
 

Novel black-hole solutions in Einstein-scalar-Gauss-Bonnet theories
with a cosmological constant

A. Bakopoulos,1,* G. Antoniou,2,† and P. Kanti1,‡
1Division of Theoretical Physics, Department of Physics, University of Ioannina,

Ioannina GR-45110, Greece
2School of Physics and Astronomy, University of Minnesota, Minneapolis,

Minnesota 55455, USA

(Received 21 December 2018; published 6 March 2019)

We consider the Einstein-scalar-Gauss-Bonnet theory in the presence of a cosmological constant Λ,
either positive or negative, and look for novel, regular black-hole solutions with a nontrivial scalar hair. We
first perform an analytic study in the near-horizon asymptotic regime and demonstrate that a regular black-
hole horizon with a nontrivial hair may always be formed, for either sign of Λ and for arbitrary choices of
the coupling function between the scalar field and the Gauss-Bonnet term. At the faraway regime, the sign
of Λ determines the form of the asymptotic gravitational background leading to either a Schwarzschild–
anti-de Sitter–type background (Λ < 0) or a regular cosmological horizon (Λ > 0), with a nontrivial scalar
field in both cases. We demonstrate that families of novel black-hole solutions with scalar hair emerge for
Λ < 0, for every choice of the coupling function between the scalar field and the Gauss-Bonnet term,
whereas for Λ > 0, no such solutions may be found. In the former case, we perform a comprehensive study
of the physical properties of the solutions found such as the temperature, entropy, horizon area, and
asymptotic behavior of the scalar field.
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I. INTRODUCTION

As the ultimate theory of quantum gravity that would
robustly describe gravitational interactions at high energies
and facilitate their unification with the other forces is still
eluding us, the interest in generalized gravitational theories
remains unabated in the scientific literature. These theories
include extra fields or higher-curvature terms in their action
[1,2], and they provide the framework in the context of
which several solutions of the traditional general relativity
(GR) have been reexamined and, quite often, significantly
enriched.
In this spirit, generalized gravitational theories contain-

ing scalar fields were among the first to be studied.
However, the quest for novel black-hole solutions—beyond
the three well-known families of GR—was abruptly
stopped when the no-hair theorem was formulated [3],
which forbade the existence of a static solution of this form

with a nontrivial scalar field associated with it. Nevertheless,
counterexamples appeared in the years that followed and
included black holes with Yang-Mills [4], Skyrme fields [5],
or with a conformal coupling to gravity [6]. A novel
formulation of the no-hair theorem was proposed in 1995
[7] but this, too, was evaded within a year with the discovery
of the dilatonic black holes found in the context of the
Einstein-dilaton-Gauss-Bonnet theory [8] (for some earlier
studies that paved the way, see [9–13]). The colored black
holes were found next in the context of the same theory
completed by the presence of a Yang-Mills field [14,15],
and higher-dimensional [16] or rotating versions [17–20]
were also constructed (for a number of interesting reviews on
the topic, see [21–24]).
This second wave of black-hole solutions were derived in

the context of theories inspired by superstring theory [25].
During the past decade, though, the construction of gener-
alized gravitational theories was significantly enlarged via
the revival of the Horndeski [26] and Galileon [27] theories.
Accordingly, novel formulations of the no-hair theorems
were proposed that covered the case of standard scalar-tensor
theories [28] and Galileon fields [29]. However, these recent
forms were also evaded [30] and concrete black-hole
solutions were constructed [31–33]. More recently, three
independent groups [34–36] almost simultaneously demon-
strated that a generalized gravitational theory that contains
a scalar field and the quadratic Gauss-Bonnet (GB) term
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admits novel black-hole solutions with a nontrivial scalar
hair. In a general theoretical argument,whichwepresented in
[34], it was shown that the presence of the GB term was of
paramount importance for the evasion of the novel no-hair
theorem [7]. In addition, the exact form of the coupling
function fðϕÞ between the scalar field and the GB term
played no significant role for the emergence of the solutions:
as long as the first derivative of the scalar field ϕh

0 at the
horizon obeyed a specific constraint, an asymptotic solution
describing a regular black-hole horizon with a nontrivial
scalar field could always be constructed. Employing, then,
several different forms of the coupling function fðϕÞ,
a large number of asymptotically flat black-hole solutions
with scalar hair were determined [34]. Additional studies
presenting novel black holes or compact objects in
generalized gravitational theories have appeared [37–45]
as well as further studies of the properties of these novel
solutions [46–65].
In the present work, wewill extend our previous analyses

[34] that aimed at deriving asymptotically flat black-hole
solutions by introducing in our theory a cosmological
constant Λ, either positive or negative. In the context of
this theory, we will investigate whether the previous,
successful synergy between the Ricci scalar, the scalar
field, and the Gauss-Bonnet term survives in the presence
of Λ. The question of the existence of black-hole solutions
in the context of a scalar-tensor theory, with scalar fields
minimally coupled or conformally coupled to gravity, and a
cosmological constant has been debated in the literature for
decades [66–70]. In the case of a positive cosmological
constant, the existing studies predominantly excluded the
presence of a regular, black-hole solution with an asymp-
totic de Sitter behavior—a counterexample of a black hole
in the context of a theory with a conformally coupled scalar
field [71] was shown later to be unstable [72]. On the other
hand, in the case of a negative cosmological constant, a
substantial number of solutions with an asymptotically
(anti–)de Sitter behavior have been found in the literature
(for a nonexhaustive list, see [73–84].
Here, we perform a comprehensive study of the existence

of black-hole solutions with a nontrivial scalar hair and an
asymptotically (anti–)de Sitter behavior in the context of
a general class of theories containing the higher-derivative,
quadratic GB term. To our knowledge, the only similar
study is the one performed in the special case of the shift-
symmetric Galileon theory [85], i.e., with a linear coupling
function between the scalar field and the GB term. In this
work, we consider the most general class of this theory by
considering an arbitrary form of the coupling function
fðϕÞ, and we look for regular black-hole solutions with
nontrivial scalar hair. Since the uniform distribution of
energy associated with the cosmological constant perme-
ates the whole spacetime, we expect Λ to have an effect on
both the near-horizon and far-field asymptotic solutions.
We will thus repeat our analytical calculations in both the

small and the large-r regimes to examine how the presence
of Λ affects the asymptotic solutions both near and far
away from the black-hole horizon. As we will see, our set
of field equations admits regular solutions near the black-
hole horizon with a nontrivial scalar hair for both signs of
the cosmological constant. At the faraway regime, the
analysis needs to be specialized since a positive or negative
sign of Λ leads to either a cosmological horizon or an
asymptotic Schwarzschild–anti-de Sitter–type gravitational
background, respectively. Our results show that the emer-
gence of a black-hole solution with a nontrivial scalar field
strongly depends on the type of asymptotic background that
is formed at large distances, and thus on the sign of Λ:
whereas, for Λ < 0, solutions emerge with the same easi-
ness as their asymptotically flat analogues, for Λ > 0, no
such solutions were found.
In the former case, i.e., for Λ < 0, we present a large

number of novel black-hole solutions with a regular black-
hole horizon, a nontrivial scalar field, and a Schwarzschild–
anti-de Sitter–type asymptotic behavior at large distances.
These solutions correspond to a variety of forms of the
coupling function fðϕÞ: exponential, polynomial (even or
odd), inverse polynomial (even or odd), and logarithmic.
The motivation for an exponential coupling function is
provided by the heterotic superstring effective theory [25]
where the scalar field is the dilaton. On the other hand, the
coupling function of the moduli fields to the GB term in the
context of the same theory is given by the logarithm of the
Dedekind function—this scalar-tensor theory was shown to
lead to interesting singularity-free cosmological solutions
[86]. In a subsequent work [87], it was shown that an
arbitrary, even polynomial coupling function shares a
number of characteristic features with the moduli coupling
function and leads again to singularity-free cosmological
solutions; this similarity has provided the motivation to
consider also even polynomial coupling functions in our
quest for novel black-hole solutions. The remaining choices
for the coupling function (i.e., the inverse and odd poly-
nomials) have admittedly no fundamental motivation, and
their adoption serves to demonstrate that the synergy of a
scalar field, the Ricci scalar, and the GB term is powerful
enough to support regular black-hole solutions for every
form of the coupling function. In this, we have drawn
inspiration from the Horndeski [26] and Galileon [27]
theories, which are the most general scalar-tensor theories
with second-order derivatives of the field and metric while
containing arbitrary coupling functions. After the deriva-
tion of our classes of black-hole solutions, we proceed to
study their physical properties such as the temperature,
entropy, and horizon area. We also investigate features of
the asymptotic profile of the scalar field, namely its
effective potential and rate of change at large distances
since this greatly differs from the asymptotically flat case.
The outline of the present work is as follows: in Sec. II,

we present our theoretical framework and perform our

A. BAKOPOULOS, G. ANTONIOU, and P. KANTI PHYS. REV. D 99, 064003 (2019)

064003-2



analytic study of the near and faraway radial regimes as
well as of their thermodynamical properties. In Sec. III,
we present our numerical results for regular black-hole
solutions in the case of Λ < 0 while our efforts in the case
with Λ > 0 are presented in Sec. IV. We finish with our
conclusions in Sec. V.

II. THE THEORETICAL FRAMEWORK

We consider a general class of higher-curvature gravi-
tational theories described by the following action
functional:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕþ fðϕÞR2

GB − 2Λ
�
:

ð1Þ

In this, the quadratic GB term R2
GB, defined as

R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2; ð2Þ

supplements the Einstein-Hilbert term, given by the Ricci
scalar curvature R, and the kinetic term for a scalar field ϕ.
A coupling term of the scalar field to the GB term, through
a general coupling function fðϕÞ, is necessary in order
for the GB term—a total derivative in four dimensions—to
contribute to the field equations. A cosmological constant
Λ that may take either a positive or a negative value is also
present in the theory.
By varying the action (1) with respect to the metric

tensor gμν and the scalar field ϕ, we derive the gravitational
field equations and the equation for the scalar field,
respectively. These are found to have the form

Gμν ¼ Tμν; ð3Þ

∇2ϕþ _fðϕÞR2
GB ¼ 0; ð4Þ

where Gμν is the Einstein tensor and Tμν is the energy-
momentum tensor, with the latter having the form

Tμν ¼ −
1

4
gμν∂ρϕ∂ρϕþ 1

2
∂μϕ∂νϕ −

1

2
ðgρμgλν þ gλμgρνÞ

× ηκλαβR̃ργ
αβ∇γ∂κfðϕÞ − Λgμν: ð5Þ

In the above, the dot over the coupling function denotes its
derivative with respect to the scalar field (i.e., _f ¼ df=dϕ).
We have also employed units in whichG ¼ c ¼ 1 and used
the definition

R̃ργ
αβ ¼ ηργστRσταβ ¼

ϵργστffiffiffiffiffiffi−gp Rσταβ: ð6Þ

Compared to the theory studied in [34], where Λ was
zero, the changes in Eqs. (3) and (4) look minimal: the

scalar-field equation remains unaffected while the energy-
momentum tensor Tμ

ν receives a constant contribution
−Λδμν. However, as we will see, the presence of the
cosmological constant affects both of the asymptotic sol-
utions, the properties of the derived black holes, and even
their existence.
In the context of this work, we will investigate the

emergence of regular, static, spherically symmetric but
nonasymptotically flat black-hole solutions with a nontrivial
scalar field. The line element of spacetime will accordingly
take the form

ds2 ¼ −eAðrÞdt2 þ eBðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð7Þ

The scalar field will also be assumed to be static and
spherically symmetric, ϕ ¼ ϕðrÞ. The coupling function
fðϕÞ will retain a general form during the first part of our
analysis and will be chosen to have a particular form only at
the stage of the numerical derivation of specific solutions.
The nonvanishing components of the Einstein tensor Gμ

ν

may easily be found by employing the line element (7), and
they read

Gt
t ¼

e−B

r2
ð1 − eB − rB0Þ; ð8Þ

Gr
r ¼

e−B

r2
ð1 − eB þ rA0Þ; ð9Þ

Gθ
θ ¼ Gϕ

ϕ ¼ e−B

4r
½rA02 − 2B0 þ A0ð2 − rB0Þ þ 2rA00�:

ð10Þ

Throughout our analysis, the prime denotes differentiation
with respect to the radial coordinate r. Using Eq. (5), the
components of the energy-momentum tensor Tμ

ν take in
turn the form

Tt
t ¼ −

e−2B

4r2
½ϕ02ðr2eB þ 16f̈ðeB − 1ÞÞ − 8_fðB0ϕ0ðeB − 3Þ

− 2ϕ00ðeB − 1ÞÞ� − Λ; ð11Þ

Tr
r ¼

e−Bϕ0

4

�
ϕ0 −

8e−BðeB − 3Þ _fA0

r2

�
− Λ; ð12Þ

Tθ
θ ¼ Tφ

φ

¼ −
e−2B

4r
½ϕ02ðreB − 8f̈A0Þ

− 4_fðA02ϕ0 þ 2ϕ0A00 þA0ð2ϕ00 − 3B0ϕ0ÞÞ�−Λ: ð13Þ

Matching the corresponding components of Gμ
ν and Tμ

ν,
the explicit form of Einstein’s field equations may easily be
derived. These are supplemented by the scalar-field equa-
tion (4) whose explicit form reads
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2rϕ00 þ ð4þ rA0 − rB0Þϕ0 þ 4_fe−B

r
× ½ðeB − 3ÞA0B0 − ðeB − 1Þð2A00 þ A02Þ� ¼ 0: ð14Þ

Although the system of equations involves three
unknown functions, namely AðrÞ, BðrÞ, and ϕðrÞ, only
two of them are independent. The metric function BðrÞmay
be easily shown to be a dependent variable: the ðrrÞ
component of field equations takes, in fact, the form of
a second-order polynomial with respect to eB, i.e.,
αe2B þ βeB þ γ ¼ 0, which easily leads to the following
solution:

eB ¼ −β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4αγ

p
2α

; ð15Þ

where

α ¼ 1 − Λr2; β ¼ r2ϕ02

4
− ð2_fϕ0 þ rÞA0 − 1;

γ ¼ 6_fϕ0A0: ð16Þ

Employing the above expression for eB, the quantity B0
may also be found to have the form

B0 ¼ −
γ0 þ β0eB þ α0e2B

2αe2B þ βeB
: ð17Þ

Therefore, by using Eqs. (15) and (17), the metric function
BðrÞ may be completely eliminated from the field equa-
tions. The remaining three equations then form a system of
only two independent, ordinary differential equations of
second order for the functions AðrÞ and ϕðrÞ:

A00 ¼ P
S
; ð18Þ

ϕ00 ¼ Q
S
: ð19Þ

The expressions for the quantities P, Q, and S, in terms of
ðr;ϕ0; A0; _f; f̈Þ, are given for the interested reader in
Appendix A as they are quite complicated.

A. Asymptotic solution at black-hole horizon

As we are interested in deriving novel black-hole
solutions, we will first investigate whether an asymptotic
solution describing a regular black-hole horizon is admitted
by the field equations. As a matter of fact, instead of
assuming the usual power-series expression in terms of
ðr − rhÞ, where rh is the horizon radius, we will construct
the solution as was done in [8,34]. To this end, we demand
that, near the horizon, the metric function eAðrÞ should
vanish (and eBðrÞ should diverge), whereas the scalar field

must remain finite. The first demand is reflected in the
assumption that A0ðrÞ should diverge as r → rh—this will
be justified a posteriori—while ϕ0ðrÞ and ϕ00ðrÞ must be
finite in the same limit.
Assuming the aforementioned behavior near the black-

hole horizon, Eq. (15) may be expanded in terms of A0ðrÞ as
follows1:

eB¼ð2_fϕ0 þrÞ
1−Λr2

A0−
2_fϕ0ðr2ϕ02−12Λr2þ8Þþrðr2ϕ02−4Þ

4ð1−Λr2Þð2_fϕ0 þrÞ

þO
�
1

A0

�
: ð20Þ

Then, substituting the above into the system (18) and (19),
we obtain

A00 ¼ W1

W3

A02 þOðA0Þ; ð21Þ

ϕ00 ¼ W2

W3

ð2_fϕ0 þ rÞA0 þOð1Þ; ð22Þ

where

W1 ¼ −ðr4 þ 4r3 _fϕ0 þ 4r2 _f2ϕ02 − 24_f2Þ þ 24Λ2r4 _f2

þ Λ½4r5 _fϕ0 þ 4r2 _f2ðr2ϕ02 − 16Þ
− 64r _f3ϕ0 − 64_f4ϕ02 þ r6�; ð23Þ

W2 ¼ −r3ϕ0ð1 − Λr2Þ − 32Λ _f3ϕ02 þ 16Λr _f2ϕ0ðΛr2 − 3Þ
− 2_f½6þ r2ϕ02 þ 2Λ2r4 − Λr2ðr2ϕ02 þ 4Þ�; ð24Þ

and

W3¼ð1−Λr2Þ½r4þ2r3 _fϕ0−16_f2ð3−2Λr2Þ−32Λr _f3ϕ0�:
ð25Þ

FromEq. (20), we conclude that the combination ð2_fϕ0 þ rÞ
near the horizon must be nonzero and positive for the metric
function eB to have the correct behavior, which is to diverge
as r → rh while being positive definite. Then, Eq. (22)
dictates that, if we want ϕ00 to be finite, we must necessarily
have

W2jr¼rh ¼ 0: ð26Þ

The above constraint may be written as a second-order
polynomial with respect to ϕ0, which can then be solved to
yield

1Note that only the (þ) sign in the expression for eB in Eq. (15)
leads to the desired black-hole behavior.
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ϕ0
h ¼−

r3hð1−Λr2hÞþ16Λrh _f2hð3−Λr2hÞ�ð1−Λr2hÞ
ffiffiffiffi
C

p

4_f½r2h−Λðr4h−16_f2hÞ�
;

ð27Þ

where all quantities have been evaluated at r ¼ rh. The
quantity C under the square root stands for the following
combination:

C ¼ 256Λ _f4hðΛr2h − 6Þ þ 32r2h _f
2
hð2Λr2h − 3Þ þ r6h ≥ 0;

ð28Þ

and must always be non-negative for ϕ0
h to be real. This

combination may be written as a second-order polynomial
for _f2h with roots

_f2� ¼ r2h½3 − 2Λr2h �
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2Λr2h þ Λ2r4h

p
�

16Λð−6þ Λr2hÞ
: ð29Þ

Then, the constraint on C becomes

C ¼ ð _f2h − _f2−Þð _f2h − _f2þÞ ≥ 0: ð30Þ

Therefore, the allowed regime for the existence of regular,
black-hole solutions with scalar hair is given by _f2h ≤ _f2− or
_f2h ≥ _f2þ, since _f

2
þ > _f2−. To obtain some physical insight on

these inequalities, we take the limit of a small cosmological
constant; then, the allowed ranges are

_f2h ≤
r4h
96

�
1þΛr2h

6
þ � � �

�
or _f2h ≥

r4h
48

�
1−

3

Λr2h
þ � � �

�
;

ð31Þ

respectively. In the absence of Λ, Eq. (28) results in the
simple constraint _f2h ≤ r4h=96 and defines a sole branch of
solutions with a minimum allowed value for the horizon
radius (and mass) of the black hole [34]. In the presence of
a cosmological constant, this constraint is now replaced by
_f2h ≤ _f2− or by the first inequality presented in Eq. (31) in the
small-Λ limit. This inequality leads again to a branch of
solutions that—for chosen fðϕÞ, ϕh, andΛ—terminates at a
black-hole solution with a minimum horizon radius rmin

h . We
observe that, at least for small values of Λ, the presence of a
positive cosmological constant relaxes the constraint,
allowing for smaller black-hole solutions, while a negative
cosmological constant pushes the minimum horizon radius
toward larger values. The second inequality in Eq. (31)
describes a new branch of black-hole solutions that does not
exist when Λ ¼ 0; this was also noted in [85] in the case of
the linear coupling function. This branch of solutions
describes a class of very small GBblack holes and terminates
instead at a black hole with a maximum horizon radius rmax

h .

Returning now to Eq. (18) and employing the constraint
(27), the former takes the form

A00 ¼ −A02 þOðA0Þ: ð32Þ

Integrating the above, we find that A0ðrÞ ∼ 1=ðr − rhÞ, a
result that justifies the diverging behavior of this quantity
near the horizon that we assumed earlier. A second integra-
tion yields AðrÞ ∼ lnðr − rhÞ, which then uniquely deter-
mines the expression of the metric function eA in the near-
horizon regime. Employing Eq. (20), themetric functionB is
also determined in the same regime. Therefore, the asymp-
totic solution of Eqs. (15), (18), and (19) that describes a
regular, black-hole horizon in the limit r → rh is given by the
following expressions:

eA ¼ a1ðr − rhÞ þ � � � ; ð33Þ

e−B ¼ b1ðr − rhÞ þ � � � ; ð34Þ

ϕ ¼ ϕh þ ϕ0
hðr − rhÞ þ ϕ00

hðr − rhÞ2 þ � � � ; ð35Þ

where a1, b1, and ϕh are integration constants. We observe
that the above asymptotic solution constructed for the case
of a nonzero cosmological constant has exactly the same
functional form as the one constructed in [34] for the case
of vanishing Λ. The presence of the cosmological constant
modifies though the exact expressions of the basic con-
straint (27) for ϕ0

h and of the quantity C given in (28), the
validity of which ensures the existence of a regular black-
hole horizon. As in [34], the exact form of the coupling
function fðϕÞ does not affect the existence of the asymp-
totic solution; therefore regular black-hole solutions may
emerge for a wide class of theories of the form (1).
The regularity of the asymptotic black-hole solution is

also reflected in the nondiverging behavior of the compo-
nents of the energy-momentum tensor and of the scale-
invariant Gauss-Bonnet term. The components of the
former quantity in this regime assume the form

Tt
t ¼

2e−B

r2
B0ϕ0 _f − ΛþOðr − rhÞ; ð36Þ

Tr
r ¼ −

2e−B

r2
A0ϕ0 _f − ΛþOðr − rhÞ; ð37Þ

Tθ
θ ¼

e−2B

r
ð2A00 þ A02 − 3A0B0Þϕ0 _f − ΛþOðr − rhÞ:

ð38Þ

Employing the asymptotic expansions (33)–(35), one may
see that all components remain indeed finite in the vicinity
of the black-hole horizon. For future use, we note that the
cosmological constant adds a positive contribution to all
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components of the energy-momentum tensor Tμ
ν for Λ < 0,

while it subtracts a positive contribution for Λ > 0. Also,
all scalar curvature quantities, the explicit form of which
may be found in Appendix B, independently exhibit a
regular behavior near the black-hole horizon—when these
are combined, the GB term, in the same regime, takes the
form

R2
GB ¼ þ 12e−2B

r2
A02 þOðr − rhÞ; ð39Þ

exhibiting, too, a regular behavior as expected.

B. Asymptotic solutions at large distances

The form of the asymptotic solution of the field
equations at large distances from the black-hole horizon
depends strongly on the sign of the cosmological constant.
Therefore, in what follows, we study separately the cases of
positive and negative Λ.

1. Positive cosmological constant

In the presence of a positive cosmological constant, a
second horizon, the cosmological one, is expected to
emerge at a radial distance r ¼ rc > rh. We demand that
this horizon is also regular, that is, that the scalar field ϕ and
its derivatives remain finite in its vicinity. We may, in fact,
follow a method identical to the one followed in Sec. II.
1 near the black-hole horizon: we again demand that, at the
cosmological horizon, gtt → 0 while grr → ∞; then, using
that A0 diverges there, the regularity of ϕ00 from Eq. (19)
eventually leads to the constraint

ϕ0
c ¼ −

r3cð1−Λr2cÞ þ 16Λrc _f2cð3−Λr2cÞ � ð1−Λr2cÞ
ffiffiffiffi
C̃

p

4_f½r2c −Λðr4c − 16_f2cÞ�
;

ð40Þ

with C̃ now being given by the non-negative expression

C̃ ¼ 256Λ _f4cðΛr2c − 6Þ þ 32r2c _f
2
cð2Λr2c − 3Þ þ r6c ≥ 0:

ð41Þ
Employing Eq. (40) in Eq. (18), the solution for the metric
function A may again be constructed. Overall, the asymp-
totic solution of the field equations near a regular, cosmo-
logical horizon will have the form

eA ¼ a2ðrc − rÞ þ � � � ; ð42Þ

e−B ¼ b2ðrc − rÞ þ � � � ; ð43Þ

ϕ ¼ ϕc þ ϕ0
cðrc − rÞ þ ϕ00

cðrc − rÞ2 þ � � � ; ð44Þ

where care has been taken for the fact that r ≤ rc. One may
see again that the above asymptotic expressions lead to

finite values for the components of the energy-momentum
tensor and scalar invariant quantities. Once again, the
explicit form of the coupling function fðϕÞ is of minor
importance for the existence of a regular, cosmological
horizon.

2. Negative cosmological constant

For a negative cosmological constant, and at large dis-
tances from the black-hole horizon, we expect the spacetime
to assume a form close to that of the Schwarzschild–anti-de
Sitter (SAdS) solution. Thus, we assume the following
approximate forms for the metric functions:

eAðrÞ ¼
�
k −

2M
r

−
Λeff

3
r2 þ q2

r2

��
1þ q1

r2

�
2

; ð45Þ

e−BðrÞ ¼ k −
2M
r

−
Λeff

3
r2 þ q2

r2
; ð46Þ

where k, M, Λeff , and q1;2 are, at the moment, arbitrary
constants. Substituting the above expressions into the scalar
field equation (14), we obtain at first order the constraint

ϕ00ðrÞ þ 4

r
ϕ0ðrÞ − 8Λeff

_f
r2

¼ 0: ð47Þ

The gravitational equations, under the same assumptions,
lead to two additional constraints, namely

Λ − Λeff þ
Λeffr2ϕ0

12

�
ϕ0 −

16Λeff
_f

r

�
¼ 0; ð48Þ

Λ − Λeff −
4

9
_fΛ2

effr
2

�
ϕ00 þ 3ϕ0

r

�

−
Λeffr2

12
ϕ02

�
1þ 16Λeff f̈

3

�
¼ 0: ð49Þ

Contrary to what happens close to the horizons (either
black-hole or cosmological ones), the form of the coupling
function fðϕÞ now affects the asymptotic form of the scalar
field at large distances. The easiest case is that of a linear
coupling function, fðϕÞ ¼ αϕ—that case was first studied
in [85]; however, we review it again in the context of our
analysis as it will prove to play a more general role. The
scalar field, at large distances, may be shown to have the
approximate form

ϕðrÞ ¼ ϕ∞ þ d1 ln rþ
d2
r2

þ d3
r3

þ � � � ; ð50Þ

where again ðϕ∞; d1; d2; d3Þ are arbitrary constant coef-
ficients. The coefficients d1 and Λeff may be determined
through the first-order constraints (47) and (48), respec-
tively, and are given by
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d1 ¼
8

3
αΛeff ; Λeff

�
3þ 80α2Λ2

eff

9

�
¼ 3Λ: ð51Þ

The third first-order constraint, Eq. (49), is then trivially
satisfied. In order to determine the values of the remaining
coefficients, one needs to derive higher-order constraints.
For example, the coefficients k, q1, and d2 are found at
third-order approximation to have the forms

k ¼ 81þ 864α2Λ2
eff þ 1024α4Λ4

eff

81þ 1008α2Λ2
eff þ 2560α4Λ4

eff

;

q1 ¼
24α2Λeffð9þ 64α2Λ2

effÞ
ð9þ 32α2Λ2

effÞð9þ 80α2Λ2
effÞ

;

d2 ¼ −
12αð27þ 288α2Λ2

eff þ 512α4Λ4
effÞ

81þ 1008α2Λ2
eff þ 2560α2Λ2

eff

; ð52Þ

while for q2 or d3 one needs to go even higher. In contrast,
the coefficientM remains arbitrary and may be interpreted
as the gravitational mass of the solution.
In the perturbative limit (i.e., for small values of the

coupling constant α of the GB term), one may show that
the above asymptotic solution is valid for all forms of the
coupling function fðϕÞ. Indeed, if we write

ϕðrÞ ¼ ϕ0 þ
X∞
n¼1

αnϕnðrÞ ð53Þ

and define fðϕÞ ¼ αf̃ðϕÞ, then, at first order, _f ≃ α _̃fðϕ0Þ.
Therefore, independently of the form of fðϕÞ, at first order
in the perturbative limit, _f is a constant, as in the case of
a linear coupling function. Then, a solution of the form
of Eqs. (45), (46), and (50) is easily derived2 with α in
Eqs. (51) and (52) now being replaced by _fðϕ0Þ.
For arbitrary values of the coupling constant α, though,

or for a nonlinear coupling function fðϕÞ, the approximate
solution described by Eqs. (45), (46), and (50) will not, in
principle, be valid any more. Unfortunately, no analytic
form of the solution at large distances may be derived in
these cases. However, as we will see in Sec. III, numerical
solutions do emerge with a nontrivial scalar field and an
asymptotic anti–de Sitter–type behavior at large distances.
These solutions are also characterized by a finite GB term
and finite, constant components of the energy-momentum
tensor at the far asymptotic regime.

C. Thermodynamical analysis

In this subsection, we calculate the thermodynamical
properties of the sought-for black-hole solutions, namely

their temperature and entropy. The first quantity may easily
be derived by using the following definition [89,90]:

T ¼ kh
2π

¼ 1

4π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffijgttgrrj

p
���� dgttdr

����
�

rh

¼
ffiffiffiffiffiffiffiffiffiffi
a1b1

p
4π

; ð54Þ

which relates the black-hole temperature T to its surface
gravity kh. The above formula is valid for spherically
symmetric black holes in theories that may contain also
higher-derivative terms such as the GB term. The final
expression of the temperature in Eq. (54) is derived by
employing the near-horizon asymptotic forms (33) and (34)
of the metric functions.
The entropy of the black hole may be calculated by using

the Euclidean approach in which the entropy is given by the
relation [91]

Sh ¼ β

�∂ðβFÞ
∂β − F

�
; ð55Þ

where F ¼ IE=β is the Helmholtz free energy of the system
given in terms of the Euclidean version of the action IE,
and β ¼ 1=ðkBTÞ. The above formula has been used in the
literature to determine the entropy of the asymptotically
flat colored GB black holes [15] and of the family of novel
black-hole solutions found in [34] for different forms of
the GB coupling function. However, in the case of a
nonasymptotically flat behavior, the above method needs
to be modified: in the case of a de Sitter–type asymptotic
solution, the Euclidean action needs to be integrated only
over the causal spacetime rh ≤ r ≤ rc, whereas, for an anti–
de Sitter–type asymptotic solution, the Euclidean action
needs to be regularized [92,93], by subtracting the diverg-
ing, “pure” AdS-spacetime contribution.
Alternatively, one may employ the Noether current

approach developed in [94] to calculate the entropy of a
black hole. In this, the Noether current of the theory under
diffeomorphisms is determined, with the Noether charge on
the horizon being identified with the entropy of the black
hole. In [95], the following formula was finally derived for
the entropy:

S ¼ −2π
I

d2x
ffiffiffiffiffiffiffiffi
hð2Þ

q � ∂L
∂Rabcd

�
H
ϵ̂abϵ̂cd; ð56Þ

where L is the Lagrangian of the theory, ϵ̂ab the binormal to
the horizon surface H, and hð2Þ the two-dimensional
projected metric on H. The equivalence of the two
approaches has been demonstrated in [93], in particular
in the context of theories that contain higher-derivative
terms such as the GB term. Here, we will use the Noether
current approach to calculate the entropy of the black holes
as it leads faster to the desired result.
To this end, we need to calculate the derivatives of the

scalar gravitational quantities, appearing in the Lagrangian

2In the perturbative limit, at first order, one finds d1 ¼
8Λ _fðϕ0Þ=3, Λeff ¼ Λ, k ¼ 1, q1 ¼ 0, and d2 ¼ −4_fðϕ0Þ. For
more details on the perturbative analysis of the black-hole
solutions that arise in the context of the general class of theories
(1) and are either asymptotically flat or (anti–)de Sitter, see [88].
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of our theory (1), with respect to the Riemann tensor. In
Appendix C, we present a simple way to derive those
derivatives. Then, substituting in Eq. (56), we obtain

S ¼ −
1

8

I
d2x

ffiffiffiffiffiffiffiffi
hð2Þ

q �
1

2
ðgacgbd − gbcgadÞ þ fðϕÞ½2Rabcd

− 2ðgacRbd − gbcRad − gadRbc þ gbdRacÞ

þ Rðgacgbd − gbcgadÞ�
	

H
ϵ̂abϵ̂cd: ð57Þ

The first term inside the curly brackets of the above
expression comes from the variation of the Einstein-
Hilbert term and leads to

S1 ¼ −
1

16

I
d2x

ffiffiffiffiffiffiffiffi
hð2Þ

q
ðϵ̂abϵ̂ab − ϵ̂abϵ̂

baÞ: ð58Þ

We recall that ϵ̂ab is antisymmetric and, in addition,
satisfies ϵ̂abϵ̂ab ¼ −2. Therefore, we easily obtain the result

S1 ¼
AH

4
; ð59Þ

where AH ¼ 4πr2h is the horizon surface. The remaining
terms in Eq. (57) are all proportional to the coupling
function fðϕÞ and follow from the variation of the GB term.
To facilitate the calculation, we notice that, on the horizon
surface, the binormal vector is written as ϵ̂ab ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−g00g11
p jHðδ0aδ1b − δ1aδ

0
bÞ. This means that we may alter-

natively write

� ∂L
∂Rabcd

�
H
ϵ̂abϵ̂cd ¼ 4g00g11jH

� ∂L
∂R0101

�
H
: ð60Þ

Therefore, the terms proportional to fðϕÞmay be written as

S2 ¼ −
1

2
fðϕÞg00g11jH

I
d2x

ffiffiffiffiffiffiffiffi
hð2Þ

q
½2R0101

− 2ðg00R11 − g10R01 − g01R10 þ g11R00Þ þ g00g11R�H:
ð61Þ

To evaluate the above integral, we will employ the near-
horizon asymptotic solution (33)–(35) for the metric func-
tions and scalar field. The asymptotic values of all quantities
appearing inside the square brackets above are given in
Appendix C. Substituting in Eq. (61), we straightforwardly
find

S2 ¼
fðϕhÞAH

r2h
¼ 4πfðϕhÞ: ð62Þ

Combining the expressions (59) and (62), we finally derive
the result

Sh ¼
Ah

4
þ 4πfðϕhÞ: ð63Þ

The above describes the entropy of aGBblack hole arising in
the context of the theory (1), with a general coupling function
fðϕÞ between the scalar field and the GB term, and a
cosmological constant term. We observe that the above
expression matches the one derived in [34] in the context
of the theory (1) but in the absence of the cosmological
constant. This was, in fact, expected on the basis of the more
transparent Noether approach used here: the Λ term does
not change the overall topology of the black-hole horizon,
and it does not depend on the Riemann tensor; therefore, no
modifications are introduced to the functional form of the
entropy of the black hole due to the cosmological constant.
However, the presence of Λ modifies in a quantitative way
the properties of the black hole and therefore the value of the
entropy, and temperature, of the found solutions.

III. ANTI–DE SITTER GAUSS-BONNET
BLACK HOLES

In order to construct the complete black-hole solutions
in the context of the theory (1), i.e., in the presence of
both the GB and the cosmological constant terms, we need
to numerically integrate the system of Eqs. (18) and (19).
The integration starts at a distance very close to the horizon
of the black hole, i.e., at r ≈ rh þOð10−5Þ (for simplicity,
we set rh ¼ 1). The metric function A and scalar field ϕ in
that regime are described by the asymptotic solutions (33)
and (35). The input parameter ϕ0

h is uniquely determined
through Eq. (27) once the coupling function fðϕÞ ¼ αf̃ðϕÞ
is selected and the values of the remaining parameters of
the model near the horizon are chosen. These parameters
appear to be α, ϕh, and Λ. However, the first two are not
independent: since it is their combination αf̃ðϕhÞ that
determines the strength of the coupling between the GB
term and the scalar field, a change in the value of one of
them may be absorbed in a corresponding change to the
value of the other; as a result, we may fix α and vary
only ϕh. The values of ϕh and Λ also cannot be totally
uncorrelated as they both appear in the expression of C,
Eq. (28), that must always be positive; therefore, once the
value of the first is chosen, there is an allowed range of
values for the second one for which black-hole solutions
arise. This range of values are determined by the inequal-
ities _f2h ≤ _f2− and _f2h ≥ _f2þ according to Eq. (30), and lead
in principle to two distinct branches of solutions. In fact,
removing the square, four branches emerge depending on
the sign of _fh. However, in what follows we will assume
that _fh > 0, and thus study the two regimes _fh ≤ _f− and
_fh ≥ _fþ; similar results emerge if one assumes instead
that _fh < 0.
Before starting our quest for black holes with an (anti–)

de Sitter asymptotic behavior at large distances, we first
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considered the case with Λ ¼ 0whereupon we successfully
reproduced the families of asymptotically flat back holes
derived in [34]. Then, we selected nonvanishing values ofΛ
and looked for novel black-hole solutions. For a negative
cosmological constant (Λ < 0), the integration starts from
the near-horizon regime with the asymptotic solutions (33)
and (35), and proceeds toward large values of the radial
coordinate until the form of the derived solution for the
metric resembles the asymptotic solution (45) and (46)
describing an anti–de Sitter–type background. The arbitrary
coefficient a1 that does not appear in the field equations may
be fixedbydemanding that, at very large distances, themetric
functions satisfy the constraint eA ≃ e−B. We have consid-
ered a large number of forms for the coupling function fðϕÞ,
and, as we will now demonstrate, we have managed to
produce a family of regular black-hole solutionswith an anti–
de Sitter asymptotic behavior, for every choice of fðϕÞ.

A. Exponential coupling function

We will first discuss the case of an exponential coupling
function, fðϕÞ ¼ αe−ϕ. The solutions for the metric func-
tions eAðrÞ and eBðrÞ are depicted in the left plot of Fig. 1. We
may easily see that the near-horizon behavior, with eAðrÞ

vanishing and eBðrÞ diverging, is eventually replaced by an
anti–de Sitter regime with the exactly opposite behavior of
the metric functions at large distances. The solution pre-
sented corresponds to the particular values Λ ¼ −1 (in units
of r−2h ), α ¼ 0.1, and ϕh ¼ 1; however, we obtain the same
qualitative behavior for every other set of parameters
satisfying the constraint3 _fh ≤ _f− that follows from
Eq. (28). The spacetime is regular in thewhole radial regime,
and this is reflected in the form of the scalar-invariant

Gauss-Bonnet term: this is presented in the right plot of
Fig. 1, for α ¼ 0.01, ϕh ¼ 1 and for a variety of values of
the cosmological constant. We observe that the GB term
acquires its maximum value near the horizon regime, where
the curvature of spacetime is larger, and reduces to a smaller,
constant asymptotic value in the far-field regime. This
asymptotic value is, as expected, proportional to the cos-
mological constant as this quantity determines the curvature
of spacetime at large distances.
Although in Sec. II. B. 2, we could not find the analytic

form of the scalar field at large distances from the black-
hole horizon for different forms of the coupling function
fðϕÞ, our numerical results ensure that its behavior is such
that the effect of the scalar field at the far-field regime is
negligible, and it is only the cosmological term that
determines the components of the energy-momentum
tensor. In the left plot of Fig. 2, we display all three
components of Tμ

ν over the whole radial regime, for the
indicative solution Λ ¼ −1, α ¼ 0.1, and ϕh ¼ 1. Far away
from the black-hole horizon, all components reduce to −Λ,
in accordance with Eqs. (11)–(13), with the effect of both
the scalar field and the GB term there being negligible.
Near the horizon, and according to the asymptotic behavior
given by Eqs. (36)–(38), we always have Tr

r ≈ Tt
t, since,

at r ≃ rh, A0 ≃ −B0; also, the Tθ
θ component always has the

opposite sign to that of Tr
r since A00 ≃ −A02. This quali-

tative behavior of Tμ
ν remains the same for all forms of the

coupling function we have studied and for all solutions
found; therefore we refrain from giving additional plots of
this quantity for the other classes of solutions found.
From the results depicted in the left plot of Fig. 2, we see

that, near the black-hole horizon, we always have Tr
r ≈

Tt
t > 0. Comparing this behavior with the asymptotic

forms (36)–(38), we deduce that, close to the black-hole
horizon where A0 > 0, we must have ðϕ0 _fÞh < 0. In the
case of a vanishing cosmological constant, the negative
value of this quantity was of paramount importance for
the evasion of the no-hair theorem [7] and the emergence
of novel, asymptotically flat black-hole solutions [34].

FIG. 1. The metric components jgttj and grr (left plot), and the Gauss-Bonnet term R2
GB (right plot) in terms of the radial coordinate r,

for fðϕÞ ¼ αe−ϕ.

3Note that no regular black-hole solutions were found that
satisfy the alternative allowed choice _fh ≥ _fþ; for these choices
of parameters, our numerical code does not lead to any solutions
independently of the form of the coupling function. The same ill-
defined behavior of this second potential branch of solutions with
very small horizon radii was also found in [85].
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We observe that also in the context of the present analysis
with Λ ≠ 0, this quantity turns out to be again negative, and
to lead once again to novel black-hole solutions. Coming
back to our assumption of a decreasing exponential
coupling function and upon choosing to consider α > 0,
the constraint ðϕ0 _fÞh < 0means that ϕ0

h > 0 independently
of the value of ϕh. In the right plot of Fig. 2, we display the
solution for the scalar field in terms of the radial coordinate,
for the indicative values of α ¼ 0.1, ϕh ¼ 0.5 and for
different values of the cosmological constant. The scalar
field satisfies indeed the constraint ϕ0

h > 0 and increases
away from the black-hole horizon.4 At large distances, we
observe that, for small values of the cosmological constant,
ϕðrÞ assumes a constant value; this is the behavior found
for asymptotically flat solutions [34] that the solutions with
smallΛ are bound tomatch. For increasingly larger values of
Λ though, the profile of the scalar field deviates significantly
from the series expansion in powers of ð1=rÞ, thus allowing
for a r-dependent ϕ even at infinity—in the perturbative
limit, as we showed in the previous section, this dependence
is given by the form ϕðrÞ ≃ d1 ln r.

B. Polynomial coupling function

We will now consider the case of an even polynomial
coupling function of the form fðϕÞ ¼ αϕ2n with n ≥ 1. The
behavior of the solution for the metric functions matches
the one depicted5 in the left plot of Fig. 1. The same is true
for the behavior of the GB term and the energy-momentum
tensor, whose profiles are similar to the ones displayed in
Figs. 1 (right plot) and 2 (left plot), respectively. The
positive-definite value of Tr

r near the black-hole horizon
implies again that, there, we should have ð _fϕ0Þh < 0, or
equivalently ϕhϕ

0
h < 0, for α > 0. Indeed, two classes

of solutions arise in this case: for positive values of ϕh,
we obtain solutions for the scalar field that decrease away
from the black-hole horizon, while for ϕh < 0, solutions
that increase with the radial coordinate are found. In Fig. 3

FIG. 2. The energy-momentum tensor Tμν (left plot) and scalar field ϕ (right plot) in terms of the radial coordinate r, for fðϕÞ ¼ αe−ϕ.

FIG. 3. The scalar field ϕ in terms of the radial coordinate r, for fðϕÞ ¼ αϕ2 (left plot) and fðϕÞ ¼ αϕ3 (right plot).

4A complementary family of solutions arises if we choose
α < 0, with the scalar profile now satisfying the constraint
ϕ0
h < 0 and decreasing away from the black-hole horizon.

5Let us mention at this point that, for extremely large values of
either the coupling constant α or the cosmological constant Λ,
which are nevertheless allowed by the constraint (28), solutions
that have their metric behavior deviating from the AdS-type form
(45) and (46) were found; according to the obtained behavior,
both metric functions seem to depend logarithmically on the
radial coordinate instead of polynomially. As the physical
interpretation of these solutions is not yet clear, we omit these
solutions from the remainder of our analysis.
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(left plot), we present a family of solutions for the case of
the quadratic coupling function (i.e., n ¼ 1), for ϕh ¼ −1
and α ¼ 0.01, arising for different values of Λ—since
ϕh < 0, the scalar field exhibits an increasing behavior as
expected.
Let us examine next the case of an odd polynomial

coupling function, fðϕÞ ¼ αϕ2nþ1 with n ≥ 0. The behavior
of the metric functions, GB term, and energy-momentum
tensor have the expected behavior for an asymptotically AdS
background, as in the previous cases. The solutions for the
scalar field near the black-hole horizon are found to satisfy
the constraint αðϕ2nϕ0Þh < 0 or simply ϕh

0 < 0, when
α > 0. As this holds independently of the value of ϕh,
all solutions for the scalar field are expected to decrease
away from the black-hole horizon. Indeed, this is the profile
depicted in the right plot of Fig. 3 where a family of solutions
for the indicative case of a qubic coupling function (i.e.,
n ¼ 1) is presented for α ¼ 0.1, ϕh ¼ 0.1, and various
values of Λ.

C. Inverse polynomial coupling function

The case of an inverse polynomial coupling function,
fðϕÞ ¼ αϕ−k, with k either an even or an odd positive
integer, was also considered. For odd k, i.e., k ¼ 2nþ 1,
the positivity of Tr

r near the black-hole horizon demands
again that ð _fϕ0Þh < 0, or that −α=ϕ2nþ2ϕ0 < 0. For α > 0,
the solution for the scalar field should thus always satisfy
ϕ0
h > 0, regardless of our choices for ϕh or Λ. As an

indicative example, in the left plot of Fig. 4, we present the
case of fðϕÞ ¼ α=ϕ with a family of solutions arising for
α ¼ 0.1 and ϕh ¼ 2. The solutions for the scalar field
clearly satisfy the expected behavior by increasing away
from the black-hole horizon. On the other hand, for even k,
i.e., k ¼ 2n, the aforementioned constraint now demands
that ϕhϕ

0
h < 0. As in the case of the odd polynomial

coupling function, two subclasses of solutions arise: for
ϕh > 0, solutions emerge with ϕ0

h < 0, whereas, for
ϕh < 0, we find solutions with ϕ0

h > 0. The profiles of
the solutions in this case are similar to the ones found

before, with ϕ approaching, at large distances, an almost
constant value for small Λ but adopting a more dynamical
behavior as the cosmological constant gradually takes on
larger values.

D. Logarithmic coupling function

As a final example of another form of the coupling
function between the scalar field and the GB term, let us
consider the case of a logarithmic coupling function,
fðϕÞ ¼ α lnϕ. Here, the condition near the horizon of
the black hole gives αϕ0=ϕ < 0, and therefore, for α > 0,
we must have ϕ0

hϕh < 0; for ϕh > 0, this translates to a
decreasing profile for the scalar field near the black-hole
horizon. In the right plot of Fig. 4, we present a family of
solutions arising for a logarithmic coupling function for
fixed α ¼ 0.01 and ϕh ¼ 1, while varying the cosmological
constant Λ. The profiles of the scalar field agree once again
with the one dictated by the near-horizon constraint, and
they all decrease in that regime. As in the previous cases,
the metric functions approach asymptotically an anti–de
Sitter background, the scalar-invariant GB term remains
everywhere regular, and the same is true for all components
of the energy-momentum tensor that asymptotically appro-
ach the value −Λ.

E. Physical properties of the solutions

It is of particular interest to study also the behavior of
the effective potential of the scalar field, a role that in
our theory is played by the GB term together with the
coupling function, i.e., Vϕ ≡ _fðϕÞR2

GB. In the left plot of
Fig. 5, we present a combined graph that displays its
profile in terms of the radial coordinate, for a variety of
forms of the coupling function fðϕÞ. As expected, the
potential Vϕ takes on its maximum value always near
the horizon of the black hole, where the GB term is also
maximized and thus sources the nontrivial form of the
scalar field. On the other hand, as we move toward larger
distances, Vϕ reduces to an asymptotic constant value.
Although this asymptotic value clearly depends on the

FIG. 4. The scalar field ϕ in terms of the radial coordinate r, for fðϕÞ ¼ α=ϕ (left plot) and fðϕÞ ¼ α lnϕ (right plot).
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choice of the coupling function, its common behavior
allows us to comment on the asymptotic behavior
of the scalar field at large distances. Substituting a
constant value V∞ in the place of Vϕ in the scalar-field
equation (14), we arrive at the intermediate result

∂r½eðA−BÞ=2r2ϕ0� ¼ −eðAþBÞ=2r2V∞: ð64Þ

Then, employing the asymptotic forms of the metric
functions at large distances (45) and (46), the above
may easily be integrated with respect to the radial
coordinate to yield a form for the scalar field identical
to the one given in Eq. (50). We may thus conclude that
the logarithmic form of the scalar field may adequately
describe its far-field behavior even beyond the perturba-
tive limit of very small α.
We now proceed to discuss the physical characteristics of

the derived solutions. Because of the large number of
solutions found, we will present, as for Vϕ, combined
graphs for different forms of the coupling function fðϕÞ.
Starting with the scalar field, we notice that no conserved
quantity, such as a scalar charge, may be associated with the
solution at large distances in the case of asymptotically
anti–de Sitter black holes: the absence of an Oð1=rÞ term
in the far-field expression (50) of the scalar field, which
would signify the existence of a long-range interaction
term, excludes the emergence of such a quantity, even of
secondary nature. One could attempt instead to plot the
dependence of the coefficient d1, as a quantity that
predominantly determines the rate of change of the scalar
field at the far field, in terms of the mass of the black hole.
This is displayed in the right plot of Fig. 5 for the indicative
value Λ ¼ −0.1 of the cosmological constant. We see that,
for small values of the mass M, this coefficient takes in
general a nonzero value, which amounts to having a
nonconstant value of the scalar field at the far-field regime.
As the mass of the black hole increases though, this
coefficient asymptotically approaches a zero value.
Therefore, the rate of change of the scalar field at infinity
for massive GB black holes becomes negligible, and the

scalar field tends to a constant. This is the “Schwarzschild-
AdS regime,”where the GB term decouples from the theory
and the scalar-hair disappears—the same behavior was
observed also in the case of asymptotically flat GB black
holes [34] where, in the limit of large mass, all of our
solutions merged with the Schwarzschild ones.
We present next the ratio of the horizon area of our

solutions compared to the horizon area of the SAdS one
with the same mass, for the indicative values of the negative
cosmological constant Λ ¼ −0.001 and Λ ¼ −0.1 in the
two plots of Fig. 6. These plots provide further evidence for
the merging of our GB black-hole solutions with the SAdS
solution in the limit of large mass. The left plot of Fig. 6
reveals that, for a small cosmological constant, all our GB
solutions remain smaller than the scalar-hair-free SAdS
solution independently of the choice for the coupling
function fðϕÞ—this is in complete agreement with the
profile found in the asymptotically flat case [34]. This
behavior persists for even larger values of the negative
cosmological constant for all classes of solutions apart from
the one emerging for the logarithmic function whose
horizon area is significantly increased in the small-mass
regime, as may be seen from the right plot of Fig. 6. These
plots also verify the termination of all branches of solutions
at the point of a minimum horizon, or minimum mass,
that all our GB solutions exhibit as a consequence of the
inequality (28). We also observe that, as hinted by the
small-Λ approximation given in Eq. (30), an increase in
the value of the negative cosmological constant pushes
upwards the lowest allowed value of the horizon radius of
our solutions.
We now move to the thermodynamical quantities of our

black-hole solutions. We start with their temperature T
given by Eq. (54) in terms of the near-horizon coefficients
ða1; b1Þ. In the left plot of Fig. 7, we display its dependence
in terms of the cosmological constant Λ, for several forms
of the coupling function. We observe that T increases, too,
with jΛj; we thus conclude that the more negatively curved
the spacetime is, the hotter the black hole that is formed is.
Note that the form of the coupling function plays almost

FIG. 5. The effective potential Vϕ of the scalar field, in terms of the radial coordinate (left plot), and the coefficient d1 (right plot) in
terms of the mass M, for various forms of fðϕÞ.
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no role in this relation with the latter thus acquiring a
universal character for all GB black-hole solutions. The
dependence of the temperature of the black hole on its
mass, as displayed in the right plot of Fig. 7, exhibits a
decreasing profile, with the obtained solution being colder
the larger its mass is. For small black-hole solutions, the
exact dependence of T onM depends on the particular form
of the coupling function but for solutions with a large mass

its role becomes unimportant as a common Schwarzschild-
AdS regime is again approached.
Let us finally study the entropy of the derived black-hole

solutions. In Fig. 8, we display the ratio of the entropy of
our GB solutions over the entropy of the corresponding
Schwarzschild–anti-de Sitter solution with the same mass,
for the same indicative values of the negative cosmological
constant as for the horizon area. i.e., for Λ ¼ −0.001

FIG. 7. The temperature T of the black hole as a function of the cosmological constant Λ (left plot) and the mass M of the black hole
(right plot), for various forms of fðϕÞ.

FIG. 6. The area ratio AGB=ASAdS of our solutions as a function of the mass M of the black hole, for various forms of fðϕÞ, and for
Λ ¼ −0.001 (left plot) and Λ ¼ −0.1 (right plot).

FIG. 8. The entropy ratio SGB=SSAdS of our solutions as a function of the massM of the black hole, for various forms of fðϕÞ, and for
Λ ¼ −0.001 (left plot) and Λ ¼ −0.1 (right plot).
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(left plot) and Λ ¼ −0.1 (right plot). We observe that the
profile of this quantity depends strongly on the choice of
the coupling function fðϕÞ for solutions with small masses,
whereas in the limit of large mass, where our solutions
reduce to the SAdS ones, this ratio approaches unity as
expected. For small values of Λ, the left plot of Fig. 8
depicts a behavior similar to the one found in the asymp-
totically flat case [34]: solutions emerging for the linear and
the quadratic coupling functions exhibit smaller entropy
compared to the SAdS one, while solutions for the
exponential, logarithmic, and inverse-linear coupling func-
tions lead to GB black holes with a larger entropy over the
whole mass range or for particular mass regimes. As we
increase the value of the cosmological constant (see right
plot of Fig. 8), the entropy ratio is suppressed for all
families of GB black holes apart from the one emerging
for the logarithmic coupling function, which exhibits a
substantial increase in this quantity over the whole mass
regime. Together with the solutions for the exponential and
inverse-linear coupling functions, they have an entropy
ratio larger than unity while this ratio is now significantly
lower than unity for all the other polynomial coupling
functions. Although the question of the stability of the
derived solutions is an important one and must be inde-
pendently studied for each family of solutions found, the
entropy profiles presented above may provide some hints
regarding the thermodynamical stability of our solutions
compared to the Schwarzschild–anti-de Sitter ones.

IV. DE SITTER GAUSS-BONNET
BLACK HOLES

We now address the case of a positive cosmological
constant, Λ > 0. We start our integration process at a
distance close to the black-hole horizon, using the asymp-
totic solutions (33)–(35) and choosing ϕh to satisfy again the
regularity constraint (27). The coupling function fðϕÞ is
assumed to take on a variety of forms—namely exponential,
even and odd polynomial, inverse even and odd polynomial,
and logarithmic forms—as in the case of the negative
cosmological constant. The numerical integration then
proceeds outwards to meet the corresponding asymptotic
solution (42)–(44) near the cosmological horizon.
Unfortunately, and despite our persistent efforts, no

complete black-hole solution interpolating between the
asymptotic solutions (33)–(35) and (42)–(44) was found.
The same negative result concerning the existence of
a black hole solution with an asymptotically de Sitter
behavior was obtained in [85], where the case of a linear
coupling function between the GB term and the scalar
field was considered. It is, however, worth noting that
the two asymptotic solutions near the black-hole and
cosmological horizons do independently emerge—it is the
effort to match them in a smooth way via an intermediate
solution that fails.

To demonstrate this, in Fig. 9 we display the result of
our numerical integration for the indicative case of
α ¼ 0.01, ϕh ¼ −1, and Λ ¼ 0.01. The coupling function
has been chosen to be fðϕÞ ¼ αe−ϕ; however, the same
qualitative behavior was found for every choice of fðϕÞ
we have considered. From the metric functions and the
scalar-field profiles displayed in the two plots, we clearly
see that an asymptotic solution describing a regular black-
hole horizon is indeed formed. In this, the metric compo-
nent jgttj vanishes while the grr one diverges, as expected.
The scalar field near the black-hole horizon assumes a
finite, constant value while it decreases away from the
horizon, in perfect agreement with the scalar-field profile
found in the case of a negative cosmological constant.
The integration proceeds uninhibited but stops abruptly
close to the regime where the cosmological horizon
should form. In fact, from the left plot of Fig. 9, we
may see the expected behavior of the metric components
near the cosmological horizon (i.e., the vanishing of jgttj
and divergence of grr) just to emerge.
The emergence of asymptotic solutions and the failure

to smoothly match them strongly reminds us of the
analysis involved in the no-hair theorems [3,7], where a
similar situation holds. It is, however, difficult to general-
ize that analysis, or equivalently the argument for their
evasion as developed in [34], in the present case of a
nonvanishing cosmological constant.6 One could, never-
theless, gain some understanding of the situation by
examining the form of the near-horizon value of the
Tr

r component of the energy-momentum tensor given
in Eq. (37)—the profile of this component is of paramount
importance for the evasion of the novel no-hair theorem
[7] and the emergence of novel solutions. For the evasion
to be realized, this component must be positive and
decreasing close to the black-hole horizon [8,34]. From
Eq. (37), it becomes clear that the presence of a negative
cosmological constant (Λ < 0) in the theory always gives
a positive contribution to Tr

r and enhances the probability
of obtaining regular black holes. This justifies the easiness
in which novel black-hole solutions with an asymptoti-
cally anti–de Sitter behavior have emerged in the context
of our analysis. On the other hand, the contribution of a
positive cosmological constant (Λ > 0) to Tr

r is always
negative, and this makes the evasion of the no-hair
theorem less likely. It would indeed be interesting to
readdress the arguments presented in [34] as well as the
ones employed in the versions of the no-hair theorems for
nonasymptotically flat black holes [66–70] to cover also
the case where the GB term and the cosmological constant
appear simultaneously in the theory.
Nevertheless, even if the evasion of the no-hair theo-

rems may be realized for Λ > 0 in the presence of the GB

6A theoretical analysis is currently under way but has, so far,
not given any conclusive results.
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term—for small values of Λ this seems quite likely—this
merely opens the way to look for novel solutions, and it
does not guarantee their existence. The emergence of a
complete solution interpolating between the two horizons
still demands the smooth matching of the two asymptotic
solutions. It is quite likely that the system does not have
enough freedom to simultaneously satisfy the require-
ments for the existence of a regular solution, namely
Eqs. (27) and (28) and Eqs. (40) and (41)—this was also
noted in [85]. Or, a very careful selection of parameters
may be necessary for such a solution to emerge. In any
case, further investigation is necessary, and we hope to
return to this topic soon.

V. CONCLUSIONS

In this work, we have extended our previous analyses
[34], on the emergence of novel, regular black-hole
solutions in the context of the Einstein-scalar-GB theory,
to include the presence of a positive or negative cosmo-
logical constant. Since the uniform distribution of energy
associated with the cosmological constant permeates the
whole spacetime, we expected Λ to have an effect on
both the near-horizon and far-field asymptotic solutions.
Indeed, our analytical calculations in the small-r regime
revealed that the cosmological constant modifies the
constraint that determines the value of ϕ0

h for which a
regular, black-hole horizon forms. In addition, it was
demonstrated that such a horizon is indeed formed, for
either positive or negative Λ and for all choices of the
coupling function fðϕÞ.
In contrast, the behavior of the solution in the far-field

regime depended strongly on the sign of the cosmological
constant. For Λ > 0, a second horizon, the cosmological
one, was expected to form at a distance rc > rh, whereas
for Λ < 0, an anti–de Sitter–type of solution was sought
for at asymptotic infinity. Both types of solutions were
analytically shown to be admitted by the set of our field

equations at the limit of large distances, thus opening the
way for the construction of complete black-hole solutions
with an (anti–)de Sitter asymptotic behavior.
The complexity of the field equations prevented us from

constructing such a solution analytically; therefore we
turned to numerical analysis. Using our near-horizon
analytic solution as a starting point, we integrated the
set of field equations from the black-hole horizon and
outwards. For a negative cosmological constant (Λ < 0),
we demonstrated that regular black-hole solutions with an
anti–de Sitter–type asymptotic behavior arise with the
same easiness that their asymptotically flat counterparts
emerge. We have produced solutions for an exponential,
polynomial (even or odd), inverse polynomial (even or
odd), and logarithmic coupling function between the
scalar field and the GB term. In each and every case,
once fðϕÞwas chosen, selecting the input parameter ϕh

0 to
satisfy the regularity constraint (27) and the second input
parameter ϕh to satisfy the inequality (28) a regular black
hole solution always emerged. The metric components
exhibited the expected behavior near the black-hole and
asymptotic infinity with the scalar invariant GB term
being everywhere regular. All solutions possessed non-
trivial scalar hair, with the scalar field having a nontrivial
profile both close to and far away from the black-hole
horizon. For small negative values of Λ, we recovered
the power-law falloff of the scalar field at infinity, found in
the asymptotically flat case [34], whereas for large
negative values of Λ the profile of ϕ was dominated by
a logarithmic dependence on the radial coordinate. This
behavior was analytically shown to emerge both in the
linear coupling-function case and in the perturbative limit,
in terms of the coupling parameter α, but it was numeri-
cally found to accurately describe all of our solutions at
large distances.
The absence of a ð1=rÞ term in the expression of the

scalar field at large distances excludes the presence of a
scalar charge, even a secondary one. As a result, in the

FIG. 9. The metric functions jgttj and grr of the spacetime (left plot) and the scalar field ϕ (right plot) in terms of the radial coordinate r,
for a positive cosmological constant and coupling function fðϕÞ ¼ αe−ϕ.
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presence of Λ, the black-hole scalar hair amounts to having
a nontrivial, regular scalar field associated with the black
hole—a feature also excluded by the traditional no-hair
theorems—but not a conserved quantity. The coefficient d1
in front of the logarithmic term in the expression of ϕ can
give us information on how much the large-distance
behavior of the scalar field deviates from the power-law
one valid in the asymptotically flat case. We have found
that this deviation is stronger for GB black holes with a
small mass, whereas the more massive ones have a d1
coefficient that tends to zero. The temperature of the black
holes was found to increase with the cosmological constant
independently of the form of the coupling function. The
latter plays a more important role in the relation of T with
the black-hole mass: while the temperature decreases with
M for all classes of solutions found, the lighter ones exhibit
a stronger dependence on fðϕÞ. The same dependence on
the form of the coupling function is observed in the entropy
and horizon area of our solutions. For small masses, the
entropy of each class of solutions has a different behavior,
with the ones for the exponential, inverse-linear polynomial
and logarithmic coupling functions exhibiting a ratio
SGB=SSAdS (over the entropy of the Schwarzschild–anti-
de Sitter black hole with the same mass) larger than unity
for the entire mass range, for large values of Λ. This feature
hints toward the enhanced thermodynamical stability of
our solutions compared to their GR analogues. In the limit
of large mass, the entropy of all classes of our solutions
tend to the one of the Schwarzschild–anti-de Sitter black
hole with the same mass. The same holds for the horizon
area: while for small masses, each class has its own pattern
with M, with all solutions being smaller in size than the
corresponding SAdS one apart from the logarithmic case,
for large masses all black-hole solutions match the horizon
area of the SAdS solution.
Based on the above, we conclude that our GB black-hole

solutions with a negative cosmological constant smoothly
merge with the SAdS ones, in the large mass limit. As in the
asymptotically flat case, it is the small-mass range that
provides the characteristic features for the GB solutions.
These solutions have a modified dependence of both their
temperature and horizon area on their mass compared to the
SAdS solution. Another characteristic is also the minimum
horizon, or minimum mass, that all our GB solutions
possess due to the inequality (28).

Turning to GB solutions with a positive cosmological
constant, our quest has failed to find any such solutions.
Although the presence of a positive Λ does not obstruct the
formation of a regular black-hole or cosmological horizon,
our numerical integration did not manage to produce a
complete solution that would interpolate between the two
asymptotic regimes. This result holds independently of the
choice of the GB coupling function fðϕÞ or the value of Λ.
In conclusion, we have demonstrated that the general

classes of theories that contain the GB term and lead to
novel black-hole solutions, continue to do so even in the
presence of a negative cosmological constant in the theory.
In contrast, the presence of a positive cosmological con-
stant presents a severe obstacle for the formation of these
solutions. A further investigation is clearly necessary in
both cases: the relevance of the GB solutions with an anti–
de Sitter–type asymptotic solution in the context of the
AdS-CFT correspondence should be inquired, and the
deeper reason for the absence of solutions with a positive
cosmological constant should be investigated further. We
hope to return soon with results on both issues.
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APPENDIX A: SET OF DIFFERENTIAL
EQUATIONS

Here, we display the explicit expressions of the coef-
ficients S, P, and Q that appear in the system of differ-
ential equations (18) and (19) whose solution determines
the metric function A and the scalar field ϕ. Note that in
these expressions we have eliminated, via Eq. (17), B0,
which involves A00 and ϕ00, but retained eB for notational
simplicity. They are

S ¼ 2304A0 _f3ϕ02 þ 8eB½−128rA0 _f2ϕ0 − 448A0 _f3ϕ02 þ 32r2 _f2ϕ03 − 80_f2ϕ0�
þ 8e2B½16r2A0f0 þ 160rA0 _f2ϕ0 þ 160A0 _f3ϕ02 − 12r3 _fϕ02 − 16r2 _f2ϕ03

− 64Λr2 _f2ϕ0 þ 16r _f þ 160_f2ϕ0� þ 8e3B½−16r2A0 _f − 32rA0 _f2ϕ0 þ 4r3 _fϕ02

þ 16Λr3 _f þ 64Λr2 _f2ϕ0 − 32r _f − 80_f2ϕ0 þ r4ϕ0� þ 8e4B½16r _f − 16Λr3 _f�; ðA1Þ
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P ¼ −128e4BΛ2r3 _fðrA0 þ 2eB − 2Þ þ 16A03 _f½−2eBð−14eB þ 3e2B þ 19Þr _fϕ0

þ 8ð−8eB þ 3e2B þ 9Þ _f2ϕ02 − e2Bð3eB − 5Þr2� þ 4eBA02feBr _f½ð5eB − 19Þr2ϕ02

þ 12ðeB − 1Þ2� − 4_f2ϕ0½ð9eB − 17Þr2ϕ02 þ 8ðeB − 1Þ2� þ e2Br4ϕ0g
þ 4e2B2Λf−e2Br3ð−2þ rA0Þϕ0 − 16A0 _f2ϕ0½6ð3 − 4eB þ e2BÞ þ ð−5þ eBÞrA0�
þ 4eB _f½−3r2A02ð1þ eBÞ þ 4ð4ð−1þ eBÞ2 − r2ϕ02Þ þ 2rA0ð3 − 3eB þ r2ϕ02Þ�g
− 2e2Brϕ0f−8_fϕ0½4eBð−1þ eBÞ þ r2ϕ02ð−2þ eBÞ� − 4reBð−1þ eBÞ
− rϕ02½r2eB − 16f̈ð−1þ eBÞ�g − A0eBf32r _f2ϕ2ϕ0ð9 − 4eB þ 3e2BÞ
− r3ϕ0eB½4eBð1þ eBÞ − ϕ02ðr2eB þ 16f̈ð1þ eBÞÞ�
þ 8eB _f½4ð−1þ eBÞ2 þ r2ϕ02ð−7þ 3eBÞ − 2ϕ04ðr4 þ 8r2f̈Þ�g; ðA2Þ

and

Q ¼ 2304A0 _f2f̈ϕ04 − 1152A02 _f3ϕ03 þ eB½−144r2A0 _f2ϕ04 þ 672rA02 _f2ϕ02

þ 768A02 _f3ϕ03 − 384A0 _f2ϕ02 − 1024rA0 _f f̈ ϕ03 − 3584A0 _f2f̈ϕ04

þ 480r _f2ϕ04 þ 64r2 _f f̈ ϕ05 − 640_f f̈ ϕ03� þ e2B½128r2A0f̈ϕ02 þ 52r3A0 _fϕ03

þ 80r2A0 _f2ϕ04 − 128r2A02 _fϕ0 − 576Λr2A0 _f2ϕ02 − 320rA02 _f2ϕ02

þ 176rA0 _fϕ0 − 128A02 _f3ϕ03 þ 640A0 _f2ϕ02 þ 1280rA0 _f f̈ ϕ03 þ 1280A0 _f2f̈ϕ04

− 16r3f̈ϕ04ϕ04 þ 128rf̈ϕ02 − 4r4 _fϕ05 − 152r2 _fϕ03 − 256r _f2ϕ04 þ 384Λr _f2ϕ02

þ 160_fϕ0 − 64r2 _f f̈ ϕ05 − 512Λr2 _f f̈ ϕ03 þ 1280_f f̈ ϕ03� þ e3B½−128r2A0f̈ϕ02

þ 208Λr3A0 _fϕ0 þ 32r2A02 _fϕ0 þ 320Λr2A0 _f2ϕ02 þ 32rA02 _f02ϕ02 − 224rA0 _fϕ0

− 256A0 _f2ϕ02 − 256rA0 _f f̈ ϕ03 − 6r4A0ϕ02 þ 8r3A02 − 24r2A0 þ 16r3f̈ϕ04

þ 128Λr3f̈ϕ02 − 256rf̈ϕ02 þ 16Λr4 _fϕ03 þ 24r2 _fϕ03 − 12r3A0 _fϕ03 þ 32r _f2ϕ04

þ 224Λr2 _fϕ0 − 512Λr _f2ϕ02 − 320_fϕ0 þ 512Λr2 _f f̈ ϕ03 − 640_f f̈ ϕ03 þ r5ϕ04

þ 12r3ϕ02 − 32r� þ e4B½−48Λr3A0 _fϕ0 þ 48rA0 _fϕ0 − 24Λr4A0 þ 24r2A0

− 128Λr3f̈ϕ02 þ 128rf̈ϕ02 þ 128Λ2r4 _fϕ0 − 224Λr2 _fϕ0 þ 128Λr _f2ϕ02 þ 160_fϕ0

− 4Λr5ϕ02 þ 4r3ϕ02 − 64Λr3 þ 64r� þ e5B½−32Λ2r5 þ 64Λr3 − 32r�: ðA3Þ

APPENDIX B: SCALAR QUANTITIES

By employing the metric components of the line element (7), one may compute the following scalar-invariant
gravitational quantities:

R ¼ þ e−B

2r2
ð4eB − 4 − r2A02 þ 4rB0 − 4rA0 þ r2A0B0 − 2r2A00Þ; ðB1Þ

RμνRμν ¼ þ e−2B

16r4
½8ð2 − 2eB þ rA0 − rB0Þ2 þ r2ðrA02 − 4B0 − rA0B0 þ 2rA00Þ2

þ r2ðrA02 þ A0ð4 − rB0Þ þ 2rA00Þ2�; ðB2Þ

RμνρσRμνρσ ¼ þ e−2B

4r4
½r4A04 − 2r4A03B0 − 4r4A0B0A00 þ r2A02ð8þ r2B02 þ 4r2A00Þ

þ 16ðeB − 1Þ2 þ 8r2B02 þ 4r4A002�; ðB3Þ

R2
GB ¼ þ 2e−2B

r2
½ðeB − 3ÞA0B0 − ðeB − 1ÞA02 − 2ðeB − 1ÞA00�: ðB4Þ

NOVEL BLACK-HOLE SOLUTIONS IN … PHYS. REV. D 99, 064003 (2019)

064003-17



APPENDIX C: VARIATION WITH RESPECT TO
THE RIEMANN TENSOR

Here, we derive the derivatives of the Lagrangian of the
theory (1) with respect to the Riemann tensor. A simple
way to do this is to take the derivatives ignoring the
symmetries, which the final expression should possess, and
restore them afterwards. For example, if Aabcd is a four-rank
tensor and A the corresponding scalar quantity, we may
write

∂A
∂Aabcd

¼ ∂
∂Aabcd

ðgμρgνσAμνρσÞ ¼ gμρgνσδaμδbνδcρδdσ ¼ gacgbd:

ðC1Þ

Now, if Aabcd ¼ Rabcd, it should satisfy the following
relations:

Aabcd¼Acdab¼−Aabdc and AabcdþAacdbþAadbc¼ 0:

ðC2Þ

Restoring the symmetries, we arrive at

∂R
∂Rabcd

¼ 1

2
ðgacgbd − gbcgadÞ: ðC3Þ

Alternatively, we could have explicitly written

∂R
∂Rabcd

¼ ∂
∂Rabcd

ðgμρgνσRμνρσÞ

¼ 1

2
gμρgνσ

∂
∂Rabcd

ðRμνρσ − RνμρσÞ

¼ 1

2
gμρgνσðδaμδbνδcρδdσ − δaνδ

b
μδ

c
ρδ

d
σÞ

¼ 1

2
ðgacgbd − gbcgadÞ; ðC4Þ

which clearly furnishes the same result.
We now proceed to the higher derivative terms. Let us

start with the Kretchmann scalar for which we find

∂RμνρσRμνρσ

∂Rabcd
¼ 2Rμνρσ

∂Rμνρσ

∂Rabcd
¼ 2Rabcd: ðC5Þ

The above result does not need any correction as it is
already proportional to Rabcd and satisfies all the desired
identities. We now move to the RμνRμν term and employ
again the simple method used above. Then

∂AμνAμν

∂Aabcd
¼ 2Aμν

∂Aμν

∂Aabcd
¼ 2Aμνgκλ

∂Aκμλν

∂Aabcd

¼ gacAbd − gbcAad: ðC6Þ

If Aabcd ¼ Rabcd and Aμν ¼ Rμν, the above result will have
all the right properties if it is rewritten as

∂RμνRμν

∂Rabcd
¼ 1

2
ðgacRbd − gbcRad − gadRbc þ gbdRacÞ; ðC7Þ

which is indeed the correct result. Finally, we easily derive
that

∂R2

∂Rabcd
¼ Rðgacgbd − gbcgadÞ: ðC8Þ

In order to compute the integral appearing in Eq. (61),
we use the near-horizon solution (33)–(35) for the metric
functions and scalar field. Then recalling that, near the
horizon, the relations A00 ≈ −A02 and B0 ≈ −A0 also hold, we
find the results

R0101jH ¼ −
1

4
e−A−2Bð−2A00 þ A0B0 − A02ÞjH → 0;

− 2ðg00R11 − g10R01 − g01R10 þ g11R00ÞjH
→

4

rh
e−A−2BA0jH ≈ −

4b21
a1rh

;

g00g11RjH →
e−A−2B

r2
ð4rA0 − 2eBÞjH ≈

4b21
a1rh

−
2b1
a1r2h

;

g00g11jH ¼ eAþBjH → a1=b1:

Substituting these into Eq. (61), we readily obtain the
result (62).
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