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Using the helicity formalism of Jacob and Wick, we derive spin density matrices of baryon antibaryon

pairs produced in eþe− annihilation. We consider the production of pairs with spins 1=2þ 1=2, 1=2þ 3=2

(þc:c:) and 3=2þ 3=2. We provide modular expressions to include chains of weak hadronic two-body
decays of the produced hyperons. The expressions are suitable for the analysis of high statistics data from
J=ψ and ψð2SÞ decays at eþe− colliders, by fits to the fully differential angular distributions of the
measured particles. We illustrate the method by examples, such as the inclusive measurement of the
eþe− → ψð2SÞ → Ω−Ω̄þ process where one decay chainΩ− → ΛK− followed by Λ → pπ− is considered.
Finally, we show that the inclusive angular distributions can be used to test spin assignment of the produced
baryons.
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I. INTRODUCTION

Charmonia are excellent sources of spin entangled
hyperon-antihyperon pairs. In particular, the states J=ψ
or ψð2SÞ, which carry JPC ¼ 1−−, are directly produced at
electron positron colliders. They are perfectly suited for
precise determination of hyperon decay parameters and
searches for CP symmetry violation in the baryon sector.
Recently, unexpected observation of polarization in

eþe− → J=ψ → ΛΛ̄ at BESIII [1] has opened up new
perspectives for such measurements. The polarization
allows simultaneous determination of the Λ and Λ̄ decay
asymmetries from the events, in which all decay products
are measured. Of major importance is the new BESIII result
for the Λ → pπ− asymmetry parameter of α− ¼ 0.750�
0.009� 0.004. This decay is used in practically all experi-
ments involving Λ for identification and for polarization
determination from the measured product of the polariza-
tion and the known value of the asymmetry parameter.
All these studies assume the asymmetry parameter of
0.642� 0.013, the world-average value established in
1978 [2] and unchanged until the 2018 edition of the
Review of Particle Physics [3]. Therefore, the new BESIII

value implies that all published measurements on Λ=Λ̄
polarization are ð17� 3Þ% too large. This includes e.g.,
values of decay asymmetries for weak decays of strange
and charmed baryons into final states including Λ such as
Ξ → Λπ, Ω− → Λπ− etc. The BESIII analysis uses fully
differential distributions derived in Ref. [4] using Feynman
diagrams formalism. Previous eþe− → J=ψ → ΛΛ̄ mea-
surements [5,6] used simplified and not correct expressions
for the amplitudes which precluded such analysis. These
expressions were derived using helicity formalism of Jacob
and Wick [7]. Therefore, the important task is to repeat the
derivation of the angular distributions to make sure the
results are consistent. In addition, the helicity formalism
would allow to generalize the angular distributions for the
higher spin states.
With a large number of collected J=ψ , ð1310.6�7.0Þ×

106, and ψð2SÞ, ð448.1� 2.9Þ × 106, at the BESIII experi-
ment [8–10] detailed studies of such systems are now
possible.1

Examples of the available data samples from recent
publications are given in Table I. The branching fractions,
B, for the listed decay modes range between 10−4 and 10−3

and the reconstructed data samples are up to 106 events.
In addition, considering world averages of the B values for
other B1B̄2 decays, one can anticipate that more modes are
accessible with the collected data sets (Table II). All of thePublished by the American Physical Society under the terms of
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1On Feb. 11, 2019, the BESIII Collaboration announced that
1010 J=ψ events were accumulated.
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published results focus only on the determination of the
branching fractions and the angular distributions of the
produced hyperons.
The production amplitudes of such processes are

described by a limited set of form factors—complex
numbers at fixed center-of-mass (CM) energy. For instance,
in the case of a spin-1=2 hyperon pair, there are just two
such form factors. The angular distribution is described by
two real numbers: one related to the ratio of the absolute
values of the form factors and the other giving the relative
phase. In this case, provided that there is a non-negligible
phase between the form factors, one can determine the
decay parameters of the produced hyperons and carry out
CP violation tests in the baryon sector. For the spin-1=2
hyperons with single-step decay modes (analogous to Λ),
the formulas provided in Ref. [4] could be used directly.
However, to include other interesting cases, the formalism
has to be extended for states where the hyperon antihyperon
pair can have a combination of spins 1=2 and 3=2 and for
multistep decay chains.
Several approaches are suitable to provide the amplitude

for a process where the final states carry nonzero spins. We
use the helicity formalism originally developed by Jacob
and Wick [7]. This formalism had been used in the past for
several hyperon production reactions and decays [14–18].

However, we did not find a general and modular formu-
lation which could be applied directly to describe high
statistics exclusive data, i.e., data where momenta of all
particles are measured for each event. For this purpose,
fully differential angular distributions are needed, to be
used for event generators and for maximum likelihood fits.
It is the purpose of the present paper to document the
construction of such a framework.
We derive spin density matrices for eþe− → B1B̄2

processes where the baryon (antibaryon) can have spin
1=2 or 3=2. In practice, we focus on the cases where all
baryons have positive parity and all antibaryons have
negative parity. This fits to the ground state baryons of
spin 1=2 and spin 3=2 [3]. The presented formalism can be
applied to study decays of JPC ¼ 1−− vector mesons
produced in electron positron colliders, such as J=ψ or
ψð2SÞ, into B1B̄2 pairs. We will also revise some mislead-
ing assumptions and formulas used in the analyses of weak
decay chains within this framework.
In order to establish our notation, we start with applying

the helicity formalism to the well known case of 1=2þ 1=2
baryons, then we proceed to the 1=2þ 3=2 and 3=2þ 3=2
cases.We present a general formalism together with detailed
expressions for the spin density matrices for the production
process and for the most important decay modes.
As long as the momentum direction is not flipped, boosts

do not change the helicity. Therefore, in the helicity
amplitude method, one can disregard the boost part of the
Lorentz group, which allows to obtain angular distributions
without using full expressions for the spinors as required by
the Feynman diagram technique. This is very convenient but
comes with a disadvantage: the energy dependence of the
contributing amplitudes cannot be determined and, there-
fore, not even their relative importance. Yet for fixed
production energy of a two-particle system and for two-
body decays of the produced states all kinematical variables,
i.e., all angles, are fully covered by the helicity framework.
We would like to stress again that the basics of our

formalism are not new. How to describe, in principle, the
scattering and decays of relativistic particles with spin has
been established long time ago. Yet, at that time, angular
averages were sufficient to account for the available data.
Consequently, there was no need to provide detailed
formulas for the fully differential angular distributions of
multistep decay chains. It is high time to fill this gap in view
of the modern high-luminosity experiments, which deliver
fully differential data. Only in that way the full potential of
presently running and future experiments can be exploited.
The rest of the paper is organized in the following way:

In Sec. II, we provide the general helicity framework
adjusted such that it fits to commonly employed exper-
imental analyses. In Sec. III, we specify to the three
production processes that we are interested in, i.e., combi-
nations of spin-1=2 and/or spin-3=2 baryons and antibary-
ons. Section IV is devoted to the general discussion of

TABLE I. Available B1B̄2 data samples and the branching
fractions from recent BESIII publications [11–13].

Decay mode Events Bðunits10−4Þ
J=ψ→ΛΛ̄ 440675�670 19.43�0.03�0.33
ψð2SÞ→ΛΛ̄ 31119�187 3.97�0.02�0.12
J=ψ→Σ0Σ̄0 111026�335 11.64�0.04�0.23
ψð2SÞ→Σ0Σ̄0 6612�82 2.44�0.03�0.11
J=ψ→Σð1385Þ0Σ̄ð1385Þ0 102762�852 10.71�0.09
J=ψ→Ξ0Ξ̄0 134846�437 11.65�0.04
ψð2SÞ→Σð1385Þ0Σ̄ð1385Þ0 2214�148 0.69�0.05
ψð2SÞ→Ξ0Ξ̄0 10839�123 2.73�0.03
J=ψ→Ξ−Ξ̄þ 42811�231 10.40�0.06
J=ψ→Σð1385Þ−Σ̄ð1385Þþ 42595�467 10.96�0.12
J=ψ→Σð1385ÞþΣ̄ð1385Þ− 52523�596 12.58�0.14
ψð2SÞ→Ξ−Ξ̄þ 5337�83 2.78�0.05
ψð2SÞ→Σð1385Þ−Σ̄ð1385Þþ 1375�98 0.85�0.06
ψð2SÞ→Σð1385ÞþΣ̄ð1385Þ− 1470�95 0.84�0.05

TABLE II. Possible other hyperon antihyperon final states
which can be studied at BESIII. The quoted branching fractions
are from the Particle Data Group [3].

Decay mode Bðunits 10−4Þ
J=ψ → Ξð1530Þ−Ξ̄þ 5.9� 1.5
J=ψ → Ξð1530Þ0Ξ̄0 3.3� 1.4
J=ψ → Σð1385Þ−Σ̄þ 3.1� 0.5
ψð2SÞ → Ω−Ω̄þ 0.47� 0.10
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(weak) two-body decay chains. Examples are provided in
Sec. V. We have chosen the same examples as considered in
Ref. [19]. To facilitate the matching of theoretical models to
experimental results we relate electromagnetic form factors
to helicity amplitudes in Sec. VI. Further discussions are
provided in Sec. VII.

II. GENERAL FRAMEWORK

In general, we look at the production of two unstable
particles in an initial scattering reaction. Subsequently, the
produced particles decay in one or several steps. The
general task is to deduce information about the spins
and their correlations among the involved (unstable)
particles. If none of the spins are measured directly, this
information is encoded in the angular distributions. The
angles are measured with respect to some axes, which
makes it necessary to define appropriate frames of refer-
ence and cartesian coordinate systems.
The production process defines the first coordinate

system; see below. For the decays, it is useful to boost
to the rest frame of the mother particle. Yet it is helpful to
perform rotations before this boost. We will be very explicit
to motivate and define these rotations.
Following the ideas of [7,14], we use the helicity

formalism. Here, the spin quantization axis is not chosen
along a fixed axis but along the flight direction of the state.
The advantage is that the helicity does not change when
boosting to the rest frame of this state. On the other hand,
the use of angular-momentum (J) conservation for the
production and for each decay process suggests to single
out the z axis, based on the convention to use J2 and Jz for
the characterization of states.
Following this spirit it is useful to spell out how helicity

states are constructed. To motivate this construction we
discuss first how one deals with changes of reference
frames in experimental analyses. Afterwards we will
describe how to mimic these changes on the theory side.
a. Experimental procedure: Suppose one has produced a

“mother” particle that decays further. One wants to change
from the production frame of this state to its rest frame.
Given the state’s three-momentum

pm ¼ pmðcosϕm sin θm; sinϕm sin θm; cos θmÞ ð1Þ

and the z axis in the production frame, one possibility
would be to perform a single rotation that aligns pm with
the z axis. Subsequently one then boosts to the rest frame of
the mother particle. The single rotation would be around an
axis perpendicular to pm and ẑ. Yet when viewed as
rotations around the coordinate axes this amounts to a
succession of three rotations. Viewed as active rotations
these are (a) a rotation around the z axis by −ϕm; (b) a
rotation around the y axis by −θm; (c) a rotation around the
z axis by þϕm; see also [7]. In principle, however, the first
two rotations are sufficient to align pm with the z axis.

In line with the present BESIII analyses, we follow this
two-rotation procedure in the present work. The rotation
matrix for pm is given by

0
B@

cos θm cosϕm cos θm sinϕm − sin θm
− sinϕm cosϕm 0

cosϕm sin θm sin θm sinϕm cos θm

1
CA: ð2Þ

This rotation defines in a unique way the helicity reference
frame for a daughter particle. In an experimental analysis,
the boosts and rotations in Eq. (2) are applied recursively to
all decay products of a decay chain, thus defining a set of
helicity variables to describe an event.
b. Matching amplitude: To mimic this procedure on the

theory side we construct helicity states by the inverse
procedure, following essentially [14]. A one-particle
state with helicity λ and momentum p ¼ pðcosϕ sin θ;
sinϕ sin θ; cos θÞ is constructed from a state jp; λi that
moves along the z-direction by

jp; θ;ϕ; λi ≔ Rðϕ; θ; 0Þjp; λi ð3Þ

with [7]

Rðα; β; γÞ ≔ e−iαJze−iβJye−iγJz : ð4Þ

Correspondingly a two-particle state in its CM frame is
given by

jp; θ;ϕ; λ1; λ2i ≔ Rðϕ; θ; 0Þjp; λ1; λ2i: ð5Þ

In practice, we follow all the steps of [7] except for the
fact that we use a two-angle rotation procedure as spelled
out in Eq. (3). When constructing (5) the first particle has
momentum p ¼ pðcosϕ sin θ; sinϕ sin θ; cos θÞ and helic-
ity λ1 while the second has momentum −p and helicity λ2.
The most important consequence of our construction of
these two-particle states is their projection on angular-
momentum eigenstates [14]:

hJ;M; λ10; λ20jθ;ϕ; λ1; λ2i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4π

r
DJ

M;λ1−λ2ðϕ; θ; 0Þδλ1λ1 0δλ2λ2 0 ð6Þ

where Dj
m0mðα; β; γÞ ≔ hjm0jRðα; β; γÞjjmi is the Wigner

D-matrix.2

2Note that our definition is in line with [7] but differs from
the conventions used in Mathematica [20]. In particular, we
have Dj

m0;mðα; β; γÞ ¼ e−im
0α−imγDj

m0;mð0; β; 0Þ while the built-in

“WignerD” function of Mathematica satisfies Dj
m0;mðα; β; γÞ ¼

eim
0αþimγDj

m0;mð0; β; 0Þ.
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A. Production process

We turn once more to a description of the experimental
analysis: The production process eþe− → B1B̄2, viewed in
the CM frame, defines a scattering plane and, therefore, a
coordinate system. The z axis is chosen along the line of
flight of the incoming positron, i.e., ẑ ¼ peþ ¼ ð0; 0; pinÞ,
where pin denotes the modulus of the momentum of
electron and positron in the CM frame. The y axis is
chosen to be perpendicular to the scattering plane. One uses
the direction of the baryon B1 to define the y axis:

ŷ ≔
peþ × pB

jpeþ × pBj
: ð7Þ

Finally, the x axis is chosen such that x, y and z adhere to
the right-hand rule. Denoting the scattering angle of B1 by
θ1, all this implies pB ¼ poutðsin θ1; 0; cos θ1Þ. Here, pout
denotes the modulus of the momentum of baryon and
antibaryon in the CM frame.
With the above definition of the CM coordinate system,

the y axis of the helicity frame of the baryon B1, ŷ1 in Fig. 1
is the same as ŷ in Eq. (7). Therefore, for the helicity
rotation matrix Eq. (2) one uses θm ¼ θ1 and ϕm ¼ 0.
Correspondingly, to transform to the helicity frame of the
antibaryon B̄2 one chooses ϕm ¼ π and θm ¼ π − θ1.
In this way, the y axis, ŷ2, is equal −ŷ. The y and z axes
of the helicity frames of the baryon B1 and the antibaryon
B̄2 have opposite directions while it is the same direction
for the x axis as shown in Fig. 1.
Now we turn to the theoretical construction that goes

along with the experimental analysis: Let λ denote the
initial helicity of the positron. Neglecting the mass of the
electron and working within the one-photon approximation
this implies that the helicity of the electron is −λ since the
photon only couples right-handed particles to left-handed
antiparticles and vice versa. Since λ can take the values
�1=2, then the helicity difference k ≔ λ − ð−λÞ ¼ �1.
For unpolarized initial states, one sums over λ or

equivalently over k ¼ 2λ. The density matrix for the
production is proportional to

ρ
λ1;λ2;λ01;λ

0
2

B1B̄2
∝

X
k¼�1

ohθ1; 0; λ1; λ2jSj0; 0; λ;−λii

× ih0; 0; λ;−λjS†jθ1; 0; λ01; λ02io; ð8Þ

where we use the hbraj, jketi notation with index i and o to
denote in and out states, respectively. Now we evaluate the
transition operator S:

ohθ1; 0; λ1; λ2jSj0; 0; λ;−λii
¼

X
J;M

ohθ1; 0; λ1; λ2jJM; λ1; λ2io

× ohJM; λ1; λ2jSjJM; λ;−λii
× ihJM; λ;−λj0; 0; λ;−λii: ð9Þ

We have to evaluate three matrix elements. The first and the
third bring in Wigner functions. The general formula is
given in Eq. (6). For the transition amplitude, one finds in
the one-photon approximation

ohJM; λ1; λ2jSjJM; λ;−λii
≈ ohJM; λ1; λ2jSγ�→outSin→γ� jJM; λ;−λii
¼ δJ;1Aλ1;λ2A

in
λ;−λ: ð10Þ

Here, Aλ1;λ2 denotes the transition amplitude between
helicity states. Only transitions fulfilling the inequality

jλ1 − λ2j ≤ J ¼ 1 ð11Þ

are different from zero. For a parity-conserving process, the
amplitudes between opposite helicity states are related,

Aλ1;λ2 ¼ η1η2ηð−1ÞJ−s1−s2A−λ1;−λ2 ; ð12Þ

where η is the parity of the initial state, η1 and η2 are the
parities of the final state particles. Moreover, parity
symmetry of QED implies Ain

−λ;λ ¼ Ain
λ;−λ for the initial

eþe− → γ� production amplitude Ain. Here we are not
interested in the pin dependence of the reaction and,
therefore, we can drop Ain. One finds

ohθ1; 0; λ1; λ2jSj0; 0; λ;−λii
∝
X
M

½D1
M;λ1−λ2ð0; θ1; 0Þ��Aλ1;λ2D

1
M;kð0; 0; 0Þ

¼ ½D1
k;λ1−λ2ð0; θ1; 0Þ��Aλ1;λ2 : ð13Þ

We obtain for the production density matrix

ρ
λ1;λ2;λ01;λ

0
2

B1B̄2
∝ Aλ1;λ2A

�
λ0
1
;λ0

2
ρ
λ1−λ2;λ01−λ

0
2

1 ðθ1Þ ð14Þ

with
FIG. 1. Orientation of the axes in baryon B1 and antibaryon B̄2

helicity frames.
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ρi;j1 ðθÞ ≔
X
k¼�1

D1�
k;ið0; θ; 0ÞD1

k;jð0; θ; 0Þ: ð15Þ

The explicit form of the reduced density matrix ρ1 is
given by

ρ1ðθÞ ¼

0
BBB@

1þcos2θ
2

− cos θ sin θffiffi
2

p sin2θ
2

− cos θ sin θffiffi
2

p sin2θ cos θ sin θffiffi
2

p

sin2θ
2

cos θ sin θffiffi
2

p 1þcos2θ
2

1
CCCA: ð16Þ

We note in passing that here one could also rotate to a
frame where the baryons do not lie in the x-z plane, i.e.,
where they have a nonvanishing value of ϕ. This would not
change the density matrix because of the following relation:

D1�
k;ið0; θ; 0ÞD1

k;jð0; θ; 0Þ ¼ D1�
k;iðϕ; θ; 0ÞD1

k;jðϕ; θ; 0Þ: ð17Þ

This also points to the core difference with all previous
helicity amplitude calculations of the eþe− → B1B̄2 proc-
ess starting from Ref. [5]. All they obtain the initial ρ1
density matrix which is dependent on ϕ. This is an
unphysical result for transversely unpolarized electron
and positron beams due to the rotation symmetry with
respect to the ẑ axis. The unwanted ϕ dependence is then
eliminated by an arbitrary integration over the ϕ variable.
The result is a diagonal density matrix and all interference
terms between heicity amplitudes of the produced baryons
cancel. We can reproduce all results from Refs. [5,19] by
using the diagonal part of ρ1 from Eq. (16): diagðð1þ
cos2θÞ=2; sin2θ; ð1þ cos2θÞ=2Þ.
Finally we note that for the case where B1 and B2 are of

the same type and in the one-photon approximation, charge
conjugation provides the following (schematic) relation:
hγ�jSjB1; B̄2i ¼ hγ�jSjB2; B̄1i. The minus sign emerging
from the virtual photon is compensated by the reordering
of the two (anti-commuting) fermions from jB̄1; B2i to
jB2; B̄1i.

B. Baryon spin density matrices

The most general spin density matrix for a spin-1=2
particle has the following form:

ρ1=2 ¼
1

2

�
I0 þ Iz Ix − iIy
Ix þ iIy I0 − Iz;

�
ð18Þ

or expressed in a compact way:

ρ1=2 ¼
1

2

X
μ

Iμσμ; ð19Þ

where μ ¼ 0; x; y; z; σx, σy, σz are the Pauli matrices and σ0
is the identity 2 × 2 matrix. I0 is the cross section term and

I is a three vector I ¼ I0 · P, where P is the polarization
vector for the fermion. For some formulas, we also use
notation with a numeric index: μ ¼ 0, 1, 2, 3.
The density matrix of a spin-3=2 particle can be written

in terms of sixteen Hermitian 4 × 4 matrices Qμ with
μ ¼ 0;…; 15 as described in Ref. [21]. The explicit
expression for these matrices is given in Appendix A.
The general density matrix for a single spin-3=2 particle
can be expressed as

ρ3=2 ¼
X15
μ¼0

rμQμ; ð20Þ

where r0 is the cross section term,Q0 is
1
4
14 where 14 is the

4 × 4 identity matrix and rμ are real numbers.

III. SPECIFIC PRODUCTION PROCESSES

A. Two spin- 12 baryons

It is well known how the spin density matrices look like
for a reaction eþe− → B1B̄2 where both produced particles
have spin 1=2. The results were obtained using different
approaches [4,22–26]. Here we reproduce the result using
the helicity method. We focus on the case where the baryon
has positive parity η1 ¼ 1 and the antibaryon negative
parity η2 ¼ −1. This fits to the production of a pair of
ground-state hyperons. In general, only two out of
four possible helicity transitions are independent. Using
η1η2 ¼ −1 for the baryon antibaryon pair one can set
A1=2;1=2 ¼ A−1=2;−1=2 ≕ h1 and A1=2;−1=2 ¼ A−1=2;1=2 ≕h2.
The transition amplitude matrix is

�
h1 h2
h2 h1

�
: ð21Þ

The spin density matrix for a two-particle 1=2þ 1=2
system can be expressed in terms of a set of 4 × 4 matrices
obtained from the outer product, ⊗, of σμ and σν̄ [16]:

ρB1;B̄2
¼ 1

4

X3
μ;ν̄¼0

Cμν̄ðθ1ÞσB1
μ ⊗ σB̄2

ν̄ ; ð22Þ

where σBμ with μ ¼ 0, 1, 2, 3, 4 represent spin-1=2 base
matrices for a baryon B in the rest frame. The 2 × 2

matrices are σB0 ¼ 12, σB1 ¼ σx, σB2 ¼ σy and σB3 ¼ σz.

In particular the spin matrices σB1
μ and σB̄2

ν̄ are given in
the helicity frames of the baryons B1 and B̄2, respectively.
The axes of the frames are defined in Fig. 1 and denoted by
x̂1; ŷ1; ẑ1 and x̂2; ŷ2; ẑ2. The real coefficients Cμν̄ are
functions of the scattering angle θ1 of B1.
Suppose one is not interested in the absolute size of the

cross section but only in the (not normalized) angular
distributions. For their description, we do not need all
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information contained in the two complex form factors h1
andh2. Instead,we can use just two real parameters: First,αψ
as defined below and, second, the relative phase between the
form factors ΔΦ ¼ argðh1=h2Þ, i.e., we disregard the
normalization and the overall phase. More specifically
without any loss of generality we take h1 as real and set
h1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αψ

p
=

ffiffiffi
2

p
and h2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αψ

p
expð−iΔΦÞ. Only

eight coefficients Cμν̄ are nonzero, and they are given by

C00 ¼ 2ð1þ αψcos2θ1Þ;
C02 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2ψ

q
sin θ1 cos θ1 sinðΔΦÞ;

C11 ¼ 2sin2θ1;

C13 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2ψ

q
sin θ1 cos θ1 cosðΔΦÞ;

C20 ¼ −C02;

C22 ¼ αψC11;

C31 ¼ −C13;

C33 ¼ −2ðαψ þ cos2θ1Þ: ð23Þ

For the case when the antibaryon B̄2 is not measured (the
decay products are not registered), the corresponding
inclusive density matrix can be obtained by taking the
trace of the formula in Eq. (22) with respect to the spin
variables of B̄2. The result is

ρB1
¼ 1

2

X
μ

Cμ0σ
B1
μ ; ð24Þ

where

C00 ¼ I0 ¼ 2ð1þ αψcos2θ1Þ;
C20 ¼ Iy ¼ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2ψ

q
sin θ1 cos θ1 sinðΔΦÞ: ð25Þ

If the produced spin-1=2 baryon is a hyperon decaying
weakly, one can determine the polarization of B1 in the
eþe− → B1B̄2 production process from the angular distri-
butions of the decay products. The most common case is a
weak decay into a spin-1=2 fermion and a pseudoscalar
(e.g., Λ → pπ−). For the case of a one-step process, when
the decay product is stable and its polarization is not
measured, the final angular distribution is given by:

dσ ∝ ðI0 þ α1Iy sin θp sinϕpÞdΩp; ð26Þ

where α1 is the decay asymmetry parameter for the
corresponding weak decay mode of B1.

B. Spin 1
2 and spin 3

2 baryon

To be specific we consider eþe− → B1B̄2 where B1 has
spin 1=2 and B̄2 spin 3=2. We focus on the case where the

baryon has positive parity, η1 ¼ 1, and the antibaryon
negative parity, η2 ¼ −1. This fits to the production of
ground-state hyperons with the respective spins. In general,
only three out of eight transition amplitudes are indepen-
dent: Parity symmetry of the production process relates the
amplitudes pairwise. In addition, the one-photon approxi-
mation does not allow for the helicity combination where
jλ1 − λ2j ¼ 2 on account of Eq. (11).
Again we have η1η2 ¼ −1 for the baryon antibaryon pair

so that Aλ1;λ2 ¼ −A−λ1;−λ2 follows from Eq. (12). For simpli-
city, we introduce A1=2;1=2 ¼ −A−1=2;−1=2 ≕ h1, A1=2;−1=2 ¼
−A−1=2;1=2 ≕ h2 and A1=2;3=2 ¼ −A−1=2;−3=2 ≕ h3. In the
one-photon approximation, the remaining amplitudes van-
ish: A−1=2;3=2 ¼ A1=2;−3=2 ¼ 0. Therefore, the transition
amplitude can be expressed as

�
h3 h1 h2 0

0 −h2 −h1 −h3

�
: ð27Þ

The density matrix for the 1=2þ 3=2 system can be
expressed in terms of a set of 8 × 8 matrices obtained from
the outer product of σμ and Qν̄:

ρB1;B̄2
¼ 1

2

X3
μ¼0

X15
ν̄¼0

Cμν̄ðθ1ÞσB1
μ ⊗ QB̄2

ν̄ ; ð28Þ

where the spin matrices σB1
μ and QB̄2

ν̄ are given in the
helicity frames of the baryons B1 and B̄2, respectively. In
principle, there are 4 × 16 real functions Cμν̄ðθ1Þ, but only
30 are nonzero. Here we just give the expressions for the
inclusive spin density matrices for the 1=2 and the 3=2
baryon, respectively.
The inclusive density matrix for the spin-1=2 baryon B1

is obtained by taking the trace of the formula in Eq. (28)
with respect to the spin variables of the antibaryon B̄2. One
obtains the general form (19) with entries

I0 ¼ 2jh1j2sin2θ1 þ ð1þ cos2θ1Þðjh2j2 þ jh3j2Þ;
Iy ¼ 2

ffiffiffi
2

p
ℑðh1h�2Þ sin θ1 cos θ1;

Ix ¼ Iz ¼ 0: ð29Þ

The corresponding inclusive spin density matrix
obtained for the baryon B̄2 can be expressed as

ρ
3=2ðθ1Þ ¼

0
BBB@

m11 c12 c13 0

c�12 m22 im23 c�13
c�13 −im23 m22 −c�12
0 c13 −c12 m11

1
CCCA; ð30Þ

where m11, m22 and m23 are real while c12 and c13 are
complex functions of the scattering angle θ1. These
elements of the spin density matrix are
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m11 ¼
1þ cos2θ1

2
jh3j2;

m22 ¼ jh1j2sin2θ1 þ
1þ cos2θ1

2
jh2j2;

m23 ¼
ffiffiffi
2

p
ℑðh2h�1Þ cos θ1 sin θ1;

c12 ¼
h3h�1 cos θ1 sin θ1ffiffiffi

2
p ;

c13 ¼
1

2
h3h�2sin

2θ1: ð31Þ

The density matrix ρ
3=2 can be also written in terms of

the polarization parameters introduced in Eq. (20). Since
we are considering a parity conserving process it turns out
that only seven parameters are nonzero: r0, r1, r6, r7, r8, r10
and r11. This fits to the previous seven parameters: m11,
m22, m23 and real and imaginary part of c12 and c13. The
former are expressed as functions of the scattering angle θ1
in the following way:

r0 ¼ ðcos2θ1 þ 1Þðjh2j2 þ jh3j2Þ þ 2jh1j2sin2θ1;

r1 ¼ 2 sin 2θ1
2ℑðh1h�2Þ þ

ffiffiffi
3

p
ℑðh1h�3Þffiffiffiffiffi

30
p ;

r6 ¼ −
2sin2θ1jh1j2 þ ðjh2j2 − jh3j2Þðcos2θ1 þ 1Þffiffiffi

3
p ;

r7 ¼
ffiffiffi
2

p
sin 2θ1

ℜðh1h�3Þffiffiffi
3

p ;

r8 ¼ 2sin2θ1
ℜðh2h�3Þffiffiffi

3
p ;

r10 ¼ 2sin2θ1
ℑðh2h�3Þffiffiffi

3
p ;

r11 ¼ 2 sin 2θ1
ℑð ffiffiffi

3
p

h2h�1 þ h1h�3Þffiffiffiffiffi
15

p : ð32Þ

C. Two spin- 32 baryons

We focus again on the case where the baryon has positive
parity η1 ¼ 1 and the antibaryon negative parity η2 ¼ −1.
This fits to the production of ground-state hyperons with
spin 3=2. Actually all such ground-state hyperons are
distinct from each other by strangeness or electric charge.
Thus we focus on the case where the produced antibaryon
is the antiparticle of the produced baryon (and not an
arbitrary spin-3=2 state). This allows to involve arguments
from charge conjugation invariance.
For eþe− → B1B̄2, where both B1 and B̄2 are spin-3=2

particles, only 4 out of 16 amplitudes are independent.
From Eq. (12) it follows that Aλ1;λ2 ¼ A−λ1;−λ2 . We only
need to consider A1=2;−1=2¼A−1=2;1=2≕h2, A1=2;1=2 ¼
A−1=2;−1=2≕ h1, A−3=2;−1=2¼A3=2;1=2≕h3, and A−3=2;−3=2 ¼
A3=2;3=2≕ h4. Due to Eq. (11) expressing the constraint

for the spin projection values of the initial state
(one-photon approximation) the following amplitudes
vanish: A−1=2;3=2 ¼ A1=2;−3=2 ¼ 0. Moreover A−1=2;−3=2 ¼
A1=2;3=2 ¼ h3 due to charge conjugation invariance. Thus
the transition amplitude is given by

0
BBB@

h4 h3 0 0

h3 h1 h2 0

0 h2 h1 h3
0 0 h3 h4

1
CCCA: ð33Þ

The density matrix for the 3=2þ 3=2 system can be
expressed in terms of a set of 16 × 16 matrices constructed
from the outer product of Qμ and Qν̄:

ρB1;B̄2
¼

X15
μ¼0

X15
ν̄¼0

Cμν̄Q
B1
μ ⊗ QB̄2

ν̄ ; ð34Þ

where Cμν̄ðθ1Þ is a set of 256 real functions of θ1 of which
140 are zero.
If the antibaryon is not registered the inclusive density

matrix of the spin-3=2 baryon B1 is again given by Eq. (30).
In this case, the elements are

m11 ¼
1þ cos2θ1

2
jh3j2 þ jh4j2sin2θ1;

m22 ¼
1þ cos2θ1

2
ðjh2j2 þ jh3j2Þ þ jh1j2sin2θ1;

m23 ¼
ffiffiffi
2

p
ℑðh1h�2Þ cos θ1 sin θ1;

c12 ¼
1ffiffiffi
2

p ðh4h�3 − h3h�1Þ cos θ1 sin θ1;

c13 ¼
1

2
h3h�2sin

2θ1: ð35Þ

The angular distribution is given by the trace of the density
matrix:

dσ
d cos θ1

∝ 2ðm11 þm22Þ: ð36Þ

Defining

αψ ¼ jh2j2 − 2ðjh1j2 − jh3j2 þ jh4j2Þ
jh2j2 þ 2ðjh1j2 þ jh3j2 þ jh4j2Þ

; ð37Þ

it can be written as 1þ αψcos2θ1. Using Eq. (20) an
alternative representation for the inclusive density matrix
for the spin-3=2 baryon is given by the following seven real
rμ ¼ Cμ0 coefficients (the remaining nine are zero):
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r0 ¼ ½jh2j2 þ 2ðjh1j2 þ jh3j2 þ jh4j2Þ�ð1þ αψcos2θ1Þ;

r1 ¼ 2 sin 2θ1
2ℑðh2h�1Þ þ

ffiffiffi
3

p
ℑðh3ðh�1 þ h�4ÞÞffiffiffiffiffi
30

p ;

r6 ¼ −
2sin2θ1ðjh1j2 − jh4j2Þ þ jh2j2ðcos2θ1 þ 1Þffiffiffi

3
p ;

r7 ¼
ffiffiffi
2

p
sin 2θ1

ℜðh�3ðh4 − h1ÞÞffiffiffi
3

p ;

r8 ¼ 2sin2θ1
ℜðh2h�3Þffiffiffi

3
p ;

r10 ¼ 2sin2θ1
ℑðh2h�3Þffiffiffi

3
p ;

r11 ¼ 2 sin 2θ1
ℑð ffiffiffi

3
p

h1h�2 þ h3ðh�1 þ h�4ÞÞffiffiffiffiffi
15

p : ð38Þ

The corresponding coefficients for the inclusive density
matrix of the antibaryon are the same, provided one uses
the scattering angle of the antibaryon, i.e., θ1 → π − θ1.

IV. DECAY CHAINS

The density matrices of the produced hyperons can be
used to derive the angular distributions of the particles
produced in the subsequent decays. When considering
multistep decay processes, also the density matrices of
the intermediate states are needed. Moreover one should
keep track of the spin correlations for the initial B1B̄2 pair.
We propose a general modular method to obtain the
distributions in a systematic way. Since the joined pro-
duction density matrices of Eqs. (22), (28) and (34) are
expressed as outer products of the basis matrices σμ andQμ,
it is enough to know how the latter individually transform
under a decay process.
We consider two weak decay modes, which cover most

of the relevant cases3: 1) spin-3=2þ hyperon decaying
into spin-1=2þ hyperon and pseudoscalar, 2) spin-1=2þ

hyperon decaying into spin-1=2þ hyperon and pseudosca-
lar. If we neglect the widths of the initial and final particles,
the CM momentum of the decay particles is fixed. The
angular distribution is specified by two spherical angles θ
and ϕ, which give the direction of the final baryon in the
helicity frame of the initial hyperon. The spin configuration
of the final system is fully specified by the spin density
matrix of the final baryon, which has spin 1=2 in both
cases, since the accompanying particle is a pseudoscalar
meson. Let us start considering a decay of type 1). The aim
is to relate the basis matrices of the mother hyperon Qμ to
those of the daughter baryon σdν . In other words, one has to
find the transition matrix bμν such that

Qμ →
X3
ν¼0

bμνσdν : ð39Þ

The 16 × 4 bμν matrix depends only on the final baryon θ
and ϕ angles, and on the decay parameters of the consid-
ered decay mode. If the initial particle density matrix is
given by Eq. (20) then the final baryon density matrix is:

ρd1=2 ¼
X15
μ¼0

X3
ν¼0

rμbμνσdν : ð40Þ

The differential cross section is simply obtained by taking
the trace of ρd1=2:

Trρd1=2 ¼ 2
X15
μ¼0

rμbμ;0: ð41Þ

Let us now consider a decay of type 2). Similarly we
introduce a 4 × 4 matrix aμν which allows us to express the
σμ matrices in the mother helicity frame in terms of σdν
matrices in the daughter helicity frame:

σμ →
X3
ν¼0

aμνσdν : ð42Þ

The decay matrices aμν and bμν introduced above allow to
keep track of the spin correlation between the decay
products of the B1 and B̄2 decays chains.
In the following example, we start from the two-particle

1=2þ 3=2 density matrix given by Eq. (28). After the B1

decay (1=2 → 1=2þ 0) the density matrix is transformed
into

ρðfÞ
1=2;3=2

¼ 1

2

X3
μ¼0

X15
ν̄¼0

Cμν̄

�X3
κ¼0

aμκσdκ

�
⊗ Qν̄; ð43Þ

where the σdk matrices act in the daughter helicity frame.
Correspondingly after the B̄2 decay (3=2 → 1=2þ 0) the
density matrix would read:

ρðfÞ
1=2;1=2

¼ 1

2

X3
μ¼0

X15
ν̄¼0

Cμν̄σμ ⊗
�X3

κ¼0

bν̄κσdκ

�
: ð44Þ

Below we provide the explicit expression for the decay
matrices aμν and bμν. Consider a J ¼ 1=2 or J ¼ 3=2
hyperon (with initial helicity κ) decaying into a J ¼ 1=2
baryon (with helicity λ1 ¼ λ) and a pseudoscalar particle
(λ2 ¼ 0). By evaluating the transition operator between the
initial hyperon and the daughter baryon state one gets:3More cases are discussed e.g., in Ref. [27].
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dhθ;ϕ; λjSj0; 0; κim ¼ dhθ;ϕ; λjJ; λid
× dhJ; λjSjJ; κim × mhJ; κj0; 0; κim

where the angles θ and ϕ are given with respect to the
helicity frame of the mother hyperon m. The amplitude
Bλ ¼ dhJ; λjSjJ; κim depends only on the helicity of the
daughter baryon and it is, therefore, called helicity ampli-
tude. Recalling also Eq. (6) the transition amplitude
becomes:

dhθ;ϕ; λjSj0; 0; κim ∝ DJ�
κ;λðΩÞBλ; ð45Þ

where DJ�
κ;λðΩÞ ¼ DJ�

κ;λðϕ; θ; 0Þ. The coefficients aμν are
then obtained by multiplying the amplitude above by its
conjugate and inserting basis σ matrices for the mother and
the daughter baryon:

aμν ¼
1

4π

X1=2
λ;λ0¼−1=2

BλB�
λ0

×
X1=2

κ;κ0¼−1=2

ðσμÞκ;κ0 ðσνÞλ0;λD1=2�
κ;λ ðΩÞD1=2

κ0;λ0 ðΩÞ: ð46Þ

These coefficients can be rewritten in terms of the decay
parameters αD and ϕD defined in Ref. [3]. For complete-
ness, we first relate the helicity amplitudes to the S and P
wave amplitudes AS and AP, corresponding respectively to
the parity violating and parity conserving transitions. If a
hyperon of spin J decays (weakly) into a hyperon of spin S
and a (pseudo)scalar state, then the relation between
helicity amplitudes and canonical amplitudes is given
by [7]

Bλ ¼
X
L

�
2Lþ 1

2J þ 1

�
1=2

ðL; 0; S; λjJ; λÞAL ð47Þ

where (s1,m1, s2,m2js,m) is a Clebsch-Gordan coefficient.
For J ¼ S ¼ 1=2, the helicity amplitudes are4

B−1=2 ¼
AS þ APffiffiffi

2
p ;

B1=2 ¼
AS − APffiffiffi

2
p : ð48Þ

Using the normalization jASj2 þ jAPj2 ¼ jB−1=2j2 þ
jB1=2j2 ¼ 1, the relation between helicity amplitudes
and the decay parameters is:

αD ¼ −2ℜðA�
SAPÞ ¼ jB1=2j2 − jB−1=2j2;

βD ¼ −2ℑðA�
SAPÞ ¼ 2ℑðB1=2B�

−1=2Þ;
γD ¼ jASj2 − jAPj2 ¼ 2ℜðB1=2B�

−1=2Þ ð49Þ

where βD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2D

p
sinϕD and γD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2D

p
cosϕD.

The nonzero elements of the decay matrix aμν are (where an
overall 1

4π factor is omitted):

a00 ¼ 1;

a03 ¼ αD;

a10 ¼ αD cosϕ sin θ;

a11 ¼ γD cos θ cosϕ − βD sinϕ;

a12 ¼ −βD cos θ cosϕ − γD sinϕ;

a13 ¼ sin θ cosϕ;

a20 ¼ αD sin θ sinϕ;

a21 ¼ βD cosϕþ γD cos θ sinϕ;

a22 ¼ γD cosϕ − βD cos θ sinϕ;

a23 ¼ sin θ sinϕ;

a30 ¼ αD cos θ;

a31 ¼ −γD sin θ;

a32 ¼ βD sin θ;

a33 ¼ cos θ: ð50Þ

Analogously, the elements of the bμν matrix are given by

bμν ¼
1

2

X1=2
λ;λ0¼−1=2

BλB�
λ0

×
X3=2

κ;κ0¼−3=2

ðQμÞκ;κ0 ðσνÞλ0;λD3=2�
κ;λ ðΩÞD3=2

κ0;λ0 ðΩÞ: ð51Þ

Out of 64 bμν coefficients 12 are zero. The coefficients
relevant for the inclusive distributions are presented in
Eq. (61) as a part of an example in Sec. V. The remaining
coefficients are straightforward to obtain. As before, we
first rewrite the helicity amplitudes in terms of the canoni-
cal amplitudes using Eq. (47):

B−1=2 ¼
AP þ ADffiffiffi

2
p ;

B1=2 ¼
AP − ADffiffiffi

2
p : ð52Þ

In this case, the P and D amplitudes AP and AD are the
contributing ones. The definition of the decay parameters
αD, βD and γD is analogous to that of Eq. (49):4Note that the Particle Data Group [3] uses −AP ¼ APDG

P .
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αD ¼ −2ℜðA�
PADÞ ¼ jB1=2j2 − jB−1=2j2;

βD ¼ −2ℑðA�
PADÞ ¼ 2ℑðB1=2B�

−1=2Þ;
γD ¼ jAPj2 − jADj2 ¼ 2ℜðB1=2B�

−1=2Þ: ð53Þ

Again, they can be expressed in terms of the parameters αD
and ϕD.

V. EXAMPLES

We discuss the same examples as in Ref. [19] with the
aim to provide the correct expressions for reference in
ongoing experimental analyses and to illustrate how to
apply our modular method. In particular, the discussed
reactions could provide an independent verification of the
new Λ → pπ− decay asymmetry parameter value from
BESIII.

A. e+ e − → J=ψ, ψð2SÞ → ΛΛ̄
This example is a verification of the angular distributions

derived in [4] and used in the BESIII analysis [1]. We start
from the two-particle density matrix for the Λ-Λ̄ pair
coming from the eþe− → ΛΛ̄ reaction, which is given
by Eq. (22). After considering the subsequent two-body
weak decays into pπ−=p̄πþ, the joint angular distribution
of the p=p̄ pair is given within the present formalism as:

Trρpp̄ ∝
X3
μ;ν̄¼0

Cμν̄ðθΛÞaΛμ0aΛ̄ν̄0; ð54Þ

with the aμ0 matrices given by Eq. (50): aΛμ0 →

aΛμ0ðθp;ϕp; αΛÞ and aΛ̄ν̄0 → aΛ̄ν̄0ðθp̄;ϕp̄; αΛ̄Þ, where only
the decay asymmetries ðαΛ ¼ α−Þ=ðαΛ̄ ¼ αþÞ for ðΛ →
pπ−Þ=ðΛ̄ → p̄πþÞ enter. The variables θp and ϕp are the
proton spherical coordinates in the Λ helicity frame with
the axes x̂1; ŷ1; ẑ1 defined in Fig. 1. The variables θp̄ and ϕp̄

are the antiproton spherical angles in the Λ̄ helicity frame
with the axes x̂2; ŷ2; ẑ2.
The resulting joint angular distribution fully agrees

with the covariant calculations of Ref. [4]. In order to
compare the results, one should take into account the
different definitions of the axes. The Λ scattering angle, θ,
is defined in Ref. [4] with respect to the e− beam direction
(−ẑ direction in Fig. 1) and, therefore, θ ¼ π − θΛ.
In addition, Ref. [4] uses a common orientation of the
coordinate systems to represent both proton and antiproton
directions in the Λ and Λ̄ rest frames, respectively. The
orientation of this reference system can be expressed by the
orientations of the helicity frames used in this Report
as: ð−x̂1;−ŷ1; ẑ1Þ≡ ð−x̂2; ŷ2;−ẑ2Þ.

B. e+ e− → J=ψ, ψð2SÞ → Σ0Σ̄0

Here we discuss exclusive decay chain: eþe− → J=ψ ,
ψð2SÞ → Σ0Σ̄0 where Σ0ðΣ̄0Þ decays electromagnetically

Σ0ðΣ̄0Þ → ΛðΛ̄Þγ and then ΛðΛ̄Þ decays weakly: Λ →
pπ−ðΛ̄ → p̄πþÞ. In Ref. [27], it was shown that the
electromagnetic part of the decay chain, where the photon
polarization is not measured, could be represented by decay
matrix as ǎμν where the only nonzero terms are

ǎ00 ¼ 1;

ǎ13 ¼ − sin θ cosϕ;

ǎ23 ¼ − sin θ sinϕ;

ǎ33 ¼ − cos θ; ð55Þ
where for Σ0 → ΛγðΣ̄0 → Λ̄γÞ the spherical coordinates θ
and ϕ of the daughter ΛðΛ̄Þ momentum are given in the
Σ0ðΣ̄0Þ helicity frame. The ǎμν matrix does not involve any
decay parameters and, therefore, it is only a function of the
spherical coordinates—ǎμνðθ;ϕÞ. The two body spin den-
sity matrix for the produced Σ0Σ̄0 is given by Eq. (22).
After including the sequential decays using our prescription
and taking trace of the final proton-antiproton spin density
matrix one has:

Trρpp̄ ∝
X3
μ;ν̄¼0

X3
μ0¼0

X3
ν̄0¼0

Cμν̄ǎΣ
0

μμ0a
Λ
μ00ǎ

Σ̄0

ν̄ν̄0a
Λ̄
ν̄00; ð56Þ

where the aμν matrices for 1=2 → 1=2þ 0 decays are given

by Eq. (50) and ǎΣ
0

μμ0 → ǎΣ
0

μμ0 ðθΛ;ϕΛÞ, ǎΣ̄0

ν̄ν̄0 → ǎΣ̄
0

ν̄ν̄0 ðθΛ̄;ϕΛ̄Þ.

C. e + e− → J=ψ, ψð2SÞ → ΞΞ̄
Here we discuss an exclusive decay chain: eþe− → J=ψ ,

ψð2SÞ → ΞΞ̄ where ΞðΞ̄Þ decays weakly ΞðΞ̄Þ → ΛðΛ̄Þπ
and then ΛðΛ̄Þ decays weakly: Λ → pπ−ðΛ̄ → p̄πþÞ. The
production spin density matrix is given by Eq. (23):
Cμν̄ → Cμν̄ðθΞ; αψ ;ΔΦÞ. Using replacements Eg. (42) for
the sequential decays and finally taking trace for the
unmeasured polarization of the final proton-antiproton
system one obtains the differential distribution in the form:

Trρpp̄ ∝
X3
μ;ν̄¼0

X3
μ0¼0

X3
ν̄0¼0

Cμν̄aΞμμ0a
Λ
μ00a

Ξ̄
ν̄ν̄0a

Λ̄
ν̄00; ð57Þ

where the aμν matrices for 1=2 → 1=2þ 0 decays are given
by Eq. (50). The matrices are the functions of the cor-
responding helicity variables and decay parameters: aΞμμ0 →

aΞμμ0 ðθΛ; ϕΛ; αΞ; βΞ; γΞÞ, aΞ̄ν̄ν̄0 → aΞ̄ν̄ν̄0 ðθΛ̄; ϕΛ̄; αΞ̄; βΞ̄; γΞ̄Þ,
aΛμ00 → aΛμ00ðθp;ϕp; αΛÞ and aΛ̄ν̄00 → aΛ̄ν̄00ðθp̄;ϕp̄; αΛ̄Þ.
With the information provided in this Report—explicit

form of the matrices Cμν̄ (Eq. (23)) and aμν (Eq. (50))—it is
straightforward to write a program to calculate the joint
angular distribution using Eq. (57). The result is much
more complicated than given in Ref. [19]. We find that
from 44 ¼ 256 possible terms 100 are not equal zero.
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An important part of a practical application of the expres-
sion in the maximum likelihood fits to data, such as used in
analysis of Ref. [1], is a normalization of the probability
density function using phase space distributed simulated
events which are processed to include detector and
reconstruction effects. This sample has to be much larger
than data and, therefore, calculation of the normalization
factor for each parameter set determines the speed of the
fitting procedure. However, Eq. (57) can be rewritten as a
polynomial where each term contains product of a function
of decay parameters and a function of helicity variables:

dΓ
dξ

∝ Trρpp̄ ¼
XN
i¼1

fiðπÞ · T iðξÞ; ð58Þ

where π represents all the parameters describing the
production reaction and the decays π ¼ ðαψ ;ΔΦ; αΞ;
βΞ; γΞ; αΞ̄; βΞ̄; γΞ̄;αΛ; αΛ̄Þ, ξ represents the full set of nine
helicity angles: ξ ¼ ðθΞ; θΛ;ϕΛ; θp;ϕp; θΛ̄;ϕΛ̄; θp̄;ϕp̄Þ to
specify an event and dξ is the corresponding multidimen-
sional volume element of the phase space parameterized by
the set ξ of the helicity angles. Such representation allows
to pre-calculate the normalization integral as:

Z �
dΓ
dξ

�
ϵðξÞdξ ¼

XN
i¼1

fiðπÞ · I i; ð59Þ

where ϵðξÞ is multidimensional acceptance efficiency. The
integrals:

I i ¼
Z

T iðξÞϵðξÞdξ ð60Þ

are independent of the fitted parameters and, therefore, do
not need to be evaluated at each minimization step. We
have found that N ¼ 72 such base functions are needed for
this reaction. This procedure allows for a dramatic speed-up
of the minimization, what is of importance for the data sets
of several hundreds of thousands fully reconstructed events
as available at BESIII. The same technique can be applied
to all other sequential decays discussed in this Report.

D. e + e− → ψð2SÞ → Ω− Ω̄+

The expression for two particle spin density matrix for
the 3=2þ 3=2 final state is given by Eq. (34). Having in
mind practical application to BESIII data we focus on the
inclusive reaction, where only the decay products of theΩ−

are measured. In this example, the Ω− produced in the
eþe− → Ω−Ω̄þ reaction is identified using the following
sequence of decays: (a) Ω− → ΛK− and (b) Λ → pπ−. To
describe the decay chain we introduce helicity reference
frames and the spherical coordinates (θΛ, ϕΛ) and (θp, ϕp)
for the Λ and p directions, respectively. The scattering
angle of Ω in the overall CM system is denoted as θΩ. The
density matrix of Ω− is given by Eq. (20):

ρΩ ¼
X15
μ¼0

rμðθΩ; h1; h2; h3; h4ÞQμ;

where only seven real coefficients rμ are nonzero and are
given by Eq. (38). The rμ parameters depend on the
scattering angle θΩ and on four complex form factors. If
we are not interested in the overall normalization then only
six real parameters are enough to describe theΩ production
process. They have to be determined by fitting to the
experimental data. The density matrix of the Λ coming
from the Ω− → ΛK− decay can be obtained from Eq. (40):

ρΛ ¼
X15
μ¼0

X3
ν¼0

rμ · bΩμνðθΛ;ϕΛ; αΩ; βΩ; γΩÞσΛν ;

where the bΩμν coefficients depend on the Λ angles in the Ω
helicity frame and on the decay parameters of the Ω. Only
20 of them contribute here, they are given by (where an
overall 1

8π factor is omitted):

bΩ0;0 ¼ 1;

bΩ1;3 ¼
ffiffiffi
3

5

r
sin θΛ sinϕΛ;

bΩ6;0 ¼ −
ffiffiffi
3

p

4
ð3 cos 2θΛ þ 1Þ;

bΩ7;0 ¼ −3 sin θΛ cos θΛ cosϕΛ;

bΩ8;0 ¼ −
3

2
sin2θΛ cos 2ϕΛ;

bΩ10;3 ¼ −9sin2θΛ cos θΛ cosϕΛ sinϕΛ;

bΩ11;3 ¼ −
9

4
ffiffiffiffiffi
10

p ð5 cos 2θ þ 3Þ sinϕΛ sin θΛ;

bΩ0;3 ¼ αΩbΩ0;0;

bΩ1;0 ¼ αΩbΩ1;3;

bΩ6;3 ¼ αΩbΩ6;0;

bΩ7;3 ¼ αΩbΩ7;0;

bΩ8;3 ¼ αΩbΩ8;0;

bΩ10;0 ¼ αΩbΩ10;3;

bΩ11;0 ¼ αΩbΩ11;3;

bΩ1;1 ¼ 2

ffiffiffi
3

5

r
ðβΩ cosϕΛ þ γΩ cos θ sinϕΛÞ;

bΩ1;2 ¼ 2

ffiffiffi
3

5

r
ðγΩ cosϕΛ − βΩ cos θΛ sinϕΛÞ;

bΩj;1 ¼ γΩHj þ βΩGj; for j ¼ 10; 11;

bΩj;2 ¼ γΩGj − βΩHj; for j ¼ 10; 11 ð61Þ

where
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H10 ¼ −
3

4
ð3 cos 2θΛ þ 1Þ sin 2ϕΛ sin θ;

G10 ¼ −3 sin θΛ cos θΛ cos 2ϕΛ;

H11 ¼ −
3

8
ffiffiffiffiffi
10

p ðcos θΛ þ 15 cos 3θΛÞ sinϕΛ;

G11 ¼ −
3

4
ffiffiffiffiffi
10

p ð5 cos 2θΛ þ 3Þ cosϕΛ:

Finally including also the last decay of the chain,Λ → pπ−,
the proton density matrix in the proton helicity frame can be
obtained:

ρp ¼
X15
μ¼0

X3
ν;κ¼0

rμ · bΩμν · aΛνκðθp;ϕp; αΛ; βΛ; γΛÞσpκ :

Since the proton polarization is not measured, we are
only interested in the trace of the density matrix Trρp
which gives the differential distribution of the final state
specified by the five kinematic variables cos θΩ, cos θΛ,
cos θp, ϕΛ, ϕp:

Trρp ∝ 2
X15
μ¼0

X3
ν¼0

rμbΩμνaΛν0;

where the relevant aΛν;0 can be directly taken from Eq. (50).

VI. FORM FACTORS AND
HELICITY AMPLITUDES

We follow the definitions of [28] for constraint-free form
factors. When relating them to the helicity amplitudes we
use the conventions of [7]. This makes our helicity
amplitudes Aλ1;λ2 somewhat different from the expressions
Γλ�;λ of [28].
The form factors for a particle-antiparticle pair of spin

1=2 and mass m are introduced by

hBðp2; λ2ÞB̄ðp1; λ1Þjjμð0Þj0i ¼ ūðp2; λ2ÞΓμvðp1; λ1Þ ð62Þ

with the electromagnetic current

jμ ¼
2

3
ūγμu −

1

3
d̄γμd −

1

3
s̄γμsþ…: ð63Þ

and [28]

Γμ ≔ F1ðq2Þγμ þ F2ðq2Þ
iσμνqν

2m
ð64Þ

where q ¼ p1 þ p2 denotes the momentum of the virtual
photon.
These form factors are related to the helicity amplitudes

by

Aþ1=2;þ1=2 ¼ 2mðF1 þ τF2Þ;

Aþ1=2;−1=2 ¼
ffiffiffiffiffiffiffi
2q2

q
ðF1 þ F2Þ; ð65Þ

where τ ¼ q2

4m2. We have defined

Aλ1;λ2 ≔
ffiffiffiffiffiffi
3

4π

r
hJ ¼ 1;M; λ1; λ2jjðMÞj0i ð66Þ

with

jðM ¼ þ1Þ ≔ −
1ffiffiffi
2

p ðj1 þ ij2Þ;

jðM ¼ 0Þ ≔ j3;

jðM ¼ −1Þ ≔ 1ffiffiffi
2

p ðj1 − ij2Þ: ð67Þ

In the following, we will stick to the more compact notation
for the helicity form factors from Sec. III: A1=2;1=2≕ h1,
A1=2;−1=2 ≕h2 etc. Close to threshold τ ≈ 1, one finds

h1 ≈
1ffiffiffi
2

p h2: ð68Þ

The form factors for a particle-antiparticle pair of spin
3=2 and mass m are given by

hB0ðp2; λ2ÞB̄0ðp1; λ1ÞjJμð0Þj0i
¼ ūαðp2; λ2ÞΓαβμvβðp1; λ1Þ ð69Þ

with [28]

Γαβμ ≔ gαβ

�
F1ðq2Þγμ þ F2ðq2Þ

iσμνqν

2m

�

þ qαqβ
m2

�
F3ðq2Þγμ þ F4ðq2Þ

iσμνqν

2m

�
: ð70Þ

These form factors are related to the helicity amplitudes by

h1 ¼ 2m

�
1 −

4

3
τ

�
ðF1 þ τF2Þ

þ 2m
4

3
τð1 − τÞðF3 þ τF4Þ;

h2 ¼ −
2

3

ffiffiffiffiffiffiffi
2q2

q
½−ð1 − 2τÞðF1 þ F2Þ

−2τð1 − τÞðF3 þ F4Þ�;

h3 ¼
ffiffiffi
2

3

r ffiffiffiffiffi
q2

q
ðF1 þ F2Þ;

h4 ¼ 2mðF1 þ τF2Þ: ð71Þ

Close to threshold τ ≈ 1 one finds
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h4 ≈ −3h1 ≈
ffiffiffi
3

2

r
h3 ≈ −

3ffiffiffi
8

p h2: ð72Þ

Transition form factors for a particle with JP ¼ 3
2
þ, mass

M and an antiparticle with JP ¼ 1
2
−, mass m are encoded in

hB0ðp2; λ2ÞB̄ðp1; λ1ÞjJμð0Þj0i
¼ ūνðp2; λ2ÞΓνμvðp1; λ1Þ ð73Þ

with [28]

Γνμ ≔ G1ðq2Þðqνγμ − =qgνμÞγ5
þ G2ðq2Þðqνpμ

2 − ðq · p2ÞgνμÞγ5
þ G3ðq2Þðqνqμ − q2gνμÞγ5: ð74Þ

These form factors are related to the helicity amplitudes by

h1¼
ffiffiffi
2

3

r
N

ffiffiffiffiffi
q2

q �
G1þMG2þ

q2þM2−m2

2M
G3

�
;

h2¼
1ffiffiffi
3

p N

�
q2−mðmþMÞ

M
G1

þq2þM2−m2

2
G2þq2G3

�
;

h3¼N

�
ðmþMÞG1þ

q2þM2−m2

2
G2þq2G3

�
ð75Þ

with a “normalization factor”

Nðq2Þ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ðM −mÞ2

q
: ð76Þ

Close to threshold, q2 ≈ ðmþMÞ2, one finds

h1 ≈
ffiffiffi
2

p
h2 ≈

ffiffiffi
2

3

r
h3: ð77Þ

To facilitate the matching between Feynman matrix
elements and expressions in the helicity framework of
Jacob and Wick [7], we provide in Appendix B some
explicit formulas for the particle and antiparticle spinors.

VII. FURTHER DISCUSSION

We would like to draw attention to some interesting
properties of the derived angular distributions close to
threshold. For the production of two spin-1=2 baryons, the
parameters αψ and ΔΦ are zero at threshold. Therefore,
there is no spin polarization implying the inclusive dis-
tributions of the decay products are isotropic. For the spin
3=2þ 3=2 production, the baryons are polarized even at
threshold. The inclusive distributions of the decay products
would be isotropic if r0 ¼ 1 (assuming normalization

jh2j2 þ 2ðjh1j2 þ jh3j2 þ jh4j2Þ ¼ 1) and all other ri terms
were zero in Eq. (38). Using the close-to-threshold relation
between the form factors from Eq. (72) one sees that three
additional terms are not zero:

r6 ¼
1

5
ffiffiffi
3

p ð1 − 3cos2θ1Þ;

r7 ¼
1

5
sin 2θ1;

r8 ¼ −
1

5
sin2θ1: ð78Þ

An inclusive distribution that is only differential in the
production angle is not sensitive to these parameters.
Indeed, αψ as introduced in Eq. (37) vanishes at threshold.
However, distributions differential in the angles of decay
products are sensitive. It is not even necessary that the
decay is parity violating. If one assumed that the decay
3=2 → 1=2þ 0 would be parity conserving, implying
γD ¼ 1, then the angular distribution of the decay products
is already not isotropic:

dΓ
d cos θ1d cos θD

∝ 1þ ð1 − 3cos2θ1Þð1 − 3cos2θDÞ
10

:

This property of the reaction close to threshold could be
used to establish spin assignment of the produced baryons
by studying inclusive angular distributions. One possible
test is to calculate the moment (1 − 3cos2θD), where θD is
the helicity angle of the daughter baryon. For the spin
1=2þ 1=2 reaction, this quantity is zero.
The above observation could be also expressed using the

degree of polarization, which is defined for a spin 3=2
particle as [21]:

dð3=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX15
μ¼1

�
rμ
r0

�
2

vuut : ð79Þ

It is easy to check that at threshold dð3=2Þ ¼ 2

5
ffiffi
3

p ≈ 23%, if

the baryon-antibaryon pair is produced in an eþe− process.
This suggests that the formalism developed here can be

used to determine or at least constrain the spin of baryons.
This is a highly welcome opportunity in view of the fact
that only part of the quantum numbers of hyperons have
actually been experimentally confirmed [3]. In the present
work, we have assigned the standard properties to the
weakly decaying hyperons. To really confirm the quantum
numbers one has to calculate the angular distributions
based on various spin and parity assignments, compare the
results and explore the experimental capabilities to distin-
guish different cases. This is beyond the scope of the
present work, but constitutes a natural extension of the
formalism presented here.
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Coming back to the motivations of our study: we provide
modular tools to construct joint decay distributions of
sequential decay processes for the baryon-antibaryon pairs
produced at electron positron colliders. Our expressions are
specially useful for the processes at JPC ¼ 1−− resonances
such as J=ψ and ψ where the large statistics data sets are
available and the contribution from the two photon pro-
duction mechanism is suppressed. Contrary to the previ-
ously published calculations using Jacob and Wick helicity
formalism [5,6,19] we find the angular distributions con-
sistent with calculations using Feynman diagrams [4] for
production of a pair of spin-1=2 baryons. We can reproduce
the results of [5,6,19] by replacing the correct density
matrix of the virtual photon Eq. (16) by its diagonal part.
One important conclusion is that the two experimental
analyses of J=ψ → ΛΛ̄ [5,6] used not correct joint angular
distributions and the reported results for αþ should be re-
evaluated. Once validated for the spin 1=2þ 1=2 case, the
helicity formalism together with the base spin matrices
[21], allows for a straightforward extension to the produc-
tion of higher spin baryon states. Our systematic derivation
demonstrates that a special care has to be taken to match the
definition of the helicity variables with the amplitude
transformations used. The presented formalism is applied
in a computer program to calculate the angular distributions
using well defined modules for the production and the
sequential decays. In particular, the derived formulas for
eþe− → J=ψ , ψð2SÞ → Σ0Σ̄0 (Sec. V B) and eþe− → J=ψ ,
ψð2SÞ → Ξ−Ξ̄þ (Sec. V C) will be used to search for
transverse polarization and, if the polarization is found, to
independently verify the new value for the α− parameter.

ACKNOWLEDGMENTS

We would like to thank Changzheng Yuan for initiating
this project and for the support. We are grateful to Patrik
Adlarson for useful discussions. A. K. would like to thank
Shuangshi Fang for support for the visit at IHEP and
acknowledges the grant from the Chinese Academy of
Science President’s International Fellowship Initiative
(PIFI) for Visiting Scientist.

APPENDIX A: SPIN 3
2 BASIS MATRICES

To describe a spin-3=2 particle density matrix the
following set of QL

M matrices with 0 ≤ L ≤ 3 and −L ≤
M ≤ L is needed, in total 16 4 × 4 matrices. The matrices
are introduced in Ref. [21]. Q0

0 ¼ 1
3
14 where 14 is the

identity 4 × 4 matrix. We use the following notation with
only one index to denote the matrices:

QLðLþ1ÞþM ≔
3

4
QL

M: ðA1Þ

Given the index μ belonging to the matrix Qμ, the
corresponding values of M and L can be easily retrieved:

μ ¼ 0∶ L ¼ 0;M ¼ 0;

1 ≤ μ ≤ 3∶ L ¼ 1;−1 ≤ M ≤ 1;

4 ≤ μ ≤ 8∶ L ¼ 2;−2 ≤ M ≤ 2;

9 ≤ μ ≤ 15∶ L ¼ 3;−3 ≤ M ≤ 3: ðA2Þ

Below the explicit expressions for the QL
M matrices are

provided:

Q1
−1 ¼

iffiffiffi
5

p

0
BBBBB@

0 −1 0 0

1 0 − 2ffiffi
3

p 0

0 2ffiffi
3

p 0 −1

0 0 1 0

1
CCCCCA
;

Q1
0 ¼

ffiffiffi
3

5

r
0
BBB@

1 0 0 0

0 1
3

0 0

0 0 − 1
3

0

0 0 0 −1

1
CCCA;

Q1
1 ¼

1ffiffiffi
5

p

0
BBB@

0 1 0 0

1 0 2ffiffi
3

p 0

0 2ffiffi
3

p 0 1

0 0 1 0

1
CCCA;

Q2
−2 ¼

iffiffiffi
3

p

0
BBB@

0 0 −1 0

0 0 0 −1
1 0 0 0

0 1 0 0

1
CCCA;

Q2
−1 ¼

iffiffiffi
3

p

0
BBB@

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA;

Q2
0 ¼

1ffiffiffi
3

p

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

1
CCCA;

Q2
1 ¼

1ffiffiffi
3

p

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

1
CCCA;
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Q2
2 ¼

1ffiffiffi
3

p

0
BBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCA;

Q3
−3 ¼ i

ffiffiffi
2

3

r
0
BBB@

0 0 0 −1
0 0 0 0

0 0 0 0

1 0 0 0

1
CCCA;

Q3
−2 ¼

iffiffiffi
3

p

0
BBB@

0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

1
CCCA;

Q3
−1 ¼ i

ffiffiffi
2

5

r
0
BBBBBBBB@

0 −
ffiffi
1
3

q
0 0ffiffi

1
3

q
0 1 0

0 −1 0 −
ffiffi
1
3

q

0 0
ffiffi
1
3

q
0

1
CCCCCCCCA
;

Q3
0 ¼

ffiffiffi
3

5

r
0
BBB@

1
3

0 0 0

0 −1 0 0

0 0 1 0

0 0 0 − 1
3

1
CCCA;

Q3
1 ¼

ffiffiffi
2

5

r
0
BBBBBBBB@

0
ffiffi
1
3

q
0 0ffiffi

1
3

q
0 −1 0

0 −1 0
ffiffi
1
3

q

0 0
ffiffi
1
3

q
0

1
CCCCCCCCA
;

Q3
2 ¼

1ffiffiffi
3

p

0
BBB@

0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

1
CCCA;

Q3
3 ¼

ffiffiffi
2

3

r
0
BBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1
CCCA:

APPENDIX B: CONVENTIONS FOR SPIN-1=2,
SPIN-1 AND SPIN-3=2 SPINORS FOR
PARTICLES AND ANTIPARTICLES

Various conventions for spinors are used in the literature.
Not all of them fit to the helicity framework of Jacob and
Wick [7]. Therefore, we provide here some explicit for-
mulas for the spinors. To this end, one has to be careful in
the construction of the states denoted by type 2 in [7] as
they are not obtained by just a rotation. As spelled out in
[7], two-particle states flying in an arbitrary direction are
obtained by two-particle states where state 1 flies in the
(þz) direction and state 2 in the (−z) direction. In the
following, we present explicitly the spinors for the states 1
and 2 with which one starts. We use the Pauli-Dirac
representation for the gamma matrices. For the spin-1=2
states with helicity λ1;2, massm, energy E, and momenta pz

or −pz (pz ≥ 0), one finds

uðpz;�1=2Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþm
p

χ�
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

E −m
p

χ�

�
;

uð−pz;�1=2Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþm
p

χ∓
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

E −m
p

χ∓

�
;

vðpz;�1=2Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

E −m
p

χ∓
∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþm
p

χ∓

�
;

vð−pz;�1=2Þ ¼
�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E −m

p
χ�

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p
χ�

�

with the two-component spinors:

χþ ≔
�
1

0

�
; χ− ≔

�
0

1

�
:

For the spin-1 states with helicity λ1;2, massm, energy E,
and momenta pz or −pz (pz ≥ 0), we use

εμðpz;þ1Þ ¼ 1ffiffiffi
2

p ð0;−1;−i; 0Þ;

εμðpz; 0Þ ¼
1

m
ðpz; 0; 0; EÞ;

εμðpz;−1Þ ¼
1ffiffiffi
2

p ð0; 1;−i; 0Þ;

εμð−pz;þ1Þ ¼ 1ffiffiffi
2

p ð0; 1;−i; 0Þ;

εμð−pz; 0Þ ¼
1

m
ð−pz; 0; 0; EÞ;

εμð−pz;−1Þ ¼
1ffiffiffi
2

p ð0;−1;−i; 0Þ:

Finally, we present explicit expressions for the spin-3=2
states with helicity λ1;2, massm, energy E, and momenta pz

or −pz (pz ≥ 0):
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uμðpz;�3=2Þ ¼ εμðpz;�1Þuðpz;�1=2Þ;

uμðpz;�1=2Þ ¼ 1ffiffiffi
3

p εμðpz;�1Þuðpz;∓ 1=2Þ þ
ffiffiffi
2

3

r
εμðpz; 0Þuðpz;�1=2Þ;

uμð−pz;�3=2Þ ¼ εμð−pz;�1Þuð−pz;�1=2Þ;

uμð−pz;�1=2Þ ¼ 1ffiffiffi
3

p εμð−pz;�1Þuð−pz;∓ 1=2Þ þ
ffiffiffi
2

3

r
εμð−pz; 0Þuð−pz;�1=2Þ;

vμðpz;�3=2Þ ¼ εμ�ðpz;�1Þvðpz;�1=2Þ;

vμðpz;�1=2Þ ¼ 1ffiffiffi
3

p εμ�ðpz;�1Þvðpz;∓ 1=2Þ þ
ffiffiffi
2

3

r
εμ�ðpz; 0Þvðpz;�1=2Þ;

vμð−pz;�3=2Þ ¼ εμ�ð−pz;�1Þvð−pz;�1=2Þ;

vμð−pz;�1=2Þ ¼ 1ffiffiffi
3

p εμ�ð−pz;�1Þvð−pz;∓ 1=2Þ þ
ffiffiffi
2

3

r
εμ�ð−pz; 0Þvð−pz;�1=2Þ:

In general, if one takes a state flying in the (þz) direction and applies to it just a rotation by π around the y axis, then the
result differs from the Jacob/Wick construction by a factor ð−1Þs2−λ2. Thus for s2 ¼ 1=2 one picks up a minus sign for
λ2 ¼ −1=2 while for s2 ¼ 3=2 one picks up a minus sign for λ2 ¼ þ1=2, −3=2.
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