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The paper presents an extension and a refinement of our previous work on the extraction of the doubly
virtual forward Compton scattering amplitude on the lattice by using the background field technique [1].
The zero frequency limit for the periodic background field is discussed, in which the well-known result is
reproduced. Further, an upper limit for the magnitude of the external field is established for which the
perturbative treatment is still possible. Finally, the framework is set for the evaluation of the finite-volume
corrections allowing for the analysis of upcoming lattice results.
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I. INTRODUCTION

Using the background field technique on the lattice for
the extraction of various hadronic observables has proven
to be extremely efficient. As examples we mention the
measurement of magnetic moments, polarizabilities and
axial-vector matrix elements of baryons and light nuclei in
constant background fields [2–7]. Moreover, nonuniform
background fields have been used for the calculation of the
hadronic vacuum polarization tensor, hadronic form-factors
and the nucleon structure functions, as the fields, which
are periodic in space, allow one to measure current matrix
elements at a given nonzero three-momentum transfer
[8–10]. Different scenarios for implementing periodic
background fields in lattice QCD calculations are considered
in Ref. [11].
In Ref. [1] we described a framework, based on the

background field method, which enables one to extract the
doubly virtual forward Compton scattering amplitude from
lattice QCD calculations (note that later, in Ref. [10], a very
similar formula was given without a derivation, see Eq. (12)
in that paper). Low-energy Compton scattering plays an
indispensable role in probing the electromagnetic structure
of hadrons (for recent work, see Ref. [12]). For example, it
enters the expression for the proton-neutron electromag-
netic mass difference [13], as well as the expression for the

Lamb shift of the muonic hydrogen, which is used to
extract the value of the proton radius (see, e.g., Ref. [14]).
In this paper, we in particular focus on the relevant spin-
independent invariant amplitudes, denoted as T1 and T2,
respectively. The experimental data on the structure func-
tions completely determine the amplitude T2 through
dispersion relations. The fixed-q2 dispersion relation for
the amplitude T1, however, requires a subtraction. Thus, the
subtraction function S1ðq2Þ≡ T1ð0; q2Þ remains the only
input in the calculations, which is not fixed by experimental
data. Its elastic part is essentially given by the Born terms,
but the inelastic piece is known only at the real photon
point q2 ¼ 0 (the low-energy theorem, see, e.g., Ref. [15]).
In the past, there have been attempts to model the

subtraction function, using phenomenological parametriza-
tions [16–18]. However, this type of approach inherently
contains a systematic error, which is very hard to control.
Further, the subtraction function can be extracted from the
Compton scattering amplitude, calculated in the low-energy
EFT of QCD [19–21]. However, here the difficult question
about the convergence of the chiral expansion arises, namely,
up to which value of q2 the results of the chiral expansion
can be trusted. Recently, the authors of Ref. [15] have been
able to determine the subtraction function by invoking the
so-called Reggeon dominance hypothesis, considered first in
Ref. [22]. In particular, it is assumed that the forward
Compton scattering amplitude does not contain any fixed
pole. In Regge theory, such a pole generates an energy-
independent contribution to the amplitude (such as, e.g., local
two-photon couplings in scalar QED). If the fixed poles are
present, the subtraction function, in general, deviates from
the predicted one. In some cases, e.g., the q2-independent
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fixed pole [23], the behavior of the S1ðq2Þ can be also
predicted (see Ref. [24]), and is different from the one
calculated in the absence of the fixed pole.
Hence, lattice QCD provides a model-independent

approach to the verification of the Reggeon dominance
hypothesis. The question whether there is a fixed pole in the
Compton scattering is of conceptual interest and is still open.
In Ref. [1], we considered the case of a nucleon placed

in a static periodic magnetic field B ¼ ð0; 0; B3Þ with B3 ¼
−B cosðωxÞ and ω ¼ ð0;ω; 0Þ. It has been shown that,
for ω ≠ 0, the measurement of the spin-averaged energy
shift of the nucleon in this field allows one to extract the
value of the subtraction function S1ð−ω2Þ at nonzero values
of q2 ¼ −ω2. The relation between these two quantities
takes the form:

δE ¼ ðeBÞ2
4m

S1ð−ω2Þ: ð1Þ

Here, δE denotes the spin-averaged energy shift, and m
stands for the nucleon mass.
The result, obtained in Ref. [1], still leaves room for

improvement. In particular, one should find the answer to
the following questions:

(i) In the limit ω → 0, we arrive at the case of a constant
magnetic field. This case is studied very well, both
analytically and numerically. However, our expres-
sions become singular in this limit, contradicting the
expectations. One needs to understand how this limit
can be approached smoothly.

(ii) Our approach relies on a perturbative expansion of
the energy shift δE in the external field strength B.
What is the radius of the convergence of this
expansion? Note that, for example, in the zero-
frequency limit ω → 0, the radius is equal to zero in
case of a charged particle, since the Landau levels
are formed for any value of B. In Ref. [1], using
heuristic arguments, for a given value of ω, we gave
a very rough estimate of the maximal value of B, for
which the perturbative expansion should still work.
These arguments should be refined in order to obtain
a more reliable result.

(iii) Our expressions were obtained in the infinite-volume
limit. The issue of the finite-volume corrections in the
presence of the external fields is a rather subtle one,
since gauge-invariant nonlocal objects (Wilson lines)
can be formed in a finite volume. For this reason, it
is mandatory to reformulate the problem in a finite
volume from the beginning and to give a consistent
interpretation of the finite-volume result it terms of the
subtraction function, defined in the infinite volume.

The aim of the present paper is to answer the questions
given above. The plan of the paper is as follows. In Sec. II
we give a collection of basic definitions and discuss two
different implementations of the external field on the lattice.
In Secs. III and IV, we give two alternative derivations of

the energy shift formula in the periodic external field,
based on the matching to the nonrelativistic EFT, as well
as the direct derivation within the relativistic framework.
Both settings are complementary to each other. For example,
the first derivation is more intuitive and uses ordinary
quantum-mechanical Rayleigh-Schrödinger perturbation
theory for the energy levels. In particular, the zero-frequency
limitω → 0 aswell as the issues related to the convergence of
the perturbative expansion can be considered more easily in
this formulation. By contrast, the relativistic formulation
allows one to investigate the exponentially suppressed finite-
volume corrections in a direct manner. For completeness,
in the Appendix we give yet another derivation of the
expression for the energy shift, considering the behavior
of the nucleon two-point function at large time separations.

II. DEFINITIONS AND SETUP

A. Basic definitions

The matrix element of the electromagnetic current
between one-nucleon states is given by

hp0; s0jjμð0Þjp; si

¼ ūðp0; s0Þ
�
γμF1ðq2Þ þ iσμνF2ðq2Þ

qν
2m

�
uðp; sÞ: ð2Þ

Here, jμðxÞ is the electromagnetic current, and q ¼ p0 − p,
and pðp0Þ and sðs0Þ are the four-momenta and spin
projections of the initial (final) nucleon, respectively.
Further, F1 and F2 denote the Dirac and Pauli form factors.
The Sachs form factors are defined by

GEðq2Þ ¼ F1ðq2Þ þ
q2

4m2
F2ðq2Þ;

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ: ð3Þ
TheDirac spinors are normalized as ūðp;s0Þuðp;sÞ¼2mδs0s.
The Compton tensor is defined as:

Tμνðp0; s0;p; s; qÞ ¼ i
2

Z
d4xeiq·xhp0; s0jTjμðxÞjνð0Þjp; si;

ð4Þ
where q is the photon momentum. Taking into account
Lorentz invariance, current as well as parity conservation,
one arrives at the well-known decomposition of the matrix
element in Eq. (4) in terms of Tarrach’s amplitudes [25,26].
For our purposes, it is sufficient to consider the process in
the forward direction p0 ¼ p and perform spin-averaging in
Eq. (4):

Tμνðp; qÞ ¼ 1

2

X
s

Tμνðp; s;p; s;qÞ: ð5Þ

The tensor Tμνðp; qÞ is related to the aforementioned
invariant amplitudes T1, T2 through the decomposition
(see, e.g., Ref. [15]):
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Tμνðp; qÞ ¼ T1ðν; q2ÞKμν
1 þ T2ðν; q2ÞKμν

2 ; ð6Þ
where the kinematic structures Kμν

1 ; Kμν
2 read

Kμν
1 ¼ qμqν − gμνq2;

Kμν
2 ¼ 1

m2
fðpμqν þ pνqμÞp · q − gμνðp · qÞ2 − pμpνq2g:

ð7Þ
Here, ν≡ p · q=m.
According to the asymptotic behavior of the structure

functions at large values of the parameter ν, the dispersion
relation for the amplitude T1ðν; q2Þ requires one subtrac-
tion. It is usually performed at ν ¼ 0, and hence the
subtraction function S1 is defined as

S1ðq2Þ ¼ T1ð0; q2Þ: ð8Þ
The function S1ðq2Þ can be formally split in two parts:

S1ðq2Þ ¼ Sel1 ðq2Þ þ Sinel1 ðq2Þ: ð9Þ

The elastic term Sel1 ðq2Þ is associated with the one-nucleon
exchange in the s- and u-channels. The inelastic piece
Sinel1 ðq2Þ is a regular function of q2. We use the same
definition of the elastic part as in Ref. [1]:

Sel1 ðq2Þ ¼ −
4m2

q2ð4m2 − q2Þ ðG
2
Eðq2Þ −G2

Mðq2ÞÞ: ð10Þ

Little information is available on the inelastic part of the
subtraction function Sinel1 ðq2Þ. According to the low-energy
theorem, its value at q2 ¼ 0 is given by

Sinel1 ð0Þ ¼ −
κ2

4m2
−
m
α
βM: ð11Þ

Here, βM denotes the magnetic polarizability of the nucleon,
α ≃ 1=137 is the fine structure constant and κ ¼ F2ð0Þ is
the anomalous magnetic moment of the nucleon. At large
values of q2, the asymptotic behavior of the subtraction
function is fixed by the operator product expansion (see, e.g.,
Refs. [17,27]). Otherwise, it is unknown in the intermediate
kinematic region 0 < −q2 ≲ 2 GeV2, which is amenable to
lattice simulations.

B. External field configuration

In Ref. [1], it was proposed to place the nucleon in the
time-independent periodic magnetic field

B ¼ ð0; 0; B3Þ; B3 ¼ −eB cosðωx2Þ; ð12Þ

where B denotes the strength of the field and the frequency
ω takes nonzero values. The components of the gauge field
AμðxÞ are chosen as follows:

A1 ¼ eB
ω

sinðωx2Þ; A0 ¼ A2 ¼ A3 ¼ 0: ð13Þ

The magnetic flux is quantized in a finite box of size L:

Z
L=2

−L=2
dx1dx2B3ðx2Þ ¼ 6πN; ð14Þ

As discussed in Ref. [11], this quantization condition can be
implemented on the lattice in two different ways. In the first
scenario, the frequency ω is constrained and no constraint is
imposed on the magnetic field strength B. In the second
scenario, the situation is reversed. Hence, we have:

ðaÞ ω ¼ 2πn
L

; n ∈ Znf0g; arbitraryB; ð15Þ

ðbÞ B ¼ 6πN
eL2

ωL=2
sinðωL=2Þ ; N ∈ Znf0g;

arbitrary ω ≠
2πn
L

: ð16Þ

Only the first scenario was considered in Ref. [1]. In the
present paper, we will exploit both quantization possibilities
and demonstrate that the obtained results are quite different.
Obviously, the limit ω → 0 can be directly performed in the
second setting only, whereω is a free parameter, unrelated to
the box size L.

III. NONRELATIVISTIC FRAMEWORK

A. Method

The framework, which is based on the use of the
nonrelativistic EFT, consists of two steps. At the first
stage, one matches the parameters of the nonrelativistic
Lagrangian to the expression of the relativistic two-point
function of the nucleon in an external field. At the next step,
one uses the resulting nonrelativistic Hamiltonian to carry
out the calculation of the spectrum. The advantage of the
method is its transparency: the calculations of the spectrum
are done by using ordinary perturbation theory in quantum
mechanics. The setting is, however, not well suited for the
calculation of the finite-volume corrections, which are
proportional to expð−MπLÞ where Mπ denotes the pion
mass. Within this approach, these corrections should be
included in the couplings of the nonrelativistic Lagrangian
through the matching procedure.
Let us consider the two-point function of the nucleon,

placed in the external field AμðxÞ. The path integral
representation in Minkowski space reads:

h0jTΨðxÞΨ̄ðyÞj0iA

¼
R
DGDqDq̄ΨðxÞΨ̄ðyÞei

R
d4xðLþAμðxÞjμðxÞÞR

DGDqDq̄ei
R

d4xðLþAμðxÞjμðxÞÞ
; ð17Þ
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where the integration over all possible gluon, quark and
antiquark field configurations is performed. Further, jμðxÞ
is the electromagnetic current, built of the quark fields,
and ΨðxÞ denotes the composite nucleon field operator in
QCD. Expanding the right-hand side of Eq. (17) up to and
including OðA2Þ, one obtains

h0jTΨðxÞΨ̄ðyÞj0iA
¼ h0jTΨðxÞΨ̄ðyÞj0i0 þ

i
1!

Z
d4zAμðzÞ

× h0jTΨðxÞΨ̄ðyÞjμðzÞj0i0
þ i2

2!

Z
d4z1d4z2Aμðz1ÞAνðz2Þ

× h0jTΨðxÞΨ̄ðyÞjμðz1Þjνðz2Þj0i0 þ � � � ; ð18Þ
where the subscript “0” refers to the quantities evaluated in
QCD without any external field, and we have used the fact
that h0jjμðxÞj0i0 ¼ 0. Note that the expansion in Eq. (18) is
written down for connected matrix elements (the subscript
“conn” is omitted everywhere for brevity).
In the above quantities, the nucleons are in general off

the mass shell. Performing the Fourier transform in
Eq. (18), amputating the external nucleon legs, and putting
the external nucleons on the mass shell, we see that the
nucleon electromagnetic vertex hp0; s0jjμð0Þjp; si emerges
at order A. At order A2, the Compton tensor, defined in
Eq. (4), is obtained from the matrix element h0jTΨðxÞΨ̄ðyÞ
jμðz1Þjνðz2Þj0i0. Note that, in general, the described
procedure is equivalent to replacing the nucleon fields
ΨðxÞ and Ψ̄ðyÞ by the out- and ingoing nucleon states,
hp0; s0j and jp; si respectively. This fixes the overall
normalization of the quantity we are considering below.

B. Matching

The first few terms of the effective Lagrangian, which
describe the interaction of the nucleon with an external
electromagnetic field, are given by:

Leff ¼ ψ†
�
iDt −mþ D2

2m
þ � � �

�
ψ −

μ

e
ψ†σ ·Bψ

þ 2π

e2
ψ†ðαEE2 þ βMB2Þψ þ � � � ; ð19Þ

where the ellipses denote higher order termswith derivatives,

Dt ¼ ∂t − igA0; D ¼ ∇þ igA: ð20Þ

Here, ψðxÞ denotes the two-component nucleon field, μ
is the magnetic moment and αE, βM are the electric and
magnetic polarizabilities, respectively. The coupling constant
g takes the values g ¼ 0;þ1 for the neutron and proton,
respectively, and E, B are the electric and magnetic fields
(in order to simplify the notations, we include the factor e in

the definition of the vector-potential Aμ). The NRQED
Lagrangian at order m−4 is given, e.g., in Ref. [28].
If the properties of a nucleon at rest are calculated, it

suffices to write down only the first few terms in the
Lagrangian. However, we are studying the nucleon in a
periodic field, with ω corresponding to the magnitude of
the momentum transfer from the field to the nucleon.
Consequently, we have to retain all terms in the derivative
expansion of the Lagrangian given by Eq. (19). In this case,
the exact relativistic dispersion relation for the energy of
the free nucleon with the three-momentum p, wðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, is satisfied.

An important remark is in order. In the infinitevolume, one
is allowed to use partial integration in the Lagrangian. The
same is true in a finite volume, if all fields (including the
external electromagnetic field) are subject to periodic boun-
dary conditions, since the surface terms vanish in this case.
The above remark will be relevant, if the realization of the
external field is carried out according to the scenario (b) from
Sec. II B: the Lagrangians,which differ only by surface terms
and lead to the same amplitudes in the matching condition,
might yield a different spectrum in the finite volume. Bearing
this in mind, we must for instance ensure that all terms of the
Lagrangian that wewrite down are explicitly gauge-invariant
(not only up to the surface terms), otherwise, one is not
guaranteed that the resulting finite-volume spectrum is gauge
invariant. Note also that we did not pay special attention to
this issue in our previous paper [1], where it was anyway not
relevant, since only the scenario (a) was considered.
Taking the above issue into account, belowwewrite down

the explicit nonrelativistic Lagrangian, describing the
nucleon in an external field up-to-and-including OðA2Þ in
this field. Note also that we change the normalization of the

fermion field by a factor ð2WÞ1=2 with W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − D2

p
as

compared to Eq. (19), in order to ensure that the free one-
nucleon states obey the relativistic normalization condition
(see, e.g., Refs. [29,30]). The Lagrangian takes the following
form:

Leff ¼ L0 þ L1 þ L2 þ � � � : ð21Þ

Here,

L0 ¼ ψ†ð2WÞ1=2ðiDt −WÞð2WÞ1=2ψ ; ð22Þ

L1 ¼
X∞
m;n¼0

½∂μ1 � � � ∂μnE
jðxÞ�

× ½ψ†
s0 ðxÞDi1

↔

� � �Dim
↔

Γj;μ1���μn;i1…im
E;s0s ψ sðxÞ�

þ
X∞
m;n¼0

½∂μ1 � � � ∂μnB
jðxÞ�

× ½ψ†
s0 ðxÞDi1

↔

� � �Dim
↔

Γj;μ1���μn;i1…im
B;s0s ψ sðxÞ� ð23Þ
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and

L2 ¼
X∞

m;n;k¼0

½∂μ1 � � � ∂μnE
jðxÞ�½∂ν1 � � � ∂νkE

lðxÞ�½ψ†
s0 ðxÞDi1

↔

� � �Dim
↔

Πjl;μ1���μn;ν1���νk;i1…im
EE;s0s ψ sðxÞ�

þ
X∞

m;n;k¼0

½∂μ1 � � � ∂μnE
jðxÞ�½∂ν1 � � � ∂νkB

lðxÞ�½ψ†
s0 ðxÞDi1

↔

� � �Dim
↔

Πjl;μ1���μn;ν1���νk;i1…im
EB;s0s ψ sðxÞ�

þ
X∞

m;n;k¼0

½∂μ1 � � � ∂μnB
jðxÞ�½∂ν1 � � � ∂νkB

lðxÞ�½ψ†
s0 ðxÞDi1

↔

� � �Dim
↔

Πjl;μ1���μn;ν1���νk;i1…im
BB;s0s ψ sðxÞ�; ð24Þ

where ΓE=B and ΠEE=EB=BB denote the pertinent combina-
tions of the effective couplings with the invariant tensors
like gμν or εμναβ and Pauli matrices for the spin (in the
following, for brevity, we shall refer to ΓE=B and ΠEE=EB=BB

merely as to the effective couplings). The Latin indices run
from 1 to 3 (only space derivatives), whereas the Greek
indices run from 0 to 3. The derivatives in the square
brackets act only on the function within the brackets and

ψ†Di
↔

ψ ≡ ψ†ð−∂⃖i þ ∂⃗i þ 2igAiÞψ : ð25Þ
Also, as a convention, the values m, n, k ¼ 0 correspond to
no derivatives in Eqs. (23), (24). Expanding explicitly in
powers of the external field A and using partial integration
and the equations of motion, one may rewrite the above
Lagrangian in a simpler form, already displayed in Ref. [1].

L ¼ L̄0 þ L̄1 þ L̄2 þ � � � ; ð26Þ
where

L̄0 ¼ ψ†2wði∂t − wÞψ ; w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ∇2

p
; ð27Þ

whereas

L̄1 ¼
X∞
m;n¼0

AμðxÞ½∂i1 � � � ∂inψ
†
s0 ðxÞ�

× Γi1…in;j1���jm;μ
s0s ½∂j1 � � � ∂jmψ sðxÞ�;

L̄2 ¼
X∞

l;m;n¼0

AνðxÞ½∂μ1 � � � ∂μlAμðxÞ�

× ½∂i1 � � � ∂inψ
†
s0 ðxÞ�Πi1���in;j1���jm;μ1…μl;μν

s0s

× ½∂j1…∂jmψ sðxÞ�: ð28Þ
Here, the effective couplings Γ and Π are the linear com-
binations of the couplings appearing in Eqs. (22)–(24). This
form of the effective Lagrangian is better suited for carrying
out the matching to the relativistic amplitudes. For exam-
ple, the couplings Γ should be matched to the current
matrix element in Eq. (2). Calculating the same vertex
function in the effective field theory with the Lagrangian
L̄1, we get

X∞
m;n¼0

ð−ip0Þi1…ð−ip0ÞinðipÞj1…ðipÞjmΓ
i1…in;j1…jm;μ
s0s

¼ hp0; s0jjμð0Þjp; si: ð29Þ

This means that, expanding the nucleon form factor in a
Taylor series in p and p0, one can determine all coefficients
Γi1…in;j1…jm;μ
s0s . The matching at OðAÞ is thus complete.
The matching at OðA2Þ proceeds along a similar pattern.

The second-order term in the expansion of the relativistic
amplitude, given in Eq. (18), on the mass shell can be
written in the following form:

M ¼
Z

d4q
ð2πÞ4 d

4z1d4z2e−iqz1þiðp0−pþqÞz2Aμðz1Þ

× Aνðz2ÞTμνðp0; s0;p; s; qÞ; ð30Þ

where Tμνðp0; s0;p; s; qÞ is the Compton tensor defined in
Eq. (4). On the other hand, in the nonrelativistic theory,
there are two contributions at orderOðA2Þ:M ¼ M1 þM2.
The tree level contributionM1 is given by the second order
Lagrangian L̄2:

M1 ¼
X∞

l;m;n¼0

Z
d4q
ð2πÞ4 d

4z1d4z2e−iqz1þiðp0−pþqÞz2Aμðz1Þ

× Aνðz2Þð−ip0Þi1…ð−ip0ÞinðipÞj1…ðipÞjm
ðiqÞμ1…ðiqÞμlΠ

i1…in;j1…jm;μ1…μl;μν
s0s : ð31Þ

The second iteration of the Lagrangian L̄1 gives another
term, M2, with

M2 ¼
Z

d4q
ð2πÞ4 d

4z1d4z2e−iqz1þiðp0−pþqÞz2Aμðz1ÞAνðz2Þ

×Uμνðp0; s0;p; s; qÞ; ð32Þ

where the tensor Uμνðp0; s0;p; s; qÞ is given by the sum of
the nucleon pole terms:
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Uμνðp0;s0;p;s;qÞ

¼
P

σhp0;s0jjμð0Þjp0 þq;σihp0 þq;σjjνð0Þjp;si
4wðp0 þqÞðwðp0 þqÞ−wðp0Þ−q0− i0Þ

þ
P

σhp0;s0jjνð0Þjp−q;σihp−q;σjjμð0Þjp;si
4wðp−qÞðwðp−qÞ−wðpÞþq0− i0Þ : ð33Þ

Note that, in order to derive the above expression, the
matching at OðAÞ has been used.
Finally, the matching condition at OðA2Þ reads:

X∞
l;m;n¼0

ð−ip0Þi1…ð−ip0ÞinðipÞj1…ðipÞjmðiqÞμ1…ðiqÞμl

× Πi1…in;j1…jm;μ1…μl;μν
s0s

¼ Tμνðp0; s0;p; s; qÞ −Uμνðp0; s0;p; s; qÞ: ð34Þ

It is seen that the low-energy constants Πi1…in;j1…jm;μ1…μl;μν
s0s

are uniquely determined by the nucleon pole-subtracted
Compton scattering amplitude in QCD.
An important remark is in order. The aim of the matching

is to determine the couplings Γ and Π, which encode the
physics at short distances. It can be carried out in the
infinite volume, where no specific care about the quantiza-
tion of the magnetic flux should be taken. The latter will be,
however, important in the calculation of the energy shift.

C. Perturbation theory for the energy levels

In the previous section, an effort was made to match the
relativistic and nonrelativistic theories at order A2. In this
section, we shall be rewarded for this effort, using the
resulting nonrelativistic Lagrangian for the calculation
of the energy spectrum of the nucleon in an external
field. Also, up to this moment, we have not specified the
external field. Here we assume that Aμ is the static field
described in Sec. II B and the scenario (a) is chosen.
Stationary energy levels exist in such background field
configurations.
Consider the canonical Hamiltonian H, which is

obtained from the nonrelativistic Lagrangian L. In order
to arrive at the nonrelativistic normalization of states,
used in quantum mechanics, it is convenient to rescale
back the nucleon field, entering in this Hamiltonian,
as ψ → ð2wÞ−1=2ψ . Further, we define the quantum-
mechanical Hamiltonian H, which is given by the matrix
element of H between the free one-nucleon states. H is a
differential operator, which acts on the nucleon wave
function:

H ¼ H0 þH1 þH2 þOðA3Þ; ð35Þ

where

ðH0Þs0s ¼ wð∇⃗Þδs0s;

ðH1Þs0s ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2wð∇⃖Þ
q X∞

m;n¼0

∂⃖i1…∂⃖inΓ
i1…in;j1…jm;μ
s0s

× AμðxÞ∂⃗j1…∂⃗jm

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wð∇⃗Þ

q ;

ðH2Þs0s ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2wð∇⃖Þ
q X∞

l;m;n¼0

∂⃖i1…∂⃖inΠ
i1…in;j1…jm;μ1…μl;μν
s0s

× ½∂⃗μ1…∂⃗μlAμðxÞ�AνðxÞ∂⃗j1…∂⃗jm

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wð∇⃗Þ

q :

ð36Þ

Note that H is a 2 × 2 matrix in spin space.
The wave function of the nucleon in the external field

obeys the Schrödinger equation:

Hss0ψn;s0 ðxÞ ¼ Eψn;sðxÞ; ð37Þ

where the ψn;sðxÞ denote stationary solutions in a finite
volume, satisfying periodic boundary conditions. The eigen-

functions ψ ð0Þ
n;sðxÞ and the eigenvalues wðknÞ of the unper-

turbed Hamiltonian H0 satisfy the equation

ðH0Þss0ψ ð0Þ
n;s0 ðxÞ ¼ wðknÞψ ð0Þ

n;sðxÞ: ð38Þ

The unperturbed spectrum has the form

wðknÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

n

q
; kn ¼

2πn
L

; n ∈ Z3; ð39Þ

and the normalized solutions are given by

ψ ð0Þ
n;sðxÞ≡ ⟪xjkn; s⟫ ¼ 1

L3=2 e
iknxχs;

⟪km; s0jkn; s⟫ ¼ δmnδs0s: ð40Þ

Here, we have introduced a double-bracket notation that is
different from the relativistic case. Namely, jkn; s⟫ denotes
the state vector in the nonrelativistic theory, which corre-
sponds to the unperturbed solution.
Next, we apply perturbation theory in order to calculate

the shift of the ground state in the external field. By doing
this, we implicitly assume that the structure of the spectrum
is not changed by the background field which is sufficiently
small. Below, we shall put this condition under scrutiny.
Let us start from the ground state energy shift at order A.

The unperturbed spectrum is degenerate (the same energy
for both spin projections), so the perturbation theory for the
degenerate levels should be applied. As is well known (see,
e.g., Ref. [31]), the first-order energy shift is the solution of
the secular equation:
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detðVs0s − δEð1Þδs0sÞ ¼ 0; ð41Þ

where Vs0s ¼ ⟪0; s0jH1j0; s⟫.
The matrix element of the operator H1 is given by

⟪p0; s0jH1jp; s⟫

¼ −
1

L3

Z
L=2

−L=2
d3xe−ip

0x 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wð∇⃖Þ

q X∞
m;n¼0

∂⃖i1…∂⃖in

× Γi1…in;j1…jm;μ
s0s AμðxÞ∂⃗j1…∂⃗jm

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wð∇⃗Þ

q eipx:

¼ −
Ãμðp − p0Þ

L3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4wðp0ÞwðpÞp X∞

m;n¼0

ð−ip0Þi1…ð−ip0Þin

× ðipÞj1…ðipÞjmΓ
i1…in;j1…jm;μ
s0s : ð42Þ

Here, ÃμðqÞ denotes the Fourier transform of the field
Aμðx; 0Þ

ÃμðqÞ ¼
Z

L=2

−L=2
d3xeiqxAμðx; 0Þ; ð43Þ

which, for the field configuration described in Eq. (13),
gives

Ã1ðqÞ ¼ eB
2iω

L3½δq;−ω − δq;ω�; Ã0 ¼ Ã2 ¼ Ã3 ¼ 0;

ω ¼ ð0;ω; 0Þ ≠ 0: ð44Þ
The sum in Eq. (42) has precisely the same form as in the
matching condition at OðAÞ, Eq. (29). Accordingly, the
matrix element of the operator H1 takes the form:

⟪p0; s0jH1jp; s⟫ ¼ −
hp0; s0jj1ð0Þjp; siffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4wðp0ÞwðpÞp 1

L3
Ã1ðp − p0Þ:

ð45Þ
Setting p ¼ p0 ¼ 0 in Eq. (45) and taking into account that
ω ≠ 0, it is seen that the matrix elements Vss0 vanish:

Vss0 ¼ 0: ð46Þ
Thus, there is no first-order correction to the energy shift:

δEð1Þ ¼ 0: ð47Þ
As expected, this result follows from the three-momentum
conservation at the vertex of the three-point function. We
again stress that it holds only forω ≠ 0. Note also that, since
the off-diagonal matrix elements vanish as well, the correct
wave functions at this order are still given by Eq. (40).
The second-order contribution to the energy shift can be

found again from the secular equation, which differs from
Eq. (41) by the replacement

Vs0s →
X
kn≠0

X
σ

⟪0; s0jH1jkn; σ⟫⟪kn; σjH1j0; s⟫
wð0Þ − wðknÞ

þ ⟪0; s0jH2j0; s⟫: ð48Þ

The first term emerges from the second iteration of H1 and
another one is the matrix element ofH2. The spin-averaged
energy correction at OðB2Þ consists of two pieces:

1

2

X
s

δEð2Þ
s ¼ 1

2

X
s

ðδE0
s þ δE00

s Þ; ð49Þ

where

δE0
s ¼

X
kn≠0

X
σ

⟪0; sjH1jkn; σ⟫⟪kn; σjH1j0; s⟫
wð0Þ − wðknÞ

;

δE00
s ¼ ⟪0; sjH2j0; s⟫: ð50Þ

The first term is evaluated by using Eqs. (44), (45). Taking
into account the fact that wð0Þ ¼ m, we obtain:

δE0
s¼

1

4m

�
eB
ω

�
2X
kn≠0

X
σ

hp̂;sjj1ð0Þjkn;σihkn;σjj1ð0Þjp̂;si
4wðknÞðm−wðknÞÞ

× ½δkn;−ωþδkn;ω�; ð51Þ

where p̂ ¼ ðm; 0Þ. Performing the summation over kn,
we get:

δE0
s ¼

ðeBÞ2
8mω2

½FðωÞ þ Fð−ωÞ�; ð52Þ

where the quantity FðωÞ reads

FðωÞ ¼
X
σ

hp̂; sjj1ð0Þjp̂þ q̂; σihp̂þ q̂; σjj1ð0Þjp̂; si
2wðωÞðm − wðωÞÞ ;

q̂ ¼ ð0;ωÞ: ð53Þ

For the second piece we need to evaluate the matrix element
of the operator H2:

⟪p0; s0jH2jp; s⟫ ¼ −
1

L3

Z
L=2

−L=2
d3xe−ip

0x 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wð∇⃖Þ

q ð54Þ

×
X∞

l;m;n¼0

∂⃖i1…∂⃖inΠ
i1…in;j1…jm;μ1…μl;μν
s0s

× ½∂μ1…∂μlAμðxÞ�AνðxÞ

× ∂⃗j1…∂⃗jm

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wð∇⃗Þ

q eipx: ð55Þ

The integration leads to the expression
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⟪p0;s0jH2jp;s⟫¼−
1

L3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4wðp0ÞwðpÞp

×
X∞

l;m;n¼0

ð−ip0Þi1…ð−ip0ÞinðipÞj1…ðipÞjm

×Πi1…in;j1…jm;μ1…μl;μν
s0s Iμ1…μl;μν; ð56Þ

where the integral Iμ1…μl;μν reads

Iμ1…μl;μν ¼
Z

L=2

−L=2
d3xeiqx½∂μ1…∂μlAμðxÞ�AνðxÞ: ð57Þ

If q ¼ 0, this integral has a nonzero value for μ1 ¼ � � � ¼
μl ¼ 2, μ ¼ ν ¼ 1 and for even l,

I2…2;11 ¼
L3

2

�
eB
ω

�
2

ðiωÞl; l ¼ 0; 2;…: ð58Þ

Inserting this expression into Eq. (56), one gets

⟪p;sjH2jp;s⟫¼−
1

4wðpÞ
�
eB
ω

�
2

×
X∞

l;m;n¼0

ð−ipÞi1…ð−ipÞinðipÞj1…ðipÞjm

× ðiωÞ…ðiωÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
l copies

Πi1…in;j1…jm;μ1…μl;11
ss : ð59Þ

Further, using the matching condition at OðA2Þ in Eq. (34),
and setting p ¼ 0, we see that the expression for the second
energy correction δE00

s takes a compact form:

δE00
s ¼ −

1

4m

�
eB
ω

�
2

½T11ð0; s; 0; s; q̂Þ −U11ð0; s; 0; s; q̂Þ�;

ð60Þ

where q̂ ¼ ð0;ωÞ.
It remains to put all the pieces together. Noting that the

quantity U11ð0; s; 0; s; q̂Þ, defined by Eq. (33), is exactly
equal to − 1

2
½FðωÞ þ Fð−ωÞ�, we finally arrive at the

expression of the spin-averaged energy shift of the ground
state, derived first in Ref. [1]:

δE ¼ −
1

4m

�
eB
ω

�
2 1

2

X
s

T11ð0; s; 0; s; q̂Þ þOðB3Þ

¼ ðeBÞ2
4m

T1ð0;−ω2Þ þOðB3Þ: ð61Þ

D. The zero-frequency limit

The Eq. (61) does not posses a smooth zero-frequency
limit. This is seen from the fact that, e.g., the quantity
T1ð0;−ω2Þ includes the elastic contribution that diverges in

this limit as 1=ω2. On the other hand, the result for the
energy shift in the constant field is well known: it is
finite and is proportional to the pole-subtracted part of the
forward Compton amplitude. In this section, we shall
discuss this apparent contradiction.
Let us start with the energy shift at OðAÞ. As the

frequency of the magnetic field tends to zero, the field
approaches a constant value and the first-order correction to
the energy shift does not vanish anymore. It is immediately
seen that approaching smoothly the limit ω → 0 is not
possible in the scenario (a), where ω is quantized, accord-
ing to Eq. (15) so that ω is either zero from the beginning or
not. If ω ≠ 0, then the energy shift of the ground state,
caused by the perturbation Hamiltonian in Eq. (45), is
strictly zero. Consequently, one has to turn to scenario (b).
Here, one can immediately visualize the problem with the
nonvanishing surface terms, which were mentioned above.
For example, the matrix element of the current, entering
Eq. (45), has the following representation:

hp0; s0jjkð0Þjp; si ¼ δs0sða1ðp0 þ pÞk þ a2qkÞ
þ iεkimða3σms0sqi þ a4σms0sðp0 þ pÞi
þ a5σls0sðp0 þ pÞlqiðp0 þ pÞmÞ;

ð62Þ

where

a1 ¼N

�
ðwðp0ÞþwðpÞþ 2mÞF1ðq2Þ−

q2

2m
F2ðq2Þ

�
;

a2 ¼Nðwðp0Þ−wðpÞÞ
�
−F1ðq2Þþ

wðp0ÞþwðpÞ
2m

F2ðq2Þ
�
;

a3 ¼−N
�
ðwðp0ÞþwðpÞþ 2mÞF1ðq2Þ

þN−2=2þ 2p0p
2m

F2ðq2Þ
�
;

a4 ¼Nðwðp0Þ−wðpÞÞF1ðq2Þ;

a5 ¼
1

2m
NF2ðq2Þ; ð63Þ

and

N ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðwðp0Þ þmÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðwðpÞ þmÞp : ð64Þ

In the matching procedure, which is carried out in the
infinite volume, we always have q ¼ p0 − p and no
ambiguity arises. The same is true, if the electromagnetic
field potential obeys periodic boundary conditions, sce-
nario (a): in this case, the Dirac delta function, correspond-
ing to the three-momentum conservation, is replaced by the
Kronecker delta-symbol. However, in case of a generic ω,
an ambiguity arises in the calculation of the energy shift,
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since the integration over the three-space does not lead to
the Kronecker delta and the three-momenta are no longer
conserved. In order to visualize the problem, consider,
for instance, the case of the proton where F1ð0Þ ¼ 1 and

F2ð0Þ ¼ κ is the anomalous magnetic moment. It suffices
to retain only the terms which are linear in the three-
momenta in the expression of the matrix element of the
Hamiltonian H1, given by Eq. (45):

⟪p0; s0jH1jp; s⟫ ¼ −
1

2mL3
ðδs0sðp0 þ pÞk − ið1þ κÞεkimqiσms0sÞÃkðqÞ þ � � �

¼ eB
4ωmL

ðδs0sðp0 þ pÞ1 − ið1þ κÞqσ3s0sÞ
�
eiðωþqÞL

2 − e−iðωþqÞL
2

ωþ q
þ e−iðω−qÞL2 − eiðω−qÞL2

ω − q

�
þ � � � ; ð65Þ

where q ¼ ð0; q; 0Þ. Assuming now p0 ¼ p ¼ 0 in this
expression and then letting ω → 0 leads to the vanishing
matrix element for any nonzero ω. On the other hand, using

partial integration, one obtains εkimqiÃkðqÞ ¼ −iBmðqÞ,
where B is the magnetic field, and the matrix element of
the Hamiltonian takes the form:

⟪p0; s0jH1jp; s⟫ ¼ −
1

2mL3
δs0sðp0 þ pÞkÃkðqÞ þ 1þ κ

2mL3
σks0sB̃

kðqÞ

¼ eB
4ωmL

δs0sðp0 þ pÞ1
�
eiðωþqÞL

2 − e−iðωþqÞL
2

ωþ q
þ e−iðω−qÞL2 − eiðω−qÞL2

ω − q

�

þ ið1þ κÞeB
4mL

σ3s0s

�
eiðωþqÞL

2 − e−iðωþqÞL
2

ωþ q
−
e−iðω−qÞL2 − eiðω−qÞL2

ω − q

�
þ � � � : ð66Þ

This expression does not vanish anymore and, in the limit
ω → 0, yields the well-known result for the first-order
energy level splitting in the constant magnetic field. The
reason for this inequivalence is immediately seen: in case of
an external field, which does not obey periodic boundary
conditions, the 3-momentum conservation is not guaran-
teed, and the equality q ¼ ω does not hold anymore. At
threshold, the vector q vanishes, but the vector potential
contains the factor 1=ω and the result depends on the way
the limit is performed. Indeed, since q is always quantized,
the difference between Eqs. (65) and (66) is proportional to

hðωÞ ¼ eiω
L
2 − e−iω

L
2

ω
: ð67Þ

The quantity hðωÞ ¼ 0 if ω ¼ ð2π=LÞn is quantized. On
the other hand, hðωÞ → iL for a fixed L and ω → 0.
It can be also seen that the above ambiguity disappears, if

an explicitly gauge-invariant Lagrangian, defined in
Eqs. (21)–(24), is used from the beginning. The Eq. (66),
which leads to the correct result in the zero-frequency limit, is
directly obtained by using the gauge-invariant Lagrangian
without performing the partial integration.
The situation is pretty much the same in case of the

second-order energy shift. Below, for simplicity, we shall
consider the case of the neutron only. Further, we shall
stick to the particular field configuration, described in
Sec. II B. The nucleon pole contribution to the energy shift

[the analogue to Eq. (51)] in the case of the external
field that does not obey periodic boundary conditions, is
given by

δE0
s ¼

ðeBÞ2
4m

X
kn≠0

X
σ

hp̂; sjj1ð0Þjkn; σihkn; σjj1ð0Þjp̂; si
4wðknÞðm − wðknÞÞ

f2

× ðkn;ωÞ; ð68Þ

where

fðq;ωÞ ¼ 1

ωL3

Z
L=2

−L=2
d3xeiqxðeiωx − e−iωxÞ: ð69Þ

It is seen that, in case of the periodic field, this factor does
not reduce to the Kronecker delta-symbol, corresponding
to the conservation of the total three-momentum. In the
limit ω → 0 the above expression simplifies considerably,
and we have

f2ðkn;ωÞ →
4

k2
n
δk⊥

n ;0; ð70Þ

where k⊥
n denotes the components of the vector kn,

perpendicular to the vector ω.
The expression for the matrix elements, entering

Eq. (68), can be read off from Eqs. (62) and (63). First
of all, because the three-momentum, perpendicular to the
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direction of ω is conserved, only the terms that contain a3
and a4 can potentially contribute. Further, comparing
Eqs. (65) and (66), it is clear that using the gauge-invariant
Lagrangian (23) in our case boils down to the following
heuristic prescription: write down the vertices in terms of
two linearly independent vectors p0 þ p and q ¼ p0 − p,
and replace everywhere q through ω as if the three-
momentum was conserved. Now, one can ensure that the
contributions from both terms, containing either a3 or a4,
vanish in the limit ω → 0. Indeed, as seen from Eq. (62),
the term with a3 contains q, which is eventually replaced by
ω and the limit ω → 0 is performed afterwards. Further,
using Eq. (63), one sees that a4 is proportional to
wðp0Þ − wðpÞ or, equivalently, to qðp0 þ pÞ. This expres-
sion also vanishes, when q is replaced by ω and the limit
ω → 0 is performed (we remind the reader that the Fourier
transform A1ðqÞ stays finite for a nonzero q and ω → 0).
Hence, the entire pole term does not contribute to the
energy shift in the limit ω → 0, and the latter is given solely
by the contact contribution:

δE00
s ¼ ⟪0; sjH2j0; s⟫ ¼ −

1

2mL3
Π33

BB;ss

Z
L=2

−L=2
d3xB2ðxÞ →

−
ðeBÞ2
2m

Π33
BB;ss: ð71Þ

Only a single coupling Π33
BB;ss contributes in this limit, since

the derivative terms givevanishing contributions.Comparing
the first term in the expansion of Eq. (24) to Eq. (19) and
taking into account the different normalization of the nucleon
field in these two Lagrangians, one immediately sees that
Π33

BB;ss is given by the magnetic polarizability

Π33
BB;ss ¼

mβM
α

ð72Þ

and, thus, the standard formula for the spin-averaged energy
shift δE ¼ −2πβMB2 is reproduced in the limit ω → 0
(note that δE00

s , given by the above expression, does not
depend on the spin orientation).
To summarize this part, we note that, in order to perform

a smooth zero-frequency limit, one has to use the realiza-
tion (b) of the external field on the lattice, in which the
frequency ω is not quantized. Using this realization for a
finite ω, however, is not very convenient. Apart from the
subtleties, arising in the treatment of the surface terms, the
final expression for the energy shift is rather complicated
and simplifies only in the limit ω → 0. For this reason, in
the following we stick to the scenario (a).

E. Landau levels

Here we consider how the Landau levels emerge from
the periodic potential in the zero frequency limit ω → 0.
Further, we give an estimate for the maximum value of the

field strength B, for which our method still works (note that
a crude estimate was provided already in our first paper
[1]). In order to simplify the discussion, we merely discard
the whole string of nonminimal couplings of the (charged)
nucleon to the external field, since they only give correc-
tions to the Landau levels (in the zero frequency limit).
We look for a stationary solution of the Dirac equation

(see, e.g., [32]):

�
i∂ þ g=A −m −

κ

4m
σμνFμν

�
ψðxÞ ¼ 0; ð73Þ

where Fμν ¼ ∂μAν − ∂νAμ denotes the electromagnetic
field strength tensor and g ¼ þ1, 0 for the proton and
the neutron, respectively. Writing the wave function ψ as

ψðx; tÞ ¼ e−iEt
�
FðxÞ
GðxÞ

�
; ð74Þ

we obtain:

�
E −mþ κ

2m
σ · B

�
F ¼ σðpþ gAÞG ð75Þ

�
Eþm −

κ

2m
σ · B

�
G ¼ σðpþ gAÞF; ð76Þ

with p ¼ −i∇. Further, it is convenient to consider the
nonrelativistic limit, in which the mass m is the largest
term on the left-hand side (l.h.s.) of (76). Assuming that
eB ≪ m2, the function G can be easily expressed from
Eq. (76)

G ≈
1

2m
σðpþ gAÞF; ð77Þ

and hence one gets an equation for FðxÞ:

½ðpþ gAÞ2 − ðgþ κÞσ ·B�FðxÞ ¼ ðE2 −m2ÞFðxÞ: ð78Þ

For the field configuration given in Eq. (12), the solution
FðxÞ can be searched by using the ansatz

FðxÞ ¼ eiðp1x1þp3x3Þfðx2Þ; ð79Þ

where p1, p3 are the conserved components of the three-
momentum, and f is also an eigenvector of the σ3 matrix:

σ3f ¼ αf; α ¼ �1: ð80Þ

Using now the periodic field configuration from Eqs. (12)
and (13), Eq. (78) takes the form
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�
−

d2

dx22
þ e2g2B2

ω2
sin2ðωx2Þ þ αðgþ κÞeB cosðωx2Þ

	
fðx2Þ

¼ ðE2 −m2Þfðx2Þ; α ¼ �1: ð81Þ

wherewe have set p1 ¼ p3 ¼ 0 to focus on the ground state.
Let us first consider the case of the proton with g ¼ 1.

Introducing a new variable z ¼ ωx2=2, this equation can be
brought to the standard form of the Whittaker-Hill equation:�

d2

dz2
þ aþ 2p cosð4zÞ − 2q cosð2zÞ

	
fðzÞ ¼ 0; ð82Þ

where

a ¼ 4

ω2

�
E2 −m2 −

e2B2

2ω2

�
; q ¼ α

2ð1þ κÞeB
ω2

;

p ¼ e2B2

ω4
: ð83Þ

According to Floquet’s theorem (see, e.g., Ref. [33]),
Eq. (82) has solutions with the pseudoperiodic property

fðzþ πÞ ¼ eiνπfðzÞ; ð84Þ
where ν denotes the characteristic exponent. As is well
known, solutions are bounded only for certain values of a
(the parametersp,q are fixed),which form the band structure.
Only in this case, ν has a vanishing imaginary part.
To see how the Landau levels emerge in the limit ω → 0,

it is useful to go back to Eq. (81). It is clear that, in the limit
ω → 0, the cosine in the last term on the left-hand side can
be replaced by unity. Then, Eq. (82) takes the form of the
Mathieu equation:�

d2

dz02
þ A − 2Q cosð2z0Þ

	
fðz0Þ ¼ 0; ð85Þ

where z0 ¼ 2z and A ¼ ða − 2qÞ=4, Q ¼ −p=4. In Fig. 1
we show the stability chart for this equation. In particular,

for the colored regions in the A–Q plane, the solutions are
bounded. The band structure is clearly seen for Q ≠ 0. As
Q → ∞, each band smoothly transforms into a Landau
level. We note that the stability chart for Eq. (82) will be
slightly different, but the picture is very similar, in
particular, in the large Q region. This qualitative result
can be explicitly verified by using the asymptotic expan-
sion of the eigenvalues An (n ¼ 0; 1;…) for large Q (see,
e.g., [33]):

An ¼ −2jQj þ 2
ffiffiffiffiffiffiffi
jQj

p
ð2nþ 1Þ; ð86Þ

or,

E2 ¼ m2 þ jeBjð2nþ 1Þ þ αð1þ κÞeB; α ¼ �1:

ð87Þ

The same conclusion can be drawn in a finite volume. In
this case, the solutions in a band (the Bloch wave functions),
do not obey, in general, periodic boundary conditions. The
requirement of periodicity, fðzþ πÞ ¼ fðzÞ, picks out one
level from the band. Such levels form the so-called character-
istic curves AnðQÞ, which eventually approach the Landau
levels as Q → ∞.

F. Applicability of the perturbation theory in B

The applicability of the main formula Eq. (61) is limited,
since its derivation relies on a perturbative expansion of the
energy shift in the external field strength B. In Ref. [1], we
have made a crude estimate for the upper bound on the
magnitude of B by considering a single period as a potential
well. The condition that no bound states are formed in this
potential well has led to the relation eB < 2ω2. We are now
in a position to provide a more stringent estimate, which is
based on the properties of the solutions of the Mathieu
equation. To this end, we consider another limiting case,
when B → 0 while the frequency ω is fixed. Since q ¼
OðBÞ and p ¼ OðB2Þ, from Eq. (82) we again arrive at the
Mathieu equation:�

d2

dz2
þ a − 2q cosð2zÞ

	
fðzÞ ¼ 0: ð88Þ

The structure of the finite-volume spectrum is shown in
Fig. 2. The expansion of the ground state level a0 in small q
reads [33]

a0 ¼ −
q2

2
þOðq4Þ; ð89Þ

A similar formula can be written by using exact power
series for a0 in small p and q, see Ref. [34]. In particular,
the first terms in these expansions coincide.
The perturbative expansion of a0 in small q, Eq. (89), has

a certain finite radius of convergence q ¼ qcrit. This critical
value provides an upper bound on the field strength B. One
obtains for the proton and neutron, respectively:

2 4 6 8 10 12
Q

–15

–10

–5

5

10

15

A

FIG. 1. Stability chart of the Mathieu equation. In the colored
regions (bands), the solutions are bounded. Landau levels emerge
from the band spectrum as jQj → ∞.
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eB <
qcritω2

2ð1þ κpÞ
; eB <

qcritω2

2jκnj
; ð90Þ

with κp ¼ 1.79 and κn ¼ −1.91. In the case of the neutron,
the numerical value of the radius of convergence reads
qcrit ≈ 1.47 (see also Ref. [35]). For an estimate we use the
same value for the proton. This is justified since in the limit
B → 0, Eq. (82) can be well approximated by the Mathieu
equation. Accordingly, one obtains eB < 0.26ω2 (proton)
and eB < 0.38ω2 (neutron).
The upper bound on the magnetic field strength in

Eq. (90) can be improved by noting that our perturbative
result, Eq. (61), might not be applicable at q ¼ qcrit. To
estimate higher order corrections, we can again resort to
Eq. (89). In Fig. 3 we plot the function a0ðqÞ as well as the
first term in Eq. (89). As is seen, the higher order terms
become large at q ¼ qcrit and hence cannot be neglected
anymore. Accordingly, it is plausible to choose a certain
value q ¼ qmax, for which they, e.g., amount to 10% of the
leading piece. This gives qmax ≈ 1.05 (see also Fig. 3).
Using Eq. (90) we get an improved bound on the magnitude

B: eB < 0.19ω2 and eB < 0.27ω2 for the proton and the
neutron, respectively.
It interesting to note that Eq. (89) allows us to verify the

main result, Eq. (61), in the approximation where the
proton is treated as a pointlike particle but with a nonzero
anomalous magnetic moment. This is equivalent to setting
F1 ¼ 1, F2 ¼ κ and βM ¼ 0 in Eqs. (10), (11). The
subtraction function takes the value

S1ð−ω2Þ ¼ −
1

ω2
½ð1þ κÞ2 − 1�: ð91Þ

It is seen from Eq. (89) that there is no spin-dependent
contribution to a0. Using Eq. (83), we get directly the spin-
averaged energy shift:

δE ¼ −
e2B2

4mω2
½ð1þ κÞ2 − 1�; ð92Þ

where we have used the relation E2 −m2 ≈ 2mδE. This is
precisely the expression which is obtained from the main
formula in Eq. (61), when we substitute the subtraction
function given in Eq. (91).
The above discussion is equally applicable for the neutron,

for which g ¼ 0. In particular, the differential equation for
FðxÞ, Eq. (78), simplifies:

½p2 − κσ · B�FðxÞ ¼ ðE2 −m2ÞFðxÞ: ð93Þ

It can be brought into the form of the Mathieu equation:

�
d2

dz2
þ a0 − 2q0 cosð2zÞ

	
fðzÞ ¼ 0; ð94Þ

where

a0 ¼ 4

ω2
ðE2 −m2Þ q0 ¼ α

2κeB
ω2

: ð95Þ

As expected, no Landau levels emerge in the zero frequency
limit ω → 0. Further, the main formula in Eq. (61) can be
verified in a similar manner by setting F1 ¼ 0, F2 ¼ κ and
βM ¼ 0 in Eqs. (10), (11). The spin-averaged energy shift
reads

δE ¼ −
e2B2

4mω2
κ2: ð96Þ

IV. PROPAGATOR IN AN EXTERNAL FIELD

The derivation based on the nonrelativistic framework,
whichwas given in the previous section, is not well suited for
the study of the (exponentially suppressed) finite-volume
effects. For example, the final result, displayed in Eq. (61),
contains the infinite-volume Compton amplitude on the

–10 –5 5 10
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–15
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FIG. 2. Finite-volume spectrum of the Mathieu equation.

–q 2/2 + O(q 4)

–q 2/2
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FIG. 3. The ground state level a0ðqÞ as a function of q. The
critical value qcrit ≈ 1.47 denotes the radius of convergence of the
expansion in Eq. (89). At qmax ≈ 1.05, the higher order correc-
tions amount to 10% of the leading piece.
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right-hand side, i.e., the finite-volume effects are neglected
there. In the nonrelativistic framework, these effects may
emerge from different sources. First, the nonrelativistic
couplings contain the finite-volume corrections which, gen-
erally, go as expð−MπLÞ for large L (we remind the reader
that the lightest hadron mass gives the hard scale of the
nonrelativistic approach). Second, the Lagrangian contains
operators which break rotational invariance but preserve
octahedral symmetry. These operators are multiplied by the
couplings that vanish exponentially for large values of L.
Finally, in a finite volume, one may construct a new type
of gauge-invariant operators (the Wilson line), which are
absent in the infinite volume and whose contribution is also
multiplied by exponentially suppressed couplings.Matching
to the chiral perturbation theory (ChPT) with the external
field in a finite volume uniquely determines all these
couplings. For a detailed discussion of these issues we refer
the reader to Refs. [36–41].
From the above discussion it is clear that, in order to

evaluate the finite-volume effects, it is better to work
directly with ChPT in a finite volume, abandoning the
nonrelativistic framework, which has proven very conven-
ient for discussing the zero-frequency limit. The exponen-
tially suppressed finite-volume effects, which are not taken
into account in ChPT, go as expð−ΛHLÞ instead of
expð−MπLÞ (here, ΛH denotes a typical hadronic scale
of order of one GeV), and thus can be neglected.
One important remark is in order. A procedure, which is

used in Refs. [36–41] for the extraction of the polari-
zabilities in a finite volume, boils down to the derivation
of the finite-volume one-particle effective action and to the
identification of the different terms in this action. In this
way, one again encounters the problem with operators
containing Wilson lines that makes e.g., the authors of
Ref. [38] to conclude that “At finite volume, there is no
longer a discernible relation between polarizabilities and
the Compton tensor.” In our framework we shall choose a
different path, directly relating the amplitude for forward
Compton scattering in a finite volume to the second-order
energy shift of the nucleon in the external magnetic field.
We are not asking ourselves, what the subtraction function
is in a finite volume—this question anyway does not have
an unique answer and, making an inconvenient choice, one
can easily obscure the relation between the infinite- and
finite-volume quantities. Rather, we can uniquely identify
the quantity that is extracted from the nucleon energy shift
in a finite volume and which reduces to the subtraction
function in the limit L → ∞ (as we shall see below, this is a

certain component of the spin-averaged Compton tensor in a
particular kinematics). This fully suffices to define a finite-
volume counterpart of the subtraction function S1ðq2Þ and to
calculate finite-volume corrections in an unambiguous way.
In this section, using the framework of the effective field

theory in a finite volume, we shall derive the expression for
the nucleon energy shift in an external field [a finite-volume
analog of Eq. (61)]. Note also that we shall never specify
the Lagrangian of this theory—it is only used to catalyze
the proof and produce the diagrammatic expansion of all
amplitudes in terms of hadronic propagators.
We start from the nucleon two-point function in the

external field in Minkowski space and define:

D̃ðx; yÞ ¼ ih0jTΨðxÞΨ̄ðyÞj0iA; ð97Þ

where ΨðxÞ denotes the four-component spinor field,
describing the nucleon. Note that the Dirac indices are not
shown explicitly. Since the external field does not depend
on time, we have D̃ðx; yÞ ¼ D̃ðx0 − y0;x; yÞ. Further, it is
convenient to define the Fourier transform in the fourth
component

D̃ðx; y;EÞ ¼
Z

∞

−∞
dz0eiEz

0

D̃ðz0;x; yÞ; ð98Þ

as well as in vector components,

Dðp;k;EÞ ¼
Z

L=2

−L=2
d3xd3ye−ipxþikyD̃ðx; y;EÞ: ð99Þ

One can invert this expression, giving

D̃ðx; y;EÞ ¼ 1

L3

X
p

1

L3

X
k

eipx−ikyDðp;k;EÞ: ð100Þ

The free propagator takes the form:

Dð0Þðp;k;EÞ ¼ Dð0Þðp;EÞL3δpk;

Dð0Þðp;EÞ ¼ mþ γ0E − γp
m2 − E2 þ p2 − iϵ

; ð101Þ

where m is the physical nucleon mass.
The diagrammatic representation of the propagator in the

external electromagnetic field is schematically shown in
Fig. 4. We have

FIG. 4. Diagrammatic representation of the propagator in an external electromagnetic field. The third and fourth diagrams correspond
to the one-particle reducible and one-particle irreducible contributions at OðB2Þ, respectively.
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Dðp;k;EÞ ¼ Dð0Þðp;EÞL3δpk þDð0Þðp;EÞ
× Σðp;k;EÞDð0Þðk;EÞ

þ 1

L3

X
l

Dð0Þðp;EÞΣðp; l;EÞDð0Þ

× ðl;EÞΣðl;k;EÞDð0Þðk;EÞ þ � � � ; ð102Þ

where the self-energy part Σðp;k;EÞ, which is a matrix in
the space of Dirac indices, can be expanded in powers of
the magnitude of the external field:

Σðp;k;EÞ ¼ Σ0ðp;k;EÞ þ ðeBÞΣ1ðp;k;EÞ
þ ðeBÞ2Σ2ðp;k;EÞ þ � � � : ð103Þ

Here, Σ0ðp;k;EÞ ¼ L3δpkΣ0ðp;EÞ is the sum of all one-
particle irreducible diagrams in the absence of the external
field, and the functions Σ1, Σ2 will be determined below.
Note also that we use the momentum space subtraction
renormalization scheme, i.e., Σ0ðp;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
Þ ¼ 0. The

sum in Eq. (102) can be written in a compact form:

Dðp;k;EÞ ¼ Dð0Þðp;EÞL3δpk þDð0Þðp;EÞ
× Tðp;k;EÞDð0Þðk;EÞ; ð104Þ

where the amplitude Tðp;k;EÞ satisfies the relation

Tðp;k;EÞ ¼ Σðp;k;EÞ þ 1

L3

X
l

Σðp; l;EÞDð0Þ

× ðl;EÞTðl;k;EÞ; ð105Þ
which is similar to the Lippmann-Schwinger equation.
In order to find the energy shift of the nucleonground state,

we have to determine the pole position in the propagator
Dð0; 0;EÞ. For this purpose, we single out the term with
l ¼ 0 in the sum (corresponding to the unperturbed ground
state) and rewrite the amplitude Tð0; 0;EÞ as follows:

Tð0; 0;EÞ ¼ T 0ð0; 0;EÞ þ 1

L3
T 0ð0; 0;EÞDð0Þð0;EÞ

× Tð0; 0;EÞ; ð106Þ
where the quantity T 0ðp;k;EÞ satisfies the equation

T 0ðp;k;EÞ ¼ Σðp;k;EÞ þ 1

L3

X
l≠0

Σðp; l;EÞDð0Þðl;EÞ

× T 0ðl;k;EÞ: ð107Þ
Note that now the sum runs over all l ≠ 0. We get

Tð0; 0;EÞ ¼
�
I −

1

L3
T 0ð0; 0;EÞDð0Þð0;EÞ

�
−1
T 0ð0; 0;EÞ:

ð108Þ
Here, I denotes the unit 4 × 4 matrix. Inserting this expres-
sion into Eq. (104) for the propagatorDð0; 0;EÞ, one obtains

Dð0;0;EÞ¼Dð0Þð0;EÞL3

�
I−

1

L3
T 0ð0;0;EÞDð0Þð0;EÞ

�
−1
:

ð109Þ

Obviously, Dð0; 0;EÞ and Tð0; 0;EÞ have the same pole
structure.
In order to simplify the matrix equation (106), we can

use the octahedral symmetry of the cubic lattice. For zero
momenta, the symmetry requires that:

RαγðgÞTγδð0; 0;EÞRδβðg−1Þ ¼ Tαβð0; 0;EÞ; ð110Þ

where g denotes an arbitrary element of the octahedral group
and RαβðgÞ is the matrix of the linear representation of
the octahedral group which is obtained by restricting the
ð1=2; 0Þ þ ð0; 1=2Þ representation of theLorentz group to its
octahedral subgroup (here the Greek letters denote Dirac
indices). The requirement of invariance restricts Tαβð0; 0;EÞ
to the form:

Tαβð0; 0;EÞ ¼ δαβTð1Þ þ ðγ0ÞαβTð2Þ; ð111Þ

whereTð1Þ andTð2Þ are scalar functions. Accordingly, we see
that

ūð0; sÞTð0; 0;EÞuð0; s0Þ ¼ 2mδss0 ðTð1Þ þ Tð2ÞÞ≡ 2mδss0 T̃;

ð112Þ

v̄ð0; sÞTð0; 0;EÞvð0; s0Þ ¼ −2mδss0 ðTð1Þ − Tð2ÞÞ; ð113Þ

v̄ð0; sÞTð0; 0;EÞuð0; s0Þ ¼ ūð0; sÞTð0; 0;EÞvð0; s0Þ ¼ 0:

ð114Þ

Similar relations can be established for the amplitude
T 0ð0; 0;EÞ. For example, T̃ 0 is defined through the equation

ūð0; sÞT 0ð0; 0;EÞuð0; s0Þ ¼ 2mδss0 T̃ 0: ð115Þ

Further, it is convenient to write the free propagator

Dð0Þ
αβ ðp;EÞ in the form

Dð0Þ
αβ ð0;EÞ ¼

1

2m

X
s

uαð0; sÞūβð0; sÞ
m − E

−
1

2m

X
s

vαð0; sÞv̄βð0; sÞ
mþ E

: ð116Þ

Multiplying the Eq. (106) by ūð0; sÞ from the left and by
uð0; sÞ from the right, we get:

T̃ ¼ T̃ 0 þ 1

L3

1

m − E
T̃ 0T̃: ð117Þ
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This equation is not a matrix equation anymore. The pole
position is given by

m − E −
1

L3
T̃ 0 ¼ 0: ð118Þ

As expected the free pole at m − E ¼ 0 has disappeared.
This result is similar to the “master equation” in the case of
hadronic atoms [42].
Next, let us proceed with the calculation of the

amplitude T 0ð0; 0;EÞ. In perturbation theory, up-to-and-
including OðB2Þ this quantity reads

T 0ð0; 0;EÞ
¼ Σ0ð0;0;EÞ þ ðeBÞΣ1ð0;0;EÞ þ ðeBÞ2Σ2ð0; 0;EÞ

þ ðeBÞ2 1

L3

X
l≠0

Σ1ð0; l;EÞDð0Þðl;EÞΣ1ðl; 0;EÞ þ � � �

¼ T 0
0ð0; 0;EÞ þ ðeBÞT 0

1ð0; 0;EÞ þ ðeBÞ2T 0
2ð0;0;EÞ þ � � � :

ð119Þ

The quantity Σ1ðp;k;EÞ can be expressed through the
three-point vertex function. Indeed, consider the linear
coupling to the external field which is described by the
Lagrangian

L1 ¼ −O1ðxÞA1ðxÞ: ð120Þ

Here, we have used Eq. (13) which states that the vector
potential has only one nonzero component A1. The current
operator O1 contains both the nucleon and pion fields and
obeys usual restrictions (hermiticity, certain transformation
properties with respect to the Lorentz group, etc.) but,
otherwise, its form can be arbitrary. Let us denote as
D̃1ðx; yÞ the respective contribution to the two-point
function. At order OðBÞ, we then have:

D̃1ðx; yÞ ¼
Z

L=2

−L=2
d3u

Z
∞

−∞
du0A1ðuÞh0jTΨðxÞΨ̄ðyÞ

×O1ðuÞj0i: ð121Þ

Further, using translational invariance, one can write

h0jTΨðxÞΨ̄ðyÞO1ðuÞj0i

¼
Z

∞

−∞

dp0

2π

Z
∞

−∞

dk0
2π

1

L3

X
p

1

L3

X
k

e−ipðx−uÞþikðy−uÞ

×Dð0Þðp; p0ÞΓðp; kÞDð0Þðk; k0Þ: ð122Þ

This is a definition of the vertex function Γðp; kÞ.
Substituting this expression into Eq. (121) and integrating
over u0 and k0, we get

D̃1ðx; yÞ ¼
Z

L=2

−L=2
d3uA1ðuÞ

Z
∞

−∞

dp0

2π

1

L3

X
p

1

L3

×
X
k

e−ip0ðx0−y0Þeipðx−uÞ−ikðy−uÞ

×Dð0Þðp;p0ÞΓðp;k;EÞDð0Þðk; p0Þ; ð123Þ

where Γðp;k;EÞ is obtained from Γðp; kÞ by substituting
p0 ¼ k0 ¼ E (we remind the reader that the field A1 is
static). Accordingly, the Fourier transform of D̃1ðx; yÞ takes
the simple form:

D1ðp;k;EÞ ¼
Z

L=2

−L=2
d3uA1ðuÞe−iðp−kÞuDð0Þðp;EÞ

× Γðp;k;EÞDð0Þðk;EÞ: ð124Þ
Comparing this result with the expansion of the propagator
in Eq. (102) at OðBÞ, it is seen that

ðeBÞΣ1ðp;k;EÞ ¼ Γðp;k;EÞ
Z

L=2

−L=2
d3uA1ðuÞe−iðp−kÞu

≐ Γðp;k;EÞÃ1ðk − pÞ: ð125Þ
Next, we evaluate the quantity Σ2ðp;k;EÞwhich consists

of all one-particle irreducible diagrams with amputated
nucleon legs, with two external fields attached. Let
Υðp; k; lÞ denote the sum of all such diagrams inmomentum
space. Here, p and k denote the momenta of the outgoing
and ingoing nucleon, respectively, and the momenta of
two external “photons” are equal to lþ ðk − pÞ=2 and
l − ðk − pÞ=2, respectively. Further, denoting

ϒðp;k; l;EÞ ¼ ϒðp; k; lÞ





p0¼k0¼E;l0¼0

; ð126Þ

it is easy to check that Σ2 is given by

ðeBÞ2Σ2ðp;k;EÞ ¼
Z

L=2

−L=2
d3u

Z
L=2

−L=2
d3vA1ðuÞA1ðvÞ

×
1

L3

X
l

eiuðlþðk−pÞ=2Þ−ivðl−ðk−pÞ=2Þ

×ϒðp;k; l;EÞ: ð127Þ
We now have all ingredients for the evaluation of the

energy shift. Here, following the discussion in the previous
section, we consider the scenario (a) for the external field,
when the frequencyω is quantized and the three-momentum
conservation holds. In this case, the term linear in B gives:

ðeBÞT 0
1ðp;k;EÞ ¼ ðeBÞΓðp;k;EÞ L3

2iω
× ½δ−pþk;−ω − δ−pþk;ω�: ð128Þ

Obviously, Σ1ð0; 0;EÞ ¼ 0 for ω ≠ 0, see also Fig. 5.
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The second-order term at threshold takes the form

ðeBÞ2T 0
2ð0; 0;mÞ

¼ ðeBÞ2L3

4ω2
½ϒð0; 0;ω;mÞ þϒð0; 0;−ω;mÞ�

þ ðeBÞ2L3

4ω2
fΓð0;ω;mÞD0ðω; mÞΓðω; 0;mÞ

þ Γð0;−ω;mÞD0ð−ω; mÞΓð−ω; 0;mÞg: ð129Þ

On the other hand, it is straightforward to verify that the
expression on the right-hand side of this equation is
proportional to the “11” component of the forward
Compton scattering tensor. Note also that, since ω ≠ 0,
the sum over the intermediate nucleon states does not
contain the term with l ¼ 0 and hence, there is no differ-
ence between T2 and T 0

2 at threshold. Thus

ZðeBÞ2
2

X
s

ūð0; sÞT 0
2ð0; 0;mÞuð0; sÞ ¼ ðeBÞ2L3

2ω2
T11ðp; qÞ;

ð130Þ

where pμ ¼ ðm; 0Þ, qμ ¼ ð0;ωÞ and the nucleon wave
function renormalization constant (in the absence of the
external field) is given by

Z−1 ¼ 1þ d
dE

Σ̃0ð0;EÞ





E¼m

;

2mδss0 Σ̃0ð0;EÞ ¼ ūð0; sÞΣ0ð0;EÞuð0; s0Þ: ð131Þ

It is now straightforward to determine the spin-averaged
energy shift at order B2 from Eq. (118). Taking into account
the fact that the linear term in B vanishes, and expanding
the quantity T̃ 0 in Eq. (118) in Taylor series in E −m, it
immediately follows that the spin-averaged energy shift is
given by

δE ¼ −
ZðeBÞ2
2mL3

1

2

X
s

ūð0; sÞT 0
2ð0; 0;EÞuð0; sÞ þOðB3Þ;

ð132Þ

from which we finally obtain

δE ¼ −
1

4m

�
eB
ω

�
2

T11ðp; qÞ þOðB3Þ: ð133Þ

This equation is the finite-volume version of Eq. (61) and
contains the “11” component of the Compton tensor,
evaluated in a finite volume. Up to the corrections, propor-
tional to expð−MπLÞ, this quantity is given by the sub-
traction function S1ðq2Þ via T11ðp; qÞ ¼ −ω2S1ðq2Þ, see
Eqs. (6) and (7). Hence, the Eq. (133) provides a framework
for the systematic calculation of such corrections.

V. DISCUSSION OF THE PARAMETER RANGE
IN NUMERICAL CALCULATIONS

In Ref. [1] we presented a brief discussion of the lattice
parameters, which could be used in the numerical extrac-
tion of the subtraction function S1ðq2Þ. With the use of the
new, more stringent constraints on the value of the magnetic
field we are now able to refine this analysis. For a moment,
we neglect the finite-volume corrections altogether. As in
Ref. [1], the elastic and inelastic parts of the amplitude are
parametrized as:

Sel1 ðq2Þ ¼ −
4m2

q2ð4m2 − q2Þ fG
2
Eðq2Þ −G2

Mðq2Þg;

Sinel1 ðq2Þ ¼ Sinel1 ð0ÞGdðq2Þ;

Sinel1 ð0Þ ¼ −
κ2

4m2
−
m
α
βM; ð134Þ

where κ and βM denote the anomalous magnetic moment
and the magnetic polarizability of the nucleon (we use the
same numerical values in the estimates as given in Ref. [1]).
Further, Gdðq2Þ ¼ ð1 − q2=0.71 GeV2Þ−2 is the dipole
form factor. It should be noted that the asymptotic behavior
at large values of q2 is consistent with the result of the
operator product expansion in QCD.
The electric and magnetic form factors of the proton and

the neutron are given by:

Gp
Eðq2Þ ¼ Gdðq2Þ; Gp

Mðq2Þ ¼ ð1þ κpÞGdðq2Þ;

Gn
Eðq2Þ ¼

−q2

4m2
κnGdðq2Þ; Gn

Mðq2Þ ¼ κnGdðq2Þ;
ð135Þ

with the same dipole form factor as above.
One of the estimates, which goes through exactly in the

same way as in Ref. [1], is related to our ability to separate
the physically interesting inelastic part from total ampli-
tude. As seen, the elastic part is singular at threshold and
falls off very fast at higher ω2. Thus, the separation will be
difficult for very small values of ω2. One may require, for
instance, that at the minimum value of ω2, the inelastic
contribution amounts up to 10% of the elastic contribution.
In this manner, we get ω2

min ¼ 0.086 GeV2 for the proton

FIG. 5. Three-momentum conservation in the γ�NN vertex
gives the Kronecker delta δp−k;�ω.
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and ω2
min ¼ 0.045 GeV2 for the neutron (a slight difference

to the numbers given in Ref. [1] is caused by the fact that
here we take into account the exact momentum dependence
of all amplitudes). If one requires instead that elastic and
inelastic parts are equal, one gets ω2

min ¼ 0.40 GeV2 for the
proton and ω2

min ¼ 0.26 GeV2 for the neutron. In any case,
the lower cutoff on the available frequencies is rather
comfortable and does not put significant restrictions on
the parameters of the lattices which can be used in the
calculations.
The conditions, which involve the magnitude of the

magnetic field, are more restrictive. On one side, the
magnetic field should be strong enough in order to measure
the effect at all. On the other hand, it must be weak enough
so that the perturbation theory still applies. In Sec. III F we
have made a more stringent estimate

eB < 0.19ω2 ðprotonÞ; eB < 0.27ω2 ðneutronÞ;
ð136Þ

which is based on the properties of the solutions of
Mathieu’s equation. Denoting the inelastic shift by
δEinel, according to Ref. [1], we get

eB¼
�
4mδEinel

Sinel1 ð0Þ
�

1=2
G−1=2

d ð−ω2Þ< 0.19ω2 ðprotonÞ;

eB¼
�
4mδEinel

Sinel1 ð0Þ
�

1=2
G−1=2

d ð−ω2Þ< 0.27ω2 ðneutronÞ:

ð137Þ

It is now clear that the window for the available values of
eB exists if and only if δEinel can be taken sufficiently small
or, in other words, if the uncertainty in the determination of
δEinel does not exceed a certain value. Generously allowing
this uncertainty to be δEinel ¼ 0.05 m, as done in Ref. [1],
is no longer an option—the inequalities in Eq. (137) cannot
be satisfied. A better accuracy in the determination of the
energy shift δEinel ¼ 0.01 m would lead to the lower cutoff
on the available frequencies ω2

min ¼ 0.90 GeV2 for the
proton and ω2

min ¼ 0.41 GeV2 for the neutron. If one wants
to increase the range of available frequencies and reach
lower values of ω2, one has to improve on the accuracy
further. The range of the magnitudes for the magnetic field
can be determined from the above equations, if the accuracy
is given.

VI. CONCLUSIONS AND OUTLOOK

(i) We have presented three alternative derivations (the
third one is contained in the Appendix) of the
formula for the energy shift of the nucleon, placed
in a periodic external field. Namely, the nonrelativ-
istic effective Lagrangian was used for this purpose,

as well as the relativistic framework. All these alter-
native settings are advantageous for discussing differ-
ent issues arising in the treatment of the problem. The
aim of the whole exercise is to extract the forward
Compton scattering amplitude in a certain kinematics,
the so-called subtraction function S1ðq2Þ, from lattice
simulations. In its turn,measuring this functionwould
enable one to gain important information about the
properties of QCD at low energy.

(ii) The result or Ref. [1] has been refined and extended
in various aspects. For example, in this paper we
discuss in detail the zero-frequency limit (constant
magnetic field) of the expression for the energy shift.
This limiting case is studied in the literature in detail.
Here, it is shown that, to have a smooth transition to
this limit, the external field on the lattice should be
implemented in a specific way, corresponding to the
scenario (b). There exists no zero-frequency limit
for scenario (a).

(iii) Another important issue is the limit of validity of the
perturbative treatment of the external magnetic field
(the convergence radius of the perturbative expansion
in B). In Ref. [1], using heuristic arguments, we gave
a rough estimate of the maximal field strength, for
which the perturbative approach is still applicable.
In the present paper we improved the argument and
give a new, much more stringent estimate, which is
based on the properties of the solutions of Mathieu’s
equation. It should be pointed out that the non-
relativistic EFT approach provides the most conven-
ient framework for the discussion of the above two
problems.

(iv) We have generalized the result of Ref. [1] and derived
an equation which relates the energy shift to the “11”
component of the Compton tensor in a finite volume.
Using this formula, one may estimate the exponen-
tially suppressed finite-volume corrections to the
extracted value of the subtraction function. This
can be done, e.g., by performing calculations at one
loop in ChPT in a finite volume. The calculations are
under way and the results will be reported elsewhere
[43]. The preliminary results show that the finite-
volume corrections at one loop in ChPT are sizable,
but can be kept under control at reasonably large
lattice volumes MπL > 4. Moreover, one might use
a similar setting to estimate the effects of partial
(electro)quenching in lattice simulations.
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APPENDIX: ALTERNATIVE DERIVATION
OF EQ. (133)

For the sake of completeness, we present yet another
derivation of the main formula for the energy shift given in
Eq. (133), which is based on the study of the two-point
function of the nucleon field in the external field at large
time separation and, hence, has a closer resemblance to the
methods used on the lattice. It is assumed that the external
field is implemented according to scenario (a), i.e., the
frequency is quantized. In this derivation, we directly
expand the nucleon two-point function in the external field

C ¼ Cð0Þ þ Cð1Þ þ Cð2Þ þOðA3Þ; ðA1Þ

where

C ¼ 1

L3

Z
L=2

−L=2
d3xd3yh0jTΨðxÞΨ̄ðyÞj0iA; ðA2Þ

Cð0Þ ¼ 1

L3

Z
L=2

−L=2
d3xd3yh0jTΨðxÞΨ̄ðyÞj0i; ðA3Þ

Cð1Þ ¼ i
L3

Z
L=2

−L=2
d3xd3yd4zAμðzÞh0jTΨðxÞΨ̄ðyÞjμðzÞj0i;

ðA4Þ

Cð2Þ ¼ i2

2L3

Z
L=2

−L=2
d3xd3yd4zd4vAμðzÞAνðvÞ

× h0jTΨðxÞΨ̄ðyÞjμðzÞjνðvÞj0i: ðA5Þ

Here, the integration over d3xd3y projects onto the states
with zero initial and final three-momenta.
Note that, strictly speaking, for a rigorous derivation one

should perform the Wick rotation into the Euclidean space
and pick up the leading terms in the two-point function at
large (Euclidean) times. For simplicity, however, we stay in
the Minkowski space and identify the leading exponentials
there—in our case, the identification is easy and no ambi-
guities arise.
The completeness condition, which we shall be using,

takes the form

1

L3

X
ks

jk; sihk; sj
2ωðkÞ þ � � � ¼ 1; ðA6Þ

where ellipses stand for the excited states contributions;
they will be neglected altogether by taking the limit

x0 − y0 → ∞ (the time extent of the lattice is assumed
to be infinite).
Let us start with the matrix element Cð0Þ that describes

the propagation of the nucleon in the absence of the
external field. Using the translation invariance, it takes
the form

Cð0Þ ¼ 1

L6

X
ks

1

2wðkÞ
Z

L=2

−L=2
d3xd3yθðx0 − y0Þ

× eikðx−yÞe−iwðkÞðx0−y0Þh0jΨð0Þjk; sihk; sjΨ̄ð0Þj0i
þ � � � : ðA7Þ

Note that the second term in the T-product, containing
θðy0 − x0Þ, picks up the antiparticle pole for large x0 − y0
instead of the particle pole, and thus can be neglected.
Integrating over all variables, one gets

Cð0Þ ¼
X
s

e−imðx0−y0Þ

2m
h0jΨð0Þj0; sih0; sjΨ̄ð0Þj0i þ � � � :

ðA8Þ

Taking into account that

h0jΨð0Þj0; si ¼ Z1=2uð0; sÞ; ðA9Þ

where Z denotes the wave function renormalization con-
stant, we may write

ūð0; sÞCð0Þuð0; sÞ ¼ 2mZe−imðx0−y0Þ þ � � � : ðA10Þ

The two-point function in the presence of the external
magnetic field can be written in a similar manner:

ūð0; sÞCuð0; sÞ ¼ 2EsðBÞZsðBÞe−iEsðBÞðx0−y0Þ þ � � �
ðA11Þ

Here, EsðBÞ is the energy of the nucleon ground state. Note
that, in general, EsðBÞ and ZsðBÞ depend on the orientation
of the spin s. The functions EsðBÞ and ZsðBÞ can be
expanded in B:

EsðBÞ ¼ mþ ξsðωÞðeBÞ þ ηsðωÞðeBÞ2 þOðB3Þ;
ZsðBÞ ¼ Z þ αsðωÞðeBÞ þ βsðωÞðeBÞ2 þOðB3Þ: ðA12Þ

The unknown quantities ξsðωÞ; ηsðωÞ;αsðωÞ, and βsðωÞ
depend on the frequency ω.
The correlator Cð1Þ is evaluated in a similar manner to

Cð0Þ. The only contribution remaining at x0 − y0 → ∞ is
given by
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Cð1Þ ¼ i
L9

X
ks;ls0

1

4wðkÞwðlÞ
Z

L=2

−L=2
d3xd3yd3zdz0A1ðzÞ

× θðx0 − z0Þθðz0 − y0Þeikðx−zÞe−iwðkÞðx0−z0Þ
× eilðz−yÞe−iwðlÞðz0−y0Þh0jΨð0Þjk; si
× hk; sjj1ð0Þjl; s0ihl; s0jΨ̄ð0Þj0i þ � � � : ðA13Þ

After the summation over the three-momentum the above
expression simplifies and we get:

ūð0; sÞCð1Þuð0; sÞ ¼ i
Ze−imðx0−y0Þ

L3
ðx0 − y0Þh0; sjj1ð0Þj0; si

×
Z

L=2

−L=2
d3zA1ðzÞ þ � � � : ðA14Þ

The integral over the periodic electromagnetic potential
vanishes, and so

Cð1Þ ¼ 0: ðA15Þ

The calculation of the second-order matrix element Cð2Þ
proceeds similarly. First inserting the completeness relation
and using the translational invariance, one gets

ūð0; sÞCð2Þuð0; sÞ ¼ i2
Ze−imðx0−y0Þ

2L3

Z
L=2

−L=2
d3zd3vdλ0dv0A1

× ðzÞA1ðvÞθðx0 − λ0 − v0Þθðv0 − y0Þ
× h0; sjTj1ðλÞj1ð0Þj0; si þ � � � ;

ðA16Þ

where λ0 ¼ z0 − v0 is a new integration variable, and we
have introduced the new four-vector λ ¼ ðλ0; z − vÞ. It is
then straightforward to verify the identity

h0; sjTj1ðλÞj1ð0Þj0; si ¼ −
2i
L3

X
q

Z
∞

−∞

dq0
2π

e−iqλ

× T11ð0; s; 0; s; qÞ; λ ¼ z − v:

ðA17Þ

Here, T11 is the “11” component of the Compton tensor
(before spin averaging) in a finite volume. We further get

ūð0;sÞCð2Þuð0;sÞ¼ i
Ze−imðx0−y0Þ

L6

X
q

Z
∞

−∞

dq0
2π

×
Z

L=2

−L=2
d3zd3vdλ0dv0

×A1ðzÞA1ðvÞθðx0−λ0−v0Þ
×θðv0−y0Þe−iqλT11ð0;s;0;s;qÞþ �� � :

ðA18Þ

Next, the integration over v0 gives

Z
∞

−∞
dv0θðx0 − λ0 − v0Þθðv0 − y0Þ

¼ ðx0 − y0 − λ0Þθðx0 − y0 − λ0Þ: ðA19Þ

Accordingly,

ūð0; sÞCð2Þuð0; sÞ ¼ i
Ze−imðx0−y0Þ

L6

X
q

Ã1ðqÞÃ1ð−qÞ

× Ið0; s; 0; s;qÞ þ � � � ; ðA20Þ

where Ã1ðqÞ is defined in Eq. (43). The quantity
Ið0; s; 0; s;qÞ reads

Ið0; s; 0; s;qÞ ¼
Z

∞

−∞

dq0
2π

Z
x0−y0

−∞
dλ0ðx0 − y0 − λ0Þ

× e−iq0λ0T11ð0; s; 0; s; qÞ: ðA21Þ

The shift of the variable λ0 → x0 − y0 − λ0 and partial
integration over q0 gives

Ið0; s; 0; s;qÞ ¼ i
Z

∞

−∞

dq0
2π

Z
∞

0

dλ0eiq0λ0
∂
∂q0

× ½e−iq0ðx0−y0ÞT11ð0; s; 0; s; qÞ�: ðA22Þ

Integrating over λ0, one obtains

Ið0; s; 0; s;qÞ ¼ −
Z

∞

−∞

dq0
2π

e−iq0ðx0−y0Þ

q0 þ iϵ

×

�
−iðx0 − y0ÞT11ð0; s; 0; s; qÞ

×þ ∂
∂q0 T

11ð0; s; 0; s;qÞ
	
; ðA23Þ

where the iϵ prescription ensures the convergence of the
integral. Further, contour integration leads to the following
expression:

Ið0; s; 0; s;qÞ ¼ ðx0 − y0ÞT11ð0; s; 0; s; q̄Þ

þ i
∂
∂q0 T

11ð0; s; 0; s; qÞ




q¼q̄

;

q̄ ¼ ð0;qÞ: ðA24Þ

Finally, inserting this result into Eq. (A20) and summing
over q, the correlator Cð2Þ takes the value
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ūð0;sÞCð2Þuð0;sÞ¼ i
Ze−imðx0−y0Þ

2

�
eB
ω

�
2
�
ðx0−y0ÞT11ð0;s;0;s; q̂Þþ i

2

∂
∂q0T

11ð0;s;0;s;qÞ




q¼q̂

þ i
2

∂
∂q0T

11ð0;s;0;s;qÞjq¼−q̂

	
þ�� � ; ðA25Þ

where the symmetry property of the Compton tensor, T11ð0; s; 0; s; q̂Þ ¼ T11ð0; s; 0; s;−q̂Þ, q̂ ¼ ð0;ωÞ, was used.
Next, combining Eqs. (A12) and (A11), one gets the Taylor expansion of the two-point function in the magnetic field

strength:

ūð0; sÞCuð0; sÞ ¼ 2mZe−imðx0−y0Þ
�
1þ αsðωÞðeBÞ þ βsðωÞðeBÞ2

Z
þ ξsðωÞðeBÞ þ ηsðωÞðeBÞ2

m

− iðx0 − y0Þ
�
ξsðωÞðeBÞ þ ηsðωÞðeBÞ2

m

	
þ ξsðωÞαsðωÞðeBÞ2

mZ

− iðx0 − y0Þ
ξsðωÞðeBÞ

m

�
ξsðωÞðeBÞ

m
þ αsðωÞðeBÞ

Z

	
þOðB3; ðx0 − y0Þ2Þ

�
: ðA26Þ

The unknown coefficients ξsðωÞ and ηsðωÞ are determined
from a comparison of the right-hand side in the above
expansion with the known expression of C up to and
includingOðB2Þ. This comparison gives the familiar result:

ξsðωÞ ¼ 0; ηsðωÞ ¼ −
1

4mω2
T11ð0; s; 0; s; q̂Þ: ðA27Þ

The quantities αsðωÞ and βsðωÞ can be found in a similar
fashion. In particular, αsðωÞ ¼ 0, while βsðωÞ is given as
a certain linear combination of the tensor component
T11ð0; s; 0; s; q̂Þ and its derivative. As it is seen, the first-
order correction to the energy shift vanishes, while the spin-
averaged second-order term reproduces Eq. (133).
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