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A dense neutrino medium can support flavor oscillation waves which are coherent among
different momentum modes of the neutrinos. The dispersion relation (DR) branches of such a wave with
complex frequencies and/or wave numbers can lead to the exponential growth of the wave ampli-
tude which in turn will engender a collective flavor transformation in the neutrino medium. In this
work, we propose that the complex DR branches of the neutrino oscillation wave should be bound
by the critical points of the DR. We demonstrate how this theory can be applied to the neutrino
medium with an (approximate) axial symmetry about the propagation direction of the neutrino oscillation
wave.We also show how the flavor instabilities in this medium can be identified by tracing the critical points
of the DR as the electron lepton number distribution of the neutrino medium is changed continuously.
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I. INTRODUCTION

Through the neutrino-neutrino forward scattering [1–3],
the dense neutrino gases present in the early universe, core-
collapse supernovae and binary neutron star mergers can
experience collective flavor transformation (see, e.g.,
Refs. [4–7] among many other works, and Ref. [8] for a
review). Such a collective flavor transformation can play
important roles in the physical and chemical evolution of
the environments of the neutrino gases. This phenomenon
becomes particularly interesting after the realization that
collective neutrino oscillations can occur at very high
densities and on very tiny distance and time scales which
are known as fast flavor conversions [9–19] (see also
Ref. [20] for a review).
In the two-flavor-mixing scenario, the flavor transforma-

tion of a neutrino can be viewed as the rotation of the
corresponding flavor (iso)spin s⃗p in flavor space [21,22],
where p is the momentum of the neutrino. It has been
envisioned that the collective transformation of the neutrinos
is engendered by the “neutrino flavor spin wave”

s⃗pðt; rÞ ∝ eiðK·r−ΩtÞ ð1Þ

in the neutrino medium very much like the spin wave
propagating through a magnetic lattice, whereK and Ω are

the wave vector and frequency of the wave, respecti-
vely [23]. However, most of the literature on collective
neutrino oscillations focused on the models of only one
dimension in either space or time. This paradigm was
dramatically changed with the recent discoveries of the
spontaneous breaking of the spatial and temporal sym-
metries by the collective neutrino oscillations themselves
(see, e.g., Refs. [24–29], and also Ref. [30] for a review).
Since then, the dispersion relation (DR) approach and the
instabilities of theDRhave been introduced and investigated
[11–13,18].
It is clear from Eq. (1) that a DR branch with a complex

Ω and/or K can lead to an exponential growth of the
amplitude of the neutrino oscillation wave. The ranges ofΩ
and K where these complex DR branches can exist,
however, is not clear. It was suggested in Ref. [11] that
the complex DR branches of the neutrino oscillation wave
always exist between the gaps of the real branches. This
conclusion turns out to be limited to the toy model with
only two neutrino beams whose DR function is a quadratic
polynomial of the wave number and frequency [31]. The
introduction of the general theories and classifications of
the instabilities by Sturrock and Briggs in Ref. [13] was an
important step forward, which shows that some of the
complex-K branches actually give rise the evanescent
waves instead of growing waves [32,33]. Nevertheless,
the actual calculations done in Ref. [13] were still limited to
the two-beam toy model. This is because the theories by
Sturrock and Briggs require the knowledge of the overall
analytic properties of the DR function which can be
difficult to obtain for a general medium. Partly due to
this difficulty, it was later proposed in Ref. [34] that the
so-called “zero mode”, which supposedly represents the
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overall flavor evolution of the neutrino medium,1 be used to
identify the potential fast flavor conversions of the neu-
trinos in supernovae.
In this work, we consider the critical points of the DR

function through the study of which some of the insuffi-
ciency and misunderstandings of the previous works can be
addressed. The rest of the paper is organized as follows. In
Sec. II, we identify the different types of the critical points
of the DR function, and we propose that the complex DR
branches should be bound by these critical points. In
Sec. III, we illustrate this theory by several concrete
examples which may be relevant to the fast flavor con-
versions of the supernova neutrinos in the decoupling
regime. Through these examples We also demonstrate
how the flavor instabilities emerge and evolve as the
neutrino angular distributions of the medium changes. In
Sec. IV, we give our conclusions.

II. DISPERSION RELATION AND INSTABILITIES

A. General theories

Although the instabilities of the normal modes have been
studied extensively in other fields, it shall be helpful to
recap some of the main results here. We will mostly follow
Sturrock’s approach [32] to the subject. To demonstrate the
basic concepts of the instabilities, we consider a one-
dimensional medium with the wave equation

Dði∂t;−i∂zÞψðt; zÞ ¼ 0; ð2Þ
where ψðt; zÞ is the amplitude of the wave supported by the
medium at time t and position z, and Dði∂t;−i∂zÞ is a
linear operator that contains the derivatives with respect to
time and space. A normal mode is a solution to Eq. (2)
which has the form

ψðt; zÞ ∼ eiðKz−ΩtÞ; ð3Þ
where K and Ω are constants. Such a solution, if exists,
implies the DR equation

DðΩ; KÞ ¼ 0: ð4Þ

Wewill use K ¼ KðΩÞ and Ω ¼ K−1ðKÞ to denote the DR
in terms of Ω and K, respectively.
In general, both Ω and K in Eq. (4) can be complex:

Ω ¼ Ωr þ iΩi and K ¼ Kr þ iKi:

However, in practice, one usually focuses on three kinds
of DR branches2:

(i) the real branches along the real axis of Ω with
KðΩ ∈ RÞ also being real,

(ii) the complex-K branches along the real axis of Ω but
with KðΩ ∈ RÞ being complex,

(iii) and the complex-Ω branches along the real axis of K
with K−1ðK ∈ RÞ being complex.

A real DR branch gives rise to propagating waves in the
medium with K and Ω being the wave number and the
frequency of the wave, respectively. The complex-Ω and
complex-K branches have been called the temporal and
spatial instabilities in the recent literature on neutrino
oscillations because of their apparent connections to the
unstable waves and the amplifying waves whose ampli-
tudes grow in time and space, respectively. However, these
apparent connections are not always true. For example, it
was pointed out by Sturrock [32] that a complex-K branch
without a companion complex-Ω branch gives rise to
evanescent waves instead of amplifying waves.
To illustrate Sturrock’s theory of instabilities, we con-

sider a spatially localized perturbation at t ¼ 0:

ψð0; zÞ ¼
Z

∞

−∞
ζðKÞeiKz dK

2π
; ð5Þ

where ζðKÞ is an analytic function of K that peaks at K0

and has a finite spread. If Eq. (2) is a first-order differential
equation in time, and if there exists a DR branch
K−1ðK ∈ RÞ, then

ψðt; zÞ ¼
Z

∞

−∞
ζðKÞ exp½iKz − iK−1ðKÞt� dK

2π
ð6Þ

is the solution to Eq. (2) that satisfies the initial condition in
Eq. (5). Equation (6) describes a “spacelike packet” which
is bound in space at any given time. If K−1ðKÞ is a real
branch, the initial wave packet is transported with the group
velocity

V0 ¼
�
dK−1

dK

�
K¼K0

: ð7Þ

If, however, (part of) K−1ðKÞ is a complex-Ω branch, and
Im½K−1ðKÞ� is positive for a range of K where jζðKÞj is
appreciable, the amplitude of the wave in Eq. (6) grows
exponentially in time. This indicates the presence of the
temporal instabilities of the normal modes.
A temporal instability can be either convective or

absolute (i.e., nonconvective). If the perturbation moves
away from the point of its origin as the wave amplitude
grows, the corresponding instability is convective. If, as the
perturbation grows in both amplitude and extent, it still
embraces the point of the origin, the instability is absolute.
We illustrate the evolution of three waves with no insta-
bility, with a convective instability, and with an absolute
instability in Fig. 1. Whether an instability is convective or

1It was disclosed in the discussion part of Ref. [34] that it is
possible for the system to be unstable in cases where the zero
mode is stable. In other words, like any other Fourier mode, the
zero mode may or may not be indicative of the overall flavor
evolution of the medium.

2We use the phrase “branch” to refer to a continuous, some-
times multi-valued, DR function KðΩÞ for real Ω or K−1ðKÞ for
real K.
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absolute depends on the reference frame of the observer.
Nevertheless, it is useful to make this distinction because
there usually is a reference frame that one prefers to
work with.
Sturrock noted that, if the instability is convective,

ψðt; zÞ is not only bound in z at any given t and but also
bound in t at any given z. Therefore, at any spatial point,
ψðt; zÞ can be expressed in the form of a “timelike packet”:

ψðt; zÞ ¼
Z

∞

−∞
ξðΩÞ exp½iKðΩÞz − iΩt� dΩ

2π
; ð8Þ

where ξðΩÞ is an analytic function ofΩwith a finite spread.
Meanwhile, Eq. (6) can also be rewritten as

ψðt; zÞ ¼
Z
C

�
ζðKðΩÞÞ dK

dΩ

�
exp½iKðΩÞz − iΩt� dΩ

2π
; ð9Þ

where C is the path in the complex plane of Ω defined by
Ω ¼ K−1ðK ∈ RÞ. Sturrock concluded that, if the path C
could be continuously deformed in the complex plane of Ω
to the real axis, the instability is convective, and

ξðΩÞ ¼ ζðKðΩÞÞ dK
dΩ

: ð10Þ

Otherwise, the instability is absolute.
In Eq. (8), at least part of the DR branchKðΩ ∈ RÞmust

be complex, or the wave will be stable. Therefore, a
convective instability implies at least one companion
complex-K branch to the complex-Ω branch, and the
presence of a complex-Ω branch alone gives rise to absolute
instabilities. However, we emphasize that the above rea-
soning does mean that the instability is always convective
when both complex-Ω and complex-K branches are
present. As it will be shown later, an absolute instability
can exist when the complex-Ω and complex-K branches do
not form a closed contour on the complex plane of Ω (with
the help of the real branch).
Using the symmetry between t and z, one can easily

see that the amplitude of the wave in a medium with a

complex-K DR branch alone will look similar to Fig. 1(c)
except with t ↔ z. Therefore, such a complex-K branch
gives rise to evanescent waves which die down as t → ∞ at
any spatial point.
Sturrock’s theory does not address the importance of the

branch points of the DR functionKðΩÞ. It was pointed out
by Briggs [33] that a branch point ðΩb; KbÞ in the upper
complex plane of Ω would result in absolute instabilities.
In this case, the wave amplitude at a given spatial point z
has the following asymptotic limit

ψðt; zÞ ∝ eiðKbz−ΩbtÞffiffi
t

p as t → ∞: ð11Þ

B. The dispersion relation of the fast neutrino
flavor conversion

The DR for fast neutrino flavor conversions was first
derived in Ref. [11]. Here we briefly review its main results
for the convenience of the readers and also to establish the
formalism. We consider the mixing between two neutrino
flavors, νe and νx. In a dense neutrino medium with all the
neutrinos initially in the weak-interaction states, the flavor
content of a neutrino momentum mode p at time t and
location r can be described by the flavor density matrix
[11,35]

ρpðt; rÞ ¼
fνe þ fνx

2
þ fνe − fνx

2

�
s S

S� −s

�
; ð12Þ

where fνe=νxðpÞ are the initial occupation numbers of the
corresponding neutrino flavors, the real field spðt; rÞ and
the complex field Spðt; rÞ describe the flavor conversion
and the flavor coherence of the neutrino, respectively.
In the absence of collisions, the neutrino flavor density

matrix obeys the equation of motion [35]

ið∂t þ v · ∇Þρp ¼
�
M2

2ε
þ Hmat þ Hνν;p; ρp

�
; ð13Þ

FIG. 1. The evolution of three waves with no instability (left), a convective instability (middle), and an absolute instability (right),
respectively. The arrow indicates the direction of increasing wave amplitude jψ j.
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where ε ¼ jpj, v ¼ p=ε and M2 are the energy, velocity,
and the mass-square matrix of the neutrino, respectively.
In the above equation,

Hmat ¼
ffiffiffi
2

p
GFne

�
1 0

0 0

�
ð14Þ

and

Hνν;p ¼
ffiffiffi
2

p
GF

Z
ð1 − v · v0Þðρp0 − ρ̄p0 Þ d3p0

ð2πÞ3 ð15Þ

are the matter and neutrino potentials, respectively, where
GF is the Fermi constant, ne is the electron number density,
and ρ̄p is the flavor density matrix of the antineutrino which
takes a form similar to Eq. (12).
We focus on fast neutrino flavor conversions which

occur on very short distance and time scales over which the
physical conditions such as ne and fνðpÞ (ν ¼ νe; ν̄e;…)
are essentially constant. The fast flavor evolution of the
neutrino is energy independent because the only energy-
dependent termM2=2ε in Eq. (13) is much smaller than the
rest of the Hamiltonian. (However, see Ref. [18] for a
scenario where the slow and fast oscillations mix.) To be
self-consistent, we also assume that no significant flavor
conversion has occurred so that jSvj ≪ 1 and sv ≈ 1. In this
case, it is useful to define the electron lepton number (ELN)
distribution of the neutrino [11]

GðvÞ¼
ffiffiffi
2

p
GF

Z
∞

0

½ðfνe −fν̄eÞ− ðfνx −fν̄xÞ�
ε2dε
ð2πÞ3 ; ð16Þ

the ELN density

Φ0 ¼
Z

GðvÞdΓv; ð17Þ

and the ELN flux density

Φ ¼
Z

GðvÞvdΓv; ð18Þ

where dΓv is the differential solid angle in the direction of
v. Keeping only the terms of OðjSvjÞ or larger in Eq. (13),
one obtains [11,36]

vβ½i∂β − ðΛβ þΦβÞ�Sv ¼ −vβ
Z

v0βGðv0ÞSv0dΓv0 ; ð19Þ

where v ¼ ½1; v� is the four-velocity of the neutrino, and
Λ ¼ ½ ffiffiffi

2
p

GFne; 0� and Φ ¼ ½Φ0;Φ� are the ELN fluxes
carried by the charged leptons and neutrinos, respectively.
For a normal mode of collective neutrino oscillations,

Svðt; rÞ ∼ eiðK·r−ΩtÞ; ð20Þ

where Ω and K are the frequency and wave vector of the
normalmode, respectively, both ofwhich are independent of
v or the (initial) flavor of the neutrino. Themixing amplitude
Sv of the normal mode grows exponentially in time if
Ωi > 0, and significant flavor conversions occur when
jSvj ∼ 1. From Eq. (19), one sees that it is convenient to
make the following shifts to the frequency and wave vector
which do not affect the instabilities the normal modes:

Ω − Λ0 −Φ0 → Ω and K −Φ − Λ → K: ð21Þ

With these shifts, the DR for the fast flavor conversions in a
neutrino medium can be written as

det½ΠðΩ;KÞ� ¼ 0; ð22Þ

where Π is a 4 × 4 matrix with elements

Πβγ ¼ ηβγ þ
Z

GðvÞ vβvγ

Ω −K · v
dΓv ð23Þ

with η ¼ diag½þ1;−1;−1;−1� being themetric tensor of the
Minkowski space. Because all the parameters and constants
in the above equation are real, if ðΩ;KÞ is a solution to
Eq. (22), so is ðΩ�;K�Þ, where the star indicates the complex
conjugate.

C. The limits of the complex branches

We assume that the imaginary component of K, if it is
nonzero, is parallel or anti-parallel to its real component
which we assume to be along the z axis. With this
assumption, Eq. (23) can be written as

Πβγ ¼ ηβγ þ
Z

1

−1

GβγðvzÞ
Ω − Kvz

dvz; ð24Þ

where

GβγðvzÞ ¼
Z

2π

0

GðvÞvβvγdφ ð25Þ

with φ being the azimuthal angle of v about the z axis. It has
been noted [11] that a real branch does not exist in the
“forbidden region” where Πβγ is undefined. In this region,
the “phase velocity”3 of the normal mode

V ¼ Ω
K

ð26Þ

is within the range of ½−1; 1�.
In this subsection, we consider the limits of the complex

branches. We note that the DR function K ¼ KðΩÞ is

3Because of the redefinition of Ω and K in Eq. (21), V is not
the actual phase velocity of the neutrino oscillation wave.
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(uniquely) defined by the DR equationDðΩ; KÞ ¼ 0 in the
neighborhood of the points where ∂D=∂K is defined and is
nonzero. Therefore, we expect a complex-K branch to end
at the critical points where ∂D=∂K is either 0 or unde-
fined.4 There are three types of critical points for the
complex-K branches. At a critical point of the first type,
∂D=∂K ¼ 0. Near this point, the DR equation can be
written as [33]

�∂D
∂Ω

�
b
ðΩ −ΩbÞ þ

1

2

�∂2D
∂K2

�
b
ðK − KbÞ2 ≈ 0; ð27Þ

where we use the subscript “b” to indicates this type of
critical point. From the above equation, one sees thatΩb is a
branch point of KðΩÞ on the complex plane of Ω around
whichKðΩÞ is double valued. Because Ωb is real, Kb must
also be real so that the branch point is uniquely defined,
which in turn implies that ð∂D=∂ΩÞb and ð∂2D=∂K2Þb are
both real. From Eq. (27), one sees that ðΩb; KbÞ is a turning
point of the real branch Ω ¼ K−1ðK ∈ RÞ where

dK−1

dK

����
K¼Kb

¼ 0; ð28Þ

and where a conjugate pair of complex-K branches connect
to the real branch.
A critical point of the second type is located at a finite

value of Ωc where the phase velocity approaches a real
nonzero value Vc within the forbidden region. At this
critical point ∂D=∂K is undefined. The two real values of
Kc ¼ Ωc=Vc and Vc can be solved simultaneously from
Eq. (22) by using

KΠβγ ⟶
V→VcKcη

βγ þ P
Z

1

−1

GβγðvzÞ
Vc − vz

dvz � πiGβγðVcÞ; ð29Þ

where the subscript “c” indicates the values at this critical
point. Here, we have used the Sokhotski-Plemelj theorem

lim
ϵ→0þ

Z
b

a

fðxÞ
x − iϵ

dx ¼ P
Z

b

a

fðxÞ
x − iϵ

dxþ πifð0Þ ð30Þ

with the symbol P denoting the principal value of the
integral. The critical point Ωc is also a branch point of
KðΩÞ on the complex plane of Ω where a conjugate pair of
complex-K branches meet. A special case of the critical
points of the second type is where Vc is a crossing point of
the ELN distribution so that GðVc;φÞ ¼ 0 for all φ. In this
case, GβγðVcÞ ¼ 0, and

KΠβγ ⟶
V→VcKcη

βγ þ P
Z

1

−1

GβγðvzÞ
Vc − vz

dvz: ð31Þ

One can use the above expression to solve Eq. (22) for Kc
and Ωc.
The last type of the critical points is at Ω ¼ 0 where

∂D=∂K is also undefined. Unlike a critical point of the
second type, K0 ¼ Kð0Þ is complex which can be solved
from Eq. (22) by using

KΠβγ⟶
V→0

K0η
βγ − P

Z
1

−1

GβγðvzÞ
vz

dvz � πiGβγð0Þ: ð32Þ

Similarly, a complex-Ω branch can end at two types
of critical points. At a type-I critical point ðΩt; KtÞ,∂D=∂Ω ¼ 0. This point is also a turning point of the real
branch K ¼ KðΩ ∈ RÞ with

dK
dΩ

����
Ω¼Ωt

¼ 0; ð33Þ

where we use the subscript “t” to indicate this type of
critical points. A conjugate pair of complex-Ω branches
join a real branch at ðΩt; KtÞ. A type-II critical point for the
complex-K branches is also a type-II critical point for the
complex-Ω branches where both ∂D=∂K and ∂D=∂Ω
are undefined. The points where K ¼ 0 are not critical
because ∂D=∂Ω is well defined there.

III. NEUTRINO MEDIA WITH THE AXIAL
SYMMETRY

As a concrete example, we consider the neutrino media
with an (approximate) axial symmetry about the z axis. For
such a medium, Eq. (22) gives two DRs with different
symmetry properties [11]:

DASðΩ; KÞ ¼ ðI0 þ 1ÞðI2 − 1Þ − I21 ¼ 0 ð34Þ
and

DSBðΩ; KÞ ¼ I0 − I2 − 2 ¼ 0; ð35Þ
where

IkðΩ; KÞ ¼
Z

1

−1
GðvzÞ

vkz
Ω − Kvz

dvz ð36Þ

with

GðvzÞ ¼
Z

2π

0

GðvÞdφ: ð37Þ

Equation (34) is for the normal modes of axially symmetric
(AS) polarizations (i.e., Sv is independent of the azimuthal
angle φ), while Eq. (35) is for those with (axial-)symmetry-
breaking (SB) polarizations [11,37]. The AS modes are the
mixtures of the monopole mode (l ¼ 0) and the axially

4One may wonder whether a complex-K branch can extend to
Ω → �∞. From Eq. (24), one sees that V of a complex-K branch
must approach a finite real critical value Vc within the forbidden
region as Ω → �∞, or Πβγ → ηβγ and Eq. (22) would not hold.
Unless the ELN distribution is discontinuous, one can show that
Vc corresponds to a critical point of DðΩ; KÞ.
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symmetric dipole mode (l ¼ 1 and m ¼ 0), and the SB
modes are the linear superposition of the two degenerate
dipole modes with m ¼ �1 [38].
Because the typical distance scale of fast neutrino flavor

conversions is ∼GFnν, we define

μ ¼
ffiffiffi
2

p
GFnνe ð38Þ

to be the unit of all quantities with dimensions, where

nνe ¼
Z

fνeðpÞ
d3p
ð2πÞ3 ð39Þ

is the (initial) number density of νe ’s. To demonstrate the
typical features of the DRs of fast neutrino flavor con-
versions, we employ a set of 6 parametrized distributions
all of which are of the form

GiðvzÞ ¼ μ½gðvz; v̄0; σ0Þ − αigðvz; v̄i; σiÞ�; ð40Þ

where i ¼ 1; 2;…; 6,

gðvz; v̄; σÞ ∝ exp

�
−
ðvz − v̄Þ2

2σ2

�
ð41Þ

is the Gaussian distribution with the normalization con-
dition

R
1
−1 gdvz ¼ 1, and the values of αi, v̄i, and σi are

listed in Table I. All the distributions have positive ELN

densities Φ0 > 0, but their ELN flux densities Φz in the z
direction can be either positive or negative:

(i) G1 is a distribution that stays positive for all vz;
(ii) G2 has a “shallow” crossing and a positive Φz;
(iii) G3 andG4 have “moderate” crossings andnegativeΦz;
(iv) G5 and G6 have “deep” crossings and negative Φz.

These ELN distributions are plotted in Fig. 2.

A. Symmetry-breaking modes

1. Real branches

The real DR branches of the SB modes can be readily
solved from Eq. (35) in terms of the “refractive index” [11]

n ¼ 1

V
¼ K

Ω
: ð42Þ

For each value of n ∈ ½−1; 1�, one obtains

ΩðnÞ ¼ 1

2

Z
1

−1
GðvzÞ

1 − v2z
1 − nvz

dvz ð43aÞ

and

KðnÞ ¼ nΩ: ð43bÞ

As noted in Ref. [11], the real branches of the SB modes
always end at finite values of Ω and K because

Ωðn ¼ �1Þ ¼ 1

2

Z
1

−1
GðvzÞð1� vzÞdvz ð44Þ

are finite.
As mentioned in Sec. II C, the turning points of the real

branches are also critical points of the DR. To locate these
turning points, we differentiate Eq. (43) with respect to n
and obtain

dΩ
dn

¼ 1

2

Z
1

−1
GðvzÞ

vzð1 − v2zÞ
ð1 − nvzÞ2

dvz; ð45aÞ

d2Ω
dn2

¼
Z

1

−1
GðvzÞ

v2zð1 − v2zÞ
ð1 − nvzÞ3

dvz; ð45bÞ

dK
dn

¼ 1

2

Z
1

−1
GðvzÞ

1 − v2z
ð1 − nvzÞ2

dvz: ð45cÞ

Based on the overall geometric shapes of their real DR
branches, the six parametrized ELN distributions fall into
three categories.
The first category of the ELN distributions includes G1

which remains positive for the whole range of vz. The real
branch of an ELN distribution in this category has the
following properties:

(i) KðnÞ is a monotonically increasing function of n
because dK=dn > 0.

FIG. 2. The ELN distributions GiðvzÞ (i ¼ 1; 2;…; 6) used in
the numerical examples as measured by the strength of the
neutrino potential μ ¼ ffiffiffi

2
p

GFnνe .

TABLE I. The parameters used in the ELN distributions in
Eq. (40).

i αi v̄i σi

0 � � � 1.0 0.6
1 0.88 1.0 0.53
2 0.89 1.0 0.53
3 0.908 1.0 0.53
4 0.93 1.0 0.53
5 0.96 1.0 0.53
6 0.97 1.0 0.53
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(ii) Both ΩðnÞ and d2Ω=dn2 stay positive for the
whole range of vz, but dΩ=dn changes sign between
vz ¼ −1 and 1 because

dΩ
dn

⟶
n→−1þ

Gð−1Þ lnð1þ nÞ < 0 ð46Þ

and

dΩ
dn

⟶
n→1−

− Gð1Þ lnð1 − nÞ > 0: ð47Þ

This implies the existence of a turning point
ðΩb; KbÞ on the real branch where dΩ=dK ¼ 0.

The second category includes G2 and G3 which are
slightly negative in the forward direction (vz ¼ 1). The real
branch of a category-II distribution is similar to that of
category I but with the following important differences:

(i) dK=dn changes sign near n ¼ 1 because

dK
dn

⟶
n→1− − Gð1Þ lnð1 − nÞ < 0: ð48Þ

This implies the existence of a turning point ðΩt; KtÞ
on the real branch where dK=dΩ ¼ 0.

(ii) dΩ=dn changes sign again near n ¼ 1 where
dΩ=dn becomes negative [see Eq. (47)]. This

indicates the appearance of another turning point
ðΩ0

b; K
0
bÞ on the real branch.

The last category of the ELN distributions include G4

through G6 whose real DR branches have only one critical
point ðΩt; KtÞ.
We calculated the real DR branches for G1, G3 and G5,

which represent the three categories of ELN distributions,
and show them as solid curves in Fig. 3.

2. Complex-K and complex-Ω branches

For the SB modes, a type-II critical point ðΩc; KcÞ can
exist only if the ELN distribution GðvzÞ has a crossing
point Vc. From the above discussion, one sees that, for a
category-I distribution, there are only two critical points for
the complex-K branches, Ω ¼ 0 and Ωb. Therefore, a pair
of complex-K branches run from ðΩb; KbÞ to ð0; K0Þ and
ð0; K�

0Þ, respectively. For a category-II distribution, there
are two additional critical points, Ω0

b, and Ωc. As a result,
another pair of complex-K branches run from ðΩc; KcÞ to
ðΩ0

b; K
0
bÞ. For a category-III distribution, there are again

only two critical points, 0 and Ωc, and a pair of complex-K
branches run from ðΩc; KcÞ to ð0; K0Þ and ð0; K�

0Þ,
respectively.
A category-I ELN distribution does not have any

complex-Ω branch because there does not exist any critical
point for these branches. Both category-II and category-III

FIG. 3. The real (solid lines), complex-K (dashed lines) and complex-Ω (dotted lines) DR branches for the SB modes with G1 (left
panels), G3 (middle panels) and G5 (right panels) distributions on the Ωr-Kr plane (upper panels) and the complex plane of Ω (lower
panels), respectively. The filled circles represent the end points of the branches, and the crosses denote the branch points on the complex
plane of Ω where two Riemann sheets join. The shadowed regions in the upper panels are the forbidden regions for the real branches. In
the lower panels, the lines of the same style but different colors/intensities represent the same DR branches on different Riemann sheets,
and the DR branches along the real axis of the complex plane of Ω are shifted up or down for clarity.
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distributions have two critical points which are located
at K ¼ Kt and Kc, respectively. Therefore, a pair of
complex-Ω branches run from ðΩc; KcÞ to ðΩt; KtÞ.
We calculated the complex-K and complex-Ω branches

for G1, G3 and G5, respectively, and show them as dashed
and dotted curves in Fig. 3.

B. Identifying the instabilities

The above results clearly show some of the misunder-
standings in the literature. For example, instead of being
confined to the “gap” of the real branches as suggested by
Ref. [11], the complex-K branches for the G5 distribution
co-exist with the real branch in some range of Ωr. One also
sees that the complex-Ω branches exist for this distribution
even though the zero mode is stable, i.e., K−1ðK ¼ 0Þ
is real.
The study of the DR branches of the SB modes reveals

an interesting pattern of how the instabilities appear and
evolve as the ELN distribution is changed continuously.
One starts from a category-I distribution without crossing
which has no complex-Ω branch. For this distribution, all
the branch points ðΩb; KbÞ are located on the real axis of
the complex plane of Ω, and they are the turning points on
the real branch. There is no branch point on the upper or
lower complex plane which would imply the existence of
complex-Ω branches [33].
The instabilities may begin to occur as one varies the

ELN distribution. Because the strength of the instability
increases with the magnitude of ImðΩbÞ, we expect that all
the branch points should appear on the real axis first before
moving to the upper and lower complex plane of Ω. As the
ELN distribution begins to develop a shallow crossing and
become category II, two new turning points, ðΩ0

b; K
0
bÞ and

ðΩt; KtÞ appear on the reach branch. The complex-Ω
branch (with Ωi > 0) connecting to ðΩt; KtÞ gives rise to
convective instabilities because there is no branch point on
the upper complex plane of Ω. This also agrees with
Sturrock’s theory because the path C of this complex-Ω
branch can be deformed continuously in the complex plane
of Ω to a path along the real axis which is made of a
complex-K branch and a segment of the real branch. (See
the lower middle panel of Fig. 3).
As the crossing of a category-II distribution becomes

deeper and deeper, the two turning points ðΩb; KbÞ and
ðΩ0

b; K
0
bÞ on the real branch come closer and closer to each

other and finally merge into a saddle point. Correspondingly,
the two pairs of complex-K branchesmerge into a single pair.
As the crossing of the ELN distribution further deepens, the
two branch points of KðΩÞ move to the upper and lower
complex planeswithΩ0

b ¼ Ω�
b andK

0
b ¼ K�

b. Although these
branch points are not on the real branch, their existence can
be inferred by the fact that the complex-K and real branches
pass each other without intersection. (See the upper right
panel of Fig. 3.) According to Briggs’ theory, the instabilities
associated with the complex-Ω branch of a category-III

distribution are absolute. This conclusion is also in agree-
mentwith Sturrock’s theory because the path of the complex-
Ω branch in the upper complex plane of Ω cannot be
deformed to the real axis due to the existence of the branch
point. (See the lower right panel of Fig. 3.) This result can
also be deduced from the paths of the DR branches in the
Ωr − Kr plane where no closed loop is formed by the
complex-Ω branch and other DR branches with real Ω.

C. Axially symmetric modes

The real branches of the AS modes can also be solved in
terms of n:

Ω�ðnÞ ¼
Ĩ2 − Ĩ0 �

ffiffiffiffi
Δ

p

2
; ð49Þ

where

ĨkðnÞ ¼
Z

1

−1
GðvzÞ

vkz
1 − nvz

dvz; ð50Þ

and

ΔðnÞ ¼ ðĨ2 − Ĩ0Þ2 þ 4ðĨ2Ĩ0 − Ĩ21Þ
¼ ðĨ0 þ Ĩ2 − 2Ĩ1ÞðĨ0 þ Ĩ2 þ 2Ĩ1Þ: ð51Þ

The evolution of the DR branches of the AS modes with
the changing ELN distribution is similar to that of the SB
modes but with a few new twists. For the AS modes, the
distributions G1 through G6 each has its unique features
and represents its own category. We calculated the DR
branches of the AS modes for all 6 distributions and plot
them in Fig. 4.

1. Category I

The distributions represented by G1 has no crossing. For
such a distribution, Ĩ0 > Ĩ2 > 0 and Ĩ2Ĩ0 > Ĩ21. Therefore,
Ω�ðnÞ represent two separate real branches. In the limit
n → �1, Ω� → �∞ because

Δ⟶
n→�1

− 4Gð�1Þ lnð1 ∓ nÞ
Z

1

−1
ð1 ∓ vzÞGðvzÞdvz: ð52Þ

The “plus” and “minus” real branches each has a critical
point, ðΩbþ; KbþÞ and ðΩb−; Kb−Þ, and two conjugate pairs
of complex-K branches run from these critical points to
ð0; K0þÞ, ð0; K�

0þÞ, ð0; K0−Þ, and ð0; K�
0−Þ, respectively.

There is no complex-Ω branch for a category-I distribution
because there exists no critical point associated with these
branches.

2. Category II

The distributions represented by G2 has a shallow
crossing near the forward direction. Because Gð1Þ is
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slightly negative, Δ !n→1− − ∞. As a result, the real branch
Ω�ðnÞ is defined for n ∈ ð−1;n⋆�, where Δðn⋆Þ ¼ 0. The
originally separated two real branches bend sharply toward
each other near V ¼ 1 and merge into a single real branch
at V ¼ 1=n⋆. Around the sharp bends of the real branch
new critical points ðΩ0

b�; K
0
b�Þ and ðΩt�; Kt�Þ appear.

Another pair of critical points ðΩc�; Kc�Þ also appear on
the positive and negative sides of Ωr both of which
correspond to the crossing point Vc of the ELN distribution.
With the appearance of the new critical points, two addi-
tional conjugate pairs of complex-K branches run from
ðΩ0

b�; K
0
b�Þ to ðΩc�; Kc�Þ, and two conjugate pairs of

complex-Ω branches run from ðΩt�; Kt�Þ to ðΩc�; Kc�Þ.
Both complex-Ω branches with Ωi > 0 give rise to con-
vective instabilities.

3. Category III

The distributions represented by G3 have deeper cross-
ings than G2. On the positive side of Ωr, the two branch
points ðΩbþ; KbþÞ and ðΩ0

bþ; K
0
bþÞ have moved off the real

branch to the upper and lower complex planes ofΩ, and the
two pairs of complex-K branches have merged into a single
pair. Correspondingly, the instabilities associated with the
complex-Ω branch connecting to ðΩcþ; KcþÞ become
absolute.

4. Category IV

The distributions represented by G4 have even deeper
crossings than G3. At this point, the two branch points
ðΩb−; Kb−Þ and ðΩ0

b−; K0
b−Þ have also moved off the real

branch to the upper and lower complex planes of Ω, and
the two pair of complex-K branches on the negative side of
Ωr have merged into a single pair. The complex-Ω branches
on both the positive and negative sides of Ωr give rise to
absolute instabilities.

5. Category V

As the crossing of the ELN distribution becomes deeper
and deeper, the two turning points ðΩtþ; KtþÞ and
ðΩt−; Kt−Þ move closer and closer to each other and
eventually merge into a saddle point before disappearing
from the real branch. For the G5 distribution, the two pairs
of complex-Ω branches have merged into a single pair and
run from ðΩcþ; KcþÞ directly to ðΩc−; Kc−Þ.

6. Category VI

As the crossing of the ELN distribution becomes so deep
that Φ0 þΦz < 0 [but still with Gð−1Þ > 0], Δ becomes
negative even at n ¼ −1. At this point, the real branch has
disappeared leaving only two pairs of complex-K branches
and one pair of complex-Ω branches.

IV. CONCLUSIONS

We have studied the critical points of the DR of the fast
flavor conversion of the neutrino medium. These critical
points are also the end points of the DR branches with
complex frequencies and/or wave numbers. Applying this
theory to the neutrino medium with the axial symmetry,
we demonstrated how the DR branches and instabilities
emerge and evolve as the ELN distribution is changed

FIG. 4. Similar to Fig. 3 but for the AS modes with the ELN distributions G1 through G6. The small insets show the enlarged region
around some of the critical points on the real DR branches.
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continuously. We showed that, as one starts from an ELN
distribution with no unstable DR branches and varies it
continuously, the branch points of K ¼ KðΩÞ first appear
as the turning points on the real branch(es) before moving
to the upper and lower complex planes ofΩ. In this process,
convective instabilities always appear first and then may
evolve into absolute instabilities as the ELN distribution
changes.
We have explicitly shown that the instability associated

with a complex-Ω DR branch can still be nonconvective
even in the presence of complex-K branches. We have also
shown that fast flavor conversions can occur even when the
“zero mode” is stable. Our theory of the critical points of

the DR function provides a way of systematically studying
the DRs and instabilities of the neutrino oscillation wave.
It also contributes to a good theoretical foundation for
the future studies of collective neutrino oscillations in core-
collapse supernovae and binary neutrino star mergers such
as those in Refs. [12,19].
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