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We consider the Einstein-scalar-Gauss-Bonnet theory in the presence of a cosmological constant A,
either positive or negative, and look for novel, regular black-hole solutions with a nontrivial scalar hair. We
first perform an analytic study in the near-horizon asymptotic regime and demonstrate that a regular black-
hole horizon with a nontrivial hair may always be formed, for either sign of A and for arbitrary choices of
the coupling function between the scalar field and the Gauss-Bonnet term. At the faraway regime, the sign
of A determines the form of the asymptotic gravitational background leading to either a Schwarzschild—
anti-de Sitter—type background (A < 0) or a regular cosmological horizon (A > 0), with a nontrivial scalar
field in both cases. We demonstrate that families of novel black-hole solutions with scalar hair emerge for
A < 0, for every choice of the coupling function between the scalar field and the Gauss-Bonnet term,
whereas for A > 0, no such solutions may be found. In the former case, we perform a comprehensive study
of the physical properties of the solutions found such as the temperature, entropy, horizon area, and

asymptotic behavior of the scalar field.

DOI: 10.1103/PhysRevD.99.064003

I. INTRODUCTION

As the ultimate theory of quantum gravity that would
robustly describe gravitational interactions at high energies
and facilitate their unification with the other forces is still
eluding us, the interest in generalized gravitational theories
remains unabated in the scientific literature. These theories
include extra fields or higher-curvature terms in their action
[1,2], and they provide the framework in the context of
which several solutions of the traditional general relativity
(GR) have been reexamined and, quite often, significantly
enriched.

In this spirit, generalized gravitational theories contain-
ing scalar fields were among the first to be studied.
However, the quest for novel black-hole solutions—beyond
the three well-known families of GR—was abruptly
stopped when the no-hair theorem was formulated [3],
which forbade the existence of a static solution of this form
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with a nontrivial scalar field associated with it. Nevertheless,
counterexamples appeared in the years that followed and
included black holes with Yang-Mills [4], Skyrme fields [5],
or with a conformal coupling to gravity [6]. A novel
formulation of the no-hair theorem was proposed in 1995
[7] but this, too, was evaded within a year with the discovery
of the dilatonic black holes found in the context of the
Einstein-dilaton-Gauss-Bonnet theory [8] (for some earlier
studies that paved the way, see [9—13]). The colored black
holes were found next in the context of the same theory
completed by the presence of a Yang-Mills field [14,15],
and higher-dimensional [16] or rotating versions [17-20]
were also constructed (for a number of interesting reviews on
the topic, see [21-24]).

This second wave of black-hole solutions were derived in
the context of theories inspired by superstring theory [25].
During the past decade, though, the construction of gener-
alized gravitational theories was significantly enlarged via
the revival of the Horndeski [26] and Galileon [27] theories.
Accordingly, novel formulations of the no-hair theorems
were proposed that covered the case of standard scalar-tensor
theories [28] and Galileon fields [29]. However, these recent
forms were also evaded [30] and concrete black-hole
solutions were constructed [31-33]. More recently, three
independent groups [34-36] almost simultaneously demon-
strated that a generalized gravitational theory that contains
a scalar field and the quadratic Gauss-Bonnet (GB) term
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admits novel black-hole solutions with a nontrivial scalar
hair. In a general theoretical argument, which we presented in
[34], it was shown that the presence of the GB term was of
paramount importance for the evasion of the novel no-hair
theorem [7]. In addition, the exact form of the coupling
function f(¢) between the scalar field and the GB term
played no significant role for the emergence of the solutions:
as long as the first derivative of the scalar field ¢, at the
horizon obeyed a specific constraint, an asymptotic solution
describing a regular black-hole horizon with a nontrivial
scalar field could always be constructed. Employing, then,
several different forms of the coupling function f(¢),
a large number of asymptotically flat black-hole solutions
with scalar hair were determined [34]. Additional studies
presenting novel black holes or compact objects in
generalized gravitational theories have appeared [37-45]
as well as further studies of the properties of these novel
solutions [46-65].

In the present work, we will extend our previous analyses
[34] that aimed at deriving asymptotically flat black-hole
solutions by introducing in our theory a cosmological
constant A, either positive or negative. In the context of
this theory, we will investigate whether the previous,
successful synergy between the Ricci scalar, the scalar
field, and the Gauss-Bonnet term survives in the presence
of A. The question of the existence of black-hole solutions
in the context of a scalar-tensor theory, with scalar fields
minimally coupled or conformally coupled to gravity, and a
cosmological constant has been debated in the literature for
decades [66-70]. In the case of a positive cosmological
constant, the existing studies predominantly excluded the
presence of a regular, black-hole solution with an asymp-
totic de Sitter behavior—a counterexample of a black hole
in the context of a theory with a conformally coupled scalar
field [71] was shown later to be unstable [72]. On the other
hand, in the case of a negative cosmological constant, a
substantial number of solutions with an asymptotically
(anti-)de Sitter behavior have been found in the literature
(for a nonexhaustive list, see [73-84].

Here, we perform a comprehensive study of the existence
of black-hole solutions with a nontrivial scalar hair and an
asymptotically (anti-)de Sitter behavior in the context of
a general class of theories containing the higher-derivative,
quadratic GB term. To our knowledge, the only similar
study is the one performed in the special case of the shift-
symmetric Galileon theory [85], i.e., with a linear coupling
function between the scalar field and the GB term. In this
work, we consider the most general class of this theory by
considering an arbitrary form of the coupling function
f(¢), and we look for regular black-hole solutions with
nontrivial scalar hair. Since the uniform distribution of
energy associated with the cosmological constant perme-
ates the whole spacetime, we expect A to have an effect on
both the near-horizon and far-field asymptotic solutions.
We will thus repeat our analytical calculations in both the

small and the large-r regimes to examine how the presence
of A affects the asymptotic solutions both near and far
away from the black-hole horizon. As we will see, our set
of field equations admits regular solutions near the black-
hole horizon with a nontrivial scalar hair for both signs of
the cosmological constant. At the faraway regime, the
analysis needs to be specialized since a positive or negative
sign of A leads to either a cosmological horizon or an
asymptotic Schwarzschild—anti-de Sitter—type gravitational
background, respectively. Our results show that the emer-
gence of a black-hole solution with a nontrivial scalar field
strongly depends on the type of asymptotic background that
is formed at large distances, and thus on the sign of A:
whereas, for A < 0, solutions emerge with the same easi-
ness as their asymptotically flat analogues, for A > 0, no
such solutions were found.

In the former case, i.e., for A < 0, we present a large
number of novel black-hole solutions with a regular black-
hole horizon, a nontrivial scalar field, and a Schwarzschild—
anti-de Sitter—type asymptotic behavior at large distances.
These solutions correspond to a variety of forms of the
coupling function f(¢): exponential, polynomial (even or
odd), inverse polynomial (even or odd), and logarithmic.
The motivation for an exponential coupling function is
provided by the heterotic superstring effective theory [25]
where the scalar field is the dilaton. On the other hand, the
coupling function of the moduli fields to the GB term in the
context of the same theory is given by the logarithm of the
Dedekind function—this scalar-tensor theory was shown to
lead to interesting singularity-free cosmological solutions
[86]. In a subsequent work [87], it was shown that an
arbitrary, even polynomial coupling function shares a
number of characteristic features with the moduli coupling
function and leads again to singularity-free cosmological
solutions; this similarity has provided the motivation to
consider also even polynomial coupling functions in our
quest for novel black-hole solutions. The remaining choices
for the coupling function (i.e., the inverse and odd poly-
nomials) have admittedly no fundamental motivation, and
their adoption serves to demonstrate that the synergy of a
scalar field, the Ricci scalar, and the GB term is powerful
enough to support regular black-hole solutions for every
form of the coupling function. In this, we have drawn
inspiration from the Horndeski [26] and Galileon [27]
theories, which are the most general scalar-tensor theories
with second-order derivatives of the field and metric while
containing arbitrary coupling functions. After the deriva-
tion of our classes of black-hole solutions, we proceed to
study their physical properties such as the temperature,
entropy, and horizon area. We also investigate features of
the asymptotic profile of the scalar field, namely its
effective potential and rate of change at large distances
since this greatly differs from the asymptotically flat case.

The outline of the present work is as follows: in Sec. II,
we present our theoretical framework and perform our
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analytic study of the near and faraway radial regimes as
well as of their thermodynamical properties. In Sec. III,
we present our numerical results for regular black-hole
solutions in the case of A < 0 while our efforts in the case
with A > 0 are presented in Sec. IV. We finish with our
conclusions in Sec. V.

II. THE THEORETICAL FRAMEWORK

We consider a general class of higher-curvature gravi-
tational theories described by the following action
functional:

1
S = T6n d*x\/—g [R - Eaﬂq&aﬂqﬁ + f(P)R%s — 2A|.
T
(1)
In this, the quadratic GB term R%p, defined as
R&y = R,,cR*"° — 4R, R + R, (2)

supplements the Einstein-Hilbert term, given by the Ricci
scalar curvature R, and the kinetic term for a scalar field ¢.
A coupling term of the scalar field to the GB term, through
a general coupling function f(¢), is necessary in order
for the GB term—a total derivative in four dimensions—to
contribute to the field equations. A cosmological constant
A that may take either a positive or a negative value is also
present in the theory.

By varying the action (1) with respect to the metric
tensor g, and the scalar field ¢, we derive the gravitational
field equations and the equation for the scalar field,
respectively. These are found to have the form

G;n/ = T;w > (3)

V29 + f(¢)REs = O, (4)

where G, is the Einstein tensor and T, is the energy-
momentum tensor, with the latter having the form

1 1 1
T/W = — Zgﬂbap¢8p¢ + E 8ﬂ¢3y¢ - E (gpﬂg/ly —+ gﬂﬂgpv)

X PR ()N, 0 () = NG (5)

In the above, the dot over the coupling function denotes its

derivative with respect to the scalar field (i.e., f = df/d¢).
We have also employed units in which G = ¢ = 1 and used
the definition

erret
=~ R
otaff otaf:
V)

Compared to the theory studied in [34], where A was
zero, the changes in Egs. (3) and (4) look minimal: the

(6)

Rﬂya 5= nP1°" R

scalar-field equation remains unaffected while the energy-
momentum tensor 7%, receives a constant contribution
—Ad",. However, as we will see, the presence of the
cosmological constant affects both of the asymptotic sol-
utions, the properties of the derived black holes, and even
their existence.

In the context of this work, we will investigate the
emergence of regular, static, spherically symmetric but
nonasymptotically flat black-hole solutions with a nontrivial
scalar field. The line element of spacetime will accordingly
take the form

ds? = —e*di? + B0 dr? + r*(d6? + sin’0dg?).  (7)

The scalar field will also be assumed to be static and
spherically symmetric, ¢ = ¢(r). The coupling function
f(¢) will retain a general form during the first part of our
analysis and will be chosen to have a particular form only at
the stage of the numerical derivation of specific solutions.

The nonvanishing components of the Einstein tensor Gy
may easily be found by employing the line element (7), and
they read

e_B B /

G =—5(1-e’~-rB), (8)
r
e_B B l

G'h=—5(1-e+rA), 9)
r

-B

Gly=Gly= _64 [rA” —2B' + A'(2 = rB') + 2rA"].
r

(10)

Throughout our analysis, the prime denotes differentiation
with respect to the radial coordinate r. Using Eq. (5), the
components of the energy-momentum tensor 7% take in
turn the form

7= = (PR 11678~ 1) - 8] (B (P ~3)
=2/ (" = )] = A, ()
T,r:e—qu’ ¢,_8e-B(eBr2—3>fA' _A(12)

T =17,

028 )
= [ (re® —8fA")

—Af (AP + 2 A" + A (29" = 3B'¢))] - A, (13)

Matching the corresponding components of G*, and T#,
the explicit form of Einstein’s field equations may easily be
derived. These are supplemented by the scalar-field equa-
tion (4) whose explicit form reads
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4feB
2rg" + (4 +rA' = rB')¢ + are”

x [(€% = 3)A'B’ — (8 — 1)(2A" + A?)] = 0. (14)

Although the system of equations involves three
unknown functions, namely A(r), B(r), and ¢(r), only
two of them are independent. The metric function B(r) may
be easily shown to be a dependent variable: the (rr)
component of field equations takes, in fact, the form of
a second-order polynomial with respect to e®, ie.,
ae? + BeP +y =0, which easily leads to the following
solution:

- 2 _
oo PE
where
2 p12
a=1-Ar, ,B:rf —2f¢ +r)A -1,
vy =6fPA. (16)

Employing the above expression for e, the quantity B’
may also be found to have the form

y’+ﬂ’e3+a’e23

B =
2ae’B + peb

(17)

Therefore, by using Egs. (15) and (17), the metric function
B(r) may be completely eliminated from the field equa-
tions. The remaining three equations then form a system of
only two independent, ordinary differential equations of
second order for the functions A(r) and ¢(r):

, (18)

(19)

The expressions for the quantities P, Q, and S, in terms of

(r,g' A, f, f), are given for the interested reader in
Appendix A as they are quite complicated.

A. Asymptotic solution at black-hole horizon

As we are interested in deriving novel black-hole
solutions, we will first investigate whether an asymptotic
solution describing a regular black-hole horizon is admitted
by the field equations. As a matter of fact, instead of
assuming the usual power-series expression in terms of
(r —ry), where ry, is the horizon radius, we will construct
the solution as was done in [8,34]. To this end, we demand
that, near the horizon, the metric function ¢A(") should
vanish (and €2 should diverge), whereas the scalar field

must remain finite. The first demand is reflected in the
assumption that A’(r) should diverge as r — r,—this will
be justified a posteriori—while ¢'(r) and ¢”(r) must be
finite in the same limit.

Assuming the aforementioned behavior near the black-
hole horizon, Eq. (15) may be expanded in terms of A’(r) as
follows':

s F#+1) 24 (Ph2—12A8 +8) 4 (24>~ 4)
C1-AP 4(1=Ar)(2f¢/ +r)

+0 <f%> : (20)

Then, substituting the above into the system (18) and (19),
we obtain

w
A =_1A% L0, (21)
W3

— % Q2f¢ +r)A +O(1), (22)

3

¢//
where

Wi = —(r* + 4P + 4”22 — 24f7) + 242 f2
+ A@APfP + 42 (P - 16)
—64rf3 ¢ — 641 % + 19, (23)

Wy = =3¢/ (1 = Ar?) = 2A L3¢ + 16Arf>¢'(Ar> = 3)
—2f[6 + P2 + 20 = AP (P +4)],  (24)

and

Wi=(1-Ar)[r* + 27 f¢/ —16f*(3—2Ar2) =32Arf> /).
(25)

From Eq. (20), we conclude that the combination (2f¢’ + r)
near the horizon must be nonzero and positive for the metric
function e® to have the correct behavior, which is to diverge
as r — r, while being positive definite. Then, Eq. (22)
dictates that, if we want ¢” to be finite, we must necessarily
have

W2|r=rh =0. (26)
The above constraint may be written as a second-order

polynomial with respect to ¢’, which can then be solved to
yield

'Note that only the (+) sign in the expression for ¢? in Eq. (15)
leads to the desired black-hole behavior.
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/

_ n(1=AR)+16Anfi(3=Arp) £ (1-Ar)VC
" 41[rj, = A(r} = 1617)]

(27)

where all quantities have been evaluated at r = r;,. The
quantity C under the square root stands for the following
combination:

C = 256Af(Ar} —6) + 322 f2(2Ar} —3) + 18 > 0,
(28)
and must always be non-negative for ¢) to be real. This

combination may be written as a second-order polynomial
for ff, with roots

123 = 2Ar; £V/3./3 = 2Ar; + A%r}]

2
= 29
J 16A(=6 + Ar7) (29)
Then, the constraint on C becomes
C=(fi-AU-72) 2o (30)

Therefore, the allowed regime for the existence of regular,
black-hole solutions with scalar hair is given by f% < f Z or
f%l > f2+ since fi > f% To obtain some physical insight on
these inequalities, we take the limit of a small cosmological
constant; then, the allowed ranges are

. rt Ar? o1 3
6 48 Ar?
(31)

respectively. In the absence of A, Eq. (28) results in the
simple constraint f% < r}/96 and defines a sole branch of
solutions with a minimum allowed value for the horizon
radius (and mass) of the black hole [34]. In the presence of
a cosmological constant, this constraint is now replaced by
f ;21 < f 2 or by the first inequality presented in Eq. (31) in the
small-A limit. This inequality leads again to a branch of
solutions that—for chosen f(¢), ¢, and A—terminates at a
black-hole solution with a minimum horizon radius r". We
observe that, at least for small values of A, the presence of a
positive cosmological constant relaxes the constraint,
allowing for smaller black-hole solutions, while a negative
cosmological constant pushes the minimum horizon radius
toward larger values. The second inequality in Eq. (31)
describes a new branch of black-hole solutions that does not
exist when A = 0; this was also noted in [85] in the case of
the linear coupling function. This branch of solutions
describes a class of very small GB black holes and terminates
instead at a black hole with a maximum horizon radius 7}**.

Returning now to Eq. (18) and employing the constraint
(27), the former takes the form

A" = —A” + O(A"). (32)

Integrating the above, we find that A'(r) ~1/(r—r,), a
result that justifies the diverging behavior of this quantity
near the horizon that we assumed earlier. A second integra-
tion yields A(r) ~ In(r — r,), which then uniquely deter-
mines the expression of the metric function e# in the near-
horizon regime. Employing Eq. (20), the metric function B is
also determined in the same regime. Therefore, the asymp-
totic solution of Egs. (15), (18), and (19) that describes a
regular, black-hole horizon in the limit » — ry, is given by the
following expressions:

A= ayr—r) b (33)
B =by(rn) +oo. (34)
d=dp+ P, (r—r) +Ppr—r)?+--. (35

where a,, b, and ¢, are integration constants. We observe
that the above asymptotic solution constructed for the case
of a nonzero cosmological constant has exactly the same
functional form as the one constructed in [34] for the case
of vanishing A. The presence of the cosmological constant
modifies though the exact expressions of the basic con-
straint (27) for ¢}, and of the quantity C given in (28), the
validity of which ensures the existence of a regular black-
hole horizon. As in [34], the exact form of the coupling
function f(¢) does not affect the existence of the asymp-
totic solution; therefore regular black-hole solutions may
emerge for a wide class of theories of the form (1).

The regularity of the asymptotic black-hole solution is
also reflected in the nondiverging behavior of the compo-
nents of the energy-momentum tensor and of the scale-
invariant Gauss-Bonnet term. The components of the
former quantity in this regime assume the form

2e7B .
T, == Bd'f—AN+O(r—ry), (36)
r 2¢7° .
Tr:—TAqﬁf—A-l—O(r—rh), (37)
e—ZB

Ty =~ QA" + A =3AB)¢/[ — A+ O(r = 1,).
(38)

Employing the asymptotic expansions (33)—(35), one may
see that all components remain indeed finite in the vicinity
of the black-hole horizon. For future use, we note that the
cosmological constant adds a positive contribution to all
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components of the energy-momentum tensor 7 for A < 0,
while it subtracts a positive contribution for A > 0. Also,
all scalar curvature quantities, the explicit form of which
may be found in Appendix B, independently exhibit a
regular behavior near the black-hole horizon—when these
are combined, the GB term, in the same regime, takes the
form

126728
R, = +%A’2 L O(r=1p), (39)

exhibiting, too, a regular behavior as expected.

B. Asymptotic solutions at large distances

The form of the asymptotic solution of the field
equations at large distances from the black-hole horizon
depends strongly on the sign of the cosmological constant.
Therefore, in what follows, we study separately the cases of
positive and negative A.

1. Positive cosmological constant

In the presence of a positive cosmological constant, a
second horizon, the cosmological one, is expected to
emerge at a radial distance r = r, > r;. We demand that
this horizon is also regular, that is, that the scalar field ¢ and
its derivatives remain finite in its vicinity. We may, in fact,
follow a method identical to the one followed in Sec. II.
1 near the black-hole horizon: we again demand that, at the
cosmological horizon, g,, — 0 while g,, — oo; then, using
that A’ diverges there, the regularity of ¢” from Eq. (19)
eventually leads to the constraint

b= _B(1=AR) +16Ar f2(3=Ar2) £ (1 - AR)VT
o 4f[r2 = A(rt = 16£2)] ’

(40)
with C now being given by the non-negative expression

C = 256AfH(Ar2 —6) + 32r2f2(2Ar2 = 3) + 8 > 0.
(41)

Employing Eq. (40) in Eq. (18), the solution for the metric
function A may again be constructed. Overall, the asymp-
totic solution of the field equations near a regular, cosmo-
logical horizon will have the form

= are =)t oo @)
e B=by(ro—r)+---, (43)
¢:¢c+¢/c(rc_r)+¢/c/(rc_r)2+"" (44)

where care has been taken for the fact that » < r.. One may
see again that the above asymptotic expressions lead to

finite values for the components of the energy-momentum
tensor and scalar invariant quantities. Once again, the
explicit form of the coupling function f(¢) is of minor
importance for the existence of a regular, cosmological
horizon.

2. Negative cosmological constant

For a negative cosmological constant, and at large dis-
tances from the black-hole horizon, we expect the spacetime
to assume a form close to that of the Schwarzschild—anti-de
Sitter (SAdS) solution. Thus, we assume the following
approximate forms for the metric functions:

. M A P q1\?
€A()—<k—7— 3 r2+ﬁ 1"‘? s (45)

M A
e—B<r>=k—7——‘*ffr2+%, (46)

3

where k, M, Ay, and g, are, at the moment, arbitrary
constants. Substituting the above expressions into the scalar
field equation (14), we obtain at first order the constraint

4 8Acti]
W)+ ) -t

=0, (47)

The gravitational equations, under the same assumptions,
lead to two additional constraints, namely

Ao 16 Ay f
r
4. /
A = Ay —§fAfor2 (4’” +%>
P
Aee?? 16Agt f
_ fif;r ¢/2 (1 4 3Cfff) —-0. (49)

Contrary to what happens close to the horizons (either
black-hole or cosmological ones), the form of the coupling
function f(¢) now affects the asymptotic form of the scalar
field at large distances. The easiest case is that of a linear
coupling function, f(¢) = agp—that case was first studied
in [85]; however, we review it again in the context of our
analysis as it will prove to play a more general role. The
scalar field, at large distances, may be shown to have the
approximate form

dy, d
H(1) = tdilnr+ 34240 (50)

where again (¢, d,, d,, d3) are arbitrary constant coef-
ficients. The coefficients d; and A may be determined
through the first-order constraints (47) and (48), respec-
tively, and are given by
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8 8022 A2
dy == ahr, Ao (3 n %) —3A. (51)

3

The third first-order constraint, Eq. (49), is then trivially
satisfied. In order to determine the values of the remaining
coefficients, one needs to derive higher-order constraints.
For example, the coefficients k, g;, and d, are found at
third-order approximation to have the forms

814 8642 AZ; + 1024a* Ay,
81 4 100802 A%y + 25600 Ay’
240 Ao (9 + 64 A%

(9 +320°Ag;) (9 + 800 AZyy)”
12a(27 + 288a% A%y + 512a*AYy)

dy = — , 52
: 81 + 10082 A2 + 256002 A% (52)

q1 =

while for g, or d; one needs to go even higher. In contrast,
the coefficient M remains arbitrary and may be interpreted
as the gravitational mass of the solution.

In the perturbative limit (i.e., for small values of the
coupling constant a of the GB term), one may show that
the above asymptotic solution is valid for all forms of the
coupling function f(¢). Indeed, if we write

B =g+ S () (53)

and define f(¢) = af(¢), then, at first order, f ~ af(¢y).
Therefore, independently of the form of f(¢), at first order
in the perturbative limit, f is a constant, as in the case of
a linear coupling function. Then, a solution of the form
of Egs. (45), (46), and (50) is easily derived” with « in
Egs. (51) and (52) now being replaced by f(¢y).

For arbitrary values of the coupling constant «, though,
or for a nonlinear coupling function f(¢), the approximate
solution described by Egs. (45), (46), and (50) will not, in
principle, be valid any more. Unfortunately, no analytic
form of the solution at large distances may be derived in
these cases. However, as we will see in Sec. III, numerical
solutions do emerge with a nontrivial scalar field and an
asymptotic anti—de Sitter—type behavior at large distances.
These solutions are also characterized by a finite GB term
and finite, constant components of the energy-momentum
tensor at the far asymptotic regime.

C. Thermodynamical analysis

In this subsection, we calculate the thermodynamical
properties of the sought-for black-hole solutions, namely

2]n the perturbative limit, at first order, one ﬁnds d, =
8Af(¢o)/3, Aett = A, k=1, q; =0, and d, = —4f(¢). For
more details on the perturbative analysis of the black-hole
solutions that arise in the context of the general class of theories
(1) and are either asymptotically flat or (anti—)de Sitter, see [88].

their temperature and entropy. The first quantity may easily
be derived by using the following definition [89,90]:

) =V

49
dr

T— ky, - 1 ( 1
2z 4x V |grt9rr|

which relates the black-hole temperature 7 to its surface
gravity kj;. The above formula is valid for spherically
symmetric black holes in theories that may contain also
higher-derivative terms such as the GB term. The final
expression of the temperature in Eq. (54) is derived by
employing the near-horizon asymptotic forms (33) and (34)
of the metric functions.

The entropy of the black hole may be calculated by using
the Euclidean approach in which the entropy is given by the
relation [91]

Sh:ﬁ[%;)—}r], (55)

where F = I/f is the Helmholtz free energy of the system
given in terms of the Euclidean version of the action I,
and § = 1/(kgT). The above formula has been used in the
literature to determine the entropy of the asymptotically
flat colored GB black holes [15] and of the family of novel
black-hole solutions found in [34] for different forms of
the GB coupling function. However, in the case of a
nonasymptotically flat behavior, the above method needs
to be modified: in the case of a de Sitter—type asymptotic
solution, the Euclidean action needs to be integrated only
over the causal spacetime r;, < r < r., whereas, for an anti—
de Sitter—type asymptotic solution, the Euclidean action
needs to be regularized [92,93], by subtracting the diverg-
ing, “pure” AdS-spacetime contribution.

Alternatively, one may employ the Noether current
approach developed in [94] to calculate the entropy of a
black hole. In this, the Noether current of the theory under
diffeomorphisms is determined, with the Noether charge on
the horizon being identified with the entropy of the black
hole. In [95], the following formula was finally derived for
the entropy:

— 2 /
- Zﬂfd X h <8Rabcd> €ap€ cd7 (56)

where L is the Lagrangian of the theory, ¢, the binormal to
the horizon surface H, and h(; the two-dimensional
projected metric on H. The equivalence of the two
approaches has been demonstrated in [93], in particular
in the context of theories that contain higher-derivative
terms such as the GB term. Here, we will use the Noether
current approach to calculate the entropy of the black holes
as it leads faster to the desired result.

To this end, we need to calculate the derivatives of the
scalar gravitational quantities, appearing in the Lagrangian
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of our theory (1), with respect to the Riemann tensor. In
Appendix C, we present a simple way to derive those
derivatives. Then, substituting in Eq. (56), we obtain

= __faax /’L { gc bd_gbcgad) —I—f(qﬁ)[ZRade
2 acRbd _ gbcRad _ gadec + gbdRac)
- g”"g“d)]}

+ R(gacgbd éabécd' (57)

H

The first term inside the curly brackets of the above
expression comes from the variation of the Einstein-
Hilbert term and leads to

S =— dx\ 1) (a8 = E4p2").  (58)

We recall that €, is antisymmetric and, in addition,

satisfies €,,6?> = —2. Therefore, we easily obtain the result
An
S , 59
=5 (59)

where Ay = 4xr; is the horizon surface. The remaining
terms in Eq. (57) are all proportional to the coupling
function f(¢) and follow from the variation of the GB term.
To facilitate the calculation, we notice that, on the horizon
surface, the binormal vector is written as €., =

V/=90001117(838} — 5557). This means that we may alter-
natively write

oc oL
Euplog = 4 . (60
<8Rabcd> H bred Joog |H <8R0101> H ( )

Therefore, the terms proportional to f(¢) may be written as

1
Sy = —§f<¢>900911 |7 j{ dzx\/ h) [2R0101

—2(g™R!T — glOROT — QIR0 4 411 ROO) +g°°g“R}H.
(61)

To evaluate the above integral, we will employ the near-
horizon asymptotic solution (33)—(35) for the metric func-
tions and scalar field. The asymptotic values of all quantities
appearing inside the square brackets above are given in
Appendix C. Substituting in Eq. (61), we straightforwardly
find

=4z f(¢p)- (62)

Combining the expressions (59) and (62), we finally derive
the result

A

Si =5+ 4uf(¢n)- (63)
The above describes the entropy of a GB black hole arising in
the context of the theory (1), with a general coupling function
f(¢) between the scalar field and the GB term, and a
cosmological constant term. We observe that the above
expression matches the one derived in [34] in the context
of the theory (1) but in the absence of the cosmological
constant. This was, in fact, expected on the basis of the more
transparent Noether approach used here: the A term does
not change the overall topology of the black-hole horizon,
and it does not depend on the Riemann tensor; therefore, no
modifications are introduced to the functional form of the
entropy of the black hole due to the cosmological constant.
However, the presence of A modifies in a quantitative way
the properties of the black hole and therefore the value of the
entropy, and temperature, of the found solutions.

III. ANTI-DE SITTER GAUSS-BONNET
BLACK HOLES

In order to construct the complete black-hole solutions
in the context of the theory (1), i.e., in the presence of
both the GB and the cosmological constant terms, we need
to numerically integrate the system of Eqs. (18) and (19).
The integration starts at a distance very close to the horizon
of the black hole, i.e., at r ~ r;, + O(107°) (for simplicity,
we set r;, = 1). The metric function A and scalar field ¢ in
that regime are described by the asymptotic solutions (33)
and (35). The input parameter ¢, is uniquely determined
through Eq. (27) once the coupling function f(¢) = af(¢)
is selected and the values of the remaining parameters of
the model near the horizon are chosen. These parameters
appear to be a, ¢, and A. However, the first two are not
independent: since it is their combination af(¢,) that
determines the strength of the coupling between the GB
term and the scalar field, a change in the value of one of
them may be absorbed in a corresponding change to the
value of the other; as a result, we may fix a and vary
only ¢,. The values of ¢, and A also cannot be totally
uncorrelated as they both appear in the expression of C,
Eq. (28), that must always be positive; therefore, once the
value of the first is chosen, there is an allowed range of
values for the second one for which black-hole solutions
arise. This range of values are determined by the inequal-
ities f%, < f% and f%, > f%r according to Eq. (30), and lead
in principle to two distinct branches of solutions. In fact,
removing the square, four branches emerge depending on

the 51gn of f - However, in what follows we will assume
that f 0> 0, and thus study the two regimes f n < f and
fh > f+, similar results emerge if one assumes instead

that f), < 0.
Before starting our quest for black holes with an (anti-)
de Sitter asymptotic behavior at large distances, we first
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FIG. 1. The metric components |g,| and g,, (left plot), and the Gauss-Bonnet term R%g (right plot) in terms of the radial coordinate r,

for f(¢) = ae™®.

considered the case with A = 0 whereupon we successfully
reproduced the families of asymptotically flat back holes
derived in [34]. Then, we selected nonvanishing values of A
and looked for novel black-hole solutions. For a negative
cosmological constant (A < 0), the integration starts from
the near-horizon regime with the asymptotic solutions (33)
and (35), and proceeds toward large values of the radial
coordinate until the form of the derived solution for the
metric resembles the asymptotic solution (45) and (46)
describing an anti—de Sitter—type background. The arbitrary
coefficient a; that does not appear in the field equations may
be fixed by demanding that, at very large distances, the metric
functions satisfy the constraint e* ~ ¢~2. We have consid-
ered a large number of forms for the coupling function f(¢),
and, as we will now demonstrate, we have managed to
produce a family of regular black-hole solutions with an anti—
de Sitter asymptotic behavior, for every choice of f(¢).

A. Exponential coupling function

We will first discuss the case of an exponential coupling
function, f(¢) = ae~?. The solutions for the metric func-
tions (") and e8(") are depicted in the left plot of Fig. 1. We
may easily see that the near-horizon behavior, with (")
vanishing and ¢?(") diverging, is eventually replaced by an
anti—de Sitter regime with the exactly opposite behavior of
the metric functions at large distances. The solution pre-
sented corresponds to the particular values A = —1 (in units
of r;z), a = 0.1, and ¢, = 1; however, we obtain the same
qualitative behavior for every other set of parameters
satisfying the constraint® f n < f _ that follows from
Eq. (28). The spacetime is regular in the whole radial regime,
and this is reflected in the form of the scalar-invariant

*Note that no regular black-hole solutions were found that
satisfy the alternative allowed choice f, > f,; for these choices
of parameters, our numerical code does not lead to any solutions
independently of the form of the coupling function. The same ill-
defined behavior of this second potential branch of solutions with
very small horizon radii was also found in [85].

Gauss-Bonnet term: this is presented in the right plot of
Fig. 1, for a = 0.01, ¢, = 1 and for a variety of values of
the cosmological constant. We observe that the GB term
acquires its maximum value near the horizon regime, where
the curvature of spacetime is larger, and reduces to a smaller,
constant asymptotic value in the far-field regime. This
asymptotic value is, as expected, proportional to the cos-
mological constant as this quantity determines the curvature
of spacetime at large distances.

Although in Sec. II. B. 2, we could not find the analytic
form of the scalar field at large distances from the black-
hole horizon for different forms of the coupling function
f(¢), our numerical results ensure that its behavior is such
that the effect of the scalar field at the far-field regime is
negligible, and it is only the cosmological term that
determines the components of the energy-momentum
tensor. In the left plot of Fig. 2, we display all three
components of T over the whole radial regime, for the
indicative solution A = —1, a = 0.1, and ¢, = 1. Far away
from the black-hole horizon, all components reduce to —A,
in accordance with Egs. (11)—(13), with the effect of both
the scalar field and the GB term there being negligible.
Near the horizon, and according to the asymptotic behavior
given by Egs. (36)—(38), we always have 7", ~ T",, since,
atr~r,, A’ ~ —B'; also, the T%, component always has the
opposite sign to that of T", since A” ~ —A". This quali-
tative behavior of 7#, remains the same for all forms of the
coupling function we have studied and for all solutions
found; therefore we refrain from giving additional plots of
this quantity for the other classes of solutions found.

From the results depicted in the left plot of Fig. 2, we see
that, near the black-hole horizon, we always have 7", =
T', > 0. Comparing this behavior with the asymptotic
forms (36)—(38), we deduce that, close to the black-hole
horizon where A’ > 0, we must have (¢/f), < 0. In the
case of a vanishing cosmological constant, the negative
value of this quantity was of paramount importance for
the evasion of the no-hair theorem [7] and the emergence
of novel, asymptotically flat black-hole solutions [34].
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FIG. 3. The scalar field ¢ in terms of the radial coordinate r, for f(¢) = ag? (left plot) and f(¢) = a¢> (right plot).

We observe that also in the context of the present analysis
with A # 0, this quantity turns out to be again negative, and
to lead once again to novel black-hole solutions. Coming
back to our assumption of a decreasing exponential
coupling function and upon choosing to consider a > 0,
the constraint (¢/'f), < 0 means that ¢}, > 0 independently
of the value of ¢,,. In the right plot of Fig. 2, we display the
solution for the scalar field in terms of the radial coordinate,
for the indicative values of a =0.1, ¢, = 0.5 and for
different values of the cosmological constant. The scalar
field satisfies indeed the constraint ¢), > 0 and increases
away from the black-hole horizon.* At large distances, we
observe that, for small values of the cosmological constant,
¢(r) assumes a constant value; this is the behavior found
for asymptotically flat solutions [34] that the solutions with
small A are bound to match. For increasingly larger values of
A though, the profile of the scalar field deviates significantly
from the series expansion in powers of (1/r), thus allowing
for a r-dependent ¢ even at infinity—in the perturbative
limit, as we showed in the previous section, this dependence
is given by the form ¢(r) ~d;Inr.

4 . . . .

A complementary family of solutions arises if we choose
a < 0, with the scalar profile now satisfying the constraint
¢}, < 0 and decreasing away from the black-hole horizon.

B. Polynomial coupling function

We will now consider the case of an even polynomial
coupling function of the form f(¢) = ag*" withn > 1. The
behavior of the solution for the metric functions matches
the one depicted5 in the left plot of Fig. 1. The same is true
for the behavior of the GB term and the energy-momentum
tensor, whose profiles are similar to the ones displayed in
Figs. 1 (right plot) and 2 (left plot), respectively. The
positive-definite value of 7", near the black-hole horizon

implies again that, there, we should have (f¢'), < 0, or
equivalently ¢,¢), <0, for a > 0. Indeed, two classes
of solutions arise in this case: for positive values of ¢,
we obtain solutions for the scalar field that decrease away
from the black-hole horizon, while for ¢, < 0, solutions
that increase with the radial coordinate are found. In Fig. 3

>Let us mention at this point that, for extremely large values of
either the coupling constant a or the cosmological constant A,
which are nevertheless allowed by the constraint (28), solutions
that have their metric behavior deviating from the AdS-type form
(45) and (46) were found; according to the obtained behavior,
both metric functions seem to depend logarithmically on the
radial coordinate instead of polynomially. As the physical
interpretation of these solutions is not yet clear, we omit these
solutions from the remainder of our analysis.
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FIG. 4. The scalar field ¢ in terms of the radial coordinate r, for f(¢) = a/¢ (left plot) and f(¢) = aln ¢ (right plot).

(left plot), we present a family of solutions for the case of
the quadratic coupling function (i.e., n = 1), for ¢, = —1
and o = 0.01, arising for different values of A—since
¢y, < 0, the scalar field exhibits an increasing behavior as
expected.

Let us examine next the case of an odd polynomial
coupling function, f(¢) = ag*'*! with n > 0. The behavior
of the metric functions, GB term, and energy-momentum
tensor have the expected behavior for an asymptotically AdS
background, as in the previous cases. The solutions for the
scalar field near the black-hole horizon are found to satisfy
the constraint a(¢p*'¢’), <0 or simply ¢,’ <0, when
a > 0. As this holds independently of the value of ¢,
all solutions for the scalar field are expected to decrease
away from the black-hole horizon. Indeed, this is the profile
depicted in the right plot of Fig. 3 where a family of solutions
for the indicative case of a qubic coupling function (i.e.,
n=1) is presented for @ = 0.1, ¢, = 0.1, and various
values of A.

C. Inverse polynomial coupling function

The case of an inverse polynomial coupling function,
f(¢) = agp™*, with k either an even or an odd positive
integer, was also considered. For odd %, i.e., k = 2n + 1,
the positivity of 7", near the black-hole horizon demands
again that (f¢'), < 0, or that —a/¢*"+2¢ < 0. For a > 0,
the solution for the scalar field should thus always satisfy
¢}, > 0, regardless of our choices for ¢, or A. As an
indicative example, in the left plot of Fig. 4, we present the
case of f(¢) = a/¢ with a family of solutions arising for
a=0.1 and ¢, = 2. The solutions for the scalar field
clearly satisfy the expected behavior by increasing away
from the black-hole horizon. On the other hand, for even k,
1.e., k = 2n, the aforementioned constraint now demands
that ¢,¢), <0. As in the case of the odd polynomial
coupling function, two subclasses of solutions arise: for
¢y > 0, solutions emerge with ¢} <0, whereas, for
¢, <0, we find solutions with ¢} > 0. The profiles of
the solutions in this case are similar to the ones found

before, with ¢ approaching, at large distances, an almost
constant value for small A but adopting a more dynamical
behavior as the cosmological constant gradually takes on
larger values.

D. Logarithmic coupling function

As a final example of another form of the coupling
function between the scalar field and the GB term, let us
consider the case of a logarithmic coupling function,
f(¢) = alng. Here, the condition near the horizon of
the black hole gives a¢p’/¢p < 0, and therefore, for a > 0,
we must have ¢} ¢, < 0; for ¢, > 0, this translates to a
decreasing profile for the scalar field near the black-hole
horizon. In the right plot of Fig. 4, we present a family of
solutions arising for a logarithmic coupling function for
fixed @ = 0.01 and ¢;, = 1, while varying the cosmological
constant A. The profiles of the scalar field agree once again
with the one dictated by the near-horizon constraint, and
they all decrease in that regime. As in the previous cases,
the metric functions approach asymptotically an anti—de
Sitter background, the scalar-invariant GB term remains
everywhere regular, and the same is true for all components
of the energy-momentum tensor that asymptotically appro-
ach the value —A.

E. Physical properties of the solutions

It is of particular interest to study also the behavior of
the effective potential of the scalar field, a role that in
our theory is played by the GB term together with the
coupling function, i.e., V, = f(¢)RE. In the left plot of
Fig. 5, we present a combined graph that displays its
profile in terms of the radial coordinate, for a variety of
forms of the coupling function f(¢). As expected, the
potential V takes on its maximum value always near
the horizon of the black hole, where the GB term is also
maximized and thus sources the nontrivial form of the
scalar field. On the other hand, as we move toward larger
distances, V, reduces to an asymptotic constant value.
Although this asymptotic value clearly depends on the
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terms of the mass M, for various forms of f(¢).

choice of the coupling function, its common behavior
allows us to comment on the asymptotic behavior
of the scalar field at large distances. Substituting a
constant value V, in the place of V in the scalar-field
equation (14), we arrive at the intermediate result

6,[6(A_B)/2r2¢’] _ —e<A+B)/2r2Voo. (64)
Then, employing the asymptotic forms of the metric
functions at large distances (45) and (46), the above
may easily be integrated with respect to the radial
coordinate to yield a form for the scalar field identical
to the one given in Eq. (50). We may thus conclude that
the logarithmic form of the scalar field may adequately
describe its far-field behavior even beyond the perturba-
tive limit of very small a.

We now proceed to discuss the physical characteristics of
the derived solutions. Because of the large number of
solutions found, we will present, as for V[/,, combined
graphs for different forms of the coupling function f(¢).
Starting with the scalar field, we notice that no conserved
quantity, such as a scalar charge, may be associated with the
solution at large distances in the case of asymptotically
anti—de Sitter black holes: the absence of an O(1/r) term
in the far-field expression (50) of the scalar field, which
would signify the existence of a long-range interaction
term, excludes the emergence of such a quantity, even of
secondary nature. One could attempt instead to plot the
dependence of the coefficient d;, as a quantity that
predominantly determines the rate of change of the scalar
field at the far field, in terms of the mass of the black hole.
This is displayed in the right plot of Fig. 5 for the indicative
value A = —0.1 of the cosmological constant. We see that,
for small values of the mass M, this coefficient takes in
general a nonzero value, which amounts to having a
nonconstant value of the scalar field at the far-field regime.
As the mass of the black hole increases though, this
coefficient asymptotically approaches a zero value.
Therefore, the rate of change of the scalar field at infinity
for massive GB black holes becomes negligible, and the

0021 A 0.1
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The effective potential V , of the scalar field, in terms of the radial coordinate (left plot), and the coefficient d; (right plot) in

scalar field tends to a constant. This is the “Schwarzschild-
AdS regime,” where the GB term decouples from the theory
and the scalar-hair disappears—the same behavior was
observed also in the case of asymptotically flat GB black
holes [34] where, in the limit of large mass, all of our
solutions merged with the Schwarzschild ones.

We present next the ratio of the horizon area of our
solutions compared to the horizon area of the SAdS one
with the same mass, for the indicative values of the negative
cosmological constant A = —0.001 and A = —0.1 in the
two plots of Fig. 6. These plots provide further evidence for
the merging of our GB black-hole solutions with the SAdS
solution in the limit of large mass. The left plot of Fig. 6
reveals that, for a small cosmological constant, all our GB
solutions remain smaller than the scalar-hair-free SAdS
solution independently of the choice for the coupling
function f(¢)—this is in complete agreement with the
profile found in the asymptotically flat case [34]. This
behavior persists for even larger values of the negative
cosmological constant for all classes of solutions apart from
the one emerging for the logarithmic function whose
horizon area is significantly increased in the small-mass
regime, as may be seen from the right plot of Fig. 6. These
plots also verify the termination of all branches of solutions
at the point of a minimum horizon, or minimum mass,
that all our GB solutions exhibit as a consequence of the
inequality (28). We also observe that, as hinted by the
small-A approximation given in Eq. (30), an increase in
the value of the negative cosmological constant pushes
upwards the lowest allowed value of the horizon radius of
our solutions.

We now move to the thermodynamical quantities of our
black-hole solutions. We start with their temperature 7'
given by Eq. (54) in terms of the near-horizon coefficients
(ay, by). In the left plot of Fig. 7, we display its dependence
in terms of the cosmological constant A, for several forms
of the coupling function. We observe that T increases, too,
with |A[; we thus conclude that the more negatively curved
the spacetime is, the hotter the black hole that is formed is.
Note that the form of the coupling function plays almost
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no role in this relation with the latter thus acquiring a
universal character for all GB black-hole solutions. The
dependence of the temperature of the black hole on its
mass, as displayed in the right plot of Fig. 7, exhibits a
decreasing profile, with the obtained solution being colder
the larger its mass is. For small black-hole solutions, the
exact dependence of T on M depends on the particular form
of the coupling function but for solutions with a large mass
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its role becomes unimportant as a common Schwarzschild-
AdS regime is again approached.

Let us finally study the entropy of the derived black-hole
solutions. In Fig. 8, we display the ratio of the entropy of
our GB solutions over the entropy of the corresponding
Schwarzschild—anti-de Sitter solution with the same mass,
for the same indicative values of the negative cosmological

constant as for the horizon area. i.e., for A = —0.001
1.20¢ " 100 — ' ]
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(left plot) and A = —0.1 (right plot). We observe that the
profile of this quantity depends strongly on the choice of
the coupling function f(¢) for solutions with small masses,
whereas in the limit of large mass, where our solutions
reduce to the SAdS ones, this ratio approaches unity as
expected. For small values of A, the left plot of Fig. 8
depicts a behavior similar to the one found in the asymp-
totically flat case [34]: solutions emerging for the linear and
the quadratic coupling functions exhibit smaller entropy
compared to the SAdS one, while solutions for the
exponential, logarithmic, and inverse-linear coupling func-
tions lead to GB black holes with a larger entropy over the
whole mass range or for particular mass regimes. As we
increase the value of the cosmological constant (see right
plot of Fig. 8), the entropy ratio is suppressed for all
families of GB black holes apart from the one emerging
for the logarithmic coupling function, which exhibits a
substantial increase in this quantity over the whole mass
regime. Together with the solutions for the exponential and
inverse-linear coupling functions, they have an entropy
ratio larger than unity while this ratio is now significantly
lower than unity for all the other polynomial coupling
functions. Although the question of the stability of the
derived solutions is an important one and must be inde-
pendently studied for each family of solutions found, the
entropy profiles presented above may provide some hints
regarding the thermodynamical stability of our solutions
compared to the Schwarzschild—anti-de Sitter ones.

IV. DE SITTER GAUSS-BONNET
BLACK HOLES

We now address the case of a positive cosmological
constant, A > 0. We start our integration process at a
distance close to the black-hole horizon, using the asymp-
totic solutions (33)—(35) and choosing ¢, to satisfy again the
regularity constraint (27). The coupling function f(¢) is
assumed to take on a variety of forms—namely exponential,
even and odd polynomial, inverse even and odd polynomial,
and logarithmic forms—as in the case of the negative
cosmological constant. The numerical integration then
proceeds outwards to meet the corresponding asymptotic
solution (42)—(44) near the cosmological horizon.

Unfortunately, and despite our persistent efforts, no
complete black-hole solution interpolating between the
asymptotic solutions (33)—(35) and (42)—(44) was found.
The same negative result concerning the existence of
a black hole solution with an asymptotically de Sitter
behavior was obtained in [85], where the case of a linear
coupling function between the GB term and the scalar
field was considered. It is, however, worth noting that
the two asymptotic solutions near the black-hole and
cosmological horizons do independently emerge—it is the
effort to match them in a smooth way via an intermediate
solution that fails.

To demonstrate this, in Fig. 9 we display the result of
our numerical integration for the indicative case of
a=0.01, ¢, = -1, and A = 0.01. The coupling function
has been chosen to be f(¢) = ae™?; however, the same
qualitative behavior was found for every choice of f(¢)
we have considered. From the metric functions and the
scalar-field profiles displayed in the two plots, we clearly
see that an asymptotic solution describing a regular black-
hole horizon is indeed formed. In this, the metric compo-
nent |g,,| vanishes while the g,, one diverges, as expected.
The scalar field near the black-hole horizon assumes a
finite, constant value while it decreases away from the
horizon, in perfect agreement with the scalar-field profile
found in the case of a negative cosmological constant.
The integration proceeds uninhibited but stops abruptly
close to the regime where the cosmological horizon
should form. In fact, from the left plot of Fig. 9, we
may see the expected behavior of the metric components
near the cosmological horizon (i.e., the vanishing of |g;,|
and divergence of g,,) just to emerge.

The emergence of asymptotic solutions and the failure
to smoothly match them strongly reminds us of the
analysis involved in the no-hair theorems [3,7], where a
similar situation holds. It is, however, difficult to general-
ize that analysis, or equivalently the argument for their
evasion as developed in [34], in the present case of a
nonvanishing cosmological constant.® One could, never-
theless, gain some understanding of the situation by
examining the form of the near-horizon value of the
T", component of the energy-momentum tensor given
in Eq. (37)—the profile of this component is of paramount
importance for the evasion of the novel no-hair theorem
[7] and the emergence of novel solutions. For the evasion
to be realized, this component must be positive and
decreasing close to the black-hole horizon [8,34]. From
Eq. (37), it becomes clear that the presence of a negative
cosmological constant (A < 0) in the theory always gives
a positive contribution to 7", and enhances the probability
of obtaining regular black holes. This justifies the easiness
in which novel black-hole solutions with an asymptoti-
cally anti—de Sitter behavior have emerged in the context
of our analysis. On the other hand, the contribution of a
positive cosmological constant (A > 0) to 77, is always
negative, and this makes the evasion of the no-hair
theorem less likely. It would indeed be interesting to
readdress the arguments presented in [34] as well as the
ones employed in the versions of the no-hair theorems for
nonasymptotically flat black holes [66—70] to cover also
the case where the GB term and the cosmological constant
appear simultaneously in the theory.

Nevertheless, even if the evasion of the no-hair theo-
rems may be realized for A > 0 in the presence of the GB

®A theoretical analysis is currently under way but has, so far,
not given any conclusive results.
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FIG.9. The metric functions |g;| and g, of the spacetime (left plot) and the scalar field ¢ (right plot) in terms of the radial coordinate r,
for a positive cosmological constant and coupling function f(¢) = ae™?.

term—for small values of A this seems quite likely—this
merely opens the way to look for novel solutions, and it
does not guarantee their existence. The emergence of a
complete solution interpolating between the two horizons
still demands the smooth matching of the two asymptotic
solutions. It is quite likely that the system does not have
enough freedom to simultaneously satisfy the require-
ments for the existence of a regular solution, namely
Egs. (27) and (28) and Eqgs. (40) and (41)—this was also
noted in [85]. Or, a very careful selection of parameters
may be necessary for such a solution to emerge. In any
case, further investigation is necessary, and we hope to
return to this topic soon.

V. CONCLUSIONS

In this work, we have extended our previous analyses
[34], on the emergence of novel, regular black-hole
solutions in the context of the Einstein-scalar-GB theory,
to include the presence of a positive or negative cosmo-
logical constant. Since the uniform distribution of energy
associated with the cosmological constant permeates the
whole spacetime, we expected A to have an effect on
both the near-horizon and far-field asymptotic solutions.
Indeed, our analytical calculations in the small-r regime
revealed that the cosmological constant modifies the
constraint that determines the value of ¢) for which a
regular, black-hole horizon forms. In addition, it was
demonstrated that such a horizon is indeed formed, for
either positive or negative A and for all choices of the
coupling function f(¢).

In contrast, the behavior of the solution in the far-field
regime depended strongly on the sign of the cosmological
constant. For A > 0, a second horizon, the cosmological
one, was expected to form at a distance r. > r,, whereas
for A <0, an anti—de Sitter—type of solution was sought
for at asymptotic infinity. Both types of solutions were
analytically shown to be admitted by the set of our field

equations at the limit of large distances, thus opening the
way for the construction of complete black-hole solutions
with an (anti—)de Sitter asymptotic behavior.

The complexity of the field equations prevented us from
constructing such a solution analytically; therefore we
turned to numerical analysis. Using our near-horizon
analytic solution as a starting point, we integrated the
set of field equations from the black-hole horizon and
outwards. For a negative cosmological constant (A < 0),
we demonstrated that regular black-hole solutions with an
anti—de Sitter—type asymptotic behavior arise with the
same easiness that their asymptotically flat counterparts
emerge. We have produced solutions for an exponential,
polynomial (even or odd), inverse polynomial (even or
odd), and logarithmic coupling function between the
scalar field and the GB term. In each and every case,
once f(¢) was chosen, selecting the input parameter ¢, to
satisfy the regularity constraint (27) and the second input
parameter ¢, to satisfy the inequality (28) a regular black
hole solution always emerged. The metric components
exhibited the expected behavior near the black-hole and
asymptotic infinity with the scalar invariant GB term
being everywhere regular. All solutions possessed non-
trivial scalar hair, with the scalar field having a nontrivial
profile both close to and far away from the black-hole
horizon. For small negative values of A, we recovered
the power-law falloff of the scalar field at infinity, found in
the asymptotically flat case [34], whereas for large
negative values of A the profile of ¢ was dominated by
a logarithmic dependence on the radial coordinate. This
behavior was analytically shown to emerge both in the
linear coupling-function case and in the perturbative limit,
in terms of the coupling parameter «, but it was numeri-
cally found to accurately describe all of our solutions at
large distances.

The absence of a (1/r) term in the expression of the
scalar field at large distances excludes the presence of a
scalar charge, even a secondary one. As a result, in the
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presence of A, the black-hole scalar hair amounts to having
a nontrivial, regular scalar field associated with the black
hole—a feature also excluded by the traditional no-hair
theorems—but not a conserved quantity. The coefficient d;
in front of the logarithmic term in the expression of ¢ can
give us information on how much the large-distance
behavior of the scalar field deviates from the power-law
one valid in the asymptotically flat case. We have found
that this deviation is stronger for GB black holes with a
small mass, whereas the more massive ones have a d,
coefficient that tends to zero. The temperature of the black
holes was found to increase with the cosmological constant
independently of the form of the coupling function. The
latter plays a more important role in the relation of 7 with
the black-hole mass: while the temperature decreases with
M for all classes of solutions found, the lighter ones exhibit
a stronger dependence on f(¢). The same dependence on
the form of the coupling function is observed in the entropy
and horizon area of our solutions. For small masses, the
entropy of each class of solutions has a different behavior,
with the ones for the exponential, inverse-linear polynomial
and logarithmic coupling functions exhibiting a ratio
Sce/Ssaas (over the entropy of the Schwarzschild—anti-
de Sitter black hole with the same mass) larger than unity
for the entire mass range, for large values of A. This feature
hints toward the enhanced thermodynamical stability of
our solutions compared to their GR analogues. In the limit
of large mass, the entropy of all classes of our solutions
tend to the one of the Schwarzschild—anti-de Sitter black
hole with the same mass. The same holds for the horizon
area: while for small masses, each class has its own pattern
with M, with all solutions being smaller in size than the
corresponding SAdS one apart from the logarithmic case,
for large masses all black-hole solutions match the horizon
area of the SAdS solution.

Based on the above, we conclude that our GB black-hole
solutions with a negative cosmological constant smoothly
merge with the SAdS ones, in the large mass limit. As in the
asymptotically flat case, it is the small-mass range that
provides the characteristic features for the GB solutions.
These solutions have a modified dependence of both their
temperature and horizon area on their mass compared to the
SAdS solution. Another characteristic is also the minimum
horizon, or minimum mass, that all our GB solutions
possess due to the inequality (28).

|

Turning to GB solutions with a positive cosmological
constant, our quest has failed to find any such solutions.
Although the presence of a positive A does not obstruct the
formation of a regular black-hole or cosmological horizon,
our numerical integration did not manage to produce a
complete solution that would interpolate between the two
asymptotic regimes. This result holds independently of the
choice of the GB coupling function f(¢) or the value of A.

In conclusion, we have demonstrated that the general
classes of theories that contain the GB term and lead to
novel black-hole solutions, continue to do so even in the
presence of a negative cosmological constant in the theory.
In contrast, the presence of a positive cosmological con-
stant presents a severe obstacle for the formation of these
solutions. A further investigation is clearly necessary in
both cases: the relevance of the GB solutions with an anti—
de Sitter—type asymptotic solution in the context of the
AdS-CFT correspondence should be inquired, and the
deeper reason for the absence of solutions with a positive
cosmological constant should be investigated further. We
hope to return soon with results on both issues.
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APPENDIX A: SET OF DIFFERENTIAL
EQUATIONS

Here, we display the explicit expressions of the coef-
ficients S, P, and Q that appear in the system of differ-
ential equations (18) and (19) whose solution determines
the metric function A and the scalar field ¢p. Note that in
these expressions we have eliminated, via Eq. (17), B/,
which involves A” and ¢”, but retained e? for notational
simplicity. They are

S = 2304A'F> % + 8eB[—128rA'f2 ¢ — 448A'F> % + 3212 f2 ¢ — 80F° ]
+ 8eB[16r2A'f' + 160rA' ¢ + 160A'f> 2 — 121° f¢* — 1672 ¢
— GAAP 2 + 16rf + 160f°¢'] + 8e>E[—1612A'f = 32rA' 2’ + 413 fp"

+ 16APf + 64N 2 = 32rf — 80> + r* '] + 8e*P[16rf — 16Ar ],

(A1)
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and

P = —128¢*BA2Pf(rA’ 4 2¢B —2) + 1647 f|-2eB(—14€B + 3¢2B + 19)rf ¢/

+ 8(—8e8 + 3e?8 + 9) 2% — e*B(3eB — 5)r] + 4eBA’2{eBrf[(SeB —19)r%¢”
+12(e® — 1] = 4f2¢'[(9eP — 17) 2@ + 8(e® — 1)%] + 2B rigp'}

+ 4 B2N{—e2B 3 (=2 4 rA )¢ — 16A' 2 [6(3 — 4eB + ?B) 4 (=5 + eB)rA|
+4ePf[-32A(1 + €P) + 4(4(=1 + €B)? = PP¢?) + 2rA'(3 = 3¢ + )]}
— 26281/ {—8f ¢ [4eB (—1 + €P) + PP (=2 + €P)] — dreB(—1 + €F)

— rg”[r2eP — 16f(—1 + €B)]} — A'eP{32rf¢?¢/ (9 — 4eP + 3¢2P)

— PP ePldeB(1 + eB) — @2 (rPeP +16f(1 + €P))]

+ 8B flA(—1 4 B)2 + P2¢2(=7 + 3eP) — 2" (r* + 812 )]}

2304A' f2f 't — 115242 393 + eB[—14412A /4 + 672rA% 242

+ T68A2 33 — 384A' 2> — 1024rA'f f ¢ — 3584A f2 f '

+ 48072 + 6412F F S — 640f f %] + €2B[128r2A" f 2 + 523 A’ f ¢

+ 80P2A' 2 — 1282 A2 ff — STOAPA f2 " — 320r A f2 >

+ 176rA’ f ' — 12842133 + 640A’ F2 > + 1280rA'f f > + 1280A' f2 f
— 163 P + 128rf > — 4r*F 'S — 1522 f > = 2567 2 + 384Arf2 >
+ 160f ¢ — 64r2f | > = 512A12F f ¢ + 1280f f 3] + 3B[—12812A" f />
+ 208APA’ f@f + 32P2A%F ' + 320Ar2A F2p? + 32rAR f2 % — 224rA f !
— 256A' 2% — 256rA'f f ¢° — 6r* A’ + 8P A — 24r°A" + 16 f

+ 128AFP 2 = 256rf ¢ + 16Ar* > + 242 f® — 12°A' f ¢ + 32rf '
+ 224N — SI2Arf* @ = 320f ' + S12A2f f ¢ — 640F f ¢ + rgpt
+ 12392 = 32r] + e*B[—A8AP A ff + A8rA'fp — 24Ar*A" + 2412A

— 128AP f? + 128rf @ + 128N ff) — 224N f ¢ + 128Arf2d” + 160f ¢
—4APP? + AP P — 64Ar + 64r] 4 3B[-32A2F + 64AF — 32r].

APPENDIX B: SCALAR QUANTITIES

(A3)

By employing the metric components of the line element (7), one may compute the following scalar-invariant
gravitational quantities:

uvpo

-B
R= +;—2 (4B —4— 2A2 + 4rB' —4rA' + PA'B - 212A"),
r

-2B

Ry R = 45— [8(2 = 268 + rA' = rB'f + P (rA” = 4B'  rA'B + 2rA")?
r

+r2(rA” + A'(4 — rB') + 2rA")?,
-2B
Rie — S [FA = 2 ABB — AP ABAT - A8 + B2 o 47A)
r
+16(e® — 1)> + 877 B 4 4rA"?],

2 27" B I pat B ” B "
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APPENDIX C: VARIATION WITH RESPECT TO
THE RIEMANN TENSOR

Here, we derive the derivatives of the Lagrangian of the
theory (1) with respect to the Riemann tensor. A simple
way to do this is to take the derivatives ignoring the
symmetries, which the final expression should possess, and
restore them afterwards. For example, if A ;.4 is a four-rank
tensor and A the corresponding scalar quantity, we may
write

0A 0

— ac bd
aAabcd aAabcd

(979 Appe) = 7 97 85,5,67 =
(C1)

Now, if A,pecqd = Rupeq> 1t should satisfy the following
relations:

Aupea =Acdab = —Aabae A Agpeg +Ageap +Agape =0.

(€2)
Restoring the symmetries, we arrive at
3 I?ZM = %(g“cg”d - g"g"). (C3)
Alternatively, we could have explicitly written
L thc (Ruspo = Ruppe)
= SR 518350
= (gegP — ), ()

which clearly furnishes the same result.

We now proceed to the higher derivative terms. Let us
start with the Kretchmann scalar for which we find

apraRwﬂG — D RHvpo Z__HLPO 8R/wﬂ0 _

= QRabed, C5
aRabcd 8Rabcd ( )

The above result does not need any correction as it is
already proportional to R,;,.; and satisfies all the desired
identities. We now move to the R, R* term and employ
again the simple method used above. Then

(9A A HY _ o aA _ 2Aﬂl/g’d AK/MD
8Aabcd Aabcd 8Aabcd
— gacAbd _ gbcAad' (C6)

If Aypea = Rapea and A, = R, the above result will have
all the right properties 1f it is rewritten as

OR,R™ 1

R — E(gacRbd_
abc

gbcRad _

gadec + gbdRac‘)’ (C7)

which is indeed the correct result. Finally, we easily derive
that

OR?
8Rozbcd

= R(g"g" = g"g"’). (C8)

In order to compute the integral appearing in Eq. (61),
we use the near-horizon solution (33)—(35) for the metric
functions and scalar field. Then recalling that, near the
horizon, the relations A” ~ —A’? and B’ ~ —A’ also hold, we
find the results

ROIOllH — _%e—A—ZB(_ZA// JrA/B/ _A/2)|H -0,

—2(g™R'! — glORON — IR0 4 911R00)|H

4b%
- —e -,
I apry
A28 4p?  2b,

4A/ N—_ )
( ! )|H apry Cl]l’%

—A—2BA/|H

99" Ry —

Joognily = By = ay/by.

Substituting these into Eq. (61), we readily obtain the
result (62).
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