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We study the Lie symmetries of nonrelativistic and relativistic higher order constant motions in d spatial
dimensions, i.e., constant acceleration, constant rate-of-change-of-acceleration (constant jerk), and so on.
In the nonrelativistic case, these symmetries contain the z ¼ 2

N Galilean conformal transformations, where
N is the order of the differential equation that defines the constant motion. The dimension of this group
grows with N. In the relativistic case the vanishing of the (dþ 1)-dimensional spacetime relativistic
acceleration, jerk, snap, …, is equivalent, in each case, to the vanishing of a d-dimensional spatial vector.
These vectors are the d-dimensional nonrelativistic ones plus additional terms that guarantee the relativistic
transformation properties of the corresponding (dþ 1)-dimensional vectors. In the case of acceleration
there are no corrections, which implies that the Lie symmetries of zero acceleration motions are the same in
the nonrelativistic and relativistic cases. The number of Lie symmetries that are obtained in the relativistic
case does not increase from the four-derivative order (zero relativistic snap) onwards. We also deduce a
recurrence relation for the spatial vectors that in the relativistic case characterize the constant motions.

DOI: 10.1103/PhysRevD.99.064015

I. INTRODUCTION

The study of the symmetries of nonrelativistic and
relativistic motions in flat spacetime has been the subject
of interest through the years; see [1,2]. In particular, the
motions with constant acceleration in the relativistic case
are at the basis of the Unruh effect [3]. The generalization
of jerk and snap has attracted recent interest [4–6].
The Lie symmetries associated with a system of differ-

ential equations

La

�
t; qA;

dqA

dt
;…;

dnqA

dtn

�
¼ 0; ð1Þ

for a ¼ 1;…; r, A ¼ 1;…M, can be understood as those
total, or passive, transformations

qA → q̃A ¼ qA þ δqAðt; qÞ; t → t̃ ¼ tþ δtðt; qÞ ð2Þ

that map solutions of (1) into other solutions of (1) [7]. In
order to determine these transformations it is useful to
consider the associated functional, or active, variation of
δ̄qA, defined as

δ̄qA ¼ δqA − _qAδt; ð3Þ

where the dot denotes the derivative with respect to t. Using
the fact that the functional variation δ̄ commutes with the
derivative with respect to t, the above symmetry require-
ment is equivalent to the demand that δ̄qA satisfies
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La½t; δ̄q�jL½t;q�¼0 ¼ 0; a ¼ 1;…; r: ð4Þ

This results in a set of partial differential equations for
δqðt; qÞ and δtðt; qÞ, which, in the more complex cases, can
be solved with the help of algebraic computer packages [8].
We only consider spacetime Lie symmetries; that is, we

do not admit the presence of derivatives of the space
coordinates in the right-hand sides of Eq. (2). As we will
discuss later, this allows us to interpret the symmetries in
terms of transformations between equivalent observers.
From the mathematical point of view one could, however,
remove this restriction and consider a wider class of
transformations, that is, Bäcklund-Lie symmetries of the
equations of motion depending up to derivatives of
the space coordinates of one order less than the order of
the equations.
In the nonrelativistic case it has been proposed [9,10],

that the symmetry algebra of those motions contains the
family of Galilean conformal groups [11,12]. One of the
motivations of this work is to understand if there exists a
family of relativistic conformal algebras that are a sym-
metry of the motion of zero jerk, zero snap, and their
generalizations [5]. In this context we will often meet the
N-Galilean conformal algebra (NGCA) [9–13]. In dþ 1
spacetime dimensions the NGCA has dimension

3þ dðN þ 1Þ þ dðd − 1Þ
2

; ð5Þ

where the 3 corresponds to time translations, dilatations,
and expansions that form the Slð2; RÞ group, the last term
counts the rotations in d space, and the intermediate term
dðN þ 1Þ corresponds to space translations, ordinary
Galilean boosts, and N − 1 generations of higher order
Galilean boosts, all in d space.
Through this paper we will consider continuous trans-

formations of a differential equation as spacetime sym-
metries in dþ 1 dimensions connecting two observers
which describe a particle with constant position, constant
velocity, constant acceleration, and so on, a point of view
that was also taken in [1].
For instance, in the nonrelativistic case, two observers

with reference frames given by spacetime coordinates ðt; x⃗Þ
and ðT; X⃗Þ which observe a particle moving with constant
speed

dx⃗ðtÞ
dt

¼ v⃗;
dX⃗ðTÞ
dT

¼ V⃗; ð6Þ

where x⃗ðtÞ and X⃗ðTÞ are the corresponding trajectories of
the particle and v⃗, V⃗ the corresponding constant velocities,
or, equivalently,

d2x⃗ðtÞ
dt2

¼ 0⃗;
d2X⃗ðTÞ
dT2

¼ 0⃗; ð7Þ

are connected by a transformation of the form (2)

x⃗→ X⃗ ¼ x⃗þ δx⃗ðt; x⃗Þ; t→ T ¼ tþ δtðt; x⃗Þ; ð8Þ

which, according to the discussion following (2), yields a
functional variation

δ̄ x⃗ ¼ δx⃗ − _x⃗δt; ð9Þ

satisfying

d2δ̄ x⃗ðtÞ
dt2

���� ̈x⃗¼0⃗

¼ 0⃗: ð10Þ

This can be repeated for higher order constant motions,
such as constant acceleration, constant jerk (time derivative
of acceleration), and so on. In the nonrelativistic case, each
constant motion is characterized as the zero derivative of
the next order, but this is not so straightforward in the
relativistic case. It still makes sense, however, to study the
symmetries of zero motions in the relativistic case, regard-
less of whether they can be interpreted as constant motions
of the previous order, provided the suitable Lorentz
invariant generalizations of jerk, snap, and so on are used.
For the jerk this was done in [1], and a generalization to
snap and beyond was presented for the first time in [5].
Although a recurrence relation was presented in [5] for

these higher order dþ 1 spacetime vectors, it turns out that
the study of the symmetries of the corresponding zero
motions is better done in terms of a d-spatial vector
containing the components of the dþ 1 vector, such that
the vanishing of the latter is equivalent to the vanishing of
the former. These vectors are the nonrelativistic acceler-
ation, nonrelativistic jerk, etc., plus additional terms that
guarantee the relativistic transformation properties of the
corresponding dþ 1 vectors. This leads to a novel recur-
rence formula for these spatial vectors appearing in the
(dþ 1)-relativistic objects.
The paper is organized as follows. Section II discusses in

detail the Lie symmetries of nonrelativistic motions
describing constant motions starting with constant position
and going up to constant jerk (zero snap), although we also
present the general result for arbitrary higher-order constant
motions. Section III starts with a summary of the well-
known construction of higher order derivative dþ 1
vectors of the worldline trajectory of a relativistic particle
in an arbitrary reference frame [5] and presents new results
about the new structure of those vectors. As it was done in
the nonrelativistic case, the Lie symmetries of those
motions are computed in Sec. IV. Finally, Sec. V summa-
rizes our results. Appendix A proves a lemma used in the
main text, and Appendix B discusses some relations in the
instantaneous rest frame of a particle.
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II. LIE SYMMETRIES OF
NONRELATIVISTIC MOTIONS

The Lie symmetries of nonrelativistic motions with
constant acceleration (zero jerk) has been studied for a
long time. In 1945, Hill [1] studied for the first time the
one-dimensional example, in both the relativistic and the
nonrelativistic cases. Here we will review the case of d
spatial dimensions and then extend the analysis to a
constant rate of acceleration (zero snap), and also to the
dynamics higher order vanishing derivatives.

A. Nonrelativistic constant position

We start with the simplest case of constant position,
which is somehow special, in that it exhibits an infinite
number of point symmetries, and also has a relation with
the Carrollian limit of the relativistic case [14].
Consider the equation for nonrelativistic zero velocity in

d space dimensions

dxi

dt
¼ 0; i ¼ 1;…; d: ð11Þ

We write the infinitesimal point transformations as

δxi ¼ ξiðt; xÞ; ð12Þ

δt ¼ fðt; xÞ: ð13Þ

The functional variation is then given by

δ̄xiðtÞ ¼ ξiðt; xÞ − _xifðt; xÞ: ð14Þ

The Lie symmetries are given by

0 ¼ d
dt
δ̄xi

����
ð11Þ

¼ ∂tξ
i; ð15Þ

and no condition is obtained for fðt; xÞ. The total variation
of xi is thus given by an arbitrary space diffeomorphism
ξi ¼ ξiðxÞ, while t can be transformed by an arbitrary,
space-dependent diffeomorphism δt ¼ fðt; xÞ. This makes
physical sense: space points can be mapped to arbitrary
space points and provided the map does not depend on time
one still gets a fixed point, while time can arbitrarily be
transformed at each point of space. This infinite set of
symmetries appears in the study of the symmetries of a
Carroll particle [14].

B. Nonrelativistic constant velocity

The equation of a nonrelativistic particle with a constant
velocity in dimensions is

d2xi

dt2
¼ 0; i ¼ 1;…; d: ð16Þ

We now consider the point transformations (12). The
condition that they are Lie symmetries is given by

0 ¼ d2

dt2
δ̄xi

����
ð16Þ

¼ ∂2
t ξ

i þ 2_xj∂t∂jξ
i þ _xk _xj∂j∂kξ

i

− _xi∂2
t f − 2_xi _xj∂t∂jf − _xi _xk _xj∂j∂kf: ð17Þ

This implies the set of independent equations

∂2
t ξ

i ¼ 0; ð18Þ

2∂t∂jξ
i ¼ δij∂2

t f; ð19Þ

∂j∂kξ
i ¼ δik∂t∂jf þ δij∂t∂kf; ð20Þ

∂j∂kf ¼ 0: ð21Þ

From (18) and (19) one finds

ξi ¼ aiðxÞ þ biðxÞt; ð22Þ

f ¼ αðtÞ þ βiðtÞxi: ð23Þ

Since Eqs. (19) and (20) are second order in xi and t, the
solutions are polynomials of second degree in these
variables,

ξi ¼ ai0 þ aijxj þ
1

2
½δijβ1k þ δikβ1j�xkxj þ ðbi0 þ α2xiÞt;

f ¼ α0 þ α1tþ α2t2 þ ðβ0i þ β1itÞxi; ð24Þ

where aij are the elements of a general d × d dimensional
matrix. The number of independent parameters is
ðdþ 1Þðdþ 3Þ, which corresponds to the dimension of
the projective group in dþ 1 dimensions, Pdþ1. The
projective group consists of all transformations that map
straight lines, which are the solutions to (16), to straight
lines; these include rotations, translations, and dilatations.
The Schrödinger group Schdþ1 is a proper subgroup of the
projective group, and it is the first element of the Lisfshitz
Galilean conformal algebras with dynamical exponent
z ¼ 2

N [9,11], in this case with N ¼ 1.
The vector fields which generate the total variations (24)

are, for each parameter,
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α0∶∂t; ð25Þ

α1∶t∂t; ð26Þ

α2∶tðt∂t þ xj∂jÞ≡ A2; ð27Þ

ai0∶∂i; ð28Þ

bi0∶t∂i; ð29Þ

aij∶xj∂i; ð30Þ

β0i∶xi∂t; ð31Þ

β1i∶xiðt∂t þ xj∂jÞ≡ Bi
1; ð32Þ

and they form the closed algebra given in Table I. Notice that
by combining (29) and (31) one obtains the generators of
Lorentz boost transformations. In fact, as we will see in
Sec. IV, the motions corresponding to zero relativistic
accelerationaredeterminedbyexactly thesameequation (16)
of the nonrelativistic case. This result is related to the
classification of kinematical algebras [15] in the flat case.

C. Nonrelativistic constant acceleration

The condition for constant acceleration, that is, zero
jerk, is

d3xi

dt3
¼ 0; i ¼ 1;…; d: ð33Þ

The symmetry conditions are now

d3

dt3
δ̄xi

����
ð33Þ

¼ 0: ð34Þ

In contrast to the previous case, now f cannot depend on
the spatial coordinates x. Indeed, since δ̄xi ¼ ξi − _xif,
there is a unique term containing quadratic contributions
from the accelerations, given by −3ẍiẍk∂kf, when comput-
ing the left-hand side of (34). This implies

∂kf ¼ 0; ð35Þ

and using this information the remaining terms yield the
independent conditions

∂j∂kξ
i ¼ 0; ð36Þ

∂3
t ξ

i ¼ 0; ð37Þ

3∂2
t ∂kξ

i − δik∂3
t f ¼ 0; ð38Þ

∂t∂kξ
i − δik∂2

t f ¼ 0: ð39Þ

Combining these equations leads then to

f ¼ α0 þ α1tþ α2t2;

ξi ¼ ai þ aijx
j þ ðbi þ 2α2xiÞtþ cit2: ð40Þ

The associated vector fields are

α0∶∂t; ð41Þ

α1∶t∂t; ð42Þ

α2∶tðt∂t þ 2xj∂jÞ≡ A3; ð43Þ

ai∶∂i; ð44Þ

bi∶t∂i; ð45Þ

aij∶xj∂i; ð46Þ

ci∶t2∂i; ð47Þ

and their commutators form the algebra given in Table II. It
has d2 þ 3dþ 3 generators, and it contains the N ¼ 2
NGCA algebra without central extension,1 with dðdþ 1Þ=2

TABLE I. Commutators of the Lie symmetry vector fields of (16), with A2 ¼ t2∂t þ txj∂j.

∂t t∂t A2 ∂j t∂j xk∂j xj∂t Bj
1

∂t 0 ∂t 2t∂t þ xj∂j 0 ∂j 0 0 xj∂t

t∂t 0 A2 0 t∂j 0 −xj∂t 0
A2 0 −t∂j 0 0 −Bj

1
0

∂i 0 0 δki ∂j δji∂t δji t∂t þ δji x
k∂k þ xj∂i

t∂i 0 δki t∂j δji t∂t − xj∂i δjiA2

xl∂i δki x
l∂j − δljx

k∂i δji x
l∂t δjiB

l
1

xi∂t 0 0
Bi
1

0

1A dynamical realization of this algebra forN ¼ 2with a central
extension was considered in [16] for d ¼ 2 and for general d in
[17], while the extension to arbitrary N was presented in [10,18].
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extra generators corresponding to symmetric spatial linear
transformations. In contrast to the previous case of zero
acceleration, now one cannot construct Lorentz boosts out
of these generators, since there is no generator of the form
xi∂t. The relativistic counterpart of (33), that is, the
equation stating that the dþ 1 relativistic jerk is zero,
has additional terms that restore Lorentz invariance of the
corresponding dþ 1 vector, at the price of destroying most
of the symmetries of (33).

D. Nonrelativistic constant rate of change
of acceleration and beyond

The equations of motion for a constant rate of accel-
eration, that is, constant jerk (or zero snap), are

d4xi

dt4
¼ 0; i ¼ 1;…; d: ð48Þ

The point Lie symmetry transformations satisfy

d4

dt4
δ̄xi

����
ð48Þ

¼ 0: ð49Þ

Applying the same procedure as in the previous cases one
finds

f ¼ α0 þ α1tþ α2t2; ð50Þ

ξi ¼ ai þ aijx
j þ ðbi þ 3α2xiÞtþ cit2 þ dit3; ð51Þ

which contains d2 þ 4dþ 3 parameters. The vector fields
associated with each parameter are ∂t (α0), t∂t (α1), A4 ≡
t2∂t þ 3txi∂i (α2), ∂i (ai), xj∂i (aij), t∂i (bi), t2∂i (ci), and
t3∂i (di), and they form the closed algebra given in
Table III. This algebra contains the N ¼ 3 NGCA without
a central extension, but with dðdþ 1Þ=2 extra generators
which, again, correspond to arbitrary symmetric spatial
linear transformations.
The symmetry transformations corresponding to higher

order zero dynamics,

dnxi

dtn
¼ 0; i ¼ 1;…; d; n ≥ 5; ð52Þ

can also be computed, and one obtains

f ¼ α0 þ α1tþ α2t2; ð53Þ

ξi ¼ ai þ aijx
j þ ðbi þ ðN − 1Þα2xiÞtþ

Xn−1
k¼2

cikt
k: ð54Þ

This contains theN ¼ n − 1NGCA algebra without central
extension, again with the extra dðdþ 1Þ=2 generators. This
also encompasses the cases n ¼ 3 and n ¼ 4, but not
n ¼ 2, which is a transition case from the infinite number
of symmetries of the case n ¼ 1 and the regular case for
n ≥ 3. The number of symmetries is d2 þ 4dþ 3 for n ¼ 2

and d2 þ ndþ 3 for n ≥ 3.

III. A NEW LOOK AT HIGHER ORDER
RELATIVISTIC KINEMATICS

Let us consider a dþ 1 Minkowski spacetime. We
denote by τ the proper time, t is the lab time, and the
corresponding derivatives are denoted by dots and primes,
respectively. From the worldline xμðτÞ of a particle we
construct

vμ ¼ _xμ; aμ ¼ _vμ; bμ ¼ _aμ; hμ ¼ _bμ: ð55Þ

TABLE II. Commutators of the Lie symmetry vector fields of
(33), with A3 ¼ t2∂t þ 2txj∂j.

∂t t∂t A3 ∂j t∂j xk∂j t2∂j

∂t 0 ∂t 2t∂t þ 2xj∂j 0 ∂j 0 2t∂j

t∂t 0 A3 0 t∂j 0 2t2∂j

A3 0 −2t∂j −t2∂j 0 0
∂i 0 0 δki ∂j 0
t∂i 0 δki t∂j 0
xl∂i δki x

l∂j − δljx
k∂i −δljt2∂i

t2∂i 0

TABLE III. Commutators of the Lie symmetry vector fields of (48), with A4 ¼ ≡t2∂t þ 3txi∂i.

∂t t∂t A4 ∂j t∂j xk∂j t2∂j t3∂j

∂t 0 ∂t 2t∂t þ 3xj∂j 0 ∂j 0 2t∂j 3t2∂j

t∂t 0 A3 0 t∂j 0 2t2∂j 3t3∂j

A4 0 −3t∂j −2t2∂j 0 −t3∂j 0
∂i 0 0 δki ∂j 0 0
t∂i 0 δki t∂j 0 0
xl∂i δki x

l∂j − δljx
k∂i −δljt2∂i −δljt3∂i

t2∂i 0 0
t3∂i 0
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In the lab frame one has

xμ ¼ ðct; x⃗Þ: ð56Þ

We define also

v⃗ ¼ x⃗0; a⃗ ¼ v⃗0; b⃗ ¼ a⃗0; h⃗ ¼ b⃗0: ð57Þ

Taking into account that

d
dt

¼ 1

γ

d
dτ

; γ ¼
�
1 −

v⃗2

c2

�−1=2
; ð58Þ

one gets

vμ ¼ ðγc; γv⃗Þ; ð59Þ

aμ ¼
�
γ4

v⃗ · a⃗
c

; γ4
v⃗ · a⃗
c2

v⃗þ γ2a⃗

�
; ð60Þ

bμ ¼
�
4γ7

ðv⃗ · a⃗Þ2
c3

þ γ5

c
ða⃗2 þ v⃗ · b⃗Þ; γ3b⃗þ 4γ7

ðv⃗ · a⃗Þ2
c4

v⃗

þ γ5

c2
ða⃗2 þ v⃗ · b⃗Þv⃗þ 3γ5

v⃗ · a⃗
c2

a⃗

�
; ð61Þ

where we have also used

γ0 ¼ γ3
v⃗ · a⃗
c2

: ð62Þ

From the expression of vμ one has

vμvμ ¼ −c2; ð63Þ

and then, deriving with respect to τ,

vμaμ ¼ 0; ð64Þ

aμaμ þ vμbμ ¼ 0; ð65Þ

3aμbμ þ vμhμ ¼ 0: ð66Þ

Note, in particular, that neither bμ nor hμ are orthogonal to
the velocity. Following [5], we define the relativistic jerk jμ

as the component of bμ orthogonal to vμ,

jμ ¼ bμ −
bνvν
v2

vμ ¼ bμ þ bνvν
c2

vμ: ð67Þ

After some algebra one finds out that the temporal part of jμ

is given by

j0 ¼ 3γ7
ðv⃗ · a⃗Þ2

c3
þ γ5

v⃗ · b⃗
c

; ð68Þ

while the spatial components are2

ji ¼ γ3bi þ 3γ5
v⃗ · a⃗
c2

ai þ 3γ7
ðv⃗ · a⃗Þ2

c4
vi þ γ5

v⃗ · b⃗
c2

vi: ð69Þ

We define the relativistic snap, sμ, as the derivative of jμ

(instead of bμ) with respect to τ and subtract again the
component along vμ:

sμ ¼ djμ

dτ
−

djν

dτ vν
v2

vμ ¼ djμ

dτ
þ

djν

dτ vν
c2

vμ: ð70Þ

After some algebra this yields

sμ ¼ hμ −
a2

c2
aμ − 3

aνbν
c2

vμ: ð71Þ

The four vectors aμ, jμ, sμ, whose explicit expressions were
given in [5], are such that they have purely spatial
components in the comoving frame, vμ ¼ 0, and can be
rewritten in compact form as

aμ ¼
�
γ4

c
v⃗ · A⃗; γ2M̂ A⃗

�
; ð72Þ

jμ ¼
�
γ5

c
v⃗ · B⃗; γ3M̂ B⃗

�
; ð73Þ

sμ ¼
�
γ6

c
v⃗ · H⃗; γ4M̂ H⃗

�
: ð74Þ

Here we have defined

A⃗ ¼ a⃗; ð75Þ

B⃗ ¼ b⃗þ 3γ2
v⃗ · a⃗
c2

a⃗; ð76Þ

H⃗ ¼ h⃗þ 6γ2
v⃗ · a⃗
c2

b⃗

þ
�
3γ2

a⃗2

c2
þ 4γ2

v⃗ · b⃗
c2

þ 18γ4
ðv⃗ · a⃗Þ2

c4

�
a⃗ ð77Þ

¼ B⃗0 þ 3γ2
v⃗ · a⃗
c2

B⃗þ γ2
v⃗ · B⃗
c2

a⃗; ð78Þ

where the matrix M̂ has components

M̂ij ¼ δij þ
γ2

c2
vivj; ð79Þ

2vi, ai, bi denote the components of the Euclidean vectors v⃗, a⃗,
b⃗, respectively, not the spatial components of vμ, aμ, bμ.
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whose inverse is given by

M̂−1
ij ¼ δij −

1

c2
vivj: ð80Þ

The appearance of the spatial vectors A⃗, B⃗, C⃗ in the
components of the corresponding (dþ 1)-vectors aμ, jμ, sμ,
together with the invertibility of M̂, has interesting conse-
quences. In particular, the vanishing of the relativistic
acceleration, jerk, snap, …, is equivalent, in each case,
to the vanishing of the corresponding d-dimensional spatial
vectors. These vectors are the d-dimensional nonrelativistic
ones plus additional terms that guarantee the relativistic
transformation properties of the corresponding (dþ 1)-
dimensional vectors. Explicitly,

aμ ¼ 0 ⇔ A⃗ ¼ 0; ð81Þ

jμ ¼ 0 ⇔ B⃗ ¼ 0; ð82Þ

sμ ¼ 0 ⇔ H⃗ ¼ 0: ð83Þ

From these expressions it also follows that

B⃗jA⃗¼0
¼ 0; ð84Þ

H⃗jB⃗¼0
¼ 0: ð85Þ

As shown in [5], the sequence of (dþ 1)-vectors aμ, jμ,
sμ can be extended to higher orders by means of the
recurrence relation

Pμ
ðnÞ ¼

d
dτ

Pμ
ðn−1Þ −

Pν
ðn−1Þaν
c2

vμ; ð86Þ

starting with Pμ
ð1Þ ¼ aμ. This recurrence relation preserves

the property of orthogonality with v, since

vμP
μ
ðnÞ ¼

d
dτ

ðvμPμ
ðn−1ÞÞ ¼ 0; ð87Þ

provided vμP
μ
ðn−1Þ ¼ 0. Using

vν
d
dτ

Pν
ðn−1Þ ¼ −aνPν

ðn−1Þ; ð88Þ

Eq. (86) can be rewritten as

Pμ
ðnÞ ¼

�
δμν þ vνvμ

c2

�
d
dτ

Pμ
ðn−1Þ: ð89Þ

This allows for an interesting generalization of (72),
(73), (74) that provides, in addition, a recurrence relation
for the objects A⃗, B⃗, H⃗,
Proposition 1: The (dþ 1)-vectors Pμ

ðnÞ defined by
(89), starting with Pμ

ð2Þ ¼ aμ, can be written as

Pμ
ðnÞ ¼

�
γnþ3

c
v⃗ · Q⃗ðnÞ; γnþ1M̂Q⃗ðnÞ

�
; n ≥ 2; ð90Þ

with M̂ the d × d matrix given in (79), and with the d-
vectors Q⃗ðnÞ satisfying the recurrence relation

Q⃗ðnÞ ¼
1

γn
d
dt
ðγnQ⃗ðn−1ÞÞ þ

γ2

c2
ðv⃗ · Q⃗ðn−1ÞÞa⃗; n ≥ 3; ð91Þ

starting with Q⃗ð2Þ ¼ A⃗.
In order to prove this result we need the following

lemma, which is proved in Appendix A.
Lemma 1: Let

Yμ ¼
�
δμν þ

vνvμ

c2

�
Xμ: ð92Þ

Then Yμ can be written as

Yμ ¼
�
γ2

c
v⃗ · K⃗; M̂ K⃗

�
; ð93Þ

with

K⃗ ¼ Y⃗ −
Y0

c
v⃗: ð94Þ

Furthermore,

Y2 ¼ K⃗2 þ γ2

c2
ðv⃗ · K⃗Þ2 ≥ 0; ð95Þ

or, equivalently,

v · Y ¼ 0: ð96Þ

Proof of Proposition 1: From (89) it follows that Pμ
ðnÞ

obeys a relation of the type given in (92), with Xμ ¼
d
dτP

μ
ðn−1Þ for each n, and hence there exists a K⃗ðnÞ such that it

can be expressed as in (93) and (94). In particular,
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Ki
ðnÞ ¼Pi

ðnÞ−
vi

c
P0
ðnÞ

¼ d
dτ
Pi
ðn−1Þ−

γ

c2
Pν
ðn−1Þaνv

i−
vi

c

�
d
dτ
P0
ðn−1Þ−

γ

c
Pν
ðn−1Þaν

�

¼ d
dτ

�
Pi
ðn−1Þ−

vi

c
P0
ðn−1Þ

�
þ1

c
P0
ðn−1Þ

dvi

dτ

¼ d
dτ
Ki

ðn−1Þþ
1

c
P0
ðn−1Þ

dvi

dτ

¼ γ
d
dt
Ki

ðn−1Þþ
γ

c
dvi

dt
γ2

c
ðv⃗ ·K⃗ðn−1ÞÞ

¼ γ
d
dt
Ki

ðn−1Þþ
γ3

c2
ðv⃗ ·K⃗ðn−1ÞÞai: ð97Þ

Introducing now Qi
ðnÞ by means of

Ki
ðnÞ ¼ γnþ1Qi

ðnÞ; ð98Þ

Eq. (97) for the K⃗’s can be rewritten as

γnþ1Qi
ðnÞ ¼ γ

d
dt
ðγnQi

ðn−1ÞÞ þ
γnþ3

c2
ðv⃗ · Q⃗ðn−1ÞÞai; ð99Þ

which, after some algebra, becomes (91). Finally, using
(93) for Pμ

ðnÞ and expressing K⃗ðnÞ in terms of Q⃗ðnÞ yields
(90), and this concludes the proof. □

Using (90) and (91), the next term in the sequence aμ, bμ,
jμ, sμ would be the relativistic “crackle" kμ, given by

kμ ¼ Pμ
ð4Þ ¼

�
γ7

c
v⃗ · C⃗; γ5M̂ C⃗

�
; ð100Þ

with the spatial vector C⃗ obtained from H⃗ by

C⃗ ¼ 1

γ4
d
dt
ðγ4H⃗Þ þ γ2

c2
ðv⃗ · H⃗Þa⃗

¼ dH⃗
dt

þ 4

γ

dγ
dt

H⃗ þ γ2

c2
ðv⃗ · H⃗Þa⃗: ð101Þ

As in the lower order cases, Eq. (91) shows that if Q⃗ðnÞ
vanishes, then Q⃗ðmÞ is also identically zero for all m > n;

furthermore, from (90) the invertibility of M̂ implies that
PðnÞ ¼ 0 if and only if Q⃗ðnÞ ¼ 0. On the other hand, one can
also see from (91)—or from (86) for that matter—that
Q⃗ðnÞ ¼ 0⃗ does not necessarily imply that Q⃗ðn−1Þ is constant,
marking a departure from the situation in the nonrelativistic
case. In fact, the question of defining movements with
constant jerk, snap, and beyond is conceptually complex
[5,6]. We will just present a short discussion, in the 1þ 1
spacetime case in Appendix B, using the d-dimensional
spatial vectors we have encountered.

IV. LIE SYMMETRIES OF HIGHER
RELATIVISTIC DYNAMICS

In this section we will compute the Lie symmetries of the
equations of motion corresponding to zero relativistic
acceleration, jerk, snap, and beyond in an arbitrary lab
frame. As commented in the Introduction, and following
the ideas in [1], these symmetries can be seen as the
spacetime transformations that connect different lab frames
where the corresponding zero motion is preserved.

A. Symmetries of A⃗= 0

Since the relativistic zero acceleration is finally equiv-
alent to A⃗ ¼ 0, one has the equations

d2xi

dt2
¼ 0; ð102Þ

which are the same as those of the nonrelativistic zero
acceleration case. This means that the set of Lie symmetries
is given by the fields (25)–(32). This is not the case for
higher order zero motions, for which the relevant quantities
exhibit extra terms [see (76) and (77)].

B. Symmetries of B⃗= 0

The equations of motion Bi ¼ 0 are

bi þ 3
vkak

c2 − v2k
ai ¼ 0; i ¼ 1;…; d: ð103Þ

Proceeding as in the nonrelativistic case, one finds
out that the symmetries of (103) are given by the
dðd − 1Þ=2þ 3dþ 3 vector fields

∂t; ð104Þ

∂i; ð105Þ

Bi ≡M0i ¼ xi∂t þ c2t∂i; ð106Þ

Mij ¼ xj∂i − xi∂j; ð107Þ

D ¼ t∂t þ xi∂i; ð108Þ

Ci ¼ ðc2t2 − xjxjÞ∂i þ 2xiðt∂t þ xj∂jÞ; ð109Þ

C ¼ ðc2t2 þ xjxjÞ∂t þ 2c2txj∂j; ð110Þ

whose commutators, given in Table IV, form the conformal
algebra in dþ 1Minkowski spacetime. This result general-
izes that of [1] in the one-dimensional case.

C. Symmetries of H⃗ = 0

Finally, the symmetries of the fourth order differential
equations
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Hi ¼ 0; i ¼ 1;…; d; ð111Þ

are described by the dðd − 1Þ=2þ 2dþ 2 vector fields

∂t; ð112Þ

∂i; ð113Þ

Bi ¼ xi∂t þ c2t∂i; ð114Þ

Mij ¼ xj∂i − xi∂j; ð115Þ

D ¼ t∂t þ xi∂i; ð116Þ

whose commutators satisfy the Weyl algebra (the sub-
algebra of the conformal algebra in dþ 1 given in the 5 × 5
upper-left part of Table IV).

D. Symmetries of higher order zero motions

The symmetries of higher order zero motions,

Pμ
ðnÞ ¼ 0; n ≥ 5; ð117Þ

which, according to (90), are those of

Qi
ðnÞ ¼ 0; i ¼ 1;…; d; n ≥ 5; ð118Þ

already appearing for n ¼ 4, i.e., in the snap case. Thus,
the group of symmetries remains the Weyl group for all
higher order zero motions. This is in contrast with the
nonrelativistic case, where the algebra of symmetries grows
due to the enlargement of the NGCA algebra with N.

V. CONCLUSIONS

Table V summarizes our results with respect to sym-
metry algebras of the zero dynamics that we have studied
in this paper. We have also considered n ¼ 1 in the
nonrelativistic case, which yields an infinite dimensional
algebra and which is not shown in the table.
Beyond n ¼ 2, the number of symmetries of zero

motions in the nonrelativistic case increases with n
because the number of generators in the N Galilean
conformal algebra increases with N. In contrast to this,
in the relativistic case the number of symmetries decreases
with n, and this answers in the negative our initial question
about the existence of a family of higher order relativistic
conformal algebras. Conformal algebras only appear in the
relativistic case for n ¼ 2 and n ¼ 3, the latter being the
standard conformal algebra, and from this point onwards
there is only a vestige of conformal symmetry in the form of
spacetime dilatations.
For n ¼ 2 the set of Lie symmetries are the same for the

relativistic and nonrelativistc cases. For n ¼ 1 only the
nonrelativistic case can be considered, since the relativistic
velocity vμ ¼ ðγc; γv⃗Þ cannot be made equal to zero unless
we take c ¼ 0. In fact, in the nonrelativistic case, zero
velocity motions, that is, constant position motions, have
the same Lie symmetries as those of the Carrollian limit
(c → 0) of a relativistic particle.
Although we have limited ourselves to Lie symmetries of

the zero motions, one can also study the Noether sym-
metries of the actions which, when available, yield the
corresponding equations of motion. In general, the Noether
symmetries form a subgroup of the Lie ones. Such actions
are easily available for nonrelativistic even order zero
motions, as is also the case for the zero acceleration
relativistic movement; its existence and interpretation for

TABLE IV. Commutators of the Lie symmetry vector fields of (103).

∂t ∂j Bj Mjk D Cj C

∂t 0 0 c2∂j 0 ∂t 2Bj 2c2D
∂i 0 δij∂t δij∂k − δik∂j ∂i 2Mij þ 2δijD 2Bi

Bi −c2Mij δijBk − δikBj 0 δijC c2Ci

Mil −δljMik þ δlkMij þ δijMlk − δikMlj 0 δijCl − δljCi 0
D 0 Cj C
Ci 0 0
C 0

TABLE V. Algebra of Lie symmetries corresponding to several nonrelativistic and relativistic zero dynamics in
dþ 1 spacetime. The superscript * indicates dðdþ 1Þ=2 extra generators added to those of the standard NGCA.

n-order zero dynamics Nonrelativistic Relativistic

n ¼ 2 Projective in dþ 1 (contains N ¼ 1 NGCA) Projective in dþ 1
n ¼ 3 Extended* NGCA N ¼ 2 in dþ 1 Conformal in dþ 1
n ≥ 4 Extended* NGCA N ¼ n − 1 in dþ 1 Weyl in dþ 1
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odd order in the nonrelativistic case and in the general
relativistic one is under study. Since the symmetries
presented here are more general than those of the standard
NGCA it would also be interesting to use the technique of
nonlinear realizations (see, for instance, [16–19]) to con-
struct the corresponding actions.
In the relativistic case one could also consider the Lie

symmetries of the equations of motion when these are
expressed using the proper time as the independent variable
instead of the time in an arbitrary frame, adding the proper
time condition as a new equation of motion. For zero
acceleration the set of Lie symmetries boils down to the
Weyl group, from the full projective group when using the
arbitrary frame time. Such a reduction in the symmetry
has also been reported, in the context of the equations of
motion derived from a Lagrangian without fixing the
gauge, in [20].
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APPENDIX A: PROOF OF LEMMA 1

From (92) one has

Yi ¼ Xi þ γðX · vÞ v
i

c2
; ðA1Þ

Y0 ¼ X0 þ γðX · vÞ 1
c
: ðA2Þ

Combining these one gets

Yi −
vi

c
Y0 ¼ Xi −

vi

c
X0 ≡ Ki; ðA3Þ

where Ki is a constant quantity, the same for all the
elements of the sequence of dþ 1 vectors given by (92).
From (A2) one now gets

Y0 ¼ X0 − γ2X0 þ ðX⃗ · v⃗Þ γ
2

c

¼ ðX⃗ · v⃗Þ γ
2

c
− γ2

v⃗2

c2
X0

¼ γ2

c
v⃗ ·

�
X⃗ −

X0

c
v⃗

�

¼ γ2

c
v⃗ · K⃗; ðA4Þ

and then

Yi ¼ Ki þ vi

c
Y0 ¼ Ki þ γ2

c2
ðv⃗ · K⃗Þvi: ðA5Þ

Putting (A3) and (A4) together one has

Yμ ¼
�
γ2

c
v⃗ · K⃗; K⃗ þ γ2

c2
ðv⃗ · K⃗Þv⃗:

�

¼
�
γ2

c
v⃗ · K⃗; M̂ K⃗

�
; ðA6Þ

with

M̂ij ¼ δij þ
γ2

c2
vivj; ðA7Þ

as desired. The last two results of the lemma follow then
from a simple calculation.

APPENDIX B: INTERPRETATION OF HIGHER
ORDER ZERO DYNAMICS IN THE
INSTANTANEOUS REST FRAME

We show here that, at least in 1þ 1, requiring B⃗ ¼ 0 and
H⃗ ¼ 0 is equivalent to having constant values for the spatial
part of the corresponding quantities of one order less in the
instantaneous rest frame of the particle; i.e., B⃗ ¼ 0 in the
lab frame is equivalent to constant acceleration in the rest
frame, and so on. We do not have at present an equivalent
result in dþ 1.
In (1þ 1) dimensions equations (72), (73), (74) boil

down to

aμ ¼
�
γ4

c
vA; γ4A

�
; ðB1Þ

jμ ¼
�
γ5

c
vB; γ5B

�
; ðB2Þ

sμ ¼
�
γ6

c
vH; γ6H

�
; ðB3Þ

with
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A ¼ a; ðB4Þ

B ¼ bþ 3
γ2

c2
va2; ðB5Þ

H ¼ hþ 10
γ2

c2
vabþ 3

γ2

c2
a3 þ 18

γ4

c4
v2a3: ðB6Þ

A general Lorentz transformation in 1þ 1 is given by

ΛðvÞ ¼
�

γ −γ v
c

−γ v
c γ

�
; ðB7Þ

and aμ, jμ, sμ in the rest frame are then

aμco ¼ ΛðvÞaμ ¼
�

0

γ3a

�
≡

�
0

aco

�
; ðB8Þ

jμco ¼ ΛðvÞjμ ¼
�

0

γ4bþ 3 γ6

c2 va
2

�
≡

�
0

bco

�
; ðB9Þ

sμco ¼ ΛðvÞsμ ¼
�

0

γ5hþ 10 γ7

c2 vabþ 3 γ7

c2 a
3 þ 18 γ9

c4 v
2a3

�

≡
�

0

hco

�
; ðB10Þ

where aco, bco, hco represent the spatial part of the 1þ 1
acceleration, jerk, and snap, respectively, in the instanta-
neous rest frame.
A simple calculation shows that

d
dt
ðacoÞ ¼

d
dt
ðγ3aÞ ¼ γ3bþ 3γ2

dγ
dt

a

¼ γ3bþ 3γ5
va
c2

a ¼ γ3B; ðB11Þ

from which it follows that, in 1þ 1, zero lab jerk (B ¼ 0)
implies that the spatial acceleration measured in the rest
frame is constant. Analogously,

d
dt

�
γ4bþ 3

γ6

c2
va2

�
¼ γ4H; ðB12Þ

showing that, in 1þ 1, zero lab snap (H ¼ 0) is equivalent
to constant rest jerk.
The 1þ 1 Lorentz transformation (B7) can be para-

metrized as

ΛðvÞ ¼
�

coshϕ − sinhϕ

− sinhϕ coshϕ

�
; ðB13Þ

with ϕðτÞ arbitrary. The velocity in the lab frame can be
obtained as

v ¼ c tanhϕ; ðB14Þ

and the derivative of the lab time with respect to the proper
time is then

dt
dτ

¼ γ ¼ coshϕ: ðB15Þ

Deriving v with respect to t and using (B15) to express the
derivatives in terms of those of ϕðτÞ with respect to τ
(denoted by primes), one gets

a ¼ dv
dt

¼ c
cosh3 ϕ

ϕ0; ðB16Þ

b ¼ da
dt

¼ −
3c sinhϕ
cosh5 ϕ

ðϕ0Þ2 þ c
cosh4 ϕ

ϕ00; ðB17Þ

h ¼ db
dt

¼ −
3c

cosh5 ϕ
ðϕ0Þ3 þ 15c sinh2 ϕ

cosh7 ϕ
ðϕ0Þ3

−
10c sinhϕ
cosh6 ϕ

ϕ0ϕ00 þ c
cosh5 ϕ

ϕ000; ðB18Þ

and so on. Then,
(1) if ϕðτÞ ¼ v0

c , then a ¼ b ¼ h ¼ � � � ¼ 0.
(2) if ϕðτÞ ¼ 1

c ðv0 þ a0τÞ, then

a ¼ 1

γ3
a0; ðB19Þ

b ¼ −
3v
γ4

a20
c2

≠ 0; ðB20Þ

h ¼ 3ð4γ2 − 5Þ
c2γ7

a30 ≠ 0; ðB21Þ

but it follows from these equations that, in the rest
frame,

aco ¼ γ3a ¼ a0; ðB22Þ

bco ¼ γ4bþ 3
γ6

c2
va2 ¼ 0; ðB23Þ

hco ¼ γ5hþ 10
γ7

c2
vab

þ 3
γ7

c2
a3 þ 18

γ9

c4
v2a3 ¼ 0: ðB24Þ
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(3) if ϕðτÞ ¼ 1
c ðv0 þ a0τ þ 1

2
j0τ2Þ one gets, in the rest

frame of the particle,

aco ¼ γ3a ¼ a0 þ j0τ; ðB25Þ

bco ¼ γ4bþ 3
γ6

c2
va2 ¼ j0; ðB26Þ

hco ¼ γ5hþ 10
γ7

c2
vab

þ 3
γ7

c2
a3 þ 18

γ9

c4
v2a3 ¼ 0: ðB27Þ

(4) if ϕðτÞ ¼ 1
c ðv0 þ a0τ þ 1

2
j0τ2 þ 1

6
s0τ3Þ,

aco ¼ γ3a ¼ a0 þ j0τ þ
1

2
s0τ2; ðB28Þ

bco ¼ γ4bþ 3
γ6

c2
va2 ¼ j0 þ s0τ; ðB29Þ

hco ¼ γ5hþ 10
γ7

c2
vab

þ 3
γ7

c2
a3 þ 18

γ9

c4
v2a3 ¼ s0; ðB30Þ

and so on.
Notice that v ¼ c tanhϕðτÞ cannot be explicitly inte-

grated with respect to t to obtain xðtÞ. An implicit solution
is given in [5] (see also [6]) as

xðτÞ ¼ x0 þ c
Z

τ

0

sinhϕðsÞds; ðB31Þ

tðτÞ ¼
Z

τ

0

coshϕðsÞds: ðB32Þ

The integrals on the right-hand sides can only be computed
in terms of elementary functions, and inverted, for ϕ up to
degree 1 in τ.
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