) is not fixed, but appears as a
subspace of a more general geometry that possesses
specific properties. In the paper, we have carefully dis-
cussed properties of the theory alongside the more familiar
relativistic free particle theory in order to bring out
important concepts that are often lost in the usual gauge
fixings employed for the latter. In particular, it is important
to work in the full phase space of the theory.
Quantum transition amplitudes involve a choice of

polarization of phase space. For the most part, we have
confined our attention in this paper to the x; p̃ polarization,
for which one might expect there to be a simple inter-
pretation in terms of which x coordinatizes a notion of
spacetime. Indeed, one finds an interpretation of the
transition amplitude as a particle propagator, with an
extended pole structure, the details depending in particular
on p̃2. Despite this modification, the theory remains causal
and unitary on the world line and possesses Lorentz
symmetry although not in the standard manifest way. In
addition, an important role is played by dualities, which
play a role in the spectrum and propagation. The question
of causality from a target spacetime point of view is not so
obvious when p̃ is timelike. However, precisely in this case,
the classical equations that relate the world-line frame
variables and the target space coordinates do not have the
usual classical particle gauge fixings, and so a classical
interpretation of this case is not as straightforward as one
might have expected. It is also in this context that we find,
in addition to the antiparticle, a dual particle-antiparticle
pair that stems from the presence of a fundamental
scale.
To study the theory further, it would be natural to more

closely examine the metaparticle theory reduced to the x; x̃
subspace of phase space. This is natural because these are
local coordinates on (flat) Born geometry. However, this
theory is noncommutative on the world line, and we have
left its study to future work. Crucial to this study would be
the introduction of interactions. One might envision this in
several different ways. One path would be to formulate
interactions in “first quantized” terms, by allowing world
lines to bifurcate while preserving symmetries. This is the
analogue of introducing gstr in string theory, although the
reader should be familiar with all the usual caveats of doing
this in world-line theories. A second notion of interactions
would appear in a “second quantized” field theory
approach, although it is not readily apparent what this
theory would entail. In the present paper, we have simply
made some preliminary remarks in lieu of this by consid-
ering coupling the theory to (Abelian gauge) backgrounds.

FREIDEL, KOWALSKI-GLIKMAN, LEIGH, and MINIC PHYS. REV. D 99, 066011 (2019)

066011-12



Further study of this may serve to clarify the physics of the
pole structure of the metaparticle propagator.
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APPENDIX: DISCRETIZATION AND ONE-
DIMENSIONAL QUANTUM GRAVITY

To understand how the world-line frame field enters the
path integral (that is, how the 1d diffeomorphism invariance
is gauged), we provide details here, first for the ordinary
particle, and then for the metaparticle. The analysis helps to
understand the interplay between world-line causality and
unitarity in the quantum theory.
For the ordinary particle, we usually consider the

quantum transition amplitude between a state denoted
jxi; τii and a state jxf; τfi,

Kðxf; τf; xi; τiÞ ¼ hxfje−iĤðτf−τiÞjxii; ðA1Þ

where τ is an intrinsic coordinate on a world-line segment
τ ∈ ðτi; τfÞ and the Hamiltonian is H ¼ p2 þm2. We
discretize this line segment into n subsegments labelled
τr with r ¼ 1; 2;… and use factorization to generate a path
integral representation. It is standard to take these to be
equally spaced, τrþ1−τr¼Δτ;∀ r, where Δτ¼ðτf−τiÞ=n
is a standard infinitesimal. However, it is a simple
modification to allow an arbitrary spacing. To do so, we
introduce

lrþ1 − lr ¼ erΔτ: ðA2Þ

We can regard this as the introduction of a chemical
potential for the Hamiltonian H, and if we integrate over
values of er, we will obtain reparametrization invariance in
the continuum limit. The complication here, with impli-
cations for both causality in the target space and unitarity, is
in deciding the measure of integration for the er. We write
the transition amplitude now in the form

Kðxf;lf;xi;liÞ¼
Z Yn−1

s¼1

ddxs
Yn−1
r¼0

hxrþ1je−iĤðP̂Þðlrþ1−lrÞjxri:

ðA3Þ

In the present case, the Hamiltonian is a function of
momenta only, H ¼ HðpÞ ¼ 1

2
ðp2 þm2Þ, and so we

can proceed by inserting complete sets of momentum
eigenstates:

Kðxf;lf;xi;liÞ

¼
Z Yn−1

s¼1

ddxs
Yn−1
s¼0

ddps

ð2πÞd
Yn−1
r¼0

Z
derhxrþ1je−ierĤðprÞΔτjpri

× hprjxri

¼
Z Yn−1

s¼1

ddxs
Yn−1
s¼0

ddps

ð2πÞd
Yn−1
r¼0

Z
dereiðprðxrþ1−xrÞ−erHðprÞΔτÞ:

ðA4Þ

In the continuum, we write this as

Kðxf;lf; xi;liÞ ¼
Z

½dxðτÞ�jxfxi ½dpðτÞ�½deðτÞ�

× ei
R

dτðpðτÞ_xðτÞ−eðτÞHðpðτÞÞÞ: ðA5Þ

Here, we have not specified yet the measure of integration
over e, but we note that e does appear, as expected, as a
Lagrange multiplier, the gauge field of the world-line
diffeomorphism invariance. In the quantum theory, what
K computes depends on the choice of integration measure
for e. In fact, the “right answer” (or a right answer) is to take
er ≥ 0; ∀ r. This choice is, in fact, consistent with factori-
zation,14 and coincides with the discussion in the text in
which we should think not in terms of a 1-form eðτÞdτ but a
density jeðτÞjdτ. For this choice, K is the Feynman propa-
gator, ðH − iϵÞ−1, the iϵ being induced by regulating the
integral over the zero mode of e, the external states being
“off-shell” in that they are not annihilated by Ĥ. Another
choice consistent with unitarity is to take er ∈ R; ∀ r.
For this choice, K computes the “Hadamard propagator,”
K ∼ δ½H�, and the external states are on-shell physical states.
This is all related to causality in the target space because

14Since eðτÞ is almost all pure gauge (e.g., a standard gauge
fixing is eðτÞ ¼ l, a constant) one might have thought that one
could choose to integrate over all eðτÞ ∈ R with only the zero
mode l ≥ 0, but one can show that this choice violates unitarity.
Note that here we are being somewhat cavalier with gauge fixing,
but given that the x-integration forces p to be trivial, only the zero
mode l ¼ R

dτeðτÞ actually appears in the integrand. All other
modes then are pure gauge and should be formally divided out.
In the two cases discussed in the text,

R ½deðτÞ� → R
∞
0 dle−ϵl

(Feynman), versus
R ½deðτÞ� → R

∞
−∞ dl (Hadamard).
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canonicallyH generates the reparametrizations of the world
line on the phase space variables.
For the metaparticle, there are a number of additional

subtleties that arise. We know that since there are two
constraints H and D, there should be two Lagrange
multipliers e and ẽ. It is of interest then to see how to
generate these in a discretized world-line quantum theory,
and to understand possible consistent choices of their
integration measures. We will consider this construction
in the x; p̃ polarization,

Kðxf; p̃f;lf;xi; p̃i;liÞ¼ hxf;p̃f;lfjxi; p̃i;lii
¼ hxf;p̃fje−iĤðlf−liÞjxi; p̃ii: ðA6Þ

Here, though, we have two constraints,

H ¼ ðp2 þ p̃2 þm2Þ; D ¼ ðp · p̃ − μÞ; ðA7Þ

and so a more general notion of quantum transition
amplitude would include labels (a chemical potential) that
conjugate to D as well

Kðxf; p̃f;lf; l̃f; xi; p̃i;li; l̃iÞ
¼ hxf; p̃f;lf; l̃fjxi; p̃i;li; l̃ii
¼ hxf; p̃fje−iĤðlf−liÞe−iD̂ðl̃f−l̃iÞjxi; p̃ii. ðA8Þ

Note that lf − li > 0 by assumption, but the sign of
l̃f − l̃i is indeterminate. Discretization proceeds by intro-
ducing a proper time fτrg along the world line with Δτ ¼
ðτf − τiÞ=n > 0 and supposing

lrþ1 − lr ¼ erΔτ; l̃rþ1 − l̃r ¼ ẽrΔτ: ðA9Þ

This is an expression of the fact that we will obtain a one-
dimensional continuum limit.15 In the continuum limit, the
wave-function factors give rise to the full symplectic form
(accounting for the noncommutativity of x̂ and ˆ̃x), and we
obtain

Kðxf;p̃f;lf;l̃f;xi;p̃i;li;l̃iÞ

¼
Z

½deðτÞdẽðτÞ�
Z

½ddxðτÞddp̃ðτÞ�jxf;p̃f

xi;p̃i

Z
½ddpðτÞddx̃ðτÞ�

×ei
R
dτðp·_x−x· _̃pþπα0p· _̃p−eHðp;p̃Þ−ẽDðp;p̃ÞÞ: ðA10Þ

We note that since

lf − li ¼
X
r

ðlrþ1 − lrÞ →
Z

dτeðτÞ≡ l;

l̃f − l̃i →
Z

dτẽðτÞ ¼ l̃; ðA11Þ

we should regard this path integral as having a fixed value
of ðl; l̃Þ. That is, the path integral over ½eðτÞ; ẽðτÞ� is to be
done with fixed zero mode. It is natural to average over
values of ðl; l̃Þ by integral transform. For example, we
might consider integrating

G ¼
Z

∞

0

dlfðlÞ
Z

∞

−∞
dl̃Kð…;l; l̃Þ ðA12Þ

with fðxÞ ¼ e−ϵxΘðxÞ (Feynman, ϵ > 0) or fðxÞ ¼ 1
(Hadamard). It is one of these transition amplitudes
averaged over l̃ that is employed in the text (See Fig. 1).

FIG. 1. The world line is discretized, with points labelled by r, each point on a world line mapping to (lr, l̃r). In the continuum limit,
we choose to take r → τ, xr → xðτÞ, etc. Typical paths, projected to e, ẽ, are shown for the Feynman propagator and the Hadamard
propagator, respectively.

15Given the relation to string theory in which D generates
world-sheet spatial translations, one might have thought that one
could write instead l̃rþ1 − l̃r ¼ ẽrΔσ and obtain a 1þ 1 con-
tinuum limit, but since the theory does not contain all of the
oscillator modes, we expect such a continuum limit does not exist.
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