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We present nuclear structure factors that describe the generalized spin-independent coupling of weakly
interacting massive particles (WIMPs) to nuclei. Our results are based on state-of-the-art nuclear structure
calculations using the large-scale nuclear shell model. Starting from quark- and gluon-level operators, we
consider all possible coherently enhanced couplings of spin-1=2 and spin-0 WIMPs to one and two
nucleons up to third order in chiral effective field theory. This includes a comprehensive discussion of the
structure factors corresponding to the leading two-nucleon currents covering, for the first time, the
contribution of spin-2 operators. We provide results for the most relevant nuclear targets considered in
present and planned dark matter direct detection experiments: fluorine, silicon, argon, and germanium,
complementing our previous work on xenon. All results are also publicly available in a PYTHON notebook.

DOI: 10.1103/PhysRevD.99.055031

I. INTRODUCTION

Astrophysical observations have established that more
than three quarters of the matter content of the universe are
composed of dark matter. The nature of dark matter,
however, remains elusive, and its very existence is one
of the most compelling pieces of evidence for physics
beyond the Standard Model of particle physics. A key step
to unveil the composition of dark matter would be its direct
detection in the laboratory [1]. Such endeavor is led by
international collaborations that use atomic nuclei as targets,
in their aim to detect the nuclear recoils resulting from the
scattering of darkmatter particles [2–13]. In spite of the very
high sensitivities achieved by reduced backgrounds com-
binedwith extended exposures, there has been no conclusive
evidence to date for the direct detection of dark matter. Next
generations of experiments plan to push the frontier for
dark matter direct detection by several orders of magnitude

[14–17], until the background from coherent neutrino–
nucleus scattering [18] becomes dominant.
Direct detection experiments are motivated by exten-

sions of the Standard Model that propose dark matter
candidates interacting with quarks and gluons, the Standard
Model fields that ultimately form atomic nuclei. Prominent
candidates are weakly interacting massive particles
(WIMPs) [19]. Because the WIMPs forming dark matter
would be nonrelativistic (NR), their scattering off atomic
nuclei would transfer energies and momenta much smaller
than the nuclear or nucleon masses. As a consequence
nucleons and nuclei, instead of quarks and gluons, become
the relevant degrees of freedom. The interpretation of the
present experimental limits and future values of WIMP-
nucleus cross sections, therefore, naturally depends on the
nuclear physics aspects of the scattering. This information
is encoded in the so-called nuclear structure factors [20].
While for some simple cases a phenomenological pre-
scription can be a good approximation to the structure
factor [21,22], in general a good description of the nucleus,
obtained with a dedicated nuclear many-body calculation,
is needed.
In the absence of experimental data on the spin [23,24],

momentum-transfer [25,26], or isospin dependence, the
character of the WIMP-nucleus interaction is unknown.
Nevertheless standard analyses usually assume so-called
spin-independent (SI) interactions, which receive the coher-
ent contribution of all nucleons in the nucleus. However,
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additional interactions are possible, and could be dominant
if the SI coherence is compensated by suppressed values
of the corresponding WIMP-nucleon couplings. Some
examples analyzed experimentally are the so-called
spin-dependent (SD) [3,27–31] or momentum-transfer-
dependent interactions [32].
In order to organize different possible WIMP-nucleus

interactions, two alternative schemes have been proposed
recently. On the one hand, a nonrelativistic effective field
theory (NREFT) [33–35] based on the lowest-order oper-
ators that can describe the coupling of aWIMP to a nucleon.
The NREFTapproach proposes a set of one-body operators,
considered in recent experimental analyses [36–39]. On the
other hand, an organization based on chiral effective field
theory (ChEFT) [40–42], a low-energy effective theory of
quantum chromodynamics (QCD) that preserves the QCD
symmetries, in particular capturing the important role played
by pions at low energies. The ChEFT approach can be
mapped onto the single-nucleon couplings of NREFT [43],
implying certain interdependencies for the latter. In addition,
ChEFT predicts consistent couplings of WIMPs to two
nucleons [44–51], reflecting that nucleons are strongly
interacting in nuclei. Such contributions occur, e.g., when
the WIMP couples to a virtual pion exchanged between the
two nucleons, an effect recently constrained for the first time
by direct-detection experiments [52], for the case of a scalar
WIMP-quark interaction. Similar couplings to two nucleons
are important in electromagnetic and weak transitions of
atomic nuclei [53–56]. Furthermore, ChEFT provides a
power counting that suggests a hierarchy, guided by QCD,
for the expected importance of the different NREFT oper-
ators [43]. This hierarchy is only tentative, because the
couplings describing the interaction of the WIMP to the
Standard Model fields are not known. A related ChEFT
approach limited toWIMP interactionswith one nucleon has
been proposed in Refs. [57,58].
In this work we follow Ref. [49] and combine the ChEFT

framework with large-scale shell model nuclear many-body
calculations to calculate the leading nuclear structure
factors that exhibit the coherent contribution of several
nucleons in the nucleus. We call these generalized SI
interactions. We consider both WIMP couplings to one
and two nucleons, with special emphasis on the two-
nucleon contributions related to the diagonal and non-
diagonal parts of the energy-momentum tensor. We note
that at this point our structure factors are not fully
consistent, in the sense that our many-body calculations
are based on phenomenological interactions instead of
ChEFT. Such consistent studies are presently only available
for few-nucleon systems [59]. In addition, nuclear response
functions based on nuclear states obtained using ChEFT
interactions are available for light nuclei [60]. However,
such very light isotopes are not used in leading direct
detection experiments. While Ref. [49] was limited to a
xenon target, here we study all the stable isotopes of

fluorine, silicon, argon, and germanium, the nuclear targets
used and considered in present and future direct detection
experiments. In addition, we provide a PYTHON notebook
to facilitate the use of our structure factors for both theorists
and experimentalists.
The rest of the article is organized as follows. In Sec. II

we describe the formalism and discuss which terms we
include in the cross section, focusing on a spin-1=2WIMP.
Section III introduces the nuclear structure many-body
calculations that describe the nuclear targets used in direct-
detection experiments. The results for our calculated
structure factors are given in Sec. IV. We distinguish
between WIMP couplings to one nucleon, discussed in
Sec. IVA, and the coupling to two nucleons, the subject of
Sec. IV B. The most important new aspects of our imple-
mentation of two-body effects are highlighted in Sec. V.
We conclude with a summary of the main findings of this
work in Sec. VI. Details of the matching to NREFT, the
nucleon matrix elements, matching for a spin-0 WIMP, and
the calculation of two-body interactions are provided in
Appendices A–C. All our results are also available in the
form of a PYTHON notebook, with a brief User’s guide in
Appendix D.

II. FORMALISM

Based on Ref. [49] we consider the following cross
section for the generalized SI WIMP-nucleus scattering:

dσ
dq2

¼ 1

4πv2

����X
I¼�

�
cMI −

q2

m2
N
_cMI

�
FM

I ðq2Þ þ cπF πðq2Þ

þ cbF bðq2Þ þ
q2

2m2
N

X
I¼�

cΦ
″

I FΦ″

I ðq2Þ
����2

þ 1

4πv2
X

i¼5;8;11

����X
I¼�

ξiðq; v⊥T ÞcM;i
I FM

I ðq2Þ
����2; ð1Þ

where q ¼ jqj is the three-momentum transfer between
the WIMP and the nucleus, and mχ , mN , and mN

denote the WIMP, nucleon, and nuclear masses, respec-
tively. The relative velocity of the WIMP is v ¼ jvj,
while ðv⊥T Þ2 ¼ v2 − q2=ð4μ2N Þ [34] is the velocity of the
WIMP with respect to the nucleus, with reduced mass
μN ¼ mNmχ=ðmN þmχÞ. Each term in Eq. (1) contains a
structure factor F and a coupling c. The structure factors F
encode the nuclear structure aspects of the scattering, and
are the main subject of this work. The couplings c are a
convolution of the Wilson coefficients, which describe the
fundamental interaction of the WIMPs with the quarks and
gluons, and the hadronic matrix elements. They therefore
depend on the particular scenario for physics beyond the
Standard Model considered. Finally, the kinematic factors

ξ5 ¼
μNqv⊥T
2mχmN

; ξ8 ¼ v⊥T ; ξ11 ¼ −
q

2mχ
; ð2Þ
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with the reduced mass μN ¼ mNmχ=ðmN þmχÞ, appear in
the contribution from the subleading NREFT operators
O5;8;11, defined in Appendix A.

A. Effective Lagrangian and couplings

To be definite, we consider the case of a spin-1=2,
Standard-Model singlet χ throughout the main text, but to
demonstrate that the decomposition in Eq. (1) applies in full
generality we also provide the matching relations for a spin-
0 WIMP, see Appendix B. For spin-1=2, the relevant terms
in the effective Lagrangian [61–63] are

Lχ ¼ Lð6Þ
χ þ Lð7Þ

χ þ Lð8Þ
χ ;

Lð6Þ
χ ¼ 1

Λ2

X
q

½CVV
q χ̄γμχq̄γμqþ CAA

q χ̄γμγ5χq̄γμγ5q

þ CAV
q χ̄γμγ5χq̄γμq

þ CTT
q χ̄σμνχq̄σμνqþ C̃TT

q χ̄σμνiγ5χq̄σμνq�;

Lð7Þ
χ ¼ 1

Λ3

�X
q

�
CSS
q þ 8π

9
C0S

g

�
χ̄χmqq̄q

þ
X
q

�
CPS
q þ 8π

9
C̃0S

g

�
χ̄iγ5χmqq̄q

−
8π

9
C0S

g χ̄χθ
μ
μ −

8π

9
C̃0S

g χ̄iγ5χθ
μ
μ

�
;

Lð8Þ
χ ¼ 1

Λ4

�X
q

Cð2Þ
q χ̄γμi∂νχθ̄

μν
q þ Cð2Þ

g χ̄γμi∂νχθ̄
μν
g

�
; ð3Þ

where we have only listed operators that can lead to
coherently enhanced responses or feature in the standard
SD interaction, and CVV

q ¼ CTT
q ¼ C̃TT

q ¼ 0 for a Majorana

particle. In Lð7Þ
χ we already integrated out the heavy quarks

[64], whose effect is absorbed in

C0S
g ¼ CS

g −
1

12π

X
Q¼c;b;t

CSS
Q ;

C̃0S
g ¼ C̃S

g −
1

12π

X
Q¼c;b;t

CPS
Q ; ð4Þ

while elsewhere the sum runs, in principle, over all quark
flavors q. CS

g and C̃S
g are the original coefficients of the

gluon operator χ̄χαsGa
μνG

μν
a and χ̄iγ5χαsGa

μνG
μν
a , respec-

tively, rewritten in terms of the trace of the energy-
momentum tensor:

θμμ ¼
X
q

mqq̄q −
9

8π
αsGa

μνG
μν
a þOðα2sÞ: ð5Þ

Moreover, we introduced its traceless components θ̄μν ¼
θ̄μνq þ θ̄μνg in the context of the dimension-8 spin-2
contribution:

θ̄μνq ¼ 1

2
q̄

�
γfμiDνg

− −
mq

2
gμν

�
q;

θ̄μνg ¼ gμν

4
Ga

λσG
λσ
a −Gμλ

a Gν
aλ; ð6Þ

with covariant derivative Dμ
− ¼ D⃗μ − D⃖μ and symmetr-

izer AfμBνg ¼ ðAμBν þ AνBμÞ=2.
In detail, the coefficients in Eq. (1) are given by

(nucleons N encompass protons and neutrons, N ¼ p or n)

cM� ¼ ζ

2

�
fp � fn þ fV;p1 � fV;n1 þ 3

4
ðfð2Þp � fð2Þn Þ

�
;

_cM� ¼ ζm2
N

2

�
_fp � _fn þ _fV;p1 � _fV;n1

þ 1

4m2
N
ðfV;p2 � fV;n2 Þ þ 1

2mχmN
ðfT;p1 � fT;n1 Þ

þ 1

mχmN
ðfT;p2 � fT;n2 Þ

�
;

cπ ¼ ζ

�
fπ þ 2fθπ −

1

2
fð2Þπ

�
; cb ¼ ζ

�
fθπ þ

1

4
fð2Þπ

�
;

cΦ
″

� ¼ ζ

2

�
fV;p2 � fV;n2 þ 1

2

�
1þ μN

mχ

�
ðfV;p1 � fV;n1 Þ

þmN

mχ

�
1þ μN

mN

�
ðfT;p1 � fT;n1 Þ

�
;

cM;5
� ¼ ζ

2

��
1þ mN

2mχ

�
ðfV;p1 � fV;n1 Þ

þ
�
1þ 2mχ

mN

�
ðfT;p1 � fT;n1 Þ þ 4

mχ

μN
ðfT;p2 � fT;n2 Þ

�
;

cM;8
� ¼ ζ

2
ðf̃V;p1 � f̃V;n1 Þ;

cM;11
� ¼ ζ

2

�
f̃p � f̃n − 2

mχ

mN
ðf̃T;p1 � f̃T;n1 Þ

− 4
mχ

mN
ðf̃T;p2 � f̃T;n2 Þ

�
; ð7Þ

where ζ ¼ 1ð2Þ for a Dirac (Majorana) particle.1

The various couplings refer to combinations of Wilson
coefficients from Eq. (3) and nucleon matrix elements in
the scalar (fN , _fN , f̃N), vector (f

V;N
1 , _fV;N1 , fV;N2 , f̃V;N1 ),

tensor (fT;N , f̃T;N), and spin-2 (fð2ÞN ) channels. The explicit
expressions, together with the matching onto NREFT, are
collected in Appendix A.

1The matching relations thus include the Majorana symmetry
factor 2. In the Dirac case, the relative sign between scalar and
vector coefficients changes for the cross section of χ̄–nucleon
scattering [63].
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B. Pion matrix elements

Here, we highlight the couplings to the pion in Eq. (7):

fπ ¼
Mπ

Λ3

X
q¼u;d

�
CSS
q þ 8π

9
C0S

g

�
fπq;

fθπ ¼ −
Mπ

Λ3

8π

9
C0S

g ;

fð2Þπ ¼ mχMπ

Λ4

�X
q

Cð2Þ
q fð2Þq;π þ Cð2Þ

g fð2Þg;π

�
: ð8Þ

In this case, the relevant matrix elements are the following:
first, the scalar couplings to u- and d-quarks are given by

fπu ¼
mu

mu þmd
¼ 1

2
ð1 − ξudÞ ¼ 0.32ð2Þ;

fπd ¼
md

mu þmd
¼ 1

2
ð1þ ξudÞ ¼ 0.68ð2Þ; ð9Þ

where ξud ¼ ðmd −muÞ=ðmd þmuÞ ¼ 0.37ð3Þ with
mu=md ¼ 0.46ð3Þ from Ref. [65] (and fπs ≈ 0). Second,
the coupling to the trace anomaly is only sensitive to the
sum fπu þ fπd ¼ 1, so that no new coupling appears in fθπ .
The spin-2 couplings are related to moments of pion parton
distribution functions (PDFs) qπðxÞ:

fð2Þq;π ¼
Z

1

0

dx x½qπðxÞ þ q̄πðxÞ�; ð10Þ

and similarly for the gluon, subject to the constraint

X
q

fð2Þq;π þ fð2Þg;π ¼ 1: ð11Þ

The pion PDFs have often been studied assuming a single
valence and sea distribution with moments hxiπv and hxiπs
[66–68], in such a way that

fð2Þu;π ¼ fð2Þd;π ¼ hxiπv þ 2hxiπs ; fð2Þs;π ¼ 2hxiπs ; ð12Þ

and by means of the sum rule in Eq. (11)

fð2Þu;π ¼ fð2Þd;π ¼
1

3
ð1 − fð2Þg;π þ hxiπvÞ;

fð2Þs;π ¼ 1

3
ð1 − fð2Þg;π − 2hxiπvÞ: ð13Þ

With fð2Þg;π ¼ 0.47ð15Þ [66] and hxiπv ¼ 0.217ð11Þ [68] this
gives

fð2Þu;π ¼ fð2Þd;π ¼ 0.26ð5Þ; fð2Þs;π ¼ 0.01ð5Þ; ð14Þ

consistent with a recent calculation in lattice QCD hxiπv ¼
0.214ð15Þðþ12

−9 Þ [69].2 A more recent, global analysis finds
at μ ¼ 2 GeV [70]

fð2Þu;π ¼ fð2Þd;π ¼ 0.298ð8Þ; fð2Þs;π ¼ 0.055ð4Þ;
fð2Þg;π ¼ 0.341ð19Þ; ð15Þ

in agreement with Eq. (14), but considerably more precise.
For completeness, we reproduce the analogous expressions
for the nucleon matrix elements in Appendix A.

C. Dipole operators

For a Dirac WIMP, a possible extension beyond Eq. (3)
concerns dark matter candidates with a nonvanishing dipole
moment, corresponding to the effective dimension-5
Lagrangian [71,72]

Lð5Þ
χ ¼ CF

Λ
χ̄σμνχFμν þ

C̃F

Λ
χ̄σμνχF̃μν; ð16Þ

where due to σμνγ5 ¼ i
2
ϵμναβσαβ the second term involving

the dual field strength tensor F̃μν ¼ 1
2
ϵμναβFαβ is equivalent

to −χ̄σμνiγ5χFμν. These operators produce long-range tree-
level interactions via the exchange of a photon, which leads
to the NR one-body amplitudes

MF
1;NR ¼ eCF

Λ

��
1

mχ
O1 −

4

q2
O5

�
FN
1 ðtÞ

þ 4

mN

�
O4 −

1

q2
O6

�
½FN

1 ðtÞ þ FN
2 ðtÞ�

�
;

MF̃
1;NR ¼ −

4eC̃F

Λ
1

q2
O11

�
FN
1 ðtÞ −

q2

4m2
N
FN
2 ðtÞ

�
: ð17Þ

Here, FN
1=2ðtÞ are the Dirac/Pauli form factors of the

nucleon with the full dependence on the relativistic
momentum transfer t ¼ −q2 (up to relativistic corrections).
The corresponding extension of Eq. (1) is straightforward,
with the photon poles introducing new terms, besides
additional contributions to some of the existing ones.
Formally, this amounts to (q-dependent) terms in the
matching relations in Eq. (7):

2Note that all spin-2 couplings are scale-dependent quantities,
so that, at a scale of μ ¼ 2 GeV in MS, the value from Ref. [68]
actually becomes hxiπv ¼ 0.256ð13Þ [69]. This has been taken
into account in Eq. (14).

HOFERICHTER, KLOS, MENÉNDEZ, and SCHWENK PHYS. REV. D 99, 055031 (2019)

055031-4



ΔcM� ¼ 1

2

eCF

Λmχ
;

Δ_cM� ¼ 1

2

eCF

Λmχ

m2
N

6
ðhr21ip � hr21inÞ;

ΔcM;5
� ¼ −

2eCFðmχ þmNÞ
Λ

�
1

q2
−
1

6
ðhr21ip � hr21inÞ

�
;

ΔcM;11
� ¼ 2eC̃Fmχ

Λ

�
1

q2
−
1

6
ðhr2Eip � hr2EinÞ

�
; ð18Þ

where we have already taken ζ ¼ 1 due to the absence of
tensor currents for Majorana particles. The Dirac-form-
factor radii are related to the Sachs ones by

hr21iN ¼ hr2EiN −
3κN
2m2

N
: ð19Þ

In the spirit of the present study, Eq. (18) neglects the
noncoherent contributions from O4 and O6. Further, there
are many more dimension-7 operators involving the (electro-
weak) field strength tensors [73,74], and matching relations
similar to Eqs. (17) and (18) could be extended accordingly.
In the form (17) the amplitudes automatically include

radius corrections, subsumed in the full electromagnetic
form factors. In addition, Eq. (16) could in principle produce
new two-body currents. In the end, such terms take a similar
form as the axial-vector–vector two-body currents identified
in Ref. [43], and are only suppressed by two chiral orders
compared to the leading pieces of Eq. (17). However, as
argued in Ref. [49], after summation over spins their isospin
structure ½τ1 × τ2�3 leaves only an isovector coherent
enhancement suppressed by ðN − ZÞ=A with respect to
the scalar two-body current. We will continue to neglect
such effects in the remainder of this work.

TABLE I. Nuclear structure factors and associated QCD and NR operators. Isospin indices are suppressed because the identification
pertains to isoscalar and isovector combinations alike. The table summarizes all operators that can be coherently enhanced. Likewise, the
table only shows coherently enhanced contributions for operators with velocity v⊥, which in nuclei produce both a term that behaves as
q=mN and a remainder determined by the target velocity v⊥T ∼ 10−3 (see Appendix A for more details). For comparison the last rows for
Sij show operators that lead to SD interactions. In the chiral counting we have Mπ ¼ OðpÞ, v⊥ ¼ Oðp2Þ, with relativistic corrections
counted as ∂=mN ¼ Oðp2Þ and ∂=mχ ¼ Oðp2Þ. Two-body structure factors, F π and F b, cannot be matched onto single-nucleon
NREFT operators, and the quasicoherence of FΦ″

is characterized by ξ ∼ 0.2. Finally, the last column indicates whether each entry
interferes with the leading O1 operator.

Structure factor QCD operators Chiral scaling NR operators Overall scaling Interference with O1

FM χ̄χmqq̄q OðM2
πÞ ¼ Oðp2Þ O1 OðM2

π

Λ2
χ
AÞ Yes

χ̄χθμμ Oð1Þ O1 OðAÞ Yes

χ̄γμi∂νχθ̄
μν Oð1Þ O1 OðAÞ Yes

χ̄γμχq̄γμq Oð1Þ O1 OðAÞ Yes

Oð qv⊥
mχþmN

Þ ¼ Oðp4Þ O5 Oð qv⊥T
mχþmN

AÞ No

χ̄σμνχq̄σμνq Oð q2

mNmχ
Þ ¼ Oðp4Þ O1 Oð q2

mNmχ
AÞ Yes

Oðqv⊥mN
Þ ¼ Oðp4Þ O5 Oðqv⊥TmN

AÞ No

χ̄γμγ5χq̄γμq Oðv⊥Þ ¼ Oðp2Þ O8 Oðv⊥T AÞ No

χ̄σμνiγ5χq̄σμνq Oð q
mN
Þ ¼ Oðp2Þ O11 Oð q

mN
AÞ No

χ̄iγ5χmqq̄q OðqM2
π

mχ
Þ ¼ Oðp4Þ O11 Oð qM2

π

mχΛ2
χ
AÞ No

F π χ̄χmqq̄q OðM3
πÞ ¼ Oðp3Þ � � � OðM3

π

Λ3
χ
AÞ Yes

χ̄χθμμ OðM3
πÞ ¼ Oðp3Þ � � � OðM3

π

Λ3
χ
AÞ Yes

χ̄γμi∂νχθ̄
μν OðM3

πÞ ¼ Oðp3Þ � � � OðM3
π

Λ3
χ
AÞ Yes

F b χ̄χθμμ OðM3
πÞ ¼ Oðp3Þ � � � OðM3

π

Λ3
χ
AÞ Yes

χ̄γμi∂νχθ̄
μν OðM3

πÞ ¼ Oðp3Þ � � � OðM3
π

Λ3
χ
AÞ Yes

FΦ″ χ̄γμχq̄γμq Oðqv⊥Þ ¼ Oðp3Þ O3 Oð q2

mNΛχ
ξAÞ Yes

χ̄σμνχq̄σμνq Oðqv⊥mχ
Þ ¼ Oðp4Þ O3 Oð q2

mNmχ
ξAÞ Yes

Sij χ̄γμγ5χq̄γμγ5q Oð1Þ O4, O6 Oð1Þ No
χ̄σμνχq̄σμνq Oð1Þ O4 Oð1Þ No
χ̄γ5χq̄γ5q Oð1Þ O6 Oð1Þ No
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D. Scaling of operators

The global picture that arises in this way is summarized
in Table I. For each nuclear structure factor we list: the
relativistic operators that contribute, the corresponding
NREFT operator if applicable, the chiral scaling as well
as the overall scaling including coherence, and finally
whether or not the respective contribution interferes with
the leading O1 operator.
Table I reflects the strategy underlying the present work,

in that it includes all contributions, either two-body currents
or subleading one-body operators, that appear up to third
order in the chiral expansion and receive some form of
coherent enhancement. Selected coherent chiral fourth-
order contributions are shown as well, mainly because in
many cases this is the order when some of the coherent
NREFT operators first enter. For comparison, the table also
includes the leading relativistic operators that produce the
NR expansion related to the standard SD interactions, even
if these are not coherent.

III. NUCLEAR STRUCTURE CALCULATIONS

The calculation of the nuclear structure factors requires
a many-body approach that describes the ground states
of the target nuclei considered. As in previous works
[22,23,46,47,49] we use the nuclear shell model, one of
the most successful many-body approaches in medium-
mass and heavy nuclei [75]. For all calculations we have
used the shell model code ANTOINE [75,76].
The shell model is based on the solution of the quantum

many-body problem in a reduced configuration space
where the Schrödinger equation for the nuclear ground
and low-energy excited states can be solved exactly. We
highlight two important aspects. First, the configuration
space used in the calculation needs to capture the nuclear
structure properties relevant for the process of interest. The
limitation of using a restricted configuration space stems
from the difficulty to solve the nuclear many-body problem
in a nontruncated space for heavier nuclei. For nuclear
targets used in direct detection experiments, calculations of
structure factors without such truncations exist up to 4He
[51,59,60] and could be performed in the near future up to
40Ca. Second, calculations must use an effective interaction
appropriate for such a configuration space.
Until very recently, nuclear shell-model calculations

relied on phenomenological effective interactions. In spite
of being derived from nucleon–nucleon (NN) scattering
data, these interactions have to be adjusted phenomeno-
logically, mostly the part that describes the single-particle
aspects of the nuclear interaction, referred to as monopole
part, in order to achieve a better agreement with the nuclear
structure of heavier nuclei. Progress in nuclear theory has
improved this picture by including in the starting point of
the derivation of effective interactions, in addition to NN
interactions, also nuclear forces between three nucleons,

3N forces. Three-nucleon forces are the analog of two-
body currents in the coupling to external probes, such as
WIMPs, to nucleons. Consistent NN and 3N interactions
can be derived in the ChEFT framework [40–42]. Starting
from these ChEFTNN and 3N forces it is possible to derive
effective interactions that, without further phenomenologi-
cal adjustments, reproduce nuclear spectroscopy rather well
in nuclei with nucleon number A comparable to direct-
detection nuclear targets [77–79]. First studies have just
started to extend these techniques to study electromagnetic
and weak transitions in medium-mass nuclei [80–82]. In
addition, the effective-theory character of ChEFT, com-
bined with the consistency between nuclear forces and
currents, provides a framework to quantify nuclear-struc-
ture uncertainties [83–85]. In this work, however, we
follow the standard approach and use phenomenological
effective interactions. This prevents the assessment of
reliable nuclear-structure uncertainties, which will become
possible in the future.
The configuration spaces and effective interactions we

have used are described below. All single-particle orbitals
belong to a three-dimensional harmonic oscillator basis nlj,
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where n is the principal quantum number, and l, j denote
the orbital and total angular momentum.
The lightest target we have studied has only one stable

isotope, 19F, which we already considered in Ref. [47].
Here we use the same USDB effective interaction and the
0d5=2, 1s1=2, and 0d3=2 single-particle orbitals, for both
neutrons and protons. This configuration space is known as
the sd shell. Reference [47] used the same configuration
space and effective interaction for 29Si, and here we extend
the study to the other two stable silicon isotopes, 28;30Si.
For argon, we study only 40Ar. The configuration space

we consider is significantly larger, and comprises seven
single-particle orbitals for neutrons and protons, the three
sd-shell orbitals plus the 0f7=2, 1p3=2, 0f5=2, and 1p3=2,
where the latter comprise the so-called pf shell. We use the
SDPF.SM effective interaction, which describes well the
electromagnetic properties of ground states and the coex-
istence of spherical and deformed states in this mass region
[86,87]. In order to make the diagonalizations in the
configuration space feasible, we need to truncate our
many-body calculations, by keeping the 0d5=2 orbital filled

with nucleons, and restricting the number of excitations
from sd-shell to pf-shell orbitals to 8. These are similar
truncations to those in Ref. [86], and limit the dimension of
the diagonalization to 5 × 108. We have also preformed
calculations of the stable isotopes 36;38Ar which are of the
same quality as those for 40Ar. Nonetheless we have not
included them in our study, because the natural abundance
of these isotopes is very minor with less than 0.3%.
Finally, there are five stable stable germanium isotopes

70;72;73;74;76Ge. Consistently with our study of 73Ge in
Ref. [47] we use the RG effective interaction [88] in a
configuration space consisting on the 1p3=2, 0f5=2, 1p3=2,
and g9=2 single-particle orbitals. We have performed cal-
culations with alternative effective interactions in the same
configuration space [89–92], and while the excitation
spectra may be somewhat different to the ones predicted
by the RG interaction, the impact on the nuclear structure
factors is very small at the momentum transfers relevant to
direct detection searches.
Figures 1–6 compare the low-energy excitation spectra

of the stable isotopes of fluorine, silicon, argon, and
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germaniumwith our theoretical predictions. In all cases, our
calculations are in very good agreement with experiment,
especially for nuclei with even number of nucleons. In some
cases, especially for the odd-mass nucleus 73Ge, some
experimental states are not well reproduced. This is very
likely due to the limitation of the configuration space used in
our calculation, because the description of 73Ge is of similar
quality with the other effective interactions we have studied.
To complement the assessment of thequality of thenuclear

structure calculations, Tables II and III compare theoretical
and experimental electromagnetic observables for all these
nuclear targets. The comparison includes nuclear charge
radii, electromagnetic moments for ground and lowest-
excited states, and nuclear matrix elements for selected
electromagnetic transitions between low-lying states.
Details on the shell model calculation of nuclear moments
and matrix elements can be found, e.g., in Ref. [75]. Charge

radii [97], the properties most relevant for coherent nuclear
structure factors, are very well reproduced, better than 3% in
all cases, and better than 1% in the heavier argon and
germanium. For fluorine and silicon, Table II shows an
excellent agreement between theory and experiment, as the
majority of the predictions reproduce data within experi-
mental uncertainties. For argon and germanium, Table III
also shows a reasonable agreement of the nuclear structure
calculations with experiment. Nuclear matrix elements
within the same isotope can vary over two orders of
magnitude, and the theoretical results reproduce well the
corresponding hierarchy. In germanium, some theoretical
electric moments and transitions underestimate experiment
moderately. This suggests that the configuration space used
in the calculation is not sufficient to fully account for themost
collective states, consistently with the findings from the
comparison of the 73Ge excitation spectrum. We do not

TABLE II. Root-mean-square charge radii (hr2i1=2ch ) of ground states (gs), electric quadrupole (Q) and magnetic dipole (μ, in units of
nuclear magnetons, n.m.) moments of ground and lowest-excited states, and nuclear matrix elements of selected electric quadrupole [B
(E2)] and magnetic dipole [B(M1)] transitions between low-lying states of stable fluorine and silicon isotopes. Theoretical charge radii
use calculated orbital occupancies combined with the harmonic oscillator length b from Eq. (C15). Electromagnetic moments and
transitions are obtained with effective neutron and proton electric charges en ¼ 0.45 and ep ¼ 1.36, and effective orbital (l) and spin (s)
g-factors glp ¼ 1.16, gsp ¼ 5.15 for protons and gln ¼ −0.09, gsn ¼ −3.55 for neutrons [93]. Quadrupole moments Q > 0 (Q < 0)
indicate nuclei with prolate (oblate) deformation. Theoretical results are compared to experimental data from Refs. [94–96].

hr2i1=2ch [fm] Q [efm2] μ [n.m.] B(E2) [e2fm4] B(M1) [n:m:2]

Nucleus State /Transition Th Exp Th Exp Th Exp Th Exp Th Exp
19F 1=2þgs 2.83 2.898(2) � � � � � � 2.9 2.628868(8)

5=2þ1 → 1=2þgs 19 20.9(2) � � � � � �
3=2þ1 → 5=2þ1 3.4 4.1(2.5)
9=2þ1 → 5=2þ1 19 25(3) � � � � � �

28Si 0þgs 3.19 3.122(2) � � � � � � � � � � � �
2þ1 þ19 þ16ð3Þ 1.1 1.12(18)

2þ1 → 0þgs 67 70(3) � � � � � �
4þ1 → 2þ1 110 87(10) � � � � � �
0þ2 → 2þ1 82 50(3) � � � � � �
3þ1 → 2þ1 6 × 10−4 0.007(2) 2 × 10−4 48ð4Þ × 10−5

0þ3 → 2þ1 0.6 1.4(1) � � � � � �
29Si 1=2þgs 3.20 3.118(5) � � � � � � −0.49 −0.55529ð3Þ

3=2þ1 → 1=2þgs 31 22(2) 0.011 0.063(2)
3=2þ2 → 1=2þgs 33 29(12) 0.21 0.116(7)
5=2þ2 → 3=2þ1 64 47(7) 0.20 0.15(1)
5=2þ2 → 5=2þ1 2.5 4(4) 0.18 0.18(3)
7=2þ1 → 3=2þ1 50 40(12) � � � � � �
7=2þ1 → 5=2þ1 1.8 1.0(6) 0.013 0.04(1)

30Si 0þgs 3.21 3.134(4) � � � � � � � � � � � �
2þ1 þ2.1 −5ð6Þ 0.70 0.76(18)

2þ1 → 0þgs 48 47(6) � � � � � �
2þ2 → 0þgs 14 33(9) � � � � � �
2þ2 → 2þ1 81 50(30) 0.18 0.16(5)
1þ1 → 0þgs � � � � � � 0.007 0.009(3)
1þ1 → 2þ1 2.3 8(6) 0.29 0.16(4)
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expect, however, any significant effect in the ground states
involved in elastic WIMP-nucleus scattering.
In Sec. IV and the PYTHON notebook we also cover

nuclear structure factors for xenon, which we studied in the

context of coherent SI scattering in Refs. [22,49], and more
generally in Refs. [46,47]. The quality of the nuclear
structure calculations of stable xenon isotopes is similar
to that of argon or germanium, the heaviest nuclear targets

TABLE III. Same as Table II, for stable argon and germanium isotopes. Here electromagnetic moments and transitions are obtained
with effective neutron and proton electric charges en ¼ 0.5, and ep ¼ 1.5, and bare g-factors [75]. Quadrupole momentsQ > 0 (Q < 0)
indicate nuclei with prolate (oblate) deformation. Theoretical results are compared to experimental data from Refs. [94–96].

hr2i1=2ch [fm] Q [efm2] μ [n.m.] B(E2) [e2fm4] B(M1) [n:m:2]

Nucleus State /Transition Th Exp Th Exp Th Exp Th Exp Th Exp
40Ar 0þgs 3.43 3.427(3) � � � � � � � � � � � �

2þ1 þ2.6 þ1ð4Þ −0.54 −0.04ð6Þ
2þ1 → 0þgs 50 73(3) � � � � � �
0þ2 → 2þ1 29 43(7) � � � � � �
2þ2 → 0þgs 0.7 10(2) � � � � � �
2þ2 → 2þ1 55 150(50) 0.016 0.07(1)
4þ1 → 2þ1 36 43(8) � � � � � �
6þ1 → 4þ1 16 13.6(5) � � � � � �

70Ge 0þgs 4.05 4.0414(12) � � � � � � � � � � � �
2þ1 þ23 þ4ð3Þ 0.96 0.91(5)

2þ1 → 0þgs 240 360(7) � � � � � �
0þ2 → 2þ1 36 820(120) � � � � � �
2þ2 → 0þgs 8.0 9(1) � � � � � �
2þ2 → 2þ1 16 1100(190) 0.022 0.003(2)
2þ2 → 0þ2 270 270(50) � � � � � �
4þ1 → 2þ1 370 430(90) � � � � � �

72Ge 0þgs 4.07 4.0576(12) � � � � � � � � � � � �
2þ1 þ16 −13ð6Þ 0.55 0.77(5)

2þ1 → 0þgs 260 418(7) � � � � � �
2þ1 → 0þ2 60 317(5) � � � � � �
2þ2 → 0þgs 29 2.3(4) � � � � � �
2þ2 → 0þ2 15 0.5(1) � � � � � �
2þ2 → 2þ1 360 1100(180) 0.023 29ð9Þ × 10−5

4þ1 → 2þ1 430 660(90) � � � � � �
73Ge 9=2þgs 4.07 4.0632(14) −15 −17ð3Þ −1.0 −0.8794677ð2Þ

5=2þ1 þ20 þ70ð8Þ −0.90 −1.08ð3Þ
7=2þ1 → 9=2þgs 260 114(7) 0.002 14ð9Þ × 10−4

7=2þ2 → 9=2þgs 26 740(140) 0.014 57ð4Þ × 10−4

13=2þ1 → 9=2þgs 250 540(40) � � � � � �
74Ge 0þgs 4.08 4.0742(12) � � � � � � � � � � � �

2þ1 þ0.7 −19ð2Þ 0.49 0.87(4)
2þ1 → 0þgs 310 609(7) � � � � � �
2þ2 → 0þgs 3.2 13(2) � � � � � �
2þ2 → 2þ1 470 790(110) 4 × 10−5 18ð3Þ × 10−4

4þ1 → 2þ1 450 760(60) � � � � � �
76Ge 0þgs 4.09 4.0811(12) � � � � � � � � � � � �

2þ1 −14 −19ð6Þ 0.42 0.84(5)
2þ1 → 0þgs 300 550(19) � � � � � �
2þ2 → 0þgs 1.2 17(4) � � � � � �
2þ2 → 2þ1 400 800(170) 0.006 14ð7Þ × 10−4

4þ1 → 2þ1 430 730(170) � � � � � �

NUCLEAR STRUCTURE FACTORS FOR GENERAL … PHYS. REV. D 99, 055031 (2019)

055031-9



considered in this section. Calculations for xenon have
been compared to experimental data in Refs. [22,47] for
excitation spectra, and in Refs. [46,98] for electromagnetic
properties. Given that the charge radii are closely connected
to the nuclear structure factors considered here, Table IV
compares theoretical results with experiment. In all iso-
topes the calculations reproduce measured radii to better
than 1%.

IV. STRUCTURE FACTORS

Apart from the dependence on q, mN , and mχ that is
predicted by ChEFT, the generalized SI WIMP-nucleus
cross section in Eq. (1) depends on six independent
structure factors F . Four of them correspond to the
coupling of the WIMP to one nucleon, which can be the
same for protons and neutrons (as in the two isoscalar
structure factors) or opposite (as in the two isovector ones).
In addition, two independent structure factors characterize
the simultaneous coupling of WIMPs to two nucleons. In
this section we evaluate these six structure factors for the
nuclear targets considered in present and future direct
detection experiments. An overview of the various con-
tributions, excluding interference terms, is provided in
Fig. 7. In the following, we present in detail our results
for the one-body (1b) and two-body (2b) structure factors.

A. One-body structure factors

As discussed in Refs. [34,35] there are two different
nuclear responses describing the coupling of a WIMP to a
single nucleon, FM and FΦ″

, which receive coherent
contributions from several nucleons in the nucleus. In
addition to the standard SI scattering, the nuclear response
FM describes a subleading contribution that corresponds to
the NREFT operators O5;8;11, but by far the most important
among them is O11. In addition, the so-called radius
correction to the standard SI structure factor is also
coherent [49]. Dropping the contributions from O5;8, the
scattering cross section including one-nucleon couplings
simplifies to

dσ
dq2

¼ 1

4πv2

����X
I¼�

�
cMI −

q2

m2
N
_cMI

�
FM

I ðq2Þ

þ q2

2m2
N

X
I¼�

cΦ
″

I FΦ″

I ðq2Þ
����2

þ 1

4πv2

����X
I¼�

q
2mχ

c̃MI F
M
I ðq2Þ

����2; ð20Þ

where c̃MI can be identified with cM;11
I from Eq. (1). Even

though there are only four independent isoscalar contribu-
tions (plus four isovector ones), in the most general case
where all contributions in Eq. (20) compete, the interfer-
ence of all of them generates a plethora of individual terms
that could be considered.
Figures 8–11 show the leading contributions to the cross

section for 132Xe, 74Ge, 40Ar, and 19F, respectively. The
results for xenon use the results of Ref. [49]. Figures 8–11
assume that all couplings c are equal to 1, and for the
NREFT O11 term mχ ¼ 2 GeV, which implies that for
heavier WIMPs the importance of this term will always be
smaller than in the figures.
Figures 8–11 highlight that the standard SI contribution

(solid black lines) is indeed expected to be dominant.
Moreover, leading corrections to generalized SI scattering
come from the interference of the standard SI and other
terms, such as its isovector counterpart (dotted-dashed
black), the isoscalar radius corrections (solid blue), or
the isoscalar FΦ″

term (solid red). The only exceptions are,
first, the purely isovector SI structure factor (dashed black),
suppressed by one or two orders of magnitude. Second, the
O11 contributions (solid green), suppressed by around four
orders of magnitude in all cases (the suppression will be
larger for heavy WIMPs mχ > 2 GeV).
The variable importance of these contributions is set by

the nuclear structure of the corresponding nuclear targets.
Isovector contributions are relatively more important in
neutron-rich xenon than in the N ≈ Z fluorine. On the other
hand, theFΦ″

contributions are relatively more important in
the heavier xenon and germanium, because these targets
have more nucleons in single-particle orbitals with aligned
spin and orbital angular momentum. In contrast, the FΦ″

contributions are more suppressed in lighter targets such as
argon and especially fluorine, which tend to have nucleons
more equally distributed in orbitals with spin parallel and
antiparallel to the orbital angular momentum.

B. Two-body structure factors

The two-body amplitudes of the three scalar channels,
scalar–scalar (SS), trace anomaly θμμ (“θ” in short), and
spin-2 (referred to by “(2)”), read

TABLE IV. Theoretical root-mean-square charge radii of stable
xenon isotopes compared to experimental data from Ref. [94].

128Xe 129Xe 130Xe 131Xe

hr2i1=2ch
Th 4.75 4.75 4.76 4.77

[fm] Exp 4.7774(50) 4.7775(50) 4.7818(49) 4.7808(49)

132Xe 134Xe 136Xe
hr2i1=2ch

Th 4.77 4.78 4.79

[fm] Exp 4.7808(49) 4.7899(47) 4.7964(47)
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2ðCS þ CTσ1 · σ2Þ; ð22Þ

Mð2Þ
2;NR ¼ −

q1 · q2

2M2
π

fð2Þπ

fπ
MSS

2;NR

−
fð2Þπ

2Mπ
ðCS þ CTσ1 · σ2Þ; ð23Þ

where the couplings fπ , fθπ , f
ð2Þ
π are defined in Eq. (8). σi

and τi refer to spin and isospin operators for nucleon i, Fπ

is the pion decay constant, and gA the axial charge of the
nucleon. Throughout, we use PDG values [99], except for
the particle masses, for which we use isospin averages of
mN ¼ 938.92 MeV and Mπ ¼ 138 MeV.

FIG. 8. Structure factors for 132Xe, 1b contributions only. Thick
lines correspond to individual terms in Eq. (20), while interfer-
ence terms are shown as thin lines. Description as in Fig. 7, with
dotted-dashed lines representing interference terms involving
isovector couplings.

FIG. 7. Structure factors for 132Xe from 1b and 2b contributions without interference terms: 1b O1 (black), O11 (green), radius
corrections (blue), and O3 (red) contributions are shown together with 2b F b (indigo) and F π (orange) structure factors. Solid lines
show isoscalar and 2b contributions, while dashed lines indicate isovector couplings. For O11 mχ ¼ 2 GeV is assumed.

FIG. 9. Structure factors for 74Ge, 1b contributions only
including interference terms. The description is as in Fig. 8.
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While Refs. [43,45,49] introduced coherent two-body
currents, the present work includes for the first time the
contact-term contributions to the θμμ response involving CS
and CT and the entire spin-2 contribution. In particular
the consistent inclusion of the contact operators is a crucial
improvement in this work (the result for θμμ was already
used in Ref. [50]), see Sec. V for an extended discussion.
By including the relativistic corrections of subleading

one-body terms, both in the θμμ and spin-2 channels, it is
possible to write the three physical responses in terms of just
two new structure factors: see Sec. V and Appendix C for
more details and the precise definition of contact operators.
The two structure factors in the naive (noninteracting) shell
model read

F πðq2Þ¼
1

2

X
occ

hN1N2jð1−P12Þj
1

fπ
MSS

2;NRjN1N2i;

F bðq2Þ¼
1

2

X
occ

hN1N2jð1−P12ÞjMbjN1N2i−
q2

M2
π
F πðq2Þ;

ð24Þ

where the second structure factor is normalized as F bð0Þ ¼
−2Eb=Mπ with the binding energy of the nucleus Eb < 0.
F πðq2Þ corresponds to the scalar–scalar two-body current,

FIG. 12. Structure factors for 132Xe from 2b contributions and
1b–2b interferences. Thick lines correspond to individual 2b terms
in Eq. (1), while interference terms are shown as thin lines. The
description is as in Fig. 8, with contributions involving F b (F π)
structure factors in indigo (orange), except for the F b–F π

interference, represented by the maroon dotted-double-dashed line.

FIG. 11. Structure factors for 19F, 1b contributions only
including interference terms. The description is as in Fig. 8.

FIG. 10. Structure factors for 40Ar, 1b contributions only
including interference terms. The description is as in Fig. 8.

FIG. 13. Structure factors for 74Ge from contributions including
2b terms only. The description is as in Fig. 12.
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and by defining F bðq2Þ as above, the three physical
channels [SS, θ, (2)] are described in terms of these two
structure factors because

F θ
πðq2Þ ¼ 2F πðq2Þ þ F bðq2Þ;

F ð2Þ
π ðq2Þ ¼ −

1

2
F πðq2Þ þ

1

4
F bðq2Þ: ð25Þ

Figures 12–15 show the structure factors for 132Xe, 74Ge,
40Ar, and 19F that include contributions from the coupling
to two nucleons. Scalar couplings are described by the F π

contributions (thick solid orange line), which can inter-
fere with the SI contribution (thin solid orange) and its

isovector counterpart (dotted-dashed orange) and with
an independent two-nucleon coupling (maroon dotted-
double-dashed).
The two-nucleon coupling to the trace anomaly receives

two contributions. According to Eq. (25), the first one can
be described by F π and the second one by the structure
factor F b. Figures 12–15 show the F π , F b structure
factors, and their interferences with one-nucleon couplings.
In particular, besides the terms described above, the figures
show the full F b structure factor (thick solid indigo line),
its interference with the SI term (thin solid indigo), and its

FIG. 14. Structure factors for 40Ar from contributions including
2b terms only. The description is as in Fig. 12.

FIG. 15. Structure factors for 19F from contributions including
2b terms only. The description is as in Fig. 12.

FIG. 16. Structure factors for 132Xe for the physical combina-
tions of the response functions F π and F b corresponding to the
SS (solid line), θ (dashed), and spin-2 (dotted-dashed) channels
as in Eq. (25).

FIG. 17. Structure factors for 40Ar for the physical combina-
tions of the response functions F π and F b. The description is as
in Fig. 16.
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isovector counterpart (dotted-dashed indigo), and finally
the interference with the radius correction term (dotted
indigo).
Similarly, spin-2 two-nucleon couplings contribute via

F π and F b terms according to Eq. (25). Figures 16 and 17
compare the contribution of the physical combination of the
F π and F b structure factors that originate in the scalar,
trace anomaly, and spin-2 two-nucleon couplings. Taking
all coefficients c to unity, the dominant effect is given by
the trace anomaly (dashed line), followed by the spin-2
term (dotted-dashed), and the scalar contribution (solid).
However, we stress that this hierarchy only reflects the
nuclear structure aspects and does not need to be followed
by particular models with definite Wilson coefficients. The
nucleon matrix elements and especially the BSM couplings
can alter the importance of the different structure factors in
Figs. 16 and 17.

V. CONTACT OPERATORS IN TWO-BODY
STRUCTURE FACTORS

The results for the two-body currents presented in
Sec. IV B are based on the ChEFT formalism developed
in Ref. [49], see Appendix C for more details. In particular,
the chiral power counting follows the proposal from
Ref. [100,101], in which the scaling of operators is
estimated by dimensional analysis. In this way, the leading
contribution for a scalar current stems from pion-exchange
diagrams, since ðN†NÞ2 contact operators require an addi-
tional insertion of a scalar source that is counted in the same
way as the quark mass matrix and therefore only appears at
subleading order, see, e.g., Ref. [102]. In alternative
formulations [103,104] where contact operators are pro-
moted to lower orders, the pion-exchange diagrams would
be accompanied by additional contact-term contributions at
the same order, as also suggested by renormalization group
arguments for external currents [105]. A conclusive test of
the importance of these contact operators would require
detailed studies of the scalar current in light nuclei along
the lines of Ref. [59], using recent precision chiral
potentials [106–108], contrasted to nuclear σ-terms from
lattice QCD [109,110]. Work along these lines is in
progress.
In practice, the question arises as to how to deal with

such potential contact operators in nuclear many-body
calculations. In fact, even in the Weinberg power counting
contact operators do occur at leading order in the coupling
to the trace anomaly θμμ and a spin-2 source. These terms
were neglected in Ref. [49], so that the resulting θμμ
response was incomplete (their contributions were, how-
ever, included in Ref. [50]). Here, we show how in the
Weinberg power counting the contact operators in these
channels are canonically renormalized in terms of nuclear
binding energies, a mechanism that no longer applies once
additional contact terms are introduced.

A. Trace anomaly

The simplest example for the chiral realization of the
energy-momentum tensor θμν in ChEFT is the tree-level
pion matrix element:

hπðp0ÞjθμνjπðpÞi ¼ pμp0
ν þ p0

μpν þ gμνðM2
π − p · p0Þ;

ð26Þ

i.e., for an on-shell pion

hπðp0ÞjθμμjπðpÞi ¼ 2M2
π þ t; t ¼ ðp0 − pÞ2: ð27Þ

One-loop corrections have been worked out in Ref. [111].
Likewise the diagrams in Fig. 18 for the nucleon give

hNðp0ÞjθμμjNðpÞi ¼ mN −
3g2AMπ

32πF2
π

×

�
4M4

π − t2

4M2
π

I

�
t

M2
π

�
þ t −M2

π

�

¼ mN −
13g2AMπ

128πF2
π
tþOðt2Þ; ð28Þ

with loop integral

IðaÞ ¼
Z

1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xð1 − xÞap ¼ 1ffiffiffi

a
p log

2þ ffiffiffi
a

p
2 −

ffiffiffi
a

p : ð29Þ

In the two-nucleon sector, see Fig. 19, the first term in
Eq. (22) follows from the pion-exchange diagram (a) by
means of Eq. (26) (diagram (b) only enters at higher
orders). An additional contribution arises from the contact-
term Lagrangian:

L2N ¼ −
CS

2
ðN†NÞ2 − CT

2
ðN†σNÞ2; ð30Þ

where the second term derives from the NR expansion of
the spin vector Sμ ¼ ð0; σ=2Þ. The corresponding term in
the trace

θμμ ¼ −CSðN†NÞ2 − CTðN†σNÞ2; ð31Þ

(a) (b) (c)

FIG. 18. One-loop diagrams for the coupling of θμμ to one
nucleon (the diagram for the wave function renormalization is
omitted). Solid and dashed lines refer to nucleons and pions,
respectively, and crosses represent the coupling of the external
current.
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gives the second term in Eq. (22), represented by diagram
(c) in Fig. 19.
In contrast to the scalar current, the pion-exchange piece

in Eq. (22) behaves as a contact term for qi → ∞, due to the
momentum dependence of the pion coupling, see Eq. (26).
As first noted in Ref. [50], for vanishing momentum
transfer these two pieces combine to the NN potential
VNN . Together with the kinetic-energy operator T, this
suggests the renormalization prescription

hΨjT þ VNN jΨi ¼ Eb; ð32Þ

where Eb < 0 is the binding energy of the nucleus, whose
wave function jΨi should be obtained from NN inter-
actions only. In practice, the kinetic-energy operator
formally enters at higher orders but arises naturally from
relativistic corrections, while 3N forces correspond to
higher-order corrections. In order to determine CS and
CT we therefore use experimental binding energies, cor-
rected for Coulomb interactions according to Ref. [112].
Details of the renormalization both for θμμ and spin-2 terms
are given in Appendix C.
For the numerical analysis we ignore CT contributions,

because the magnitude of CT is expected to be small due to
approximate SUð4Þ symmetry of NN interactions at low
energies, with corrections that can be shown to be sup-
pressed by 1=N2

c [113–115]. The resulting CS values in
Table V are consistent with the expectation from dimen-
sional analysis [116]:

jCSj ¼
1

16π
jC̃1S0 þ 3C̃3S1 j ∼

1

F2
π
∼ 120 GeV−2; ð33Þ

where we have used that CT ¼ 0 implies C̃1S0 ¼ C̃3S1 .
Moreover, the values in Table V also agree with typical

fits to the NN system, e.g., at LO Ref. [83] finds
CS ¼ ð−56.5… − 118.3Þ GeV−2 for cutoffs in the range
R ¼ ð0.8…1.2Þ fm.

B. Spin 2

Despite only entering at dimension-8 in Eq. (3), spin-2
contributions become relevant, for instance, in the context
of heavy WIMPs, where significant cancellations with
spin-0 terms have been observed [117], enhancing the
importance of higher-order corrections. The relevant oper-
ators are the traceless parts of the energy-momentum
tensor, given in Eq. (6). As can be seen from the WIMP

part of Lð8Þ
χ in Eq. (3), the dominant contribution arises

from the μ ¼ ν ¼ 0 components, leading to the amplitudes

Mð2Þ
1;NR in Eq. (A5) andMð2Þ

2;NR in Eq. (23). An extension to
subleading components is straightforward, since due to
Lorentz invariance the pion-exchange contribution
becomes proportional to qμqν −

gμν
4
q2. Then the full expres-

sion can be reconstructed from the 00 component, which

we have identified with F ð2Þ
π ðq2Þ.

The chiral realizations of the matrix elements of θ̄μνq;g have
been studied in detail in the literature, both for the pion and
the nucleon [118–124]. Here, we only retain the leading
couplings related to moments of pion and nucleon PDFs,

resulting in the one- and two-body contributions Mð2Þ
1;NR

and Mð2Þ
2;NR, as well as the relativistic corrections in

Eq. (C6). Motivated by the EMC effect [125], similar
methods have been applied in the context of spin-2
couplings in multi-nucleon systems [126,127]. Therefore,
measurements of nuclear PDFs could, in principle, provide
independent cross checks on the resulting spin-2 structure
factor. However, in practice this is not possible with
currently employed parameterizations [128–131]: in the
dark matter context, the main effect of the two-body
corrections modifies the normalization at q ¼ 0 away from
the fully coherent single-particle expectation F ð0Þ ¼ A,
see [45,49] for the scalar channel. Presently, nuclear PDFs
qAðxÞ are studied based on bound-proton PDFs qp=AðxÞ
restricted onto the range x ∈ ½0; 1�, in such a way that the
full PDF is reconstructed by qAðxÞ ¼ Zqp=AðxÞþ
Nqn=AðxÞ. The moments of this qAðxÞ are therefore, by
definition, normalized to the coherent limit A and cannot be
used to cross check the two-body effect that we derived
from the spin-2 couplings of the pion.

VI. SUMMARY

We have presented a comprehensive analysis of the
generalized SI scattering of spin-1=2 and spin-0 WIMPs
off atomic nuclei. Our analysis considers all contributions
that can receive the coherent enhancement from several
nucleons in the nucleus, keeping terms up to third order in
ChEFT. This includes both the coupling of WIMPs to one

(a) (b) (c)

FIG. 19. Diagrams for the coupling of θμμ to two nucleons.
The notation is as in Fig. 18.

TABLE V. CS values, renormalized to the nuclear binding
energy, for all isotopes considered in this work.

19F 28Si 29Si 30Si 40Ar 70Ge

CS [GeV−2] −68.9 −75.2 −75.0 −75.0 −76.6 −85.6
72Ge 73Ge 74Ge 76Ge 128Xe 129Xe

CS [GeV−2] −85.9 −85.9 −86.2 −86.4 −98.0 −98.2
130Xe 131Xe 132Xe 134Xe 136Xe

CS [GeV−2] −98.5 −98.6 −98.8 −99.1 −99.3
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nucleon as well as to two nucleons. For two-body inter-
actions we provide, for the first time, a full and consistent
treatment of the contact operators that appear at the same
order as pion-exchange diagrams, arguing that these con-
tributions can be renormalized to the nuclear binding
energy. As a result, just two nuclear structure factors are
enough to characterize two-body interactions via scalar
operators, the trace of the energy-momentum tensor, and
spin-2 operators.
Taking into account all these contributions, we give all

one-body and two-body nuclear structure factors relevant
for the coherent WIMP scattering off fluorine, silicon,
argon, germanium and xenon, covering the targets of the
most advanced direct detection searches. For that purpose,
we perform large-scale nuclear shell model calculations
with configuration spaces and nuclear interactions that
describe very well the structure of these nuclei.
Our analysis identifies the parameters that can, at least in

principle, be separately constrained in direct detection
experiments. These parameters subsume both the BSM
couplings of WIMPs with quarks and gluons and the
hadronic matrix elements that embed these quark-level
operators into hadrons. The corresponding matching rela-
tions are illustrated in detail for both spin-1=2 and spin-0
WIMPs.
The main results of our work, encoded in the nuclear

structure factors and the relation between direct-detection
experiments and BSM couplings, are available as supple-
mentary material in a PYTHON notebook. These results
form the basis for a comprehensive study of WIMP-nucleus
interactions based on ChEFT. Future extensions concern
non-coherent WIMP-nucleus interactions, for which more
parameters and nuclear structure factors need to be con-
sidered. Accordingly, if the coherent contributions studied
in this paper are strongly suppressed, the identification of
the underlying quark-level interactions becomes even more
challenging. On the other hand, progress in ab initio
nuclear theory paves the way towards fully consistent
structure factors from many-body calculations based on
ChEFT [51,59,60,77–79]. Such improved nuclear structure
factors, including their momentum-dependence, will fur-
ther help distinguish among possible BSM scenarios.
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D. B. Kaplan, K. Kovařík, H. Krebs, T. Marrodan, F.
Olness, and J. de Vries for valuable discussions. This work
was supported in part by the U.S. DOE (Grant No. DE-
FG02-00ER41132), the National Science Foundation
(Grant No. NSF PHY-1748958), the ERC (Grant
No. 307986 STRONGINT), the DFG through SFB 1245
(Projektnummer 279384907), the Max-Planck Society, the
Japanese Society for the Promotion of Science KAKENHI
through Grant No. 18K03639, MEXT as “Priority Issue on

Post-K computer” (Elucidation of the fundamental laws
and evolution of the universe), JICFuS, and the CNS-
RIKEN joint project for large-scale nuclear structure
calculations. J. M. and A. S. thank the Institute for
Nuclear Theory at the University of Washington for its
hospitality and the U.S. DOE for partial support.

APPENDIX A: MATCHING TO NREFT AND
NUCLEON MATRIX ELEMENTS

For the matching onto NR single-nucleon operators we
use the conventions

NðpÞ þ χðkÞ → Nðp0Þ þ χðk0Þ; ðA1Þ

with

q ¼ k0 − k ¼ p − p0; P ¼ pþ p0; K ¼ kþ k0;

ðA2Þ

and

v⊥ ¼ K
2mχ

−
P

2mN
; ðA3Þ

as well as the operator basis

O1 ¼ 1; O2 ¼ ðv⊥Þ2;
O3 ¼ iSN · ðq × v⊥Þ; O4 ¼ Sχ · SN;

O5 ¼ iSχ · ðq × v⊥Þ; O6 ¼ Sχ · qSN · q;

O7 ¼ SN · v⊥; O8 ¼ Sχ · v⊥;
O9 ¼ iSχ · ðSN × qÞ; O10 ¼ iSN · q;

O11 ¼ iSχ · q; O12 ¼ Sχ · ðSN × v⊥Þ; ðA4Þ

where q ¼ jqj.
The expressions above refer to the WIMP-nucleon

system. In the nucleus, the operator v⊥ generates two
kinds of contributions [34,35]. First, there are operators
dependent on the WIMP velocity with respect to the
nucleus, v⊥T [see the terms involving ξiðq; v⊥T Þ in
Eq. (1)]. These terms are very suppressed in the scattering
amplitude because v⊥T ¼ jv⊥T j ∼ 10−3. On the other hand,
v⊥ generates terms that contain the nucleon velocity
operator. In this case, the operators are mildly suppressed
by q=mN, and include an additional derivative. The latter
terms are fully responsible for the FΦ″

structure factor.
Back to the WIMP-nucleon level, the coherently

enhanced terms listed in Table I, complemented by the
leading SD response, are derived from
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MSS
1;NR ¼ O1fNðtÞ;

MPS
1;NR ¼ −f̃NðtÞ

1

mχ
O11;

MVV
1;NR ¼ O1

�
fV;N1 ðtÞ þ t

4m2
N
fV;N2 ðtÞ

�

þ 1

mN
O3

�
fV;N2 ðtÞ þ 1

2

�
1þ μN

mχ

�
fV;N1 ðtÞ

�

þ 1

2mχ

�
1þ μN

mN

�
O5f

V;N
1 ðtÞ;

MAV
1;NR ¼ 2O8f̃

V;N
1 ðtÞ;

MAA
1;NR ¼ −4O4gNA ðtÞ þ

1

m2
N
O6gNP ðtÞ;

MPP
1;NR ¼ 1

mχ
O6hN5 ðtÞ;

Mð2Þ
1;NR ¼ 3

4
O1f

ð2Þ
N ;

MTT
1;NR ¼ t

2mχmN
ðfT;N1 þ 2fT;N2 ÞO1 þ fT;N2

4

mN
O5

þ fT;N1

�
1

mχ

�
1þ μN

mN

�
O3 þ

1

mN

�
1þ μN

mχ

�
O5

�
;

MTT̃
1;NR ¼ ðf̃T;N1 þ 2f̃T;N2 Þ 2

mN
O11; ðA5Þ

where we have ignored the noncoherent terms in the
NREFT expansion. For the remaining couplings the
momentum dependence is indicated by the relativistic
momentum transfer t, which reduces to t ¼ −q2 up to
relativistic corrections.
Some of the amplitudes in Eq. (A5) receive contributions

that break Galilean invariance. For such terms, which only
appear beyond Oðp3Þ in the chiral expansion, we assume
center-of-mass kinematics, for which the velocity in
Eq. (A3) simplifies to

v⊥ ¼ K
2μN

¼ −
P
2μN

: ðA6Þ

In principle, corrections to this identification would need to
be considered when calculating the nuclear structure
factors, similar to the boost correction in Ref. [132], but
given that these contributions are already highly sup-
pressed, we only keep the center-of-mass component.
The appearance of such Galilean-invariance-breaking terms
at subleading orders in the NR expansion has been pointed
out in Ref. [58]. However, at variance with Ref. [58], we
already find such contributions in the context of the Pauli
form factor F1 in the VV channel. This is reflected by the
corresponding coefficients of O3 and O5. We find similar
discrepancies to Ref. [58] in the NR expansion of the tensor
current. Besides the O3 and O5 coefficients, we also

disagree in that in our expressions the induced form factors
F2;T and F3;T (see Eq. (A8) below) combine to the tensor
magnetic moments, so that the less well determined
individual form factors are not required at this order in
the expansion.
Expressed in terms of nucleon matrix elements we have

fN ¼mN

Λ3

� X
q¼u;d;s

CSS
q fNq − 12πfNQC

0S
g

�
;

f̃N ¼mN

Λ3

� X
q¼u;d;s

CPS
q fNq − 12πfNQC̃

0S
g

�
;

_fN ¼ 1

Λ3

�
CSS
u
1− ξud

2
_σþCSS

d
1þ ξud

2
_σþCSS

s _σs

�
;

fV;p1 ¼ 1

Λ2
ð2CVV

u þCVV
d Þ;

fV;p2 ¼ 1

Λ2
½ð2CVV

u þCVV
d Þκp þ ðCVV

u þ 2CVV
d Þκn

þ ðCVV
u þCVV

d þCVV
s ÞκsN �;

_fV;p1 ¼ 1

Λ2

�
ð2CVV

u þCVV
d Þ

�hr2Eip
6

−
κp
4m2

p

�

þ ðCVV
u þ 2CVV

d Þ
�hr2Ein

6
−

κn
4m2

n

�

þ ðCVV
u þCVV

d þCVV
s Þ

�hr2E;siN
6

−
κsN
4m2

N

��
;

fð2ÞN ¼mχmN

Λ4

�X
q

Cð2Þ
q fð2Þq;N þCð2Þ

g fð2Þg;N

�
;

fT;N1 ¼ 1

Λ2

X
q

fT;Nq CTT
q ; f̃T;N1 ¼ 1

Λ2

X
q

fT;Nq C̃TT
q ;

fT;N2 ¼ 1

Λ2

X
q

κ̃T;Nq CTT
q ; f̃T;N2 ¼ 1

Λ2

X
q

κ̃T;Nq C̃TT
q ; ðA7Þ

and fV;n1 , fV;n2 , _fV;n1 are given by the exchange u ↔ d in
fV;p1 , fV;p2 , _fV;p1 . Finally, f̃V;N1 follows from fV;N1 by
replacing CVV

q → CAV
q . For the axial-vector and pseudo-

scalar matrix elements gNA , g
N
P , and h

N
5 we refer to Ref. [43],

since in the present paper the numerical analysis is
restricted to the coherently enhanced contributions.
The scalar couplings fNq , scalar radii _σ and _σs, as well as

charge radii hr2EiN , hr2E;siN and magnetic moments κN , κsN
are discussed in detail in Ref. [49] (see also Ref. [133] for
the heavy-quark couplings). For strangeness in the vector
channel there is increasing evidence from lattice QCD that
these couplings are extremely small, we take κsN ¼
0.006ð4Þ and hr2E;siN ¼ 0.0012ð9Þfm2 from Ref. [134].
The scalar couplings to u- and d-quarks can be recon-
structed [135] from the pion–nucleon σ-term and input for
the proton–neutron mass difference [136–139]. Here, the
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tension between phenomenology [140–142] and lattice
QCD [143–146] already discussed in Ref. [49] persists.
More recently, the phenomenological determination from
data on pionic atoms [147–151] has been confirmed by an
independent extraction from low-energy pion–nucleon
cross sections [152], making the resolution of the tension
all the more pressing.
The tensor form factors of the nucleon are defined

according to [153,154]

hNðp0Þjq̄σμνqjNðpÞi

¼ ūðp0Þ
�
σμνFq

1;TðtÞ þ
i

mN
ðγμqν − γνqμÞFq

2;TðtÞ

þ i
m2

N
ðPμqν − PνqμÞFq

3;TðtÞ
�
uðpÞ; ðA8Þ

where the tensor charges of the proton fT;pq ¼ Fq;p
1;Tð0Þ have

been recently calculated to high precision in lattice QCD
(evaluated at scale μ ¼ 2 GeV) [155]:

fT;pu ¼ 0.784ð28Þ; fT;ps ¼ −0.0027ð16Þ;
fT;pd ¼ −0.204ð11Þ; ðA9Þ

and the neutron ones follow from isospin symmetry
according to

fT;nu ¼ fT;pd ; fT;nd ¼ fT;pu ; fT;ns ¼ fT;ps : ðA10Þ

The other couplings κ̃T;pq ¼ Fq;p
2;Tð0Þ þ 2Fq;p

3;Tð0Þ, related to

the tensor magnetic moments κT;pq ¼ −2κ̃T;pq , are less well
determined. Lattice QCD information [156] is consistent
with an estimate based on analyticity and unitarity of the
form factors in analogy to Ref. [157], combining the pion
tensor charge [158] with the electromagnetic form factors
of the nucleon [159]. The resulting values κ̃T;pu ¼ −1.3ð5Þ,
κ̃T;pd ¼ −0.7ð3Þ, κ̃T;ps ¼ 0.00ð1Þ [160] indicate that for u-
and d-quarks the induced terms in the tensor decomposition
in Eq. (A8) are actually dominant. As in the vector case,
the strangeness content is very small. In addition, the
known pion tensor charge [158] allows us to calculate the
pion-exchange diagram also in this channel, but, similarly
to the vector current, this contribution is suppressed by
ðN − ZÞ=A due to its isospin structure.
Finally, the spin-2 couplings of the nucleon are given as

moments of nucleon PDFs qðxÞ in complete analogy to
Eq. (10):

fð2Þq;N ¼
Z

1

0

dx x½qðxÞ þ q̄ðxÞ�; ðA11Þ

subject to the same sum rule

X
q

fð2Þq;N þ fð2Þg;N ¼ 1: ðA12Þ

Numerically, this gives for the proton (again at μ ¼ 2 GeV)
[161,162]

fð2Þu;p ¼ 0.346ð6Þ; fð2Þc;p ¼ 0.0088ð3Þ;
fð2Þd;p ¼ 0.192ð5Þ; fð2Þg;p ¼ 0.419ð11Þ;
fð2Þs;p ¼ 0.034ð3Þ; ðA13Þ

while the neutron couplings follow as in Eq. (A10) by
exchanging u and d.

APPENDIX B: MATCHING TO NREFT FOR
SCALAR DARK MATTER

For a spin-0, Standard-Model singlet χ the analysis is
based on the effective Lagrangian

Lχ ¼Lð6Þ
χ þLð7Þ

χ þLð8Þ
χ ;

Lð6Þ
χ ¼ 1

Λ2

�X
q

�
CSS
q þ8π

9
C0S

g

�
χ†χmqq̄q

−
8π

9
C0S

gχ
†χθμμþ

X
q

CVV
q χ†i∂μχq̄γμq

�
;

Lð7Þ
χ ¼ 1

Λ3

X
q

CTT
q i∂μχ†∂νχq̄σμνq;

Lð8Þ
χ ¼ 1

Λ4

�X
q

Cð2Þ
q χ†∂μ∂νχθ̄

μν
q þCð2Þ

g χ†∂μ∂νχθ̄
μν
g

�
; ðB1Þ

where the notation follows closely the spin-1=2 case in
Eq. (3), and for a real scalar we have CVV

q ¼ CTT
q ¼ 0. We

have not included an axial term of the form χ†i∂μχq̄γμγ5q,
because such a contribution reduces to a combination ofO7

and O10 NREFT operators, and is therefore even further
suppressed than the standard SD interaction in the spin-1=2
case. Similarly, we have neglected a tensor operator
with q̄σμνiγ5q.
Most single-nucleon amplitudes come out as in the spin-

1=2 case, up to an additional factor of mχ whenever a
derivative is required in the effective operator, and the
corresponding factors ofΛ. To have the reduced amplitudes
in the same conventions as for spin-1=2, a factor mχ needs
to be removed which leads to
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MSS
1;NR ¼O1

Λ
mχ

fNðtÞ;

MVV
1;NR ¼O1

�
fV;N1 ðtÞþ t

4m2
N
fV;N2 ðtÞ

�

þ 1

mN
O3

�
fV;N2 ðtÞþ1

2

�
1þ μN

mχ

�
fV;N1 ðtÞ

�
;

Mð2Þ
1;NR ¼

3

4
O1f

ð2Þ
N ;

MTT
1;NR ¼

1

Λ
fT;N1

�
2O3þ

t
2mN

O1

�
þ 1

Λ
fT;N2

t
mN

O1; ðB2Þ

where we have kept the same notation for the couplings as
in Eq. (A7), with the understanding that the Wilson
coefficients therein now refer to the operators defined
in Eq. (B1).
In total, the analog of Eq. (7) for spin-0 becomes

cM� ¼ ζ

2

�
Λ
mχ

ðfp � fnÞ þ fV;p1 � fV;n1 þ 3

4
ðfð2Þp � fð2Þn Þ

�
;

_cM� ¼ ζm2
N

2

�
Λ
mχ

ð _fp � _fnÞ þ _fV;p1 � _fV;n1

þ 1

4m2
N
ðfV;p2 � fV;n2 Þ þ 1

2mNΛ
ðfT;p1 � fT;n1 Þ

þ 1

mNΛ
ðfT;p2 � fT;n2 Þ

�
;

cπ ¼ ζ

�
Λ
mχ

ðfπ þ 2fθπÞ −
1

2
fð2Þπ

�
;

cb ¼ ζ

�
Λ
mχ

fθπ þ
1

4
fð2Þπ

�
;

cΦ
″

� ¼ ζ

2

�
fV;p2 � fV;n2 þ 1

2

�
1þ μN

mχ

�
ðfV;p1 � fV;n1 Þ

þ 2mN

Λ
ðfT;p1 � fT;n1 Þ

�
; ðB3Þ

where now ζ ¼ 1ð2Þ for a complex (real) scalar. At this
order in the ChEFT expansion we do not find contributions
from O5;8;11.

APPENDIX C: TWO-BODY STRUCTURE
FACTORS

The two-body θμμ and spin-2 amplitudes given in
Eqs. (22) and (23) can be rewritten according to

Mθ
2;NR ¼ −

fθπ
Mπ

��
gA
2Fπ

�
2 τ1 · τ2σ1 · q1σ2 · q2

ðq21 þM2
πÞðq22 þM2

πÞ
× ð2M2

π − q2Þ

þ
�

gA
2Fπ

�
2

τ1 · τ2σ1 · q1σ2 · q2

×

�
1

q21 þM2
π
þ 1

q22 þM2
π

�

þ 2ðCS þ CTσ1 · σ2Þ
�
; ðC1Þ

Mð2Þ
2;NR ¼ fð2Þπ

4Mπ

��
gA
2Fπ

�
2 τ1 · τ2σ1 · q1σ2 · q2

ðq21 þM2
πÞðq22 þM2

πÞ

× ð2M2
π þ q2Þ −

�
gA
2Fπ

�
2

τ1 · τ2σ1 · q1σ2 · q2

×

�
1

q21 þM2
π
þ 1

q22 þM2
π

�

− 2ðCS þ CTσ1 · σ2Þ
�
; ðC2Þ

where we have used that q ¼ −q1 − q2 and thus

2q1 · q2 ¼ q2 − q21 − q22: ðC3Þ

In both cases most of the first term excluding the q2-
dependent piece can be related toMSS

2;NR, leading to the F π

contribution in Eq. (25). The q2-dependent part can be
absorbed into a redefinition of F b in Eq. (24) to avoid the
introduction of another structure factor. This redefinition
does not change the normalization of F bð0Þ given by the
nuclear binding energy. The remaining term involving pion
propagators can be expressed in terms of

MðiÞ
NN ¼

�
gA
2Fπ

�
2

τ1 · τ2
σ1 ·q1σ2 ·q2

q2i þM2
π

; i¼ 1;2: ðC4Þ

On the other hand, the relativistic corrections to the one-
body θ term and the spin-2 channel read

ΔMθ
1;NR ¼ −

fθπ
Mπ

p2
1 þ p2

2 þ p0
1
2 þ p0

2
2

4mN

× ½δðp1 − p0
1Þ þ δðp2 − p0

2Þ�; ðC5Þ

ΔMð2Þ
1;NR ¼

fð2ÞN

16m2
N
½ðp2

2þp0
2
2−3p2

1−3p0
1
2Þδðp1−p0

1Þ

þðp2
1þp0

1
2−3p2

2−3p0
2
2Þδðp2−p0

2Þ�: ðC6Þ

In the limit q → 0 these amplitudes become proportional to
the kinetic-energy operator T:
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ΔMθ
1;NR ¼ −

2fθπ
Mπ

T;

ΔMð2Þ
1;NR ¼ −

fð2ÞN

2mN
T: ðC7Þ

Summarizing all 1b and 2b contributions we obtain

Mθ
1þ2;NR ¼ fθπ

��
2−

q2

M2
π

�
1

fπ
MSS

2;NR −
1

Mπ
½Mð1Þ

NN þMð2Þ
NN

þ 2ðCS þCTσ1 · σ2Þ� þ
1

fθπ
ΔMθ

1;NR

�
; ðC8Þ

Mð2Þ
1þ2;NR ¼ fð2Þπ

�
−
2M2

πþq2

4M2
π

1

fπ
MSS

2;NR

−
1

4Mπ
½Mð1Þ

NN þMð2Þ
NN

þ2ðCSþCTσ1 ·σ2Þ�þ
1

fð2Þπ

ΔMð2Þ
1;NR

�
: ðC9Þ

In the limit q → 0 we have q1 ¼ −q2, so that the

momentum transfers in Mð1Þ
NN and Mð2Þ

NN become equal
and both can be identified with the pion-exchange part

Vð0Þ
OPE of the leading-order chiral NN potential:

MðiÞ
NN → Vð0Þ

OPE: ðC10Þ

Together with the contact terms in Eqs. (C8) and (C9) we
recover twice the complete leading-order chiral NN poten-
tial VLO

NN .

In the limit q → 0 both ΔMθ
1;NR and ΔMð2Þ

1;NR become
proportional to T, leading in both cases to the linear
combination T þ VLO

NN , that can be renormalized to the
nuclear binding energy at LO order in the chiral expansion.
For the θμμ current in Eqs. (C5) and (22) this conclusion
follows directly from Eq. (C8). On the other hand, the spin-

2 one-body contribution in Eq. (C6) carries a coupling fð2ÞN

that, in general, may differ from fð2Þπ , the coupling of the
two-body term in Eq. (23), see Eqs. (A7) and (8). However,
due to the sum rules in Eqs. (11) and (A12), when all

Wilson coefficients are set equal we have fð2ÞN =mN ¼
fð2Þπ =Mπ , so that these two couplings cancel in the last
term of Eq. (C9) to ensure renormalizability at this order in
ChEFT. Since the comparison of Eqs. (15) and (A13)
shows that the individual spin-2 couplings do not differ
much (especially when considering an isospin average for
the nucleon), we assume that for spin-2 the kinetic-energy
operator aligns as required. Similarly, in Eq. (23) we also
assume that the coefficients of the spin-2 ðN†NÞ2 contact
operators can be determined in the same way, at least up to
higher-order effects.

In practice, once the contribution at q ¼ 0 is renormal-
ized to the nuclear binding energy at LO by adjusting the
contact terms CS and CT , the contributions from ΔMθ

1;NR

and ΔMð2Þ
1;NR to the full structure factors are small. In

addition, while in principle the structure factors could differ
for finite q, due to the different functional form of Eqs. (C5)
and (C6) for q ≠ 0, we find that the results are practically
the same using either expression. In view of the uncer-
tainties from higher orders in the chiral expansion, this
shows that the definition of a single new structure factor is
sufficient. We choose

Mb ¼ −
1

Mπ
½Mð1Þ

NN þMð2Þ
NN þ 2ðCS þ CTσ1 · σ2Þ�

þ 1

fθπ
ΔMθ

1;NR; ðC11Þ

which in the limit q → 0 reduces to

Mb → −
2

Mπ
ðT þ VLO

NNÞ: ðC12Þ

The corresponding response functions in the naive shell
model are

F πðq2Þ ¼
1

2

X
occ

hN1N2jð1 − P12Þj
1

fπ
MSS

2;NRjN1N2i;

F̄ bðq2Þ ¼
1

2

X
occ

hN1N2jð1 − P12ÞjMbjN1N2i; ðC13Þ

where due to Eq. (C12) we have F̄ bð0Þ ¼ −2Eb=Mπ with
the binding energy of the nucleus Eb < 0. In Eq. (24) we

redefine F bðq2Þ ¼ F̄ bðq2Þ − q2

M2
π
F πðq2Þ.

We evaluate the two-body structure factors in Eq. (C13)
in a noninteracting shell model, as described in detail in
Ref. [49], with the multidimensional integrations per-
formed using the CUBA library [163]. For orbitals in
the configuration space of the nuclear shell-model calcu-
lations, the occupation numbers are taken from the full
diagonalization discussed in Sec. III. The final results are
represented by a fit function

F ðuÞ ¼ e−
u
2

Xm
i¼0

ciui: ðC14Þ

For one-body contributions this is an exact analytic form
with known maximal power m, and the overall normali-
zation is set by c0 ¼ A and c0 ¼ Z − N for FMþ and FM

− ,
respectively. The expansion is organized in the variable
u ¼ q2b2=2, with harmonic-oscillator lengths

b¼
ffiffiffiffiffiffiffiffiffiffi
ℏ

mNω

s
; ℏω¼ð45A−1=3−25A−2=3ÞMeV; ðC15Þ
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that depend on the mass number A of the nucleus. The
functional form in Eq. (C14) proves an efficient represen-
tation of the two-body structure factors as well, but the
optimal maximal power needs to be determined empiri-
cally. Table VI provides the complete list.

APPENDIX D: CHIRALEFT4DM: PYTHON

NOTEBOOK

We strongly encourage current and future analyses of
direct detection experiments to use the structure factors for
the different interaction channels discussed in this manu-
script. For convenience we offer an accompanying PYTHON
package in the form of a JUPYTER notebook, which can be
downloaded from https://theorie.ikp.physik.tu-darmstadt
.de/strongint/ChiralEFT4DM.html. The notebook calcu-
lates both nuclear structure factors and differential recoil
spectra:

dR
dER

¼ ρ

2πmχ
× jF ðq2Þj2 ×

Z
∞

vminðERÞ

fðvÞ
v

d3v; ðD1Þ

including the general response

jF ðq2Þj2 ¼
����X
I¼�

�
cMI −

q2

m2
N
_cMI

�
FM

I ðq2Þ þ cπF πðq2Þ

þ cbF bðq2Þ þ
q2

2m2
N

X
I¼�

cΦ
″

I FΦ″

I ðq2Þ
����2

þ
X

i¼5;8;11

����X
I¼�

ξiðq; vÞcM;i
I FM

I ðq2Þ
����2; ðD2Þ

where ρ and fðvÞ denote the local dark matter density and
velocity distribution, respectively. The notebook gives
results for all possible coherently enhanced couplings of
spin-1=2 and spin-0 WIMPs to one and two nucleons up to
third order in ChEFT, as discussed in the present manu-
script. All stable isotopes of the most relevant nuclear
targets including fluorine, silicon, argon, germanium, and
xenon are available. In addition, our package calculates the
responses based upon the fundamental couplings at the
level of quarks and gluons as incorporated in the respective
Wilson coefficients.

The notebook aims to be self-explanatory and easy-to-
use even for users new to PYTHON. When downloaded from
the website the files are stored in an archive. When
unpacked to a common directory the notebook can be
loaded. In the first part of the notebook, users can specify a
given response and create data sets for both nuclear
structure factors and differential recoil spectra. In the
second part of the notebook, users can set specific values
for the Wilson coefficients that describe the WIMP-quark/
gluon couplings. The notebook generates the correspond-
ing nucleon and pion matrix elements. Finally, the package
yields the response including all channels that contribute to
the choice of Wilson coefficients.
For completeness, we also implemented a routine that

calculates the rate corresponding to the standard halo model
(SHM) [21]. In this way we clarify conventions and
facilitate the use of improved astrophysical input in the
future, as is increasingly becoming available with the Gaia
mission [164], see, e.g., Refs. [165–167]. The SHM is
defined by ρ ¼ 0.3 GeV=cm3 and

fðvÞ ¼ e
−ðvþvEÞ2

v2
0

π3=2v30k
θðvesc − jv þ vEjÞ;

k ¼ erfðzÞ − 2zffiffiffi
π

p e−z
2

; erfðzÞ ¼ 2ffiffiffi
π

p
Z

z

0

dx e−x
2

;

ðD3Þ
where z ¼ vesc=v0, vesc ¼ 544 km=s, v0 ¼ 220 km=s, and
the Earth’s velocity vE ¼ 232 km=s drops out in the
normalization. For the operators considered in the notebook
one needs

gðvminÞ ¼
Z

∞

vmin

fðvÞ
v

d3v

¼ 1

2vEk

�
erfðz0Þ − erfðxmin − ηÞ − 2ffiffiffi

π
p z00e−z2

�
;

g̃ðvminÞ ¼
Z

∞

vmin

vfðvÞd3v

¼ v20
4vEk

ð1þ 2η2Þðerfðz0Þ − erfðxmin − ηÞÞ

þ v20ffiffiffi
π

p
vEk

�
xmin þ η

2
e−ðxmin−ηÞ2 −

xmin − η

2
e−z

02

−
e−z

2

3

�
ðz00 þ xminÞ3 − x3min þ

3

2
z00 þ 3η

þ 6ηðz − z0Þðxmin þ zþ ηÞ
��

; ðD4Þ

where xmin ¼ vmin=v0, η ¼ vE=v0, and

z0 ¼ minðz; xmin þ ηÞ; z00 ¼ z0 þ η − xmin: ðD5Þ

TABLE VI. Maximal power m in Eq. (C14) for each structure
factor and nuclear target considered in this work.

Structure factor F Si Ar Ge Xe

FM
� 2 2 3 4 5

FΦ″

� 1 1 2 3 4
F π 3 3 3 4 5
F b 2 2 3 4 5
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