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The observation of gravitational waves from a binary neutron star merger by LIGO/VIRGO and the
associated electromagnetic counterpart provides a high precision test of orbital dynamics, and therefore a
new and sensitive probe of extra forces and new radiative degrees of freedom (d.o.f.). Axions are one
particularly well-motivated class of extensions to the Standard Model leading to new forces and sources of
radiation, which we focus on in this paper. Using an effective field theory (EFT) approach, we calculate the
first post-Newtonian corrections to the orbital dynamics, radiated power, and gravitational waveform for
binary neutron star mergers in the presence of an axion. This result is applicable to many theories which add
an extra massive scalar d.o.f. to general relativity. We then perform a detailed forecast of the potential for
Advanced LIGO to constrain the free parameters of the EFT, and map these to the mass ma and decay
constant fa of the axion. At design sensitivity, we find that Advanced LIGO can potentially exclude axions
with ma ≲ 10−11 eV and fa ∼ ð1014 − 1017Þ GeV. There are a variety of complementary observational
probes over this region of parameter space, including the orbital decay of binary pulsars, black hole
superradiance, and laboratory searches. We comment on the synergies between these various observables.
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I. INTRODUCTION

The importance of the recent direct detection of gravita-
tional waves from black hole and neutron star mergers can
hardly be overemphasized [1–4]. These observations have
confirmed the existence of gravitational waves and black
holes, among the most important predictions of general
relativity (GR). The binary neutron star event, GW170817,
with the coincident electromagnetic observations, has also
yielded insight into the nature of short gamma-ray bursts and
the production of heavy elements in the Universe. What new
discoveries might be on the horizon?
It is clear that existing and future gravitational wave

(GW) observatories will enable us to learn a great deal
about astrophysics [5]. Some of the expected highlights
include insight into production mechanisms from popula-
tion statistics and constraints on the structure of neutron

stars from the GWwaveform associated with the end stages
of inspiral (where tidal effects become important) and the
postmerger phase (where a hypermassive neutron star can
form). However, the measurement of gravitational waves
from binary mergers also provides an unprecedented
opportunity to search for fundamental interactions and
particles beyond those of the Standard Model of particle
physics and general relativity; see e.g., [6] for a summary.
Several examples include

(i) Self-interactions beyond the Einstein-Hilbert action
It is important to understand how the gravitational

sector might be modified by new graviton self-
interactions. The possible form of graviton self-
interactions is strongly limited by diffeomorphism
invariance, as well as causality and analyticity argu-
ments [7]. The effect of additional graviton inter-
actions in the cosmic microwave background
(e.g., [8]) and on compact binary mergers (e.g., [9])
has received some attention in the literature.However,
there are a number of challenges associated with the
well posedness of time evolution in the nonlinear
theory (e.g., [6,10,11]) which thus far precludes a full
picture of binary mergers. New diffeomorphism
invariance breaking graviton interactions can also
be introduced to modify binary dynamics as well as
gravitational wave propagation. Various forms of
massive gravity theories can be tested through the
modification of graviton dispersion relations [12–18].
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However, it is currently not known how to calculate
the gravitational waveform from binary mergers
predicted by massive gravity theories [19]. This is
because binaries lie in the strongly coupled regime of
the theory for any viable value of the graviton mass
[18,20].

(ii) Exotic compact objects
Several proposals exist for compact objects made

out of new particles, e.g., boson stars/axion stars (see
Ref. [21] for a review). These new compact objects
have masses and sizes (compaction) different from
black holes and neutron stars. The measurement of
gravitational and electromagnetic radiation resulting
from the merger of such objects provides one means
of constraining the associated new particles and
interactions (see e.g., [6]).

(iii) Light states coupled to gravity
Scalar fields are a ubiquitous feature of physics

beyond the Standard Model of particle physics and
many extensions of general relativity. Light scalars
that couple to gravity can be probed by black hole
superradiance [22–24]. In this case, the large gravi-
tational field in the proximity of black holes and
their rapid rotation can source the clustering of large
numbers of light bosons, which in turn extract
angular momentum from the black hole. Indirect
observations of the spin distribution of black hole
binaries by Advanced LIGO will shed light on the
existence of these light particles [24], and searches
for continuous wave signals at Advanced LIGO and
future gravitational wave detectors might observe
these light particles directly [23].

(iv) New force mediator
If coupled to matter, light scalars can mediate new

long range interactions between compact objects,
commonly termed “fifth forces” (see [25] and
references within). These interactions have been
constrained by laboratory experiments [26–28] as
well as astronomical observations of the Solar
System (e.g., [29]) and beyond (e.g., [30]). Labo-
ratory experiments constrain universally coupled
fifth forces to be much weaker than gravitational
strength if the force has a range that is longer than a
few microns [26–28]. New scalar forces that arise
only in a strong gravity or high density environment,
however, are unconstrained and can be looked for
with Advanced LIGO.

In this paper, we focus on this last category, building
upon previous work [31,32] suggesting that binary neutron
star (NS-NS) and neutron star-black hole (NS-BH) mergers
can provide powerful new probes of light scalar force
mediators. In particular, we assess the sensitivity of
advanced gravitational wave detectors, such as Advanced
LIGO and VIRGO, to the effects of axions on the GW
waveform in binary mergers. Before proceeding, we review
the properties of axions.

The QCD axion was originally introduced as a solution
to the strong CP problem [33–36]. Experimental searches
for a neutron electric dipole moment suggest that the strong
CP angle is much smaller than 10−10 [37], while CP angles
in the Cabibbo-Kobayashi-Maskawa matrix have been
measured to be Oð1Þ. The puzzling smallness of the strong
CP angle can be resolved by introducing the axion particle
a with the coupling

a
fa

g2s
32π2

GμνG̃μν; ð1Þ

where gs is the strong coupling constant, Gμν is the gluon
field strength with G̃μν ¼ 1

2
ϵμνρσGρσ its dual, and fa the

axion decay constant. At low energies, the axion field a
gets a potential from the coupling to gluons

V ≈ −m2
πf2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4mumd

ðmu þmdÞ2
sin2

�
a
fa

�s
; ð2Þ

where mπ and fπ are respectively the pion mass and decay
constant, and mu;d stands for the mass of the up, down
quarks. The mass of the QCD axion is related to the axion
decay constant by ma ¼ 5.7 × 10−12 eVð1018 GeV

fa
Þ, with

ma ≳ 10−12 eV if we require fa ≲mPl [38]. Recently, it
was suggested that if the axion sector has a discrete shift
symmetry, the potential of the axion can be much shal-
lower, and the axion mass can be exponentially small [39],
opening up the parameter space over which one should
search for a QCD axion. In addition to its coupling to
gluons, the QCD axion can have model-dependent cou-
plings to photons and derivative couplings to Standard-
Model fermions (see e.g., [40]).
There are a number of other motivations for considering

pseudoscalar particles with many of the same properties as
the QCD axion, typically referred to as axionlike particles
(ALPs). In the following, we generally refer to ALPs as
“axions.”which can have anymassma and decay constantfa
as well as any subset of the interactions possessed by the
QCD axion. For example, string theory compactifications
generally predict a number of light axions [41].Axionsmight
be the dark matter [38] (or comprise a significant fraction
of it) or provide a candidate for dynamical dark energy [42].
Axions have been constrained by various experiments

through their couplings to photons. The axion dark matter
experiment (ADMX) published the first constraint on the
QCD axion parameter space in the μeV mass range [43],
assuming that the axion makes up all the dark matter in the
Universe. Many experimental searches for axions through
their couplings to nucleons, electrons, and photons have
recently been proposed to cover a much wider range of
masses and coupling strengths [44–52]. Beside laboratory
measurements, indirect measurements of energy loss and
energy transport in various astrophysical objects, for
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instance SN1987 [53], have set the most stringent con-
straint on the QCD axion in the large mass/strong coupling
regime. One can also derive constraints on axions from
black hole superradiance [23], while for axions with a
nuclear coupling one may impose constraints from the
measurement of the CP properties of nearby stellar
objects [31].
For axions with a nuclear coupling of the form equa-

tion (1), it has been shown [31] that axions can be sourced by
compact objects with a high nuclear density, such as neutron
stars, thus endowing compact objects with a scalar charge.
Such a scalar charge has important implications forNS-NSor
NS-BH binary mergers, leading to the emission of axion
radiation and an axion-mediated fifth force. Preliminary
estimates of these effects on the orbital dynamics and GW
waveform were presented in Refs. [31,32], which demon-
strated that in principle there can be a significant and
detectable effect to target.
For theoretical predictions to match the exquisite data

quality of GW170817 and future detections, it is necessary
to understand the importance of relativistic corrections,
which are typically characterized by the post-Newtonian
(PN) expansion in v2, the characteristic velocity associated
with the orbit. A very useful tool for developing waveforms
to arbitrary order in the PN expansion is the effective field
theory (EFT) framework developed by Goldberger and
Rothstein [54,55]. The EFT framework has been used to
calculate post-Newtonian corrections to the gravitational
potential and quadrupole moments of binary systems, and,
as a result, GW waveforms (see [55] for a review), as well
as new observable effects beyond general relativity [9]. One
of the merits of an effective field theory approach is that it
can be easily extended to include new d.o.f. and new
interactions. In this paper, we extend the effective field
theory of gravity for binary systems to include couplings to
an axion, and calculate at next-to-leading order (e.g., to
1PN order) the axion forces between neutron stars as well
as axion radiation, both of which are crucial for computing
the GWwaveform. Our result also applies to theories which
include an additional massive scalar d.o.f. coupled to
neutron stars. To our knowledge, this result for a massive
scalar does not appear elsewhere in the literature.
A principle additional result of this paper is a forecast

demonstrating the potential for Advanced LIGO to look for
massive scalars, and in particular axions, with an event
similar to GW170817. We find that Advanced LIGO is a
very sensitive probe of the scalar charges of neutron stars
and the range of the scalar force (or equivalently, the mass
of the axion). Translating this into constraints on ffa;mag
for axions, we find that a GW170817-like event could look
for axions in a large region of the theoretically interesting
parameter space. This region of parameter space is also the
focus of efforts by binary pulsar measurements, black hole
superradiance, and laboratory experiments, opening the
window for interesting joint analyses. In the optimistic

scenario of a detection, these other efforts would provide a
means for an independent confirmation of the existence of a
new fundamental particle. We hope that this analysis
motivates a systematic observational effort to constrain
axions with existing and future detections by LIGO-
VIRGO, as well as with next-generation gravitational wave
detectors.
The paper is organized as follows. In Sec. II, we

summarize the main effects discussed in [31] and discuss
qualitatively the observable consequences of axions on GW
waveforms emitted during binary mergers. In Sec. III, we
adapt the EFT framework to analytically calculate the
corrections to the GW waveform from axion-mediated
forces and axion radiation, and in Sec. IV, we forecast the
observable reach of Advanced LIGO at design sensitivity.
In Sec. V, we conclude and discuss the implications of an
Advanced LIGO discovery or exclusion.
Below, we use the conventions: m2

Pl ¼ 1=32πG, ℏ ¼
c ¼ 1 and ημν ¼ ð1;−1;−1;−1Þ.

II. NEUTRON STARS WITH AXIONS

In this section, we summarize the main properties of
axions discussed in [31], which lead to axion-mediated
forces as well as axion radiation. The coupling of the axion
that we search for is the axion nuclear coupling in Eq. (1).
At low energies, and when the axion is the dark matter, this
coupling induces an oscillating electric dipole moment of
the nucleus, which has been used to look for dark matter
axions in the CASPEr experiment [48]. Note, however, that
our setup does not require the axion to be the dark matter. It
was recently suggested [31] that for axions with non-
vanishing nuclear coupling, there are corrections to the
axion potential when the nucleon number density is non-
zero. Neutron stars, and to a lesser extent, white dwarfs and
stars, can have large enough nucleon number density to
significantly change the shape of the axion potential. Over a
wide range of axion parameter space, these corrections can
lead to phase transitions in large and dense objects, like
neutron stars, implying new constraints on the axion
parameter space, and providing new opportunities to look
for such axions in Advanced LIGO and future gravitational
wave experiments.
The axion becomes tachyonic at a ¼ 0 inside the neutron

star in the region of parameter space where the axion mass
in vacuum (ma) and the axion decay constant (fa) satisfy
the condition

m2
a ≲ σNnN=4f2a; ð3Þ

where the parameter σN ≡P
q¼u;dmq

∂mN∂mq
≈ 59 MeV para-

metrizes the dependence of the mass of the nucleons on the
masses of the quarks, and can be determined from lattice
simulations (see [56]), while nN stands for the number
density of neutrons inside a neutron star. For axions
satisfying the condition
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RNS ≳ 1

wa
; w2

a ¼
σNnN
4f2a

−m2
a > 0; ð4Þ

with RNS denoting the radius of the neutron star (NS), the
axion is tachyonic inside of the neutron star at the vacuum
expectation value. This causes the neutron star to develop
an axion profile connecting the different vacua for the axion
inside and outside the neutron star. The profile is given
approximately by

aðrÞ ≃
��πfa; for r < RNS

�πfa
RNS exp½−mar�

r ; for r > RNS:
ð5Þ

The axion potential outside the neutron star has minima at
a ¼ 0; 2πfa;…, and therefore this profile connects the
inside of the star, where a ¼ �πfa, to the local minimum
of the potential (in vacuum) at a ¼ 0. The axion profiles of
neutron stars in a binary interact, leading to changes in the
strength of the long range interaction, and therefore
modifying the power radiated in gravitational waves.
The exact profile will differ slightly due to the density
profile of the neutron star and the interaction terms in the
axion potential. However, these effects will not be impor-
tant far from the neutron star interior, which is the relevant
regime for our calculation of the inspiral waveform. Before
we delve into details of the calculation of the GW wave-
form both analytically and numerically, we first summarize
the main observable effects and where they come from.

A. Axion-mediated forces

The axion mediates a force between neutron stars when
the axion Compton wavelength λa ¼ 1=ma is comparable
to, or larger than, the separation between neutron stars. The
force is

F ¼ −
Q1Q2

4πr2
exp½−r=λa�r̂; ð6Þ

at leading order, where Q ¼ �4πðπfaRNSÞ are the scalar
charges of the neutron stars. Such a force can be either
attractive or repulsive, depending on whether the axion
field value is the same or opposite sign on the surface of the
two neutron stars, respectively. Such a force can be of
comparable strength to the gravitational force when the
axion decay constant fa is comparable to the Planck scale
mPl. The existence of such a short range interaction can
significantly modify the orbital motion of the neutron stars,
and therefore the gravitational waveform. At short dis-
tances (r ≃ RNS), the axion-mediated force deviates from
the inverse square law due to the induced axion charges and
dipole moments of the neutron stars, which can also change
the gravitational wave waveform.

B. Axion radiation

The other major observable effect comes from axion
Larmor radiation during the inspiral. The axion radiation
turns on when the orbital frequency of the inspiral becomes
larger than the mass of the axion. The total power radiated
in a neutron star binary inspiral has contributions from both
the GR (see e.g., [57]) and scalar sectors (see e.g., [58] for
the massless case and [31,59] for the massive case)

dE
dt

¼ −
32

5
Gμ2r4Ω6 −

1

4

Ω4ðQ1r1 −Q2r2Þ2
6π

×

�
1 −

m2
a

Ω2

�
3=2

ΘðΩ2 −m2
aÞ; ð7Þ

at leading order, where μ ¼ M1M2

M1þM2
is the reduced mass of

the system, Ω is the orbital frequency and r denotes the
distance between the two neutron stars. r1 and r2 are the
distances from the two neutron stars to the center of mass
(r1 ¼ r − r2 ¼ M2

M1þM2
r). The axion radiation is sourced

primarily by a time-dependent scalar charge dipole while
gravitational radiation is sourced primarily by a time-
dependent mass quadrupole. The axion radiation has a
weaker frequency dependence when Ω ≫ ma compared to
the gravitational radiation, and therefore it is more impor-
tant at longer distances compared to gravitational radiation.
Observationally, this implies that the GW waveform is
altered. In absence of an axion force—for instance such a
force does not exist at leading order in a NS-BH merger—
one gets an additional contribution to df=dt that scales as

ðdf=dtÞaxion ∝ f3
�
1 −

ma

πf

�
3=2

Θðπf −maÞ; ð8Þ

at leading order, compared to df=dt ∝ f11=3 for gravita-
tional radiation.
In the following, we discuss in more detail how to

calculate corrections to the gravitational wave waveform
due to axion-mediated forces and axion radiation, and then
present how one can use the observation of binary mergers
by Advanced LIGO/Virgo in order to constrain the axion
parameter space. We consider NS-NS mergers as well as
NS-BH mergers and make use of the phenomenological
parameters defined below. The charge of the individual
compact objects, which determines the size of the axion-
mediated force, is

Q1;2 ¼
��4π2faRNS 1;2; for a neutron star

0; for a black hole:
ð9Þ

The dipole moment of the system, which determines the
axion radiation, is

P⃗ ¼ Q1 −Q2

2
r⃗12; ð10Þ
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where r⃗12 ¼ r⃗1 − r⃗2 is a vector that points from charge Q2

to charge Q1, and P ¼ jP⃗j is the magnitude of the dipole
moment. In the case of a NS-BH merger, the axion-
mediated force is zero and the axion radiation is nonzero,
while for a NS-NS merger, both the axion-mediated force
and axion radiation can be present.
To gain a qualitative understanding of the effects of

axions on the GWwaveform, we show a cartoon plot of the
strain vs time in Fig. 1; a quantitative description can be
found below and in Refs. [31,32]. The effect of axions on
the waveform is negligible at times before the objects in the
binary are separated by roughly a Compton wavelength of
the axion. As the orbit decays within the Compton wave-
length, scalar radiation can become an important source of
orbital energy loss, especially for large Compton wave-
lengths. This has the effect of increasing the frequency of
the GW, and hastening the merger. Scalar radiation is
present both for NS-NS and NS-BH binaries. For NS-NS
binaries, the effect of the scalar force also becomes
important once the orbit has decayed to within the
Compton wavelength, and can have a strong effect on
the orbital dynamics up to the merger. For neutron stars
with the same sign scalar charge, the scalar force is
attractive, increasing the frequency of the GW and hasten-
ing the merger. For neutron stars of the opposite sign scalar
charge, the force is repulsive, decreasing the frequency of
the GW, and delaying the merger. In the next section, we
discuss these effects in more detail.

III. THE EFFECT OF MASSIVE SCALARS/AXIONS
ON BINARY SYSTEMS

In this section, we study the effects of a massive scalar
field on the inspiral GW waveform. Our discussion begins
with a general scalar field theory, and we then specialize to
the axion in Sec. III C. The inspiral dynamics are usually

studied using a PN expansion, in which solutions of the
Einstein equations are expanded in the characteristic
velocity of the system v. The inspiral waveform can be
obtained to arbitrary accuracy provided the inclusion of
sufficiently high order terms. The PN equations of motion
can be derived using different methods, all of which lead to
the same results at the same PN order. In this paper, we
utilize the EFT approach proposed in [54]. We first review
the properties of the EFT and then generalize it to include a
scalar field.
A neutron star binary simultaneously involves many

scales: the size of the neutron star RNS, the separation
between two neutron stars r, and the wavelength of the
emitted gravitational waves λGW. During the inspiral phase,
these three scales have size RNS ≪ r ≪ λGW and are related
to the velocity through RNS=r ∼ r2=λ2GW ∼ v2 ≪ 1. The
smallness of v during the inspiral phase allows us to
calculate PN corrections with EFT methods order by order.
To obtain an EFT in the infrared, one can write down an

action with all possible terms that respect the symmetries of
the system. For example, to calculate the instantaneous
potential between binary neutron stars, we represent the
neutron stars by two pointlike particles, while the mass, spin,
and finite size effects of the neutron stars are encoded in the
series of couplings between gravitons and the particle
worldlines. The value of these couplings can be obtained
by utilizing a series of “matching conditions”: comparing the
physical quantities, e.g., the Newtonian potential, calculated
with an EFT approach to the quantities one can directly
compute easily in the ultraviolet limit (e.g., general
relativity).
An infrared EFT can also be obtained by “integrating

out” the heavy d.o.f. in the ultraviolet EFT. Specifically, for
a neutron star binary, off-shell gravitons mediating long
range interactions between two neutron stars (potential
gravitons) typically carry momentum k ∼ 1=r ≫ Ω, while
on-shell gravitons that are emitted by the binary (radiation
gravitons) typical carry momentum k ∼Ω ∼ v=r and are
therefore “lighter” than potential gravitons. The effective
action of the low energy radiation graviton can be obtained
by integrating out the “heavy” potential graviton:

eiSeff ½h̄;x� ¼
Z

DHμνeiSfull½H;h̄;x�; ð11Þ

where h̄μν denotes the radiation gravitons, Hμν stands for
the potential gravitons.
The EFT approach has the advantage of manifesting

power counting in the expansion parameter of the theory,
which in the case of neutron star binaries is precisely the
relative velocity of the binary neutron stars v, and therefore
makes it easier to track the PN order. As demonstrated in
[54], in the EFT framework, the instantaneous potential as
well as the gravitational radiation can be systematically
calculated to any order in the PN expansion by including

time
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FIG. 1. Schematic plot of the strain vs time for a GW waveform
emitted during a binary merger in the presence of an axion. The
arrows indicate whether the effects of the axion hasten or delay
the merger, and therefore shorten or lengthen the chirp (and
increase or decrease its pitch, respectively).
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the relevant couplings and matching conditions, and work-
ing out the corresponding Feynman diagrams.
In the following, we consider binaries consisting of two

scalar charged neutron stars or one scalar charged neutron
star and a black hole. Similar to the case of pure gravity, we
first write down a series of operators which encode the
interactions between the scalar and the members of the
binary. In particular, we include operators that characterize
the charges and induced dipole moments of the neutron
stars. We then calculate the scalar mediated force, and
utilize several matching conditions to determine the cou-
plings in the EFT for the axion. We then treat the effects
caused by the scalar field perturbatively, and calculate the
leading order effects of the scalar field on the 1PN
Newtonian potential, as well as on the 1PN gravitational
radiation. In the EFT with a scalar, as we demonstrate, we
can treat both the scalar charge and the orbital velocity as
separate expansion parameters and keep the leading cor-
rections in each.
We consider two scalar charged neutron stars with mass

M1 andM2 and chargesQ1 andQ2, and with their positions
being x1 and x2 respectively. As usual, we define

r ¼ x1 − x2; v ¼ v1 − v2;

M ¼ M1 þM2; and η ¼ M1M2

ðM1 þM2Þ2
; ð12Þ

and work in the center of mass frame defined at the
corresponding PN order.

A. Binding energy

Let us start with the effective action of the binary in pure
gravity [54]

SGR ¼ −2m2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−

1

2
ΓμΓνgμν

�
−

X
n¼1;2

Mn

Z
dτ;

ð13Þ

where Γμ ¼ Γμ
αβg

αβ. The first term is the Einstein-Hilbert
action, while the second term fixes the harmonic gauge.
The dynamics of the two-body system is described by the
third term using the worldline approximation. In principle,
one could have more generic couplings between gravitons
and worldlines, which appear at high PN order. Such terms
are omitted for the moment.
Now we consider a massive scalar field ϕ with

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕ − VðϕÞ

�
: ð14Þ

We assume a reflection symmetry of VðϕÞ, as in the axion
case, which eliminates couplings such as ϕ3 and ϕh200.
Similar to self-interactions of gravitons, self-interaction
vertices such as ϕ4 and higher powers only contribute at

higher order in the PN expansion [60]. For these reasons, it
is enough to consider VðϕÞ ¼ 1

2
m2

sϕ
2. For the charged

neutron star solutions discussed in Sec. II, we should
consider all possible couplings between the scalar and the
worldlines that respect the symmetry of the full theory, and
therefore the last term in Eq. (13) becomes

Spp ¼ −
X
n¼1;2

Z
dτ

�
Mn þ qn

ϕ

mPl
þ pn

�
ϕ

mPl

�
2

þ � � �
�
;

ð15Þ

where qn and pn are the scalar couplings to the neutron star
to be determined by utilizing matching conditions. Both pi
and qi have mass dimension one. Here we only show the
terms that contribute up to 1PN. Note that we also do not
include uμ∂μϕ (where uμ is the 4-velocity), which is
proportional to the equation of motion (up to a total
derivative) at leading order, and therefore is a redundant
operator.
To calculate the binding energy as well as radiation in

GR, we first expand the metric around Minkowski space

gμν ¼ ημν þ
hμν
mPl

: ð16Þ

Interactions between the pointlike particles and the grav-
itons as well as the scalars are obtained by Taylor
expanding action (15) in v. For example,

Spp ⊃ M
Z

dτ

¼ M
Z

dt

�
1

2
v2 −

1

2

h00
mPl

−
h0i
mPl

vi

−
1

4

h00
mPl

v2 −
1

2

hij
mPl

vivj þ � � �
�
: ð17Þ

We also have couplings between the scalar field and
gravitons from Eq. (14),

Sϕ ⊃
Z

d4x
1

4mPl
ðk · q −m2

s Þh00ϕ2

þ 1

4mPl
½ðk · q −m2

s Þηij þ 2kiqj�hijϕ2; ð18Þ

where ηij ¼ −δij and the dot product between momenta k
and q is defined as k · q ¼ δijkiqj. Furthermore, we
decompose hμν ¼ Hμν þ h̄μν as well as ϕ ¼ Φþ ϕ̄ such
that Hμν (Φ) represents the off-shell potential graviton
(scalar), while h̄μν (ϕ̄) is the long-wavelength radiation
graviton (scalar). The graviton propagator, which stems
from the expansion of the Einstein-Hilbert action with
gauge fixing conditions, is given by
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hHkμνðx0ÞHqαβð0Þi ¼ −ð2πÞ3δðkþ qÞ i
k2

δðx0ÞPμν;αβ; ð19Þ

where Pμν;αβ ¼ 1
2
ðημαηνβ þ ηναημβ − ημνηαβÞ. Given P00;00 ¼ 1=2 and P00;ij ¼ −ηij=2, we have the H00ϕ

2-vertex

ð20Þ

Using the power counting rules in [54], we can find the
Feynman diagrams, as shown in Figs. 2–5, that contribute
to the binding energy up to 1PN order. Among these
diagrams, Fig. 2(b), Fig. 3(b), Fig. 3(c), Fig. 4(c), and
Fig. 5(c) represent the binding energy from the GR sector
[54]. Together with the kinetic term, they give the
Lagrangian for the binary in pure gravity:

LGR ¼ 1

2

X
i¼1;2

Miv2i þ
GM1M2

r
þ LEIH; ð21Þ

with

LEIH ¼ 1

8

X
i¼1;2

Miv4i

þGM1M2

2r

�
3ðv21 þ v22Þ− 7ðv1 · v2Þ−

ðv1 · rÞðv2 · rÞ
r2

�

−
G2M1M2ðM1 þM2Þ

2r2
; ð22Þ

being the Einstein-Infeld-Hoffmann Lagrangian [61].
Corrections from the scalar field are represented

by Fig. 2(a), Fig. 3(a), Fig. 4(a), Fig. 4(b), Fig. 5(a),
and Fig. 5(b). At 0PN order, the presence of the scalar field
leads to an extra diagram

Fig:2ðaÞ ¼ i
Z

dt
q1q2
m2

Pl

e−msr

4πr
; ð23Þ

which contributes a Yukawa potential. At 1PN order, the
corrections are given by

(a) (b)

FIG. 2. Leading order diagrams. In the diagrams above and in
Figs. 3–5 below, the solid black lines are the geodesics of the
neutron stars, the dashed lines represent the propagator of the
scalar field, and the wiggly lines are the propagator of the graviton.

(a) (b) (c)

FIG. 3. 1PN diagrams proportional toGv2. See Fig. 2 for a description of the diagrammatic representation. The crosses in the diagrams
above represent the insertion caused by the PN expansion of the propagator.

(a) (b) (c)

FIG. 4. 1PN diagrams proportional to G2.

(a) (b) (c)

FIG. 5. 1PN diagrams with 3-vertices.
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Fig:3ðaÞ ¼ −i
Z

dt
q1q2
8πm2

Pl

e−msr

r

�ðv1 · rÞðv2 · rÞ
r2

ð1þmsrÞ − ðv1 · v2Þ
�
; ð24Þ

Fig:4ðbÞ ¼ −i
Z

dt
q1M2q2
128π2m4

Pl

e−msr

r2
þ ð1 ↔ 2Þ; ð25Þ

Fig:4ðaÞ ¼ −i
Z

dt
p1q22
8π2m4

Pl

e−2msr

r2
þ ð1 ↔ 2Þ; ð26Þ

Fig:5ðbÞ ¼ i
Z

dt
M1q22

512π2m4
Pl

�
ms

r
−
ms

r
e−2msr − 2m2

sEið−2msrÞ
�
þ ð1 ↔ 2Þ; ð27Þ

Fig:5ðbÞ ¼ i
Z

dt
q1q2M1

64π2m4
Pl

ms

r
IðmsrÞ þ ð1 ↔ 2Þ; ð28Þ

where EiðxÞ ¼ −
R∞
−x dte

−t=t is the exponential integral and IðxÞ is a finite integral defined as

IðxÞ≡ 2

π

Z
∞

0

dk
k2 þ 1

sin ðkxÞ arctan k: ð29Þ

The first term in Eq. (27), ms
r , comes from the renormalization of the mass of the neutron star from axion-mediated

interactions at one loop, and can therefore be absorbed by redefining the mass of the neutron star. In the following, we
neglect this term in the axion potential since it is not observable. Collecting all the terms gives us the effective Lagrangian
from the scalar sector up to 1PN order:

Lϕ ¼ 8Gq1q2
e−msr

r

�
1 −

GðM1 þM2Þ
r

−
1

2

ðv1 · rÞðv2 · rÞ
r2

ð1þmsrÞ þ
1

2
ðv1 · v2Þ − 16G

�
q1

p2

q2
þ q2

p1

q1

�
e−msr

r

�

−
2G2ðM1q22 þM2q21Þ

r
ms½e−2msr þ 2msrEið−2msrÞ� þ

16G2q1q2ðM1 þM2Þ
r

msIðmsrÞ: ð30Þ

For simplicity, we define the following dimensionless parameters:

q ¼ q1q2
M2η

; α2 ¼ q

�
q1
M1

þ q2
M2

�
−2
; λ ¼ 1

GMms
; p ¼ 1

M

�
q1

p2

q2
þ q2

p1

q2

�
; ð31Þ

where −1 ≤ α ≤ 1. Note that q > 0 if the scalar force between two neutron stars is attractive, and vice versa if repulsive. We
also define

r̃≡ r=GM; Ω̃≡GMΩ: ð32Þ
The 1PN correction to the Newtonian potential is given by VGR þ Vϕ with

VGR ¼ Mη

�
−
1

r̃
þ 3ð1 − 3ηÞ

8
v4 þ 1

2r̃

�
ð3þ ηÞv2 þ η _̃r2 þ 1

r̃

��
; ð33Þ

and

Vϕ ¼ −8qMη
e−r̃=λ

r̃

�
1 − 16p

e−r̃=λ

r̃

�
− 8qMη

e−r̃=λ

r̃

�
−
1

r̃
−
1

2
η

�
1þ r̃

λ

�
_̃r2 þ 1

2
ηv2

�

þ 2qMη
1

r̃λ
Aðη; αÞ

�
e−2r̃=λ þ 2

r̃
λ
Ei

�
−2

r̃
λ

��
− 16qMη

1

r̃λ
I
�
r̃
λ

�
; ð34Þ

where

Aðη; αÞ≡ 1þ α2 þ 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
1 − α2

: ð35Þ
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B. Radiation power

We now compute the corrections from the scalar field to
the gravitational radiation from the binary at 1PN order.
Our goal is to get the corrected radiation power, which is a
necessary ingredient for calculating the inspiral waveform.
The EFT for the radiation gravitons can be obtained by
integrating out the potential graviton Hμν and “potential
scalar” Φ defined by ϕ ¼ Φþ ϕ̄:

eiSeff ½h̄;ϕ̄;x� ¼
Z

DHμνDΦeiSfull½h;ϕ;x�; ð36Þ

where Sfull ¼ SGR þ Sϕ þ Spp.

1. Gravitational wave radiation

Formally, the source term of the effective action of
radiation gravitons can be written as

Ssourceeff ¼ −
1

2mPl

Z
d4xTμνðxa; h̄μν; ϕ̄Þh̄μν; ð37Þ

where Tμν is the pseudo-energy-stress tensor that can be
read off from the path integral (36). To manifest the PN
order, it is not enough to just keep Tμν at the right PN order;
one should also expand h̄μν to the right PN order, which is
achieved by performing multipole expansions around the
center of mass [54]. Multipole expansion of actions is
discussed in detail in [62]. Schematically, one can divide
Ssourceeff into two parts: the conserved part and the radiation
one. The former has h̄00, h̄0i and their spatial derivatives
coupled with conserved quantities, such as the ADM mass
and momentum, and therefore does not radiate. The latter
one has the form

Sradeff ¼
Z

dt

�
1

2
Iijg R0i0j þ

1

6
Iijkg ∂iR0j0k þ � � �

�

−
Z

dt

�
1

3
ϵimnJ

ij
g R0jmn þ � � �

�
; ð38Þ

where Rμνσρ is the linearized Riemann tensor defined by the
metric ḡμν ¼ ημν þ h̄μν=mPl and ϵijk is the Levi-Civita

symbol. The Iijg , Iijkg , and Jijg are the mass quadrupole,
mass octupole and current quadrupole, respectively, which,
after extensive use of the Ward identity, doing integration
by parts, and using the wave equation, are related to the
pseudo-energy-stress tensor though

Iijg ¼
Z

d3x

�
T00þTkk−

4

3
_T0kxkþ11

42
T̈00x2

�
½xixj�STFþ���

ð39Þ

Iijkg ¼
Z

d3xðT00 þ TllÞ½xixjxk�STF þ � � � ð40Þ

Jijg ¼ −
1

2

Z
d3xðϵiklT0kxixj þ ϵjklT0kxixlÞ þ � � � ; ð41Þ

where the dots denote time derivatives, and ½� � ��STF denotes
the symmetric trace free components. Note that in the
above equations, we have omitted terms that contribute at
order higher than 1PN. (We refer the reader to [62] for more
complete and compact expressions.) Finally, the power of
gravitational radiation can be calculated using the optical
theorem [54],

Pg ¼
G
πT

Z
ω

0

dω

�
ω6

5
jIijðωÞj2 þ 16ω6

45
jJijðωÞj2

þ ω8

189
jIijkðωÞj2 þ � � �

�
: ð42Þ

Now, let us get back to the path integral (36) and find
the expression for Tμν. We only need to calculate Tμν to finite
PN order. According to Spp, we have T00 ∼ vT0i ∼ v2Tij at
leadingorder.On the other hand,wehave r∂iRμνρσ ∼ vRμνρσ,
since radiation gravitons carry a typical momentum k ∼ v=r.
With these power counting rules, we conclude that Iijg ∼
vIijkg ∼ vJijg at leading order. Thus, at leading order the
gravitational radiation is simply

Iijg ¼
Z

d3xT00½xixj�STF; ð43Þ

with T00 ¼ P
n¼1;2Mn. We find that the scalar field has no

effect on the gravitational radiation at leading order.
Substituting Iijg into Eq. (42), one gets the well-known
quadrupole formula

PGR ¼ G
5
h ⃛ Iij ⃛Iiji;

where the brackets denote a time average.
Calculation of the gravitational radiation power to next-

to-leading order needs the leading mass octupole, the
leading current quadrupole, and the mass quadrupole up
to Oðv2Þ. According to Eq. (39), we only need to calculate
T00, Tkk and T0i in Iijg up to Oðv2Þ. The leading corrections
from the scalar field are shown in Fig. 6, from which we
find that all corrections have a magnitude of qv2. For small
q (as considered below), they can be simply neglected at
1PN and therefore the gravitational wave radiation power is
the same as in the case of pure gravity:

Pg ¼
32

5
GM2η2r4Ω6

�
ð1þ XÞ2 þ 19

21
ð1 − 3ηÞXr2Ω2

þ
�
769

336
−
2772

336
η

�
r2Ω2

�
ð44Þ
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with

X ¼ −ð1 − 2ηÞGM
r

; ð45Þ

where r is related to Ω through the modified Kepler’s law at
1PN. Note that we do not expand Eq. (44) in v2 at this point.

2. Scalar radiation

In addition to gravitational radiation, there is scalar
radiation in the presence of the scalar field. A scalar field
with a Compton wavelength much larger than the binary
separation leads to scalar radiation that dominates the energy
loss, and therefore is severely constrained by e.g., observa-
tions of binary pulsars [59]. Similarly to gravitational radi-
ation, the source term for scalar radiation can be written as

Ssourceeff ¼
Z

dt Jϕ̄ðt;xÞ; ð46Þ

where J is calculated in a PN expansion. In principle, to get the
scalar radiation power at 1PN, we need to calculate J to 2PN
order. This is because the power of dipole radiation is usually
one PN order lower than that of quadrupole radiation.
However, for small scalar charge (as considered below),
we only need to calculate J to 1PN order for dipole scalar
radiation and at leading order for quadrupole scalar radiation.
Diagrams that contribute to J up to 1PN order are shown

in Fig. 7, where

Fig:7ðaÞ ¼ −i
X
n¼1;2

Z
dt

�
1 −

1

2
v2n

�
qn
mPl

ϕ̄; ð47Þ

Fig:7ðbÞ ¼ i
Z

dt

�
q1p2 þ q2p1

4πm2
Pl

e−msr

r

�
ϕ̄

mPl
; ð48Þ

Fig:7ðcÞ ¼ i
Z

dt

�
q1M2 þ q2M1

32πm2
Pl

1

r

�
ϕ̄

mPl
; ð49Þ

and

Fig:7ðdÞ ¼ i
Z

dt

�
q1M2 þ q2M1

32πm2
Pl

1 − e−msr

r

�
ϕ̄:
mPl

: ð50Þ

In some cases, one may also want to include terms
proportional to pv4, which come from the diagram in Fig. 8
and contribute

Fig:8ðaÞ¼−i
Z

dt

�
q1M1p2þq2M2p1

128π2m4
Pl

e−msr

r

�
ϕ̄

mPl
: ð51Þ

Collecting all the diagrams shown in Fig. 7, we have
J ¼ −

P
nq̃n=mPl with

q̃n ¼ qn
X
m≠n

1 −
1

2

M2
m

M2
r2Ω2

− ð2 − e−msrÞGMm

r
−
8Gpm

r
e−msr: ð52Þ

The radiation power can be calculated using

(a) (b) (c)

FIG. 6. Corrections from the scalar field on T00 and Tkk at 1PN.

FIG. 8. Corrections from the scalar field proportional to pv4.

(a) (b) (c) (d)

FIG. 7. Diagrams contribute to scalar radiation at leading order, v2 and pv2.
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Ps ¼
1

4π2T

X∞
l¼0

1

l!ð2lþ 1Þ!!
Z

dω ωðω2 −m2
sÞlþ1=2jILðωÞj2;

ð53Þ

where the multipole moments IL, which arise from multi-
pole expanding the source action (46), are given by [62]

IL ¼
X∞
p¼0

ð2lþ 1Þ!!
ð2pÞ!!ð2lþ 2pþ 1Þ!! ∂

2p
t Jr2pxLSTF: ð54Þ

Here L denotes a collection of index i1i2…il, and
xL ¼ xi1xi2 :::xil . For l ¼ 0, we have x2

s ∝ r, therefore
dI=dt ∝ _r which vanishes at 1PN. Thus, there is no
monopole scalar radiation for circular orbits.
For l ¼ 1 we obtain

Pl¼1
s ¼ 1

12π

ðq̃1M2 − q̃2M1Þ2
M2m2

Pl

�
1 −

m2
s

Ω2

�
3=2

r2Ω4; ð55Þ

and l ¼ 2 yields

Pl¼2
s ¼ 4

15π

ðq1M2
2 þ q2M2

1Þ2
M4m2

Pl

�
1 −

m2
s

4Ω2

�
5=2

r4Ω6: ð56Þ

C. Matching to axions

Consider the axion model of [31], which yields scalar
charged neutron stars for

m2
af2a ≪

σNρNS
4mN

: ð57Þ

To make use of the results above, we have to fix the
parameters q and p, defined in Eq. (31), by matching with
the full theory. According to [31], the charged neutron stars
have constant axion field value at the edge of the stars. In
this case, the scalar potential between two charged neutron

stars of radius Rð1Þ
NS and R

ð2Þ
NS can be calculated at Newtonian

order using the image charge method; it reads

VðrÞ ¼ −
Q1Q2

4πr

�
1 −

Rð1Þ
NS þ Rð2Þ

NS

2r

�
þO

�
1

r3

�
: ð58Þ

We can match to the EFT by taking the limit where ms → 0
and neglecting the velocity-dependent terms in Eq. (34). The
finite size effects of the neutron stars, and therefore q and p,
should not depend on ma, as long as the condition equa-
tion (57) is satisfied. We can therefore extend these relations
to nonzero mass. In the massless limit, the pure scalar
potential between two static sources according to the EFT is

Vms→0
s ðrÞ ¼ −

8Gq1q2
r

�
1 −

16GMp
r

�
þO

�
1

r3

�
: ð59Þ

Comparing Eq. (58) to Eq. (59), we find

qi ¼ QimPl and p ¼ Rð1Þ
NS þ Rð2Þ

NS

16GM
: ð60Þ

Note that despite the simple relation, qi and Qi are different
since the former is the Wilson coefficient we introduced in
the EFTas well as the free parameter in the waveform, while
the latter is the scalar charge of the neutron star in the specific
axion model. The parameter p is therefore bounded from

below by 1=8 in the limit RðiÞ
NS ¼ 2GMi and resides in the

range (0.25,0.4) for neutron stars that are consistent with
various constraints (seeRef. [63] and referencewithin). Such
a requirement ensures that corrections to the axion potential
and radiation, enhanced by 16p and 8p compared to the
corresponding GR corrections for potential and radiation,
respectively, are the leading corrections that help distinguish
axion-mediated interactions from gravity.
In terms of the dimensionless variables of Eqs. (31) and

(32), the leading corrections from the scalar sector are
therefore given by Figs. 2(a) and 4(a):

Va ¼ −8qMη
e−r̃=λ

r̃

�
1 − 16p

e−r̃=λ

r̃

�
; ð61Þ

and the modified Kepler relation is

Ω̃2 ¼ 1

r̃3

�
1þ η − 3

r̃
þ 8q

�
1þ r̃

λ

�
e−r̃=λ

− 256qp

�
1þ r̃

λ

�
e−2r̃=λ

r̃

�
: ð62Þ

TABLE I. In this table, we summarize the definition (def), mass dimension (dim) and rough order of magnitude of the parameters
defined in the EFT since they have nonstandard dimensions as charges and dipole moments. The three dimensionless parameters
jqjð≤1Þ, pð>1=8Þ and λ, help us keep track of the orders of perturbative expansion in different regimes. In the last line of the table, we
also provide the approximate value of the dimensionless perturbative expansion parameters with a set of benchmark parameters
fa ¼ 1017 GeV, ms ¼ 10−12 eV, RNS ¼ 18 km, MNS ¼ 1.25 M⊙

qn q pn p λ r̃ Ω̃ α2

Def � � � q1q2
M2η

� � � q1p2

q2M
þ q2p1

q1M
1

GMms

r
GM GMΩ qð q1M1

þ q2
M2
Þ−2

Dim 1 0 1 0 0 0 0 0
Order mPlRNSfa ðRNSfaÞ2

GM2
m2

PlRNS
RNS

16GM
1

GMms
v−2 v3 1

Value � � � 0.4 � � � 1.2 100 v−2 v3 � � �
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These constitute a minimal model for the effects of the
axion on the binary.
For future reference, in Table I, we summarize the

dimension and the magnitude of the EFT parameters as
they are in the axion neutron star model studied in [31].

IV. WAVEFORM AND PROSPECTS FOR
DETECTION WITH ADVANCED LIGO

In this section, we first calculate NS-NS and NS-BH
merger waveforms with axion induced corrections based on
the axion-mediated force and axion radiation found in the
previous section. We then compare this GW waveform to
the one within general relativity, and assess the detectability
of these corrections. The result of such a comparison is
presented as a projected constraint on the axion parameter
space. The method used in this section can be adapted to the
study of any other theory where a light massive scalar is
coupled to the neutron star or other compact objects. In this
section, we only keep the leading corrections to the
potential and radiation, to an order that is relevant for
breaking the degeneracy between axion induced correc-
tions to the gravitational waveform and post-Newtonian
corrections. In principle, one can consider the spin and tidal
effects by including higher PN terms. However, as shown in
the Appendix, including higher PN terms does not signifi-
cantly affect the constraints on the EFT parameters. We
therefore neglect these effects.

A. Waveform

The inspiral waveform measured in a gravitational wave
detector is of the form of [57,64]

hðtÞ ¼ h0ðtÞ cosϕðtÞ; ð63Þ
where

h0ðtÞ ¼
4Q
DL

GMηΩ2r2 and ϕðtÞ ¼
Z

2πfdt; ð64Þ

with DL being the luminosity distance to the source and
where Q encodes the detector response as a function of the
angular position and orientation of the binary. For conven-
ience, we neglect the cosmological redshifting of the
observed frequency of gravitational radiation (motivated
by the limited horizon for neutron star binary mergers with
current interferometers). In addition, we assume an ideally
oriented binary and set Q ¼ 1. If d ln h0=dt ≪ dϕ=dt and
d2ϕ=dt2 ≪ ðdϕ=dtÞ2, the Fourier transform of the time-
domain waveform,

h̃ðfÞ≡
Z

∞

−∞
e2πifthðtÞdt; ð65Þ

can be computed using the stationary phase approximation,

h̃ðfÞ ≃HðfÞeiΨðfÞ; ð66Þ

where

HðfÞ ¼ 1

2
h0ðtÞ

�
df
dt

�
−1=2

;

and ΨðfÞ ¼ 2πft − ϕðfÞ − π

4
: ð67Þ

In the above two equations, t should be thought as a
function of f and defined as the time at which
dϕ=dt ¼ 2πf. Usually one can solve for rðΩÞ from the
modified Kepler’s law, e.g., Eq. (62), and then get the
analytical frequency domain waveform at 1PN. However,
in the presence of a massive scalar field,Ω2 is not analytical
in terms of the PN parameters, and therefore we cannot
solve rðΩÞ in general. For this reason, we first calculate H
and ϕ in terms of r, and translate them to f using a
numerical interpolation function rðΩÞ when we generate
the waveform. The system we solve is given by

�
df
dt

�
−1=2

¼
�
−
π

P
dE
dr

dr
dΩ

�
1=2

; ð68Þ

tðrÞ ¼ −
Z

PðrÞ−1
�
dE
dr

�
dr; ð69Þ

ϕðrÞ ¼ −
Z

2ΩðrÞPðrÞ−1
�
dE
dr

�
dr; ð70Þ

where E ¼ 1
2
Mηr2Ω2 þ VGR þ Va, P ¼ Pg þ Pa and we

have usedΩ ¼ πf. Together with Eqs. (33), (34), (44), (55)
and (56), we can solve for Ψ and H, and eventually get the
waveform numerically.
The potential and radiation terms we calculated in

Secs. III A and III B contain all corrections at leading order
in axion charge, and up to next-to-leading order in the PN
expansion. These corrections are all needed if we were to
extract information about axions from LIGO data. The
waveform we calculated numerically, and subsequently
use to estimate the reach for the axions using a Markov
chain Monte Carlo (MCMC) sampler, however, only takes
corrections Eqs. (33) and (61) for the potential, and Eqs. (55)
and (56) for the radiation into consideration. The potential
terms include the Newtonian and 1PN corrections to the
gravitational potential, the leading order axion potential and
its leading correction due to “image charges.” The radiation
terms include the leading and next leading order gravitational
wave quadrupole, as well as the axion dipole and quadrupole
radiation and its leading correction from the induced dipole.
These terms are sufficient to break the degeneracy between
axion induced corrections to the gravitational waveform and
post-Newtonian corrections [65]. Higher PN corrections on
the GR side, while giving rise to qualitatively similar
behavior to the scalar sector (e.g., hastening the merger),
will not be degenerate with the scalar corrections to the
waveform (e.g., because of their different frequency
dependence).
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B. Forecast

Given a high signal-to-noise (SNR) detection of a merger
event, it is possible to use the measured inspiral waveform
not only to infer the parameters of the binary, but also to
derive constraints on parameters in the scalar sector: q1;2,
p1;2, and λ. A measured signal sðt; θ̄Þ consists of a noise
realization nðtÞ and a merger waveform h̄ðt; θ̄Þ depending
on the “true” parameters θ̄, namely sðt; θ̄Þ ¼ nðtÞ þ h̄ðt; θ̄Þ.
For a set of template waveforms gðt; θÞ, which depend
on a set of candidate parameters θ, the likelihood
function is

LðsjθÞ ¼ N exp

�
−
1

2
ðs − gjs − gÞ

�
; ð71Þ

where N is a normalization factor [66]. Given two signals
hðtÞ and gðtÞ, the inner product ðhjgÞ on the vector space of
signals is defined as

ðhjgÞ ¼ 2

Z
∞

0

h̃�ðfÞg̃ðfÞ þ h̃ðfÞg̃�ðfÞ
SnðfÞ

df; ð72Þ

where SnðfÞ is the detector noise spectral density and h̃, g̃
are the Fourier transforms of h, g. The inner product is
defined so that the probability of having a noise realization
n0ðtÞ is pðn ¼ n0Þ ∝ exp½−ðn0jn0Þ=2�. To find the average
Δχ2, one then marginalizes the logarithm of the likelihood
over many noise realizations (e.g., [67])

hΔχ2ðθÞi≡ 2hlog½LðsjθÞ=Lðsjθ̄Þ�i
¼ ðh̄ − gjh̄ − gÞ

¼ 4

Z
∞

0

df
SnðfÞ

ðHðf; θ̄Þ2 þHðf; θÞ2

− 2Hðf; θ̄ÞHðf; θÞ cos½Ψðf; θÞ −Ψðf; θ̄Þ�Þ;
ð73Þ

whereLðsjθ̄Þ is the likelihood evaluated at g ¼ h̄withH and
Ψ the amplitude and phase of the waveform in the stationary
phase approximation. Assuming a Gaussian likelihood, one
can interpret Δχ as the number of “sigmas” at which the
parameter set can be constrained given the noise model.

1. Forecasted constraints on qi and λ

To give an idea of the constraints on the parameters in the
axion sector, we consider two fiducial scenarios. In the first
scenario, we assume a neutron star binary with masses
M1 ¼ 1.2 M⊙ and M2 ¼ 1.24 M⊙, evolving at a luminos-
ity distance of DL ¼ 40 Mpc, in pure GR. We also assume

the radii of the two neutron stars to be Rð1Þ;ð2Þ
NS ¼ 10GM1;2.

We consider a waveform template parametrized by

θ ¼ fA;M;M; tc;ϕc; q1;2; p1;2; λg; ð74Þ

where A≡
ffiffiffiffi
5
24

q
G5=6M5=6

π2=3DL
(the GW amplitude) and M≡

μ3=5M2=5 (the chirp mass). The parameter tc is the time at
which the separation goes to zero in the Newtonian limit
and ϕc is the corresponding phase. Given our assumption of
no axion field, the “true” values of the parameters in the
scalar sector are q1;2 ¼ 0, p1;2 ¼ 10=16 and λ ¼ ∞.
We sample the likelihood function using the EMCEE

package [68] on the full 10-dimensional parameter space.
We use the forecasted noise curve for Advanced LIGO at
design sensitivity (“Design”) based on the Zero Det, High
Power scenario [69]. This provides an idea of the noise-
limited constraints that could be obtained by Advanced
LIGO for a nearby NS-NS inspiral event. In the left panel of
Fig. 9, we show the marginalized 3σ forecasted constraints
in the (q − λ) plane where q ¼ q1q2=M1M2 [see Eq. (31)].
As it can be seen in the plot, there is a degeneracy between
q and λ. Constraints on q become tight as λ increases. The
GR limit can be achieved as q → 0 or λ → 0. Hence, it is
not a single point in the parameter space. In principle, the
3σ constraint contours should approach a nonzero constant
as λ goes to infinity. However, sampling this infinite ridge
in the likelihood function in the large λ limit requires a
prohibitively large number of samples. Therefore, Fig. 9
only shows the forecasted constraints in the small λ limit.
One may expect that the contours approach a constant in

q as λ goes to infinity (massless axion limit), allowing us to
fix this asymptotic constraint by sampling the likelihood
function for λ → ∞. We obtain the following 3σ constraint
on q [70]:

jqj < 6.1 × 10−8:

A notable feature about the neutron star solutions discussed
in this paper is the induced (“image”) charge effects on the
axion profile. Given that 8p > 1 [8p ¼ 1 corresponds to
the compaction of black holes, see Eq. (60)], q can be
tightly constrained due the induced charge effects described
by the last term in Eq. (61), especially in the large λ limit
where the exponential suppression associated with the
Yukawa potential is less important.
As a second scenario, we consider a binary system that

consists of a 1.2 M⊙ neutron star and a 1.24 M⊙ black hole
atDL ¼ 40 Mpc in pure GR. Note that the parameters were
chosen to contrast with the NS-NS case. In reality,
astrophysical black holes would have larger masses [71].
For the same scalar mass, a larger black hole mass would
weaken the constraint. For example, for a 4 M⊙ black hole,
the constraint weakens by a factor of 2. For NS-BH
binaries, the only effect the axion has on the inspiral
dynamics is through scalar radiation, which can be char-
acterized by q1 and λ. Thus, the waveform template in this
case is parametrized by

θ ¼ fA;M;M; tc;ϕc; q1; λg: ð75Þ
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We sample the likelihood function using the same method
and noise curve as in the first scenario to derive noise-
limited constraints that could be obtained by Advanced
LIGO for a nearby NS-BH merger event. The marginalized
3σ constraints in the ðq1=M1 − λÞ plane are shown in the
right panel of Fig. 9. Because scalar radiation can be
emitted only if the scalar wave frequency is larger than the
mass of scalar field, the constraints on q1 become weaker
when λ becomes less than the typical wavelength corre-
sponding to 10 Hz, i.e., the lower bound of the LIGO
observational band. Analogously to the first case, we
perform the MCMC sampling in the limit of λ → ∞ to
resolve the constrains in the limit of large λ. We find the
following 3σ constraints on q from a NS-BH inspiral event:

jq1=M1j < 5.7 × 10−4:

Let us briefly compare the constraints from theNS-NSand
NS-BH mergers in the λ → ∞ limit considered above. The
axion influences the NS-NS merger through an attractive or
repulsive scalar force and scalar radiation (note however that
scalar radiation is negligible for the case of nearly equal
masses chosen here), while it influences the NS-BH merger
only through the presence of scalar radiation. For the roughly
equal mass binaries that we have considered, we can directly
compare the constraint on q for the NS-NS event to
jq1=M1j2 < 3.2 × 10−7 from the NS-BH event. It can be
seen that a stronger constraint can be obtained from the NS-
NS event, implying that the scalar force is driving the
constraints more than the contribution from scalar radiation.

2. Forecasted constraints on the axion parameter space

Using Eqs. (9) and (60), we map qi to fa, and thus
project the constraints in Fig. 9 to the axion parameter
space. The result for the two fiducial binary systems we
have studied above are shown in Fig. 10. As above, the
constraints on qi are sampled in two regimes, the small λ

FIG. 9. Forecasted marginalized constraints on scalar charge and Compton wavelength. We consider a fiducial model of a binary
system with M1 ¼ 1.2 M⊙, M2 ¼ 1.24 M⊙ and DL ¼ 40 Mpc and evolve it in the absence of axions. We sample the likelihood
function assuming the noise properties of Advanced LIGO at design sensitivity on the full parameter space. The plot shows the
forecasted marginalized 3σ constraints on the (q − λ) plane (left) and the ðq1=M1 − λÞ plane (right).
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FIG. 10. Forecasted marginalized constraints on the axion
parameter space. Colored regions below the curves can be con-
strained by analyzing data of the LIGO detections of NS-NS (blue)
and NS-BH (red) mergers. The forecasted constraints are found by
performing MCMC sampling in the smallma limit (the horizontal
solid lines) and in the large ma limit (the curly solid lines). We
connect these forecasted constraints by linear interpolation (the
dashed lines). Note that the parameters of the NS-BH case were
chosen to contrast with the NS-NS case. In reality, astrophysical
black holes would have larger masses [71]. For the same scalar
mass, a larger black hole mass would weaken the constraint. For
example, for a 4 M⊙ black hole, the constraint weakens by a factor
of 2. For comparison, we also show the existing constraints (in
gray) from direct measurements of the Sun, from measurements of
the orbital decay of binary pulsar systems [31] and from black hole
super-radiance through black hole spin measurement [23]. Awider
range of the axion parameter space can be probed by direct searches
of continueswave at LIGOaswell as indirectmeasurement of black
hole spin distribution [23,24,72]. The region above the dotted
purple line are parameter spaces where an axion profile can be
sourced by a neutron star. The black line shows the parameters of a
QCDaxion,while the dotted gray horizontal linemarks the value of
the reduced planck scale Mpl.
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regime and the large λ regime. The constraints on the
regime in between are found by simple interpolation and
are plotted as a dashed line. The NS-NS binary is more
constraining than the NS-BH binary due to the stronger
constraint on the scalar charge given in the NS-NS case.
Interestingly, our forecasted constraints for Advanced

LIGO (the blue shaded region in the plot) are complementary
to existing constraints on the axion parameter space, e.g.,
constraints from direct measurements of the Sun, from
measurements of the orbital decay of binary pulsar systems,
or of black hole super-radiance (see, Ref. [31] for a complete
description of these constraints). From our analysis, we find
that Advanced LIGO has the potential to pin down the axion
mass and decay constant within the range

ma ≲ 10−11 eV; fa ≳ ð1014 − 1017Þ GeV; ð76Þ

or, in the absence of a detection, to exclude axions with ma
and fa in this region of parameter space.
Axions with masses and decay constants in the above

range are most likely in significant tension with the
detected gravitational wave signal from the binary neutron
star event GW170817 [4]. Having developed the methods
and tools to constrain the axion parameter space from a
given waveform in this work, it is now possible to perform
an analysis of existing and future events. In particular, we
would like to apply our analysis to the GW170817 [4] data
in a follow-up work.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have examined the exciting possi-
bility that Advanced LIGO could detect new light scalar
particles through their influence on the gravitational wave-
form produced in NS-NS and NS-BH binary mergers.
Employing an EFT approach, we have calculated the first
relativistic corrections to the binary orbital dynamics and
gravitational waveform in the presence of a light scalar
coupled to neutron stars. We use this waveform to forecast
the constraints from Advanced LIGO (for an event similar
to GW170817) on the parameters of the EFT, which in
the scalar sector include the charges of the neutron stars
and a relativistic correction corresponding to image-charge
effects. This result, summarized in Fig. 9, is applicable to
theories where a light scalar couples to neutron stars with
near gravitational strength. We then specialize to a par-
ticularly well-motivated light scalar, the axion.
If there are in fact axion(s) with mass(es) and decay

constant(s) in a region of parameter space where Advanced
LIGO has a good sensitivity, then as it can be seen from
Fig. 9, the parameters of the EFT can be measured with high
precision. Such a scenario is most likely under significant
pressure from GW170817 [4], however one can speculate
about the implications should a detection be imminent.
The discovery of a new particle using an entirely new

observable would, of course, be an incredible development

in its own right. One of the first follow-up questions would
be: what other physical phenomena could this new particle
be related to? Axions with nuclear couplings and masses in
this range can potentially solve the strong CP problem of
the Standard Model [39]. In addition, the detected axion
could in principle be a dark matter candidate. In the region
of parameter space accessible to binary NS mergers, the
axion must be produced nonthermally, implying evidence
for a nontrivial cosmological history.
There are a number of avenues for finding corroborating

evidence to a detection of axions with LIGO. If the axion is
the dark matter, the same nuclear coupling that leads to a
force between neutron stars also leads to a time-dependent
nuclear electric dipole moment that can be targeted by
precision magnetometry [48,73] as well as various resonant
experiments that look for photon couplings of the axion.
Precise knowledge of where to look in parameter space can
greatly improve the prospects for detectability using such
techniques. A precise knowledge of the masses (and
couplings) of the axion significantly narrows the range
of axion masses to scan, while the sensitivity to the axion
coupling improves as ðma=δmaÞ1=4 since more time can be
allocated to the frequency range where the mass lands
(sensitivity scales as t1=4). The region of axion parameter
space covered by binary NS mergers is also accessible to
probes of black hole superradiance, e.g., gaps in the
distribution of black hole spin or gravitational waves from
rotating axion clouds [22,41].
The axion would also provide an interesting additional

probe of the structure of the merging neutron stars. From
Eq. (6), the scalar charge of the individual neutron stars is
dependent upon the compaction (recall that the compaction
is defined as GM=R) and the decay constant fa. Also note
that from Eq. (60), the EFT parameter p is sensitive to the
compaction of the neutron stars. For an event with
sufficiently high SNR, the axion force therefore provides
a new way to constrain the compaction of neutron stars.
With future detectors, it may also be possible to use the
post-merger waveform associated with the hypermassive
neutron star resulting from the merger event to provide
further knowledge on both the properties of the axion and
nuclear equation of state [32]. We leave further investiga-
tion of the postmerger signal for future work.
In the absence of a detection, it is possible to set stringent

constrains on the region of parameter shown in Fig. 10, for
axions that possess a nuclear coupling. It is not necessary
for all such particles to possess a nuclear coupling.
Nevertheless, the lack of a detection would imply that
laboratory experiments relying on such couplings, such as
CASPEr-Electric [48], should also fail to make a detection
over the same region of parameter space. Knowing where
not to look could be useful in guiding such searches. The
effects associated with superradiance could in principle be
found even in the lack of a detection from binary neutron
stars. In this case, one would strongly constrain the nuclear
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coupling of the axion, and potentially the QCD axion (the
only target for laboratory experiments looking for an axion
through its nuclear couplings).
Let us also briefly comment on the possibilitieswith future

gravitational wave detectors. For the purpose of constraining
light scalars from neutron star mergers, Advanced LIGO is
limited by its overall sensitivity and its frequency coverage.
An increase in sensitivity over the Advanced LIGO band, as
would be provided by third generation gravitational wave
detectors such as Einstein Telescope [74], would yield a
number of advances. The projected constraints on scalar
charge would become tighter as the SNR per event would be
higher. Greater detection rates would allow for a joint
analysis of many events (e.g., “stacking”) that could provide
stronger projected constraints than individual events. In
addition, greater sensitivity at high frequencies could provide
access to the end stages of the inspiral and the ringdownof the
hypermassive neutron star or black hole that can form as a
result of the merger. This would provide new information
about the scalar sector through additional relativistic correc-
tions, and through effects on the structure and evolution of
postmerger objects (e.g., as explored in Ref. [32]). A space
mission such as LISA [75] will provide sensitivity at lower
frequencies. For individual events, this would provide access
to scalars with a lower mass as the binary evolution could be
tracked at larger separation. In addition, the projected reach
on the charge dipole of the binary would improve since
orbital energy loss due to scalar radiation ismore important at
lower frequencies. Finally, it will be possible to observe the
merger of white dwarfs (either individually or as a stochastic
background), which would allow one to examine the nature
of the coupling between axions and compact objects. In
particular, it would be interesting to examine the density-
dependent coupling invoked in the axion model we have
studied here.
Beyond axions, our results are applicable to more

general scalar tensor theories. Previous literature on mas-
sive scalar tensor theories has mainly focused on Brans-
Dicke theory [59], including extreme-mass ratio binaries
[76] and NS-BH binaries [77] as well as NS-NS systems
exhibiting spontaneous scalarization [78,79]. The present
work extends these studies to include all relevant couplings
to 1PN order for massive scalar tensor theory in the
Einstein frame. In particular, we have highlighted the
importance of the image-charge effect. Future studies could
explore the relevant matching conditions between the EFT
and various scalar tensor theories.
In summary, the observation of binary neutron star

mergers provides a novel opportunity to search for new
light scalar particles, including axions. The waveforms
presented in this paper, and the forecasted constraints,
provide the technical basis and proof of concept necessary
to proceed with an analysis of data from existing and future
events. In particular, we hope to perform an analysis using
data from the existing event GW170817 in future work.

The results of such an analysis will greatly inform other
observational and laboratory efforts to search for light
scalars, and provide constraints over an extensive and well-
motivated region of parameter space for axions.
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APPENDIX: DEGENERACY WITH
HIGHER PN CORRECTIONS

The waveform obtained above considers only 1PN
corrections to GR. In principle, one can improve the
waveform by simply replacing the 1PN expressions of the
gravity sector with higher PN expressions. In this section,
we estimate the impact of including higher PN corrections
in the gravity sector on our constraints in the scalar sector.
The constraints on the scalar sector can be characterized
by the phase difference caused by the axion field.

1PN

2PN

3PN

2 4 6 8 10
–0.010

–0.005
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/Gm

q

FIG. 11. Phase difference caused by the scalar with different
PN GR expressions. We consider a binary of masses 1.2 M⊙ and
1.24 M⊙, and calculate the total phase difference (integrated from
10 Hz to 1000 Hz) caused by the scalar. The contours show the
total phases between the cases with and without scalar differ
by 1.λ is in units of the total inverse mass.
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Specifically, we consider a binary system composed by
1.2 M⊙ and 1.24 M⊙ masses and assume the two stars
carry the same scalar charge. We calculate the total
phases, ΨGR and Ψs, by integrating the phase over
(10–1000) Hz in the cases with and without the scalar.
The constraints on the scalar sector can be characterized
by the differences of total phases, ΔΨ ¼ jΨs −ΨGRj.
From Eq. (73), it can be seen that Δχ2 can be significant
only once the phase difference is order one. We calculate

ΔΨ using different PN order expressions in gravity sector,
and the plot the contours of ΔΨ ¼ 1 in Fig. 11. We find
that the region of parameter space over which the phase
difference is order one, as shown in Fig. 11, does not
change significantly when including higher PN terms in
the gravity sector, especially for the parameter range we
are interested in. It is therefore justified to just use the
1PN correction in order to forecast constraints on the
scalar EFT parameters.
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