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We rederive the small-x evolution equations governing quark helicity distribution in a proton using
solely an operator-based approach. In our previous works on the subject, the evolution equations were
derived using a mix of diagrammatic and operator-based methods. In this work, we rederive the double-
logarithmic small-x evolution equations for quark helicity in terms of the “polarized Wilson lines,” the
operators consisting of light-cone Wilson lines with one or two noneikonal local operator insertions which
bring in helicity dependence. For the first time we give explicit and complete expressions for the quark and
gluon polarized Wilson line operators, including insertions of both the gluon and quark subeikonal
operators. We show that the double-logarithmic small-x evolution of the “polarized dipole amplitude”
operators, made out of regular light-cone Wilson lines along with the polarized ones constructed here,
reproduces the equations derived in our earlier works. The method we present here can be used as a
template for determining the small-x asymptotics of any transverse momentum-dependent (TMD) quark (or
gluon) parton distribution functions (PDFs), and is not limited to helicity.

DOI: 10.1103/PhysRevD.99.054032

I. INTRODUCTION

Understanding the small-x asymptotics of the quark and
gluon helicity distributions is very important for the efforts
to resolve the proton spin puzzle: the current measured
amounts of the proton’s spin carried by its quarks and
gluons comes up short of 1=2, the spin of the proton [1–4].
On the theoretical side, the helicity sum rules [5–7] require
the proton spin carried by the quarks and gluons, along with
the orbital angular momentum (OAM) of the quarks and
gluons, to add up to 1=2 (see [8] for a review). Therefore,
the missing spin could be found either in the less well-
known gluon helicity parton distribution function (PDF),
in the quark and gluon OAM or in the small Bjorken
x region, whose contribution to the proton polarization has
not been explored. Indeed, experimental measurements of
the double-longitudinal spin asymmetry ALL, which is used
to extract the quark and gluon helicity PDFs, are always
limited to x ≥ xmin with xmin the smallest value of the
Bjorken variable x which a given experiment allows to

probe. This way, any given high-energy experiment can
never measure the quark and gluon polarizations down to
x ¼ 0: theoretical input appears to be needed to better
constrain the amount of quark and gluon spin at small x,
which, in turn, would help us get a better handle on the
proton spin puzzle.
In recent years, evolution equations describing the quark

and gluon helicity distributions at small Bjorken x have
been derived in [9–13] (see also [14,15] for earlier
calculations based on a different method). These evolution
equations were solved in the large-Nc limit (with Nc the
number of quark colors), leading to the following x
dependence for the quark and gluon helicity PDFs
[10,12,13] in that limit and at perturbatively small values
of the strong coupling constant αs (such that the ’t Hooft
coupling is small, αsNc ≪ 1):

Δqðx;Q2Þ∼
�
1

x

� 4ffiffi
3

p
ffiffiffiffiffiffi
αsNc
2π

p
; ΔGðx;Q2Þ∼

�
1

x

� 13

4
ffiffi
3

p
ffiffiffiffiffiffi
αsNc
2π

p
:

ð1Þ

The resummation parameter in the equations derived and
studied in [9–13] was αs ln2ð1=xÞ. We will refer to the
resummation of this parameter as the double logarithmic
approximation (DLA). This parameter, originally intro-
duced by Kirschner and Lipatov [16], arises in certain types
of small-x evolution describing e.g., polarization or baryon
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number transfer from larger to smaller x [16–22]. This
parameter does not exist in the more familiar Balitsky-
Fadin-Kuraev-Lipatov (BFKL) [23,24] small-x evolution
for the unpolarized gluon distribution, which at the leading
order resums powers of αs lnð1=xÞ.
The helicity evolution equations of [9–13] were written

in the s-channel evolution formalism previously used to
derive the unpolarized Balitsky-Kovchegov (BK) [25–28]
and Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) [29–32] evolution equations. The
helicity evolution was written in terms of the so-called
quark or gluon “polarized Wilson lines,” which were
defined originally in [9] as part of the scattering amplitude
of a longitudinally polarized quark or gluon (projectile) on
a longitudinally polarized proton (target) which is propor-
tional to the product of the projectile and target polar-
izations. The operator describing the quark helicity was
shown to be related to the “polarized dipole amplitude”: the
polarization-dependent part of the scattering amplitude for
a color-singlet quark–antiquark pair. The polarized dipole
amplitude was shown to be a correlation function of a trace
of polarized and regular light-cone Wilson lines. Similar to
the case of the unpolarized Balitsky hierarchy [25,26], the
helicity evolution equations do not close in general. Closed
equations were obtained in the large-Nc and the large-Nc
and Nf limits [9] (with Nf the number of quark flavors).
The large-Nc equations for quark helicity were solved in
[10,12] ultimately leading to the Δq small-x asymptotics
shown in Eq. (1). Gluon helicity distribution was studied in
[13]: new relevant operators had to be defined (see also
[33]), their evolution equations were constructed and
solved in the large-Nc limit, leading to the small-x
asymptotics for ΔG also shown in Eq. (1).
However, an explicit form of the polarized Wilson line

operators was not derived in [9–12]. In [13], the first
expression for the polarized quark Wilson line was written
down. It is given below in Eq. (44), and consists of two semi-
infinite light-cone Wilson lines, with a subeikonal compo-
nent F12 of the gluon field strength tensor Fμν sandwiched
between them. (This F12 insertion can be interpreted as
arising from μ⃗ · B⃗ ¼ μzBz ¼ −μzF12, where a quarkwith the
chromomagnetic dipole moment μ⃗ is traveling through the
chromomagnetic background field B⃗.1) We see that helicity
dependence enters as a subeikonal operator insertion
between the eikonal Wilson lines. This structure of sub-
eikonal corrections at small and large xwas also obtained in
[34–36]. However, the expression (44) corresponds only to a
(subeikonal) gluon exchangewith the target shown in the left
panel of Fig. 5. An important quark exchange contribution,
shown in the right panel of Fig. 5, was missing, as it was not
needed in the large-Nc limit largely utilized in [13]. In

addition, the polarized gluon Wilson line has never been
constructed explicitly.
Our aim here is to rederive the results of [9] for the quark

helicity while working entirely in the operator language.
That is, we want to construct explicit complete expressions
for the quark and gluon polarizedWilson line operators. We
then want to “evolve” these operators toward small x,
obtaining helicity evolution equations. The benefits of such
a calculation are twofold: on the one hand, we would be
able to cross-check the results of [9–13]. On the other hand,
the operator formalism we are going to develop here can be
similarly applied to other TMDs, such as transversity or the
Sivers function, to study their small-x asymptotics.
Knowing the small-x behavior of various TMDs has a
number of useful phenomenological and theoretical impli-
cations. Our present work opens the possibility to system-
atically derive the small-x asymptotics for all the TMDs in
the framework of perturbative quantum chromodynamics
(QCD), complementing the efforts in [37–42]. In [43] we
will apply this formalism to study the small-x asymptotics
of the quark transversity TMD.
The paper is structured as follows. In Sec. II we will start

with the operator definition of the quark helicity TMD and
evaluate it for small x, obtaining the expression (31) relating
it to the polarized quark dipole amplitude. The expressionwe
obtain is identical to the one used in [9–11]; however, in [9] it
was derived by calculating the cross section for the semi-
inclusive deep inelastic scattering (SIDIS). Relating the
SIDIS cross section to the quark helicity TMD at the leading
order in the coupling we read off the quark helicity TMD in
[9]. The calculation in Sec. II provides an independent cross-
check of this result and shows that the SIDIS definition of the
quark helicity TMD used in [9] is equivalent to the standard
operator definition of the same quantity.
Explicit operator expressions for the polarized quark and

gluonWilson lines are constructed respectively in Secs. III A
and III B. The results are given by Eq. (51) for the quarks and
by Eq. (64) for the gluons. We proceed by constructing the
large-Nc evolution equations for “polarized dipoles” in
Sec. IV and the large-Nc and Nf evolution equations in
Sec. V. The equations are identical to those derived originally
in [9].
We conclude in Sec. VI by summarizing our main results

and outlining future research directions in this area.

II. QUARK AND GLUON HELICITY
TMDS AT SMALL x

A. Quark helicity TMD

We start with the quark helicity TMD defined by [44]

gq1Lðx; k2TÞ ¼
1

ð2πÞ3
1

2

X
SL

SL

Z
d2rdr−eik·rhpSLjψ̄ð0ÞU½0; r�

×
γþγ5

2
ψðrÞjpSLirþ¼0: ð2Þ1We thank Raju Venugopalan for pointing out this

interpretation.
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Note that antisymmetrization over the target proton spin
projection on the beam axis SL ¼ �1 is “optional”; parity
symmetry guarantees that antisymmetry in the quark
spin is sufficient, so that we may equivalently just set
SL ¼ þ1. Our convention for light-cone coordinates is
v� ¼ ðv0 � v3Þ= ffiffiffi

2
p

and the proton is moving in the light-
cone “plus” direction.
Our first goal is to simplify Eq. (2) at small x. The

particulars of the Dirac structure in this forthcoming
derivation will be specific to the helicity distribution
because of the 1

2
γþγ5 helicity projector in Eq. (2), but

the overall approach will be common to any quark
distribution at small x, such as transversity if we were to
replace this matrix with the transversity projector 1

2
γ5γþγ⊥.

The formal definition (2) of the helicity TMD includes
the process-dependent gauge link U½0; r�; for SIDIS, the
gauge link is explicitly given by

U½0; r� ¼ P exp

�
ig
Z

0

þ∞
dz−Aþð0þ; z−; 0Þ

�

× P exp

�
−ig

Z
0

r
dz · Að0þ;þ∞−; zÞ

�

× P exp

�
ig
Z þ∞

r−
dz−Aþð0þ; z−; rÞ

�
; ð3Þ

where the gauge fields Aμ ¼ Aaμta are color matrices and ta

are fundamental generators of SUðNcÞ. In the A− ¼ 0
gauge that we will employ here, one can neglect the
transverse link at infinity, leaving just the lightlike,
semi-infinite Wilson lines

U½0; r� ¼ V0½0;∞�Vr½∞; r−�; ð4Þ

where we use the following notation for the fundamental
Wilson lines,

Vx½b−; a−� ¼ P exp

�
ig
Z

b−

a−
dx−Aþðxþ ¼ 0; x−; xÞ

�
: ð5Þ

Employing Eq. (4) in Eq. (2) we arrive at

gq1Lðx;k2TÞ¼
1

ð2πÞ3
Z

d2rdr−

×eik·rhp;SL ¼þ1jψ̄ð0ÞV0½0;∞�

×Vr½∞;r−�γ
þγ5

2
ψðrÞjp;SL ¼þ1irþ¼0: ð6Þ

Inserting a complete set of states we get

gq1Lðx;k2TÞ¼
1

ð2πÞ3
X
X

Z
d2rdr−

×eik·r
�
1

2
γþγ5

�
αβ

hp;SL¼þ1jψ̄αð0ÞV0½0;∞�jXi

×hXjVr½∞;r−�ψβðrÞjp;SL¼þ1irþ¼0: ð7Þ

Using this and converting to semiclassical operator
averaging used in the saturation/color glass condensate
(CGC) approach [45–52] (see [45,53–58] for reviews)
gives

gq1Lðx; k2TÞ ¼
2pþ

ð2πÞ3
X
X

Z
d2ζdζ−d2ξdξ−

× eik·ðζ−ξÞ
�
1

2
γþγ5

�
αβ

hψ̄αðξÞVξ½ξ−;∞�jXi

× hXjVζ½∞; ζ−�ψβðζÞi; ð8Þ

where the angle brackets denote averaging in the target
shock wave [25,26] where the target polarization SL ¼ þ1
is implied, but not shown.
Identifying the Wilson lines with the quark propagating

to the final state, one can think of Eq. (8) as containing the
inclusive quark production amplitude squared. Hence we
are back to the case of SIDIS considered in [59]. Equation
(8) is represented graphically in Fig. 1. There, the shaded
rectangles represent the target shock wave. The thin vertical
line is the final state cut. The thick horizontal lines
represent the Wilson lines, which are located at different
transverse plane positions ζ and ξ on either side of the cut.
The diagrams in Fig. 1 are classified according to whether
each of ζ− and ξ− are negative, positive, or zero (corre-
sponding to the quark field being inside the shock wave).
Diagrams in the B category also include the ζ− > 0; ξ− < 0
contribution, which is not shown explicitly in Fig. 1.
Similarly, diagrams E also include ζ− < 0; ξ− ¼ 0 contri-
bution, while F graphs also include ζ− > 0; ξ− ¼ 0 order-
ing: while neither of those are shown in Fig. 1, it is implied
that they have to be included.
Diagram A, evaluated at the lowest quasiclassical order

with quarks exchanged in the t-channel interaction with the
target, is the handbag diagram. Diagram B, along with the
ζ− > 0; ξ− < 0 contribution, is the 1-loop answer found in
[59]. Diagram D does not allow for a spin-dependent
interaction with the target, since both the ζ and ξ vertices
are located after the shock wave. Hence, diagram D does
not contribute. Diagrams C, E, and F have to be inves-
tigated separately, along with diagram A.
A more detailed representation of the types of diagrams

that may contribute up to and including order αs is given in
Fig. 2. (In our power counting the interactions with the
shock wave are considered to be of order one.) For each
diagram class we show only one sample correction: for
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instance, in diagram A the gluon can also be both emitted
and absorbed in the amplitude or in the complex conjugate
amplitude, in diagram C the t-channel exchanges can take
place on either side of the cut, while in diagram E the gluon
can be emitted from the Wilson line on either side of the
cut. The box in diagram B represents spin-dependent
subeikonal interaction with the target, following the con-
vention introduced in [9]. (The interaction will be detailed
below, but it includes the t-channel quark exchanges with
the target shown in other graphs.) We will be working in
A− ¼ 0 light-cone gauge throughout this paper.
Diagram C appears to contribute; however, the inter-

actions of the quark like with the target cancel if we
move the t-channel exchanges across the cut [59]. Hence
diagram C does not contribute at this order. (At the order α2s
diagram C can contribute; this is the order beyond the
one considered explicitly here. Still we believe that the

leading-logarithmic contribution of diagram C will be
canceled even at that order in the coupling due to the
same mechanism as described in Appendix A.) Diagram F
is energy suppressed, since the gluon in it has to be
emitted and absorbed over a very short lifetime of the
shock wave in the x− direction. (Moreover, at small x the
gluon in diagram F has to carry the same large “minus”
momentum as the s-channel antiquark propagator connect-
ing to the vertex ξ; the merger of this gluon with the Wilson
line that begins at ζ cannot be eikonal, since the gluon and
the quark propagator that this Wilson line represents carry
comparable “minus” momenta.) Diagram E may contribute
(as we have mentioned, the gluon there may connect to
either one of the Wilson lines to the left and right of the
cut). Diagram A may be “dressed” by gluon interactions
with the Wilson lines, as shown in Fig. 2. In Appendix A
we show that diagrams A and E cancel at the order αs

FIG. 1. The main types of diagrams contributing to the quark helicity TMD in Eq. (8).

FIG. 2. Diagrams contributing to the quark TMD defined in Eq. (8) with the order-αs corrections due to s-channel gluon emissions
shown explicitly. The thinner solid lines denote quark propagators, while the thicker solid lines are the Wilson lines (as in Fig. 1).
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considered in Fig. 2 (and in the leading logarithmic
approximation in x) and discuss what happens at higher
orders in the coupling.2

We conclude that diagrams A and C–F do not
contribute at the leading small-x level. Therefore, we
are left with diagram B and its “mirror image,” the
contribution with ζ− > 0; ξ− < 0. The mirror image is
just complex conjugate of diagram B. Hence, diagram B
and its mirror image give

gq1Lðx; k2TÞ ¼
2pþ

ð2πÞ3
X
q̄

Z
0

−∞
dζ−

Z
∞

0

dξ−
Z

d2ζd2ξeik·ðζ−ξÞ

×

�
1

2
γþγ5

�
αβ

hψ̄αðξÞVξ½ξ−;∞�jq̄i

× hq̄jVζ½∞; ζ−�ψβðζÞi þ c:c:; ð9Þ

where we have replaced X → q̄ since only the antiquark
is produced in the final state (in addition to the quark
represented by the Wilson lines). The sum

P
q̄ now

denotes the Lorentz-invariant integral over the antiquark
momentum and a sum over its polarizations and colors.
Putting Vξ½ξ−;∞� ¼ 1 for ξ− > 0 (since the Wilson line

does not cross the shock wave, it is trivial) and replacing
Vζ½∞; ζ−� → Vζ½∞;−∞� for ζ− < 0 since this Wilson

line crosses the shock wave and gets all the nontrivial
contributions from this crossing only, we simplify (9) to

gq1Lðx; k2TÞ ¼
2pþ

ð2πÞ3
X
q̄

Z
0

−∞
dζ−

Z
∞

0

dξ−
Z

d2ζd2ξeik·ðζ−ξÞ

×

�
1

2
γþγ5

�
αβ

hψ̄αðξÞjq̄ihq̄jVζ½∞;−∞�ψβðζÞi

þ c:c: ð10Þ
Diagram B is illustrated in a little more detail in Fig. 3.
In evaluating diagram B we impose the ζ− < 0; ξ− > 0

ordering, which makes sure that the vertices at ζ and ξ are
outside the shock wave. For the antiquark (background-
field [25,26]) propagator in Fig. 3 traversing the shock
wave we write

ð11Þ

where i and j are the quark color indices. This quantity is constructed as an antiquark propagator: created by d̂† in ψβðζÞ and
propagating with positive energy k−1 through the shockwave to be annihilated by d̂ in ψ̄αðξÞ. Note that the “vertex” for the
antiquark passing through the shockwave (the box in Fig. 3) is a Dirac matrix, denoted by ðV̂†Þ. Its exact structure will be
clarified later, but for now, in our small-x approximation, we can think of it as a light-cone Wilson line with or without an
insertion of a noneikonal local operator.
In order to simplify the propagator (11) we first integrate over k−2 , and over kþ1 with kþ2 , while keeping in mind

that ζ− < 0 and ξ− > 0.3 This yields

ð12Þ

FIG. 3. A more detailed illustration of diagram B.

2Unlike the other diagrams considered here, diagram A does appear to contribute at order-1, that is, at Born level, when no gluon
emission corrections like those shown in Fig. 2 are included. However, such contribution is independent of x, and is subleading
compared to the contribution of diagram B we calculate below, which grows as a power of 1=x.

3Here and below in this paper, when calculating diagrams like B, we will neglect the nonlogarithmic instantaneous terms; in this case
the instantaneous term leads to the delta function δðζ−Þ confining the corresponding vertex to the inside of the shockwave. Such terms

contribute to diagrams A, E, and F only. This means that in Eq. (11) one should understand =k1 as γ− k2
1

2k−
1

þ γþk−1 − γ · k1.
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Plugging this back into Eq. (10) and integrating over ξ and k2 we obtain

gq1Lðx; k2TÞ ¼
2pþ

ð2πÞ3
Z

0

−∞
dζ−

Z
∞

0

dξ−
Z

d2ζeik
þðζ−−ξ−Þ

�
1

2
γþγ5

�
αβ

�
TVij

ζ ½∞;−∞�
Z

d2w
d2k1dk−1
ð2πÞ3

× e
i
k2
1

2k−
1
ζ−−i k

2

2k−
1
ξ−þiðk1þkÞ·ðw−ζÞ

θðk−1 Þ
��

=k1
2k−1

�
½ðV̂†

wÞji�
�
=k2
2k−1

�	
βα


����
k−
2
¼k−

1
;k2

1
¼0;k2

2
¼0;k2¼−k

þ c:c: ð13Þ

Here we explicitly insert the time-ordering sign T, which is often omitted but implied in the CGC calculations. Since both
“Wilson lines” Vζ and V̂w are in the amplitude of diagram B in Fig. 3, they come in with a time-ordering sign.

Distinguishing time-ordered and antitime ordered correlation functions will be very important below. As we detail in
Appendix B, inserting time-ordering sign T and the antitime ordering sign T̄ allow us to distinguish amplitudes from the
complex conjugate amplitudes. This way we are able to differentiate between an expectation value of the complex conjugate
operator in the amplitude versus the complex conjugate of the expectation value of the operator in the amplitude.
Next we integrate over ζ− and ξ−. This yields

gq1Lðx; k2TÞ ¼ −
2pþ

ð2πÞ3
Z

d2ζd2w
d2k1dk−1
ð2πÞ3 eiðk1þkÞ·ðw−ζÞθðk−1 Þ

�
TVij

ζ ½∞;−∞�Tr
�
1

2
γþγ5=k1ðV̂†

wÞji=k2
�


×
1

½2k−1 kþ þ k21 − iϵk−1 �½2k−1 kþ þ k2 þ iϵk−1 �
����
k−
2
¼k−

1
;k2

1
¼0;k2

2
¼0;k2¼−k

þ c:c: ð14Þ

Introducing polarization sums, we write

gq1Lðx; k2TÞ ¼ −
2pþ

ð2πÞ3
Z

d2ζd2w
d2k1dk−1
ð2πÞ3 eiðk1þkÞ·ðw−ζÞθðk−1 Þ

X
σ1;σ2

v̄σ2ðk2Þ
1

2
γþγ5vσ1ðk1ÞhTVij

ζ ½∞;−∞�

× v̄σ1ðk1ÞðV̂†
wÞjivσ2ðk2Þi

1

½2k−1 kþ þ k21 − iϵk−1 �½2k−1 kþ þ k2 þ iϵk−1 �
����
k−
2
¼k−

1
;k2

1
¼0;k2

2
¼0;k2¼−k

þ c:c: ð15Þ

Further, we define the (antiquark) polarized “Wilson line” as a longitudinal spin-dependent part of an antiquark scattering
amplitude on the shock wave. We need the part of the scattering amplitude proportional to the Pauli matrix σ3 in helicity
space, that is, to σδσσ0 with σ and σ0 the helicities of the antiquark before and after scattering respectively. Using the
Brodsky-Lepage (BL) spinors [60] we write

½v̄σðpÞðV̂†
xÞvσ0 ðp0Þ� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
p−p0−p

δσσ0 ðV†
x − σVpol†

x þ � � �Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
p−p0−p

δσσ0V
†
xð−σÞ þ � � � ; ð16Þ

where the ellipsis denote the subeikonal corrections independent of helicity, which we are not interested in and we use a
shorthand notation Vx ≡ Vx½∞;−∞�.4
In addition, we will employ

v̄σ2ðk2Þ
1

2
γþγ5vσ1ðk1Þ ¼

1

2
σ2δσ2σ1

ðk2 · k1Þ − iσ2ðk2 × k1Þffiffiffiffiffiffiffiffiffiffi
k−1 k

−
2

p ð18Þ

for the (�)-interchanged Brodsky-Lepage spinors (which we will also refer to as the anti-BL spinors).

4The general convention for BL spinors is as follows (these matrix elements appear either in the scattering amplitude or in the
complex conjugate amplitude):

ūσðpÞðV̂xÞuσ0 ðp0Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
p−p0−p

δσσ0VxðσÞ; ūσðpÞðV̂†
xÞuσ0 ðp0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
p−p0−p

δσσ0V
†
xðσÞ; ð17aÞ

v̄σðpÞðV̂xÞvσ0 ðp0Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
p−p0−p

δσσ0Vxð−σÞ; v̄σðpÞðV̂†
xÞvσ0 ðp0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
p−p0−p

δσσ0V
†
xð−σÞ: ð17bÞ
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Using the matrix elements from Eqs. (16) and (18) in Eq. (15) we obtain

gq1Lðx; k2TÞ ¼
2pþ

ð2πÞ3
Z

d2ζd2w
d2k1dk−1
ð2πÞ3 eiðk1þkÞ·ðw−ζÞθðk−1 Þ

X
σ1

σ1½k · k1 − iσ1k × k1�

× hTtr½Vij
ζ ½∞;−∞�V†

wð−σ1Þ�i
1

½2k−1 kþ þ k21 − iϵk−1 �½2k−1 kþ þ k2 þ iϵk−1 �
þ c:c: ð19Þ

Remembering that kþ ¼ xpþ and we are considering the small-x regime (and, hence, 2k−1 k
þ ¼ 2k−1 xp

þ ≪ k2; k21), we get

gq1Lðx; k2TÞ ¼
2pþ

ð2πÞ3
Z

d2ζd2w
d2k1dk−1
ð2πÞ3 eiðk1þkÞ·ðw−ζÞθðk−1 Þ

X
σ1

σ1
k · k1 − iσ1k × k1

k21k
2

hTtr½VζV
†
wð−σ1Þ�i þ c:c: ð20Þ

Writing V†
wð−σ1Þ ¼ V†

w − σ1V
pol†
w allows us to sum over σ1 obtaining, after performing k1 integration as well,

gq1Lðx; k2TÞ ¼
4pþi
ð2πÞ4

Z
d2ζd2we−ik·ðζ−wÞ

Z
∞

0

dk−1
2π

�
k
k2

·
ζ − w

jζ − wj2 hTtr½VζV
pol†
w � þ T̄tr½Vpol

ζ V†
w�i þ i

k
k2

×
ζ − w

jζ − wj2 hTtr½VζV
†
w�

− T̄tr½VζV
†
w�i

	
; ð21Þ

where we have explicitly added the complex conjugate term
(and interchanged ζ ↔ w in it) by employing the fact that

½TO1ðxÞO2ðyÞ�† ¼ T̄O†
2ðyÞO†

1ðxÞ for two operators O1ðxÞ
and O2ðyÞ. As mentioned before, the sign T̄ denotes
antitime ordering.
Before we continue, let us stress the importance of the

ordering of (polarized and/or unpolarized) Wilson lines in
the nontime-ordered correlation functions. To do this, let us
introduce the following useful relations between the
expectation values of Wilson lines:

hTtr½VxV
pol†
y �i ¼ htr½VxV

pol†
y �i; ð22aÞ

hT̄tr½VxV
pol†
y �i ¼ htr½Vpol†

y Vx�i: ð22bÞ

The relations Eqs. (22) are written here for one regular
Wilson line and for one unpolarized Wilson line; however,
they are also valid for correlators of two regular Wilson
lines. The order of the Wilson lines under the trace matters
for the right-hand sides of Eqs. (22). In the sense of Eq. (8),
the right Wilson line in each nontime-ordered correlator can
be thought of as contributing to the amplitude, while the left
Wilson line contributes to the complex conjugate ampli-
tude. The Wilson lines are bosonic operators (even the
polarized Wilson lines are bosonic, as we will see below);
hence the ordering of the Wilson lines is not important for
the (anti)time-ordered correlation functions.
Note that this ordering issue does not apply to the

standard eikonal CGC calculations done in the leading-
logarithmic approximation (LLA) [25–32], where all the
Wilson lines are standard eikonal Wilson lines, and the
background gluon field is assumed to be classical [47–52]

rather than being an operator; in such case the order of
Wilson lines does not matter and Eqs. (22) are trivially
satisfied (see [61] for applications of that result to inclusive
gluon production). The relations (22) were shown to work
in [62] up to next-to-leading logarithms (NLL) in x for the
unpolarized BK/JIMWLK evolution.
Diagrammatically the relations (22) can be pictured as

arising from the reflection symmetry of light-cone Wilson
lines (true “unpolarized” Wilson lines) with respect to the
final state cut. Equation (22a) can be thought of as being
due to reflecting a light-cone Wilson line from the complex
conjugate amplitude (on the expression’s right-hand side)
back into the amplitude [the left-hand side of Eq. (22b)], as
illustrated in Fig. 4. Equation (22b) arises after the
reflection of the light-cone Wilson line from the amplitude
into the complex conjugate amplitude.
Taking the real and imaginary parts of Eqs. (22) one

obtains more useful formulas

2RehTtr½VxV
pol†
y �i ¼ htr½VxV

pol†
y �i þ htr½Vpol

y V†
x�i; ð23aÞ

2iImhTtr½VxV
pol†
y �i ¼ htr½VxV

pol†
y �i − htr½Vpol

y V†
x�i; ð23bÞ

FIG. 4. The reflection of the Wilson line from the complex
conjugate amplitude to the amplitude discussed in the text.
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2RehT̄tr½VxV
pol†
y �i ¼ htr½Vpol†

y Vx�i þ htr½V†
xV

pol
y �i; ð23cÞ

2iImhT̄tr½VxV
pol†
y �i ¼ htr½Vpol†

y Vx�i − htr½V†
xV

pol
y �i: ð23dÞ

Returning to Eq. (21) we notice that

hTtr½VζV
†
w� − T̄tr½VζV

†
w�i ¼ htr½VζV

†
w� − tr½V†

wVζ�i ¼ 0;

ð24Þ

since for true Wilson lines the reflection symmetries that
led to Eqs. (21) also imply that htr½VζV

†
w�i ¼ htr½V†

wVζ�i
[with the same NLL accuracy as Eqs. (22) were verified
up to]. (Note that Ttr½VζV

†
w� − T̄tr½VζV

†
w� is not the odderon

operator. The latter is tr½VζV
†
w� − tr½VwV

†
ζ � [63,64] and it

gives zero after the impact parameter integration, as
observed in [65].)
Since the second term in the curly brackets of Eq. (21) is

zero, we arrive at

gq1Lðx; k2TÞ ¼
4pþi
ð2πÞ4

Z
d2ζd2we−ik·ðζ−wÞ

Z
∞

0

dk−1
2π

k
k2

·
ζ − w

jζ − wj2 hTtr½VζV
pol†
w � þ T̄tr½Vpol

ζ V†
w�i: ð25Þ

In the flavor-singlet case that we are primarily interested in here one adds the antiquark TMD contribution. This yields

gS1Lðx; k2TÞ ¼
4pþi
ð2πÞ4

Z
d2ζd2we−ik·ðζ−wÞ

Z
∞

0

dk−1
2π

k
k2

·
ζ − w

jζ − wj2

× hTtr½VζV
pol†
w � þ Ttr½Vpol

w V†
ζ � þ T̄tr½Vpol

ζ V†
w� þ T̄tr½VwV

pol†
ζ �i: ð26Þ

Here we have used (again for the anti-BL spinors)

ūσ2ðk2Þ
1

2
γþγ5uσ1ðk1Þ ¼ −

1

2
σ2δσ2σ1

ðk2 · k1Þ þ iσ2ðk2 × k1Þffiffiffiffiffiffiffiffiffiffi
k−1 k

−
2

p : ð27Þ

We next define the (flavor-singlet) polarized dipole amplitude

Gw;ζðzsÞ ¼
k−1p

þ

Nc
RehTtr½VζV

pol†
w � þ Ttr½Vpol

w V†
ζ �i ð28Þ

with zs ¼ 2k−1p
þ. This definition is different from the one

used in our previous works [9–13] by the real-part operator
Re and by the time-ordering signs shown explicitly here
while they were only implied in our earlier works, as is
customary in the saturation/CGC calculations (with the
exception of [62]). All the calculations performed in [9–13]
were not affected by the omitted time-ordering signs, since
they were de facto applied. Similarly, the Re sign was de
facto applied as well, since only cut diagrams were
calculated. In DLA, the real-part operator only makes a
difference when evaluating the initial conditions for the
(linear) small-x evolution of the polarized dipole amplitude
(28). In calculating these initial conditions the Re operator

from the right of Eq. (28) was applied: we calculated the
scattering cross sections for the Born-level processes,
instead of the whole forward amplitude. (That is, we
calculated the imaginary part of the forward scattering
amplitude.) In Appendix B we show explicitly how the
calculations carried out earlier in Sec. II A of [11] are
equivalent to Eq. (28), thus also illustrating how
Eqs. (22) work.
Employing the definition (28) in Eq. (26) along with

Eqs. (22) and their complex conjugates [or, equivalently,
Eqs. (23) and their complex conjugates] while noticing that
for a longitudinally polarized target, due to the absence of
any preferred transverse direction,

Z
d2
�
ζ þ w
2

�
hTtr½VζV

†
w�i≡ hðjζ − wjÞ ¼ hðjw − ζjÞ ¼

Z
d2
�
ζ þ w
2

�
hTtr½VwV

†
ζ �i ð29Þ

for correlators made out of both polarized and unpolarizedWilson lines with time-ordering and antitime ordering, we arrive at

gS1Lðx; k2TÞ ¼
8Nci
ð2πÞ5

Z
d2ζd2we−ik·ðζ−wÞ

Z
1

Λ2=s

dz
z

ζ − w

jζ − wj2 ·
k
k2

Gw;ζðzsÞ: ð30Þ
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Here s ≈Q2=x is the center-of-mass energy squared, whileΛ is an infrared (IR) cutoff withΛ2=s the lowest possible value of
the variable z. Introducing a dummy transverse vector variable y we rewrite Eq. (30) as

gS1Lðx; k2TÞ ¼
8Nc

ð2πÞ6
Z

d2ζd2wd2ye−ik·ðζ−yÞ
Z

1

Λ2=s

dz
z

ζ − w

jζ − wj2 ·
y − w

jy − wj2Gw;ζðzsÞ; ð31Þ

in complete agreement with Eq. (8c) in [11], or, equivalently, Eq. (15) in [9].
The corresponding flavor-singlet quark helicity PDF is given by [9–13]

X
f

½Δqfðx;Q2Þ þ Δq̄fðx;Q2Þ� ¼
X
f

Z
d2kTgS1Lðx; k2TÞ ¼

NcNf

2π3

Z
1

Λ2=s

dz
z

Z
1

zQ2

1
zs

dx210
x210

Gðx210; zÞ; ð32Þ

where

Gðx210; zÞ ¼
Z

d2
�
x1 þ x0

2

�
G10ðzÞ ð33Þ

with G10 ¼ Gx1;x0
and x10 ¼ x1 − x0.

For the flavor nonsinglet distribution we have to subtract the antiquark contribution out of Eq. (25):

gNS1L ðx; k2TÞ ¼
4pþi
ð2πÞ4

Z
d2ζd2we−ik·ðζ−wÞ

Z
∞

0

dk−1
2π

k
k2

·
ζ − w

jζ − wj2

× hTtr½VζV
pol†
w � − Ttr½Vpol

w V†
ζ � þ T̄tr½Vpol

ζ V†
w� − T̄tr½VwV

pol†
ζ �i: ð34Þ

Similarly, define the flavor non-singlet polarized dipole amplitude

GNS
w;ζðzsÞ ¼

k−1p
þ

Nc
RehTtr½VζV

pol†
w � − Ttr½Vpol

w V†
ζ �i ¼

k−1p
þ

Nc
Rehtr½VζV

pol†
w � − tr½V†

ζV
pol
w �i; ð35Þ

where we have used Eq. (22) and the complex conjugate of Eq. (22b) to simplify the definition. Using Eq. (35) in Eq. (34)
we arrive at

gNS1L ðx; k2TÞ ¼
8Nc

ð2πÞ6
Z

d2ζd2wd2ye−ik·ðζ−yÞ
Z

1

Λ2=s

dz
z

ζ − w

jζ − wj2 ·
y − w

jy − wj2G
NS
w;ζðzsÞ; ð36Þ

in agreement with Eq. (54c) in [11]. Once again, the apparent
difference between the definition of the flavor nonsinglet
distribution inEq. (55a) of [11] andEq. (35) is due to the real-
part (Re) operator and the time-ordering signs which were
implied in [11], though not shown explicitly. Only cut
diagrams were calculated in [11] for the initial condition
of the nonsinglet polarized dipole evolution. Another reason
for this absence of the Re sign causing no difference in that
particular case is that the expression under the Re sign was
already real (see Appendix B for details).

B. Gluon helicity TMDs

For completeness, let us quote here the results of [13],
where the dipole and Weizsäcker-Williams (WW) gluon
helicity TMDs were calculated at small x, also starting with
the full operator expression.
Define another dipolelike polarized operator

Gi
10ðzsÞ≡ 1

2Nc
htr½V0ðVpol†

1 Þi⊥� þ c:c:iðzsÞ ð37Þ

with a different polarized fundamental Wilson line

ðVpol
x Þi⊥ ≡

Z þ∞

−∞
dx−Vx½þ∞; x−�ðigPþAi⊥ðxÞÞVx½x−;−∞�

¼ 1

2

Z þ∞

−∞
dx−Vx½þ∞; x−�ðigĀi⊥ðxÞÞVx½x−;−∞�:

ð38Þ

Applying Eq. (22a) we can rewrite Eq. (37) as

Gi
10ðzsÞ≡ 1

2Nc
hTtr½V0ðVpol†

1 Þi⊥� þ c:c:iðzsÞ; ð39Þ

which facilitates its diagrammatic evaluation performed
in [13].
After the integration over all impact parameters, the new

polarized dipole amplitude is a vector-valued function of
x10 only, with no other transverse vector present. We thus
write [13]
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Z
d2b10Gi

10ðzsÞ ¼ ðx10Þi⊥G1ðx210; zsÞ þ ϵijT ðx10Þj⊥G2ðx210; zsÞ: ð40Þ

Employing these quantities we write the dipole gluon helicity TMD at small x as [13]

gGdip1L ðx; k2TÞ ¼
−Nc

αs2π
4

Z
d2x10eik·x10

�
1þ x210

∂
∂x210

�
G2

�
x210; zs ¼

Q2

x

�
: ð41Þ

The WW gluon helicity TMD is [13]

gGWW
1L ðx; k2TÞ ¼

1

αsπð2πÞ3
Z

d2x10d2b10eik·x10ϵ
ij
T

�
tr

�
ðVpol

1 Þi⊥V†
1V0

� ∂
∂ðx0Þj⊥

V†
0

��
þ c:c:



: ð42Þ

Finally, the gluon helicity PDF is given by

ΔGðx;Q2Þ ¼
Z

d2kgGWW
1L ðx; k2TÞ ¼

Z
d2kgGdip1L ðx; k2TÞ ¼

−2Nc

αsπ
2

��
1þ x210

∂
∂x210

�
G2

�
x210; zs ¼

Q2

x

��
x2
10
¼ 1

Q2

: ð43Þ

III. POLARIZED “WILSON LINES”:
OPERATOR DEFINITIONS

A. Polarized fundamental Wilson line

Our next goal is to construct an explicit expression for the
polarized Wilson line operator Vpol

x that we have employed
above and in [9–13]. To find this operator we have to
calculate the scattering amplitude of a high-energy longitu-
dinally polarized quark on a longitudinally polarized target,
keeping only the polarization-dependent part of the inter-
actionwith the background gluon and quark fields. There are
two contributions in this calculation, as shown in the two
panels of Fig. 5: polarized gluon (left panel) and quarks (right
panel) exchanges. The gluon-exchange contribution in the
left panel of Fig. 5 has already been calculated in [13]. Hence
all that is left to do is to find the contribution of the quark
exchanges from the right panel.
The expression for the polarized fundamental Wilson

line with a single t-channel gluon exchange carrying the
polarization information, corresponding to the left panel of
Fig. 5, is given by Eq. (21) of [13]:

ðVpol
x Þg ¼ igpþ

1

s

Z
∞

−∞
dx−Vx½þ∞; x−�F12ðx−; xÞVx½x−;−∞�:

ð44Þ

Our aim now is to find ðVpol
x Þq. Let us repeat the calculation

from Sec. II B of [13], but now including quark exchanges
in the t-channel, as shown in the right panel of Fig. 5
(exactly what happens to the quark inside the target is not
important for our calculation, as long as the target generates
the quark fields ψ or ψ̄). To do so, let us first calculate the
contribution of the left t-channel quark exchange in the
right panel of Fig. 5,

1

2p−
2

ϵμ�λ ðp2 þ kÞðigÞψ̄ðkÞtaγμuσðp2Þ

¼ −
igffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p−
2

q ψ̄ðkÞtaρðσÞδσ;λ; ð45Þ

where we have defined the þ ↔ − interchanged Brodsky-

Lepage spinors uσðp2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p−
2

q
ρðσÞ for massless

quarks with momentum pμ
2 ¼ ð0; p−

2 ; 0Þ (cf. [60]). Here

ρðþ1Þ ¼ 1ffiffiffi
2

p

0
BBBBB@

1

0

−1
0

1
CCCCCA
; ρð−1Þ ¼ 1ffiffiffi

2
p

0
BBBBB@

0

1

0

1

1
CCCCCA
; ð46Þ

FIG. 5. Two contributions to the polarized fundamental Wilson line in a background field. Filled circles at the quark-gluon vertices
denote the spin-dependent subeikonal scattering.
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and we neglected terms further suppressed by 1=p−
2 .

Fourier transforming (45) we get

−
igffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p−
2

q ψ̄ðx−1 ; xÞtaρðσÞδσ;λ: ð47Þ

Similarly, the contribution of the right t-channel exchange
of the right panel in Fig. 5 gives

−
igffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p−
2

q ρTðσ0Þtbγ0ψðx−2 ; xÞδσ0;λ: ð48Þ

Combining Eqs. (47) and (48) we write the operator, the
σδσσ0 -dependent part of which would give us the polarized
Wilson line:

σδσσ0 ðVpol
x Þq ⊃ −

g2pþ
1

ffiffiffi
2

p

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2
X
λ

Vx½þ∞; x−2 �ρTðσ0Þtbγ0ψðx−2 ; xÞδσ0;λUba
x ½x−2 ; x−1 �

× ψ̄ðx−1 ; xÞtaρðσÞδσ;λVx½x−1 ;−∞�

¼ −δσσ0
g2pþ

1

ffiffiffi
2

p

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 �ρTðσÞtbγ0ψðx−2 ; xÞUba
x ½x−2 ; x−1 �

× ψ̄ðx−1 ; xÞtaρðσÞVx½x−1 ;−∞�

¼ −δσσ0
g2pþ

1

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 �tbψβðx−2 ; xÞUba
x ½x−2 ; x−1 �

�
1

2
γþð1þ σγ5Þ

�
αβ

× ψ̄αðx−1 ; xÞtaVx½x−1 ;−∞�: ð49Þ

Keeping only the σ-dependent part of the obtained expression we write

ðVpol
x Þq ¼ −

g2pþ
1

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 �tbψβðx−2 ; xÞUba
x ½x−2 ; x−1 �

�
1

2
γþγ5

�
αβ

ψ̄αðx−1 ; xÞtaVx½x−1 ;−∞�: ð50Þ

Combining Eqs. (50) and (44) we finally write the full polarized fundamental Wilson line operator as

Vpol
x ¼ igpþ

1

s

Z
∞

−∞
dx−Vx½þ∞; x−�F12ðx−; xÞVx½x−;−∞�

−
g2pþ

1

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 �tbψβðx−2 ; xÞUba
x ½x−2 ; x−1 �

�
1

2
γþγ5

�
αβ

ψ̄αðx−1 ; xÞtaVx½x−1 ;−∞�: ð51Þ

B. Polarized adjoint Wilson line

Let us now repeat the above calculation (along with the
calculation from Sec. II B of [13]), but for the adjoint (gluon)
polarized Wilson line. Similar to the above, we have to find
the high-energy longitudinally polarized gluon scattering

amplitude on a longitudinally polarized target, keeping only
the polarization-dependent part of the expression.
We begin by considering the scattering amplitude in the

left panel of Fig. 6. By analogy to the calculation in [13] we
write

FIG. 6. Two contributions to the polarized adjoint Wilson line in the quasiclassical approximation (in A− ¼ 0 gauge). The filled circles
denote the spin-dependent subeikonal scattering.
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λδλ;λ0Ô
g
polðkÞ≡ 1

2p−
2

ϵμ�λ0 ðp2 þ kÞ½ðp2 − kÞμgνρ − ð2p2 þ kÞρgμν þ ð2kþ p2Þνgμρ�ϵνλðp2ÞgfabcAaρ
⊥ ðkÞ ¼ λδλ;λ0

g
p−
2

k ×AðkÞ

ð52Þ
with all the indices as labeled in the left panel of Fig. 6. Again we only keep the spin-dependent terms proportional to λδλ;λ0 ,
whileAμ denotes the color matrix Aa

μTa with Ta the adjoint generators of SU(Nc). Fourier transforming to coordinate space
gives

Ôg
polðx−; xÞ≡

Z
dkþ

2π

d2k
ð2πÞ2 e

−ikþx−eik·x
�
g
p−
2

k ×AðkÞ
�
¼ 2

s
ð−igpþ

1 ÞϵijT
∂

∂xi⊥Aj
⊥ðx−; xÞ≡ 2

s
ð−igpþ

1 Þ∇ ×Aðx−; xÞ: ð53Þ

We thus obtain the gluon contribution to the polarized adjoint Wilson line

ðUpol
x Þg ¼ 2igpþ

1

s

Z þ∞

−∞
dx−Ux½þ∞; x−�F 12ðxþ ¼ 0; x−; xÞUx½x−;−∞�; ð54Þ

where F 12 is the component of the field-strength tensor in the adjoint representation and

Ux½b−; a−� ¼ P exp

�
ig
Z

b−

a−
dx−Aþðxþ ¼ 0; x−; xÞ

�
ð55Þ

is the adjoint Wilson line.
Finally, defining a rescaled gluon field

Aðx−; xÞ ¼ SL
2pþ

1

Āðx−; xÞ ð56Þ

we obtain

ðUpol
x Þg ¼ 1

s

Z
∞

−∞
dx−Ux½þ∞; x−�

�
−igϵijT

∂
∂xi⊥ Āj

⊥ðx−; xÞ
�
Ux½x−;−∞� ¼ ig

s

Z
∞

−∞
dx−Ux½þ∞; x−�F̄ 12ðx−; xÞUx½x−;−∞�:

ð57Þ
Now let us consider the contribution of quark t-channel exchanges, as shown in the right panel of Fig. 6. Starting with the

exchange on the left we write for it

1

2p−
2

igūσðp2Þtb0γμψðkÞϵμλðp2 − kÞ ¼ −
igffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p−
2

q δσ;λρ
TðσÞtb0γ0ψðkÞ: ð58Þ

In coordinate space we have

−
igffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p−
2

q δσ;λρ
TðσÞtb0γ0ψðx−1 ; xÞ: ð59Þ

The right t-channel quark exchange in the right panel of Fig. 6 yields

−
igffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p−
2

q δσ;λ0 ψ̄ðx−2 ; xÞta
0
ρðσÞ: ð60Þ
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Combining these results together we write

λδλλ0 ðUpol
x Þqab ⊃−

g2ffiffiffi
2

p
p−
2

δλλ0

�Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2U
aa0
x ½þ∞;x−2 �ψ̄ðx−2 ;xÞta

0
ρðλÞVx½x−2 ;x−1 �

×ρTðλÞtb0γ0ψðx−1 ;xÞUb0b
x ½x−1 ;−∞�þ

Z
∞

−∞
dx−1

Z
x−
1

−∞
dx−2U

ab0
x ½þ∞;x−1 �ψ̄ðx−2 ;xÞta

0
ρðλÞVx½x−2 ;x−1 �

×ρTðλÞtb0γ0ψðx−1 ;xÞUa0b
x ½x−2 ;−∞�

�

¼−
g2ffiffiffi
2

p
p−
2

δλλ0
Z

∞

−∞
dx−1

Z
∞

x−
1

dx−2U
aa0
x ½þ∞;x−2 �½ψ̄ðx−2 ;xÞta

0
ρðλÞVx½x−2 ;x−1 �

×ρTðλÞtb0γ0ψðx−1 ;xÞþ c:c:�Ub0b
x ½x−1 ;−∞� ð61Þ

where the second term in the brackets is due to the contribution of the diagram in which the quark particle number flows in
an opposite direction from that in the right panel of Fig. 6. Simplifying further we arrive at

λδλλ0 ðUpol
x Þq ab ⊃ −

g2

2p−
2

δλλ0
Z

∞

−∞
dx−1

Z
∞

x−
1

dx−2U
aa0
x ½þ∞; x−2 �

�
ψ̄αðx−2 ; xÞta

0
Vx½x−2 ; x−1 �

�
1

2
γþð1þ λγ5Þ

�
αβ

× tb
0
ψβðx−1 ; xÞ þ c:c:

	
Ub0b

x ½x−1 ;−∞�: ð62Þ

Finally, keeping only the λ-dependent term we arrive at the expression for the adjoint polarized Wilson line with quark
exchanges in the t-channel:

ðUpol
x Þq ab ¼ −

g2pþ
1

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2U
aa0
x ½þ∞; x−2 �

�
ψ̄αðx−2 ; xÞta

0
Vx½x−2 ; x−1 �

�
1

2
γþγ5

�
αβ

× tb
0
ψβðx−1 ; xÞ þ c:c:

	
Ub0b

x ½x−1 ;−∞�: ð63Þ

With the help of Eqs. (54) and (63) we derive the full adjoint polarized Wilson line operator:

ðUpol
x Þab ¼ 2igpþ

1

s

Z þ∞

−∞
dx−ðUx½þ∞; x−�F 12ðxþ ¼ 0; x−; xÞUx½x−;−∞�Þab

−
g2pþ

1

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2U
aa0
x ½þ∞; x−2 �ψ̄ðx−2 ; xÞta

0
Vx½x−2 ; x−1 �

1

2
γþγ5tb

0
ψðx−1 ; xÞUb0b

x ½x−1 ;−∞� − c:c: ð64Þ

IV. SMALL-x HELICITY EVOLUTION AT LARGE-Nc

We are now ready to use the polarized Wilson line operators derived above to cross-check the small-x helicity evolution
equations derived in [9–13]. Those equations close only in the large-Nc and the larger-Nc and Nf limits. We begin with the
large-Nc limit, which is dominated by gluons.
We are interested in the evolution of the adjoint polarized dipole amplitude, defined by

Gadj
10 ðzsÞ¼

1

2ðN2
c−1ÞRe⟪TTr½U0ðUpolg

1 Þ†�þTTr½Upolg
1 U†

0�⟫

≡ zs
2ðN2

c−1ÞRehTTr½U0ðUpolg
1 Þ†�þTTr½Upolg

1 U†
0�i

¼ pþ

N2
c−1

Z
∞

−∞
dx−1Re

�
TTr

�
U0U1½−∞;x−1 �

�
igϵijT

∂
∂ðx1Þi⊥A

j
⊥ðx−1 ;x1Þ

�
U1½x−1 ;∞�

�
þc:c:



ðzsÞ: ð65Þ
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Here Tr denotes a color trace in the adjoint representation.
We are keeping only the gluon operator contribution to the
polarized Wilson lines. The diagrams giving the DLA
large-Nc evolution ofG

adj
10 ðzsÞ are in complete analogy with

the Fig. 2 of [13]. They are shown in Fig. 7 here. In the

large-Nc limit quark loops are suppressed. Therefore, the
soft quark emission is not included (cf. Fig. 8 below). For
brevity, from now on we will often omit the Re sign,
implying that it is applied to all of the correlators below.
Employing the notation from [13] we write

ð66Þ

With the help of the propagator

ð67Þ

which was also established in [13], we write

FIG. 7. Diagrams illustrating evolution of the polarized dipole amplitude (65). The blue rectangle represents the target shock wave, the
black filled circle represents an insertion of the subeikonal operator (53), and the gray box represents the polarized adjoint Wilson
line (57).
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ðδGadj
10 ÞIðzsÞ ¼

g2pþ

4π3ðN2
c − 1Þ

Z
∞

0

dk−
Z

d2x2
x221

hTTr½U0TaU†
1T

b�ðUpol
2 Þba þ c:c:iðz0s ¼ 2pþk−Þ

¼ αs
2π2

Z
z

Λ2
s

dz0

z0

Z
d2x2
x221

��
1

N2
c − 1

TTr½U0TaU†
1T

b�ðUpol
2 Þba þ c:c:




ðz0sÞ: ð68Þ

Adding the contribution of the diagram I’ simply doubles the result, yielding

ðδGadj
10 ÞIþI0 ðzsÞ ¼

αs
2π2

Z
z

Λ2
s

dz0

z0

Z
d2x2
x221

��
2

N2
c − 1

TTr½U0TaU†
1T

b�ðUpol
2 Þba þ c:c:




ðz0sÞ: ð69Þ

The effect of diagrams II and II’ in the DLA is to simply introduce the IR cutoff x10 > x21 on the x2 integral in the diagrams I
and I’ [9,11]. Finally, the “eikonal” diagrams in Fig. 7 are calculated in the same way as for the unpolarized evolution [25–32].
Note that the rescaling in the double angle brackets defined in Eq. (65) is donewith the z of the polarizedWilson line, while the
z in the argument of the correlator is the longitudinal momentum fraction of the softest line in the dipole [9] (which may be the
unpolarized line). In the end we arrive at the following evolution equation for the adjoint polarized dipole amplitude:

Gadj
10 ðzÞ ¼ Gadjð0Þ

10 ðzÞ þ αs
2π2

Z
z

Λ2
s

dz0

z0

Z
d2x2
x221

θðx10 − x21Þθ
�
x221 −

1

z0s

�

×

���
2

N2
c − 1

TTr½U0TaU†
1T

b�ðUpol
2 Þba þ c:c:




ðz0Þ

þ 1

N2
c − 1

½hhTTr½TbU0TaUpol†
1 �Uba

2 iiðz0Þ − NchhTTr½U0U
pol†
1 �iiðz0Þ þ c:c:�

	
: ð70Þ

[We have suppressed the s in zs in the arguments of the functions and correlators in (70).] The evolution equation (70) is
consistent with Eq. (62) from [9] and with Eq. (A1) in [11].
Next let us take the large-Nc limit of Eq. (70). This means rewriting (70) in terms of the fundamental polarized dipole

amplitudes. Start with the true (unpolarized) adjoint Wilson line

ðU0Þab ¼ 2tr½tbV†
0t

aV0�: ð71Þ

To derive a similar relation for ðUpolÞg from Eq. (57) we write

ðUpol
x Þg ab ¼ ig

s

Z
∞

−∞
dx−ðUx½þ∞; x−�ÞacðTeÞcdðUx½x−;−∞�ÞdbF̄e12ðx−; xÞ

¼ 4g
s

Z
∞

−∞
dx−tr½tcV†

x½þ∞; x−�taVx½þ∞; x−��fecdtr½tbV†
x½x−;−∞�tdVx½x−;−∞��F̄e12ðx−; xÞ

¼ −8ig
s

Z
∞

−∞
dx−tr½tcV†

x½þ∞; x−�taVx½þ∞; x−��tr½tc½td; te��tr½tbV†
x½x−;−∞�tdVx½x−;−∞��F̄e12ðx−; xÞ

¼ −4ig
s

Z
∞

−∞
dx−tr½V†

x½þ∞; x−�taVx½þ∞; x−�½td; te��tr½tbV†
x½x−;−∞�tdVx½x−;−∞��F̄e12ðx−; xÞ

¼ −2ig
s

Z
∞

−∞
dx−F̄e12ðx−; xÞftr½teV†

x½þ∞; x−�taVx½þ∞; x−�Vx½x−;−∞�tbV†
x½x−;−∞��

−tr½V†
x½þ∞; x−�taVx½þ∞; x−�teVx½x−;−∞�tbV†

x½x−;−∞��g: ð72Þ

The expression for the polarized fundamental Wilson line is given by Eq. (44), which for the momentum-rescaled gluon
field reads

ðVpol
x Þg ¼ ig

2s

Z
∞

−∞
dx−Vx½þ∞; x−�teF̄e12ðx−; xÞVx½x−;−∞�: ð73Þ

With the help of Eq. (73) we rewrite Eq. (72) as [cf. Eq. (71)]
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ðUpol
x Þg ab ¼ 4tr½Vpol†

x taVxtb� þ 4tr½V†
xtaV

pol
x tb�: ð74Þ

This is twice larger than Eq. (A5) in the Appendix A of
[11]. The latter equation was only conjectured in [11] and
the coefficient in it was not derived or cross-checked. Since
(for Nf ¼ 0) all the evolution equations are linear in Upol,
our end result (A12) in the same Appendix A of [11] would
not change from multiplying all Upol in the starting point
(A1) in [11] by a constant.
Define the fundamental polarized dipole amplitude with

only the gluon operator contributing to the fundamental
polarized Wilson lines [cf. Eq. (28)]

G10ðzÞ ¼
1

2Nc
Re⟪Ttr½V0ðVpol g

1 Þ†� þ Ttr½Vpol g
1 V†

0�⟫: ð75Þ

With the help of Eq. (74) we can see that at large Nc

Gadj
10 ðzÞ ¼ 4G10ðzÞ: ð76Þ

The coefficient 4 of the right of Eq. (76) is twice larger than
the more familiar coefficient 2 in the unpolarized version of
this relation.
Repeating all the trace algebra from the Appendix A of

[11] with Eqs. (71) and (74) defining the unpolarized
(normal) and the polarized Wilson lines respectively
(instead of (A3) and (A5) of [11]), yields

G10ðzÞ ¼ Gð0Þ
10 ðzÞ þ

αsNc

2π

Z
z

1

sx2
10

dz0

z0

Z
x2
10

1

z0s

dx221
x221

× ½Γ10;21ðz0Þ þ 3G21ðz0Þ�; ð77Þ
in complete agreement with the equation derived in [9].
(See the next section for details of this transition.) Here
Γ10;21 is defined operatorially by the same Eq. (75), but
with the dipole size ordering on the subsequent evolution
being dependent on the size x21 of another dipole [9]. We
refer to Γ10;21 as the “neighbor” dipole amplitude. Its
evolution equation is similar to that of G10,

Γ10;21ðz0Þ ¼ Γð0Þ
10;21ðz0Þ þ

αsNc

2π

Z
z0

minfΛ2; 1

x2
10

g=s

dz00

z00

Z
minfx2

10
;x2

21
z0=z00g

1

z00s

dx232
x232

½Γ10;32ðz00Þ þ 3G32ðz00Þ�; ð78Þ

and also follows from our operator approach. This result is also in agreement with [9].
In [13] we have already constructed the evolution equation for the fundamental polarized dipole amplitude using the

operator formalism and anticipating the large-Nc limit. The result is given by Eq. (74) in [13], which reads

G10ðzsÞ ¼ Gð0Þ
10 ðzsÞ þ

αsNc

2π

Z
z

Λ2
s

dz0

z0

Z
x2
10

1=ðz0sÞ

dx221
x221

���
1

N2
c
Ttr½V0taV

†
1t

b�ðUpol
2 Þba þ c:c:




ðz0sÞ

þ
��

1

N2
c
Ttr½V0taV

pol†
1 tb�ðU2Þba −

CF

N2
c
Ttr½V0V

pol†
1 � þ c:c:




ðz0sÞ

	
: ð79Þ

Using Eq. (74) along with

⟪tr½V0taV
†
1t

b�ðUpol
2 Þba⟫ ¼ Nc⟪tr½V0V

pol†
2 �⟫þ Nc⟪tr½Vpol

2 V†
1�⟫þO

�
1
Nc

�
ð80Þ

we take the large-Nc limit of Eq. (79) obtaining

G10ðzsÞ ¼ Gð0Þ
10 ðzsÞ þ

αsNc

2π2

Z
z

Λ2
s

dz0

z0

Z
d2x2
x221

θðx210 − x221Þθ
�
x221 −

1

z0s

����
1

Nc
Ttr½V0V

pol†
2 �

þ 1

Nc
Ttr½Vpol

2 V†
1� þ c:c:




ðz0sÞ þ

��
1

2Nc
Ttr½V2V

pol†
1 � − 1

2Nc
Ttr½V0V

pol†
1 � þ c:c:




ðz0sÞ

	
; ð81Þ

in agreement with Eq. (77) from [13]. In turn, Eq. (81) leads to above Eqs. (77) and (78) for the polarized dipole amplitude
and for the neighbor dipole amplitude.

V. SMALL-x HELICITY EVOLUTION AT LARGE-Nc AND Nf

Now let us rederive helicity evolution equations in the large-Nc and Nf limit using the operators obtained here. Just like
in Sec. IV, we start with the evolution of the adjoint polarized dipole amplitude, now defined by including the fullUpol from
Eq. (64):
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Gadj
10 ðzsÞ ¼

1

2ðN2
c − 1ÞRe⟪TTr½U0U

pol†
1 � þ TTr½Upol

1 U†
0�⟫

¼ pþ

N2
c − 1

Z
∞

−∞
dx−1Re

�
TTr

�
U0U1½−∞; x−1 �

�
igϵijT

∂
∂ðx1Þi⊥Aj

⊥ðx−1 ; x1Þ
�
U1½x−1 ;∞�

�
þ c:c:



ðzsÞ

−
g2pþ

2ðN2
c − 1Þ

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Re

�
TðU†

0ÞbaUaa0
1 ½þ∞; x−2 �

�
ψ̄ðx−2 ; x1Þta

0
V1½x−2 ; x−1 �

1

2
γþγ5tb

0
ψðx−1 ; x1Þ þ c:c:

	

×Ub0b
1 ½x−1 ;−∞� þ c:c:



ðzsÞ: ð82Þ

One can further simplify the quark contribution to the polarized adjoint Wilson line:

ðUpol
x Þq ab ¼ −

g2pþ
1

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2U
aa0
x ½þ∞; x−2 �

�
ψ̄ðx−2 ; xÞta

0
Vx½x−2 ; x−1 �

1

2
γþγ5tb

0
ψðx−1 ; xÞ þ c:c:

	
Ub0b

x ½x−1 ;−∞�

¼ −
g2pþ

1

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2 ψ̄ðx−2 ; xÞVx½x−2 ;þ∞�taVx
1

2
γþγ5tbVx½−∞; x−1 �ψðx−1 ; xÞ þ c:c:

¼ −
g2pþ

1

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2 tr

�
taVxtbðVx½þ∞; x−2 �ψðx−2 ; xÞα

�
1

2
γþγ5

�
βα

ψ̄ðx−1 ; xÞβVx½x−1 ;−∞�Þ
†�

þ c:c:: ð83Þ

However, it turns out that a relation similar to Eq. (74) connecting the polarized adjoint and fundamental Wilson lines is
not easy to obtain in the large-Nc and Nf limit. Instead, we will turn our attention to the polarized dipole amplitudes.
Starting with the adjoint amplitude (82), we write using the results of the previous section (after taking the large-Nc and Nf

limit in the first term on the right)

Gadj
10 ðzÞ ¼ 4G10ðzÞ

−
g2pþ

2ðN2
c − 1Þ

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2

�
TðU†

0ÞbaUaa0
1 ½þ∞; x−2 �

�
ψ̄ðx−2 ; x1Þta

0
V1½x−2 ; x−1 �

1

2
γþγ5tb

0
ψðx−1 ; x1Þ þ c:c:

	

×Ub0b
1 ½x−1 ;−∞� þ c:c:



ðzÞ; ð84Þ

where G10ðzÞ is still given by Eq. (75) above. To simplify the second term on the right of Eq. (84) we write

ðU†
0ÞbaUaa0

1 ½þ∞; x−2 �
�
ψ̄ðx−2 ; x1Þta

0
V1½x−2 ; x−1 �

1

2
γþγ5tb

0
ψðx−1 ; x1Þ þ c:c:

	
Ub0b

1 ½x−1 ;−∞� þ c:c:

¼ Uab
0

�
ψ̄ðx−2 ; x1ÞV1½x−2 ;þ∞�taV1

1

2
γþγ5tbV1½−∞; x−1 �ψðx−1 ; x1Þ þ c:c:

	
þ c:c:

¼ Uab
0

�
tr

�
taV1tb

�
V1½þ∞; x−2 �ψðx−2 ; x1Þα

�
1

2
γþγ5

�
βα

ψ̄ðx−1 ; x1ÞβV1½x−1 ;−∞�
�†�

þ c:c:

	
þ c:c:

¼ tr½V1V
†
0�tr

�
V0

�
V1½þ∞; x−2 �ψðx−2 ; x1Þα

�
1

2
γþγ5

�
βα

ψ̄ðx−1 ; x1ÞβV1½x−1 ;−∞�
�†�

þ c:c:: ð85Þ

Substituting this into Eq. (84), linearizing and taking the large-Nc & Nf limit yields

Gadj
10 ðzÞ ¼ 4G10ðzÞ

−
g2pþ

2Nc

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2

�
Ttr

�
V0ðV1½þ∞; x−2 �ψðx−2 ; x1Þα

�
1

2
γþγ5

�
βα

ψ̄ðx−1 ; x1ÞβV1½x−1 ;−∞�Þ
†�

þ c:c:


ðzÞ:

ð86Þ
A similar set of operations gives the following expression for the fundamental dipole amplitude (employing the anti-

commutativity of the fermion fields):
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Q10ðzÞ≡ 1

2Nc
Re

��
Ttr½V0ðVpol

1 Þ†� þ Ttr½Vpol
1 V†

0�




¼ G10ðzÞ þ
g2pþ

4

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2

�
Tψ̄ðx−1 ; x1ÞV1½x−1 ; x−2 �

1

2
γþγ5ψðx−2 ; x1Þ þ c:c:



ðzÞ: ð87Þ

Clearly the objects in Eqs. (86) and (87) are significantly different and should obey different evolution equations.

A. Adjoint polarized dipole evolution

Diagrams contributing to the DLA small-x evolution of the adjoint polarized dipole amplitude in Eq. (82) are shown in
Fig. 8. In comparison with Fig. 7 and the large-Nc calculation of the previous Section there are only two new diagrams, the
diagrams III and III’ in Fig. 8. Their contribution is

ð88Þ

[The second complex conjugation accounts for the second trace in the polarized dipole amplitude (82): in only doubles the
contribution shown explicitly.] Employing Eq. (12) we obtain

ðδGadj
10 ÞIIIþIII0 ¼ −

g2pþ

N2
c − 1

Z
0

−∞
dx−1

Z
∞

0

dx−2

�
TðU0ÞabðtaV1tbÞij

Z
d2w

d2k1dk−1
ð2πÞ3ð2k−1 Þ2

d2k2
ð2πÞ2 e

i
k2
1

2k−
1
x−
1
þik1·ðw−x1Þ

× e
−i

k2
2

2k−
1
x−
2
þik2·ðx1−wÞθðk−1 Þtr

�
1

2
γþγ5=k1ðV̂†

wÞji=k2
�
����

k−
2
¼k−

1
;k2

1
¼0;k2

2
¼0

þ c:c: ð89Þ

Integrating over x−1 and x−2 yields

FIG. 8. Diagrams illustrating evolution of the polarized dipole amplitude (65) at large-Nc and Nf . The blue rectangle represents the
classical fields (shock wave), the black vertex represents the sub-eikonal operator insertion (53), and the gray box represents the
polarized adjoint or fundamental Wilson line.
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ðδGadj
10 ÞIIIþIII0 ¼

g2pþ

N2
c − 1

�
TðU0ÞabðtaV1tbÞij

Z
d2w

d2k1dk−1
ð2πÞ3k21

d2k2
ð2πÞ2k22

eik1·ðw−x1Þeik2·ðx1−wÞ

× θðk−1 Þtr
�
1

2
γþγ5=k1ðV̂†

wÞji=k2
�
����

k−
2
¼k−

1
;k2

1
¼0;k2

2
¼0

þ c:c: ð90Þ

To evaluate the Dirac matrix trace we have to use polarization sums,

tr

�
1

2
γþγ5=k1ðV̂†

wÞji=k2
�
¼

X
σ1;σ2

v̄σ2ðk2Þ
1

2
γþγ5vσ1ðk1Þv̄σ1ðk1ÞðV̂†

wÞjivσ2ðk2Þ ¼ 2ik1 × k2ðV†
wÞji − 2k1 · k2ðVpol†

w Þji; ð91Þ

obtaining

ðδGadj
10 ÞIIIþIII0 ¼ −

2g2pþ

N2
c − 1

�
TðU0ÞabðtaV1tbÞij

Z
d2w

d2k1dk−1
ð2πÞ3k21

d2k2
ð2πÞ2k22

eik1·ðw−x1Þeik2·ðx1−wÞ

× θðk−1 Þ½−ik1 × k2ðV†
wÞji þ k1 · k2ðVpol†

w Þji�

����

k−
2
¼k−

1
;k2

1
¼0;k2

2
¼0

þ c:c: ð92Þ

Fourier-transforming into transverse coordinate space yields

ðδGadj
10 ÞIIIþIII0 ¼ −

αsNf

2π2

Z
1

Λ2=s

dz
z

Z
d2w

jw − x1j2
1

N2
c − 1

⟪TðU0Þabtr½taV1tbV
pol†
w � þ T̄ðU0Þabtr½Vpol

w tbV†
1t

a�⟫; ð93Þ

where we have also inserted a sum over quark flavors. Employing Eq. (71) we get

ðδGadj
10 ÞIIIþIII0 ¼ −

αsNf

2π2

Z
1

Λ2=s

dz
z

Z
d2w

jw − x1j2
1

N2
c − 1

��
1

2
Ttr½V1V

†
0�tr½V0V

pol†
w � þ 1

2
T̄tr½V0V

†
1�tr½Vpol

w V†
0�

−
1

2Nc
Ttr½V1V

pol†
w � − 1

2Nc
T̄tr½Vpol

w V†
1�




: ð94Þ

Finally, taking the large-Nc and Nf limit and linearizing the equation by neglecting the LLA evolution (which, in practice,
means putting the fundamental traces of unpolarized Wilson lines equal to Nc) yields

ðδGadj
10 ÞIIIþIII0 ¼ −

αsNf

2π2

Z
1

Λ2=s

dz
z

Z
d2w

jw − x1j2
Γ̄w;0;w;1ðzÞ ð95Þ

with Γ̄ being the neighbor polarized dipole amplitude with the polarized line being a true quark, as defined in [9].
(Operatorially Γ̄ is defined by Eq. (87), by analogy with the neighbor dipole amplitude considered above: again, further
evolution of Γ̄ depends on the size of another dipole [9].)
Adding Eq. (93) to Eq. (70) we obtain

Gadj
10 ðzÞ ¼ Gadjð0Þ

10 ðzÞ þ αs
2π2

Z
z

Λ2
s

dz0

z0

Z
d2x2
x221

θ

�
x221 −

1

z0s

�

×

�
θðx10 − x21Þ

��
2

N2
c − 1

TTr½U0TaU†
1T

b�ðUpol
2 Þba þ c:c:




ðz0Þ

þ θðx10 − x21Þ
1

N2
c − 1

½⟪TTr½TbU0TaUpol†
1 �Uba

2 ⟫ðz0Þ − Nc⟪TTr½U0U
pol†
1 �⟫ðz0Þ þ c:c:�

−θðx210z − x221z
0Þ Nf

N2
c − 1

⟪Ttr½tbV1taV
pol†
2 �Uba

0 þ T̄tr½tbVpol
2 taV†

1�Uba
0 ⟫ðz0Þ

	
ð96Þ

in agreement with Eq. (A1) of [11].
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Using Eq. (95) we rewrite this equation as

Gadj
10 ðzÞ ¼ Gadjð0Þ

10 ðzÞ þ αs
2π2

Z
z

Λ2=s

dz0

z0

Z
d2x2
x221

θ

�
x221 −

1

z0s

��
θðx10 − x21Þ

��
2

N2
c − 1

TTr½U0TaU†
1T

b�ðUpol
2 Þba þ c:c:




ðz0Þ

þθðx10 − x21Þ
1

N2
c − 1

½⟪TTr½TbU0TaUpol†
1 �Uba

2 ⟫ðz0Þ − Nc⟪TTr½U0U
pol†
1 �⟫ðz0Þ þ c:c:�

	

−
αsNf

2π

Z
z

Λ2=s

dz0

z0

Z
x2
10
z=z0

1=ðz0sÞ

dx221
x221

Γ̄20;21ðz0Þ; ð97Þ

where we anticipate the linearized approximation by neglecting LLA terms. Let us reiterate that Γ̄ is defined as in Eq. (87)
but for the neighbor dipole amplitude.
To evaluate the rest of Eq. (97) we employ the definition (64) of the polarized Wilson line. A little algebra involving

multiple use of Fierz identity yields

1

N2
c − 1

⟪TTr½TbU0TaU†
1�ðUpol

2 Þba⟫ðzÞ ¼ Nc

2
Gadj

21 ðzÞ þ
Nc

2
Γadj
20;21ðzÞ þO

�
1
Nc

�
; ð98Þ

where Γadj
02;21 is defined just like Gadj in Eq. (82), but for the neighbor adjoint dipole.

Similarly, one can show that

1

N2
c − 1

⟪TTr½TbU0TaUpol†
1 �Uba

2 ⟫ðzÞ ¼ Nc

2
Gadj

21 ðzÞ þ
Nc

2
Γadj
10;21ðzÞ þO

�
1
Nc

�
: ð99Þ

Employing these results in Eq. (97) we obtain in the DLA,

Gadj
10 ðzÞ ¼ Gadjð0Þ

10 ðzÞ þ αsNc

2π

Z
z

maxfΛ2;1=x2
10
g=s

dz0

z0

Z
x2
10

1=ðz0sÞ

dx221
x221

½Γadj
10;21ðz0Þ þ 3Gadj

21 ðz0Þ�

−
αsNf

2π

Z
z

Λ2=s

dz0

z0

Z
x2
10
z=z0

1=ðz0sÞ

dx221
x221

Γ̄gen
10;21ðz0Þ: ð100Þ

In the last term we have replaced Γ̄02;21ðz0Þ by the “generalized” dipole amplitude (cf. [13])

Γ̄gen
10;21ðz0Þ ¼ θðx10 − x21ÞΓ̄10;21ðz0Þ þ θðx21 − x10ÞQ21ðz0Þ: ð101Þ

The reason for that is that the neighbor dipole amplitude Γ̄gen
20;21ðz0Þ is defined (and makes sense in the DLA) only for

x21 ≫ x10 ∼ x20, while the integral in the last term of Eq. (100) includes the region where x21 ∼ x20 ≫ x10: in that region the
two neighbor dipoles 21 and 20 have comparable sizes and the special neighbor amplitude Γ̄ is no longer needed. It has to be
replaced by the “regular” dipole amplitude Q, which is accomplished by defining Γ̄gen.
Repeating the above steps for the evolution of an adjoint neighbor dipole we arrive at

Γadj
10;21ðz0Þ ¼ Γadjð0Þ

10;21 ðz0Þ þ
αsNc

2π

Z
z0

maxfΛ2;1=x2
10
g=s

dz00

z00

Z
minfx2

10
;x2

21
z0=z00g

1=ðz00sÞ

dx232
x232

½Γadj
10;32ðz00Þ þ 3Gadj

32 ðz00Þ�

−
αsNf

2π

Z
z0

Λ2=s

dz00

z00

Z
x2
21
z0=z00

1=ðz00sÞ

dx232
x232

Γ̄gen
10;32ðz00Þ: ð102Þ

B. Fundamental polarized dipole evolution

Next we have to construct the evolution equations for the fundamental polarized dipole amplitude. In the large-Nc limit
the evolution equation was constructed in [13] and is given above in Eq. (79). For the dipole amplitude defined by Eq. (87) it
reads
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Q10ðzsÞ ¼ Qð0Þ
10 ðzsÞ þ

αsNc

2π2

Z
z

Λ2
s

dz0

z0

Z
d2x2
x221

θðx210 − x221Þθ
�
x221 −

1

z0s

����
1

N2
c
Ttr½V0taV

†
1t

b�ðUpol
2 Þba þ c:c:




ðz0sÞ

þ
��

1

N2
c
Ttr½V0taV

pol†
1 tb�ðU2Þba −

CF

N2
c
Ttr½V0V

pol†
1 � þ c:c:




ðz0sÞ

	
ð103Þ

corresponding to all the diagrams on the right of Fig. 9, with the exception of diagram III. For large-Nc and Nf limit this
equation needs to be augmented by the contribution of the diagram III in Fig. 9.
Using Eq. (87) we see that the diagram III in Fig. 9 gives

ð104Þ

Evaluating the contraction analogous to the above, we get

ðδQ10ðzÞÞIII ¼
αs
8π2

Z
1

Λ2=s

dz
z

Z
d2x2
x221

⟪Ttr½V1V
pol†
2 � þ T̄tr½Vpol

2 V†
1�⟫ðzÞ ¼

αsNc

4π

Z
1

Λ2=s

dz
z

Z
dx221
x221

Q21ðzÞ: ð105Þ

Equation (103) generalized to the case of the large-Nc and Nf limit, now becomes

Q10ðzÞ ¼ Qð0Þ
10 ðzsÞ þ

αsNc

2π

Z
z

Λ2
s

dz0

z0

Z
x2
10

1=ðz0sÞ

dx221
x221

���
1

N2
c
Ttr½V0taV

†
1t

b�ðUpol
2 Þba þ c:c:




ðz0Þ

þ
��

1

N2
c
Ttr½V0taV

pol†
1 tb�ðU2Þba −

CF

N2
c
Ttr½V0V

pol†
1 � þ c:c:




ðz0Þ

	
þ αsNc

4π

Z
z

Λ2=s

dz0

z0

Z
x2
10
z=z0

1=ðz0sÞ

dx221
x221

Q21ðz0Þ: ð106Þ

Evaluating the terms on the right-hand side of (106) in the large-Nc and linearized limit we get

��
1

N2
c
Ttr½V0taV

†
1t

b�ðUpol
2 Þba þ c:c:




ðz0Þ ¼ 1

2
Γadj
20;21ðz0Þ þ

1

2
Gadj

21 ðz0Þ ð107Þ

and

��
1

N2
c
Ttr½V0taV

pol†
1 tb�ðU2Þba −

CF

N2
c
Ttr½V0V

pol†
1 � þ c:c:




ðz0Þ ¼ Q21ðz0Þ − Γ̄10;21ðz0Þ: ð108Þ

FIG. 9. Diagrams illustrating evolution of the polarized dipole amplitude (87) at large-Nc andNf. The notation is the same as in Fig. 8.
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Substituting Eqs. (107) and (108) back into Eq. (106) and applying the standard DLA simplifications yields

Q10ðzÞ ¼ Qð0Þ
10 ðzÞ þ

αsNc

2π

Z
z

Λ2
s

dz0

z0

Z
x2
10

1=ðz0sÞ

dx221
x221

�
1

2
Γadj
10;21ðz0Þ þ

1

2
Gadj

21 ðz0Þ þQ21ðz0Þ − Γ̄10;21ðz0Þ
	

þ αsNc

4π

Z
z

Λ2=s

dz0

z0

Z
x2
10
z=z0

1=ðz0sÞ

dx221
x221

Q21ðz0Þ: ð109Þ

Similarly, for the neighbor dipole amplitude we write

Γ̄10;21ðz0Þ ¼ Γ̄ð0Þ
10;21ðz0Þ þ

αsNc

2π

Z
z0

Λ2
s

dz00

z00

Z
minfx2

10
;x2

21
z0=z00g

1=ðz00sÞ

dx232
x232

�
1

2
Γadj
10;32ðz00Þ þ

1

2
Gadj

32 ðz00Þ þQ32ðz00Þ − Γ̄10;32ðz00Þ
	

þ αsNc

4π

Z
z0

Λ2=s

dz00

z00

Z
x2
21
z=z0

1=ðz00sÞ

dx232
x232

Q32ðz00Þ: ð110Þ

C. Evolution equations at large Nc and Nf

Combining all the above results we write the small-x helicity evolution equations in the large-Nc and Nf limit:

Q10ðzÞ ¼ Qð0Þ
10 ðzÞ þ

αsNc

2π

Z
z

Λ2
s

dz0

z0

Z
x2
10

1=ðz0sÞ

dx221
x221

�
1

2
Γadj
10;21ðz0Þ þ

1

2
Gadj

21 ðz0Þ þQ21ðz0Þ − Γ̄10;21ðz0Þ
	

þ αsNc

4π

Z
z

Λ2=s

dz0

z0

Z
x2
10
z=z0

1=ðz0sÞ

dx221
x221

Q21ðz0Þ; ð111aÞ

Gadj
10 ðzÞ ¼ Gadjð0Þ

10 ðzÞ þ αsNc

2π

Z
z

maxfΛ2;1=x2
10
g=s

dz0

z0

Z
x2
10

1=ðz0sÞ

dx221
x221

½Γadj
10;21ðz0Þ þ 3Gadj

21 ðz0Þ�

−
αsNf

2π

Z
z

Λ2=s

dz0

z0

Z
x2
10
z=z0

1=ðz0sÞ

dx221
x221

Γ̄gen
10;21ðz0Þ; ð111bÞ

Γadj
10;21ðz0Þ ¼ Γadjð0Þ

10;21 ðz0Þ þ
αsNc

2π

Z
z0

maxfΛ2;1=x2
10
g=s

dz00

z00

Z
minfx2

10
;x2

21
z0=z00g

1=ðz00sÞ

dx232
x232

½Γadj
10;32ðz00Þ þ 3Gadj

32 ðz00Þ�

−
αsNf

2π

Z
z0

Λ2=s

dz00

z00

Z
x2
21
z0=z00

1=ðz00sÞ

dx232
x232

Γ̄gen
10;32ðz00Þ; ð111cÞ

Γ̄10;21ðz0Þ ¼ Γ̄ð0Þ
10;21ðz0Þ þ

αsNc

2π

Z
z0

Λ2
s

dz00

z00

Z
minfx2

10
;x2

21
z0=z00g

1=ðz00sÞ

dx232
x232

�
1

2
Γadj
10;32ðz00Þ þ

1

2
Gadj

32 ðz00Þ þQ32ðz00Þ − Γ̄10;32ðz00Þ
	

þ αsNc

4π

Z
z0

Λ2=s

dz00

z00

Z
x2
21
z=z0

1=ðz00sÞ

dx232
x232

Q32ðz00Þ: ð111dÞ

These equations have to be compared to Eqs. (92) and (93) in [9], while realizing that A ¼ Q there. Writing

Gadj ¼ 2Gold; Γadj ¼ 2Γold ð112Þ

with the Gold;Γold denoting the objects used in Eqs. (92)
and (93) of [9], we almost reduce Eqs. (111) to Eqs. (92)
and (93) of [9]. The only remaining difference is due to Γ̄gen

used in Eqs. (111b) and (111c) while only Γ̄ entered in the
similar place in the analogous equations of [9]. We believe
that our present use of Γ̄gen corrects this inaccuracy done in
our earlier work.

VI. CONCLUSIONS

In this paper we have presented a completely operator-
based approach to helicity evolution at small x. For the first
time ever we have derived explicit expressions for the
fundamental and adjoint polarized Wilson lines, given in
Eqs. (51) and (64) respectively. Employing these expres-
sions, we have rederived the small-x evolution equations for
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the polarized dipole amplitudes in the double logarithmic
approximation, arriving at Eqs. (77) and (78) in the large-Nc
limit and at Eqs. (111) in the large-Nc and Nf limits. These
equations had previously been derived in [9] using a
combination of the operator-based and diagrammatic meth-
ods; Eqs. (111) contain aminor correction for their prototype
in [9].
As mentioned in the Introduction, the large-Nc helicity

evolution equations (77) and (78) were solved in our earlier
works, both numerically [10] and analytically [12], result-
ing in the quark helicity asymptotics given in Eq. (1). The
large-Nc and Nf equations (111) have not been solved yet.
Note that, on general grounds, one expects the large-Nc and
Nf equations to be more realistic than the large-Nc ones,
since the former include the true quark contribution, in
addition to the gluon one. Hence we believe solution of the
(presently corrected) large-Nc and Nf helicity evolution
equations would represent an important next step in our
theoretical understanding of quark helicity at small x.
Another important future research direction which may

result from the present work is the possibility of obtaining
the helicity analogue of JIMWLK evolution, possibly
following the method outlined in [66] for rederiving the
original unpolarized JIMWLK evolution starting from the
evolution of Wilson lines. Obtaining a helicity JIMWLK
equation may allow one to numerically determine the
small-x asymptotics of quark (and possibly gluon) helicity
distributions outside the large-Nc and large-Nc and Nf

limits addressed above and in [9–13]. In addition, the
evolution of higher-order (beyond-dipole amplitude) cor-
relators, such as color-quadrupoles, sextupoles, etc., includ-
ing exactly one polarized Wilson line may be derived using
helicity JIMWLK evolution.
Finally, while the discussion in this work is dedicated to

small-x helicity evolution only, the operator techniques we
develop here can be used to determine the small-x asymp-
totics of other TMDs. The prescription remains the same as
above (see also [13]):

(i) Start with the operator definition of a given TMD
and simplify it in the small-x limit.

(ii) For quark distribution this results in expressing the
TMDs in terms of the polarized Wilson lines, the
exact expressions for which have to be determined in
a separate calculation. For gluon distribution, the
explicit form of the corresponding polarized Wilson
lines emerges explicitly from the simplification of
the operator definition at small x [13]. (The polar-
ized Wilson lines entering the expressions for the
quark and gluon distributions at small x were
different in the case of helicity, and not only by
the color representation factors [13]: it is natural to
expect that the difference will persist for other spin-
dependent quark and gluon TMDs.)

(iii) Construct the small-x evolution of the polari-
zed dipole operators made out of the obtained

fundamental and adjoint polarized Wilson lines.
The evolution may start in the DLA limit, if it
applies for a given TMD, and continue with the LLA
corrections and beyond. Otherwise the evolution
may start in the LLA limit, as is the case for
unpolarized distributions. (At higher orders impact
factors have to be included as well.) The equations
are likely to close in the large-Nc and large-Nc and
Nf limits only.

(iv) Solve the obtained equations, either numerically or,
if possible, analytically, to obtain the small-x asymp-
totics of the TMD in question.

Application of this prescription to the quark transversity
distribution is under way and will be reported on
shortly [43].
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APPENDIX A: DIAGRAMS A AND E
CANCELLATION

The one-gluon contributions to the diagrams A and E are
shown in the top row of Fig. 10, where instead of the
diagram E we are showing it mirror image.
We begin by evaluating the contribution to the diagram

A in Fig. 10. There we only need to evaluate the
contribution of the Wilson lines. Working in the A− ¼ 0
gauge we write for the Wilson line contribution, mainly
arising from the “++” component of the gluon propagator,

ðigÞð−igÞCF

Z
∞

0

dx−1 dx
−
2 e

−ϵðx−
1
þx−

2
Þ

×
Z

d4q
ð2πÞ4 e

−iqþðx−
2
−x−

1
Þ−iq·ðζ−ξÞð2πÞδðþÞðq2Þ 2q

þ

q−

¼ 2αsCF

π
Y ln

1

jζ − ξjΛ ; ðA1Þ

where we have replaced

Z
∞

0

dq−

q−
→ Y; ðA2Þ
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as expected when the q−-integral is properly regularized (Y
is the rapidity variable). In Eq. (A1) we have also included
exponential regulators for the x− integrals [69]. With the
help of Eqs. (A1) and (8) we arrive at the following
contribution of the diagram A in Fig. 10:

A ¼ 2pþ

ð2πÞ3
Z

d2ζdζ−d2ξdξ−eik·ðζ−ξÞ
�
ψ̄ðξÞ 1

2
γþγ5ψðζÞ




×
2αsCF

π
Y ln

1

jζ − ξjΛ : ðA3Þ

To evaluate the diagrams in the E-class, first let us note
that the contribution of the Wilson line and the gluon
propagator is proportional to

Z
∞

0

dx−e−iq
þx−−ϵx−ð2πÞδðþÞðq2ÞDμþðqÞ

¼ ð2πÞδðþÞðq2Þ
�
−gμþ þ qμ þ qþη̄μ

q−

�
−i

qþ − iϵ
ðA4Þ

where η̄μ ¼ ð1; 0; 0Þ in the ðþ;−;⊥Þ notation. To obtain a
logarithm of energy, we need to have 1=q−; hence, the gμþ
term in Eq. (A4) can be discarded. Since η̄ · v ¼ v− for any
4-vector vμ, one can show that the term in Eq. (A4)

containing η̄μ would lead to a power of the minus
momentum of the target proton, which is very small (for
the plus-moving proton that we have). Hence this term can
also be discarded. We are left with

ð2πÞδðþÞðq2Þ
�
qμ

q−

�
−i

qþ − iϵ
: ðA5Þ

The transition from Eq. (A4) to Eq. (A5) is illustrated in the
left panel of the second row of Fig. 10, where the gluon line
is replaced by a dashed line with the arrow indicating the
end of the dashed line corresponding to the qμ factor in the
part of the propagator left in Eq. (A5). This is the standard
convention for the gluon lines with a longitudinal polari-
zation on one end that is used to diagrammatically illustrate
the Ward identity in QCD [67,68].
To apply the Ward identity we need to add the diagrams

where the dashed line connects (with the arrow end) to the
rest of the shock wave in the amplitude. This application of
theWard identity is pictured in Fig. 11; summing over all the
E-class diagrams where the gluon connects to parts of the
target, we arrive at the contribution graphically depicted in
the lower-right panel of Fig. 10 in the notation of [67,68].
This means that the field ψðζÞ remains intact.We thus obtain
for the contribution of the E-class diagrams considered here

FIG. 10. Top row: one-gluon corrections to the diagrams A and E. Bottom row: the leading (DLA) part of the diagram E comes with
the longitudinally polarized contribution to the gluon propagator, denoted by the dashed line with the arrow at the end following [67,68].
The diagram in the right panel of the bottom row results from adding to the left bottom-row diagrams all the graphs with all other
possible arrow-end of the dashed line connections to the shock wave.
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Eþ � � � ¼ 2pþ

ð2πÞ3
Z

d2ζdζ−d2ξdξ−eik·ðζ−ξÞhψ̄ðξÞ 1
2
γþγ5ψðζÞiðigÞð−igÞð−iÞCF

×
Z

d4q
ð2πÞ4 e

−iq·ðζ−ξÞð2πÞδðþÞðq2Þ 1

q−
−i

qþ − iϵ
: ðA6Þ

The additional factor of −i arises due to Ward identity. Performing all the q integrals in Eq. (A6) we arrive at

Eþ � � � ¼ −
2pþ

ð2πÞ3
Z

d2ζdζ−d2ξdξ−eik·ðζ−ξÞhψ̄ðξÞ 1
2
γþγ5ψðζÞi αsCF

π
Y ln

1

jζ − ξjΛ ¼ −
A
2
: ðA7Þ

We conclude that the E-class diagrams cancel the diagramA.
The other half of A is canceled by the complex conjugate of
the diagram E in Fig. 10.5

The calculation can be repeated with the same conclusion
for the A-type diagramwhere the gluon line begins and ends
on the same Wilson line, say the line that begins at ζ in
Fig. 10. In this case we would consider the E-type diagrams
with the gluon (dashed) line Fig. 10 that does not cross the
final-state cut, and is emitted by the same Wilson line
originating at ζ. The A-type diagram with the gluon line
beginning and ending on the same Wilson line has an extra
symmetry factor of 1=2, ensuring the exact cancellation.
Similar cancellation of diagrams A, E, and C is likely to

be valid at higher orders in αs and at LLA in 1=x, by
successive application of Ward identity.

APPENDIX B: POLARIZED DIPOLE
AMPLITUDES AT BORN LEVEL

Let us compare the calculation of the initial conditions
for the flavor singlet and nonsinglet polarized dipole
amplitudes defined above in Eqs. (28) and (35) to what
was done in [11]. For simplicity we will focus on the t-
channel quark exchanges: the exchanges of t-channel
gluons can be done similarly.

1. Flavor-singlet case

(i) First consider the definition in Eq. (28). Assuming
that the target is a single quark, the flavor-singlet quark
helicity TMD is proportional to

ðB1Þ

in agreement with Eq. (10) of [11].
(ii) Now let us try to see what this result means for uncut diagrams. Again assume that the target is a quark. Furthermore,

note that the matrix element of the Wilson lines gives us an expectation value of an S-matrix (or, for the problem at hand, its
spin-dependent part), which is given by iM with M the scattering amplitude. That is,

ðB2Þ

FIG. 11. Application of the Ward identity to the diagrams in the E-class. We only depict the amplitude of the diagram; the complex
conjugate amplitude remains the same for all graphs.

5The cancellation demonstrated here assumes that the range of q− integrals is the same in the diagrams A and E: while this is correct in
the leading logarithmic approximation in x, it is not true beyond the small-x approximation, where large logarithms of Q2 are generated
in the sum of A and E diagrams [70], contributing to the Sudakov form factor. Here we assume that Q2 is not large enough to require a
separate resummation of lnQ2.
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[Only the first term in Eq. (B1) has a real part for t-channel quark exchanges we are restricting ourselves to; hence we will
only keep this term in the short exercise below.]
We see that

ðB3Þ

Note that under the antitime ordering T̄ the “regular”
Wilson line, say V1, denotes a quark (particle number
flows in the same direction as the new time), which for the
normal-flowing time would appear as an anti-quark;
similarly the conjugate Wilson line V†

0 denotes an anti-
quark, but appears to be a quark for the normal-flowing
time. The target quark state jqi can be thought of as an
antiquark under T̄, since the particle number flows opposite
to the new time: if we represent it by another Wilson line
operator in the amplitude, it would conjugate in the cc
amplitude, giving an antiquark. Hence, the second diagram
in the second line of Eq. (B3) looks just like the first
diagram, only time in the second diagram flows in the
opposite direction, as indicated by T̄. In other word, the T̄

sign means that the diagram is to the right of an (imaginary)
final-state cut (that is, in the complex conjugate amplitude).
Note that each diagram corresponds to iM, such that

iM þ ðiMÞ� ¼ Diagramþ Diagram�: ðB4Þ

Again, only the Im part of the amplitude contributes
in Eq. (B3).

2. Flavor nonsinglet case

(iii) Let us now consider the flavor nonsinglet case. As
follows from Eq. (35), the corresponding TMD is propor-
tional to the real part of following operator expectation
value [11] (again for a quark target)

ðB5Þ

Now, the second diagram contributes no imaginary part to
the scattering amplitude. Its real part contribution can be
related to the following diagram due to the crossing
symmetry:

ðB6Þ

Here we assume that the corresponding amplitude in
Eq. (B2) is of the type Mðs; tÞ ¼ fðtÞðlnðs=tÞ � iπÞ2þ
Oð1=sÞ, as expected for the helicity-dependent quark
exchange at the sub-eikonal level. Then the amplitude
on the left of Eq. (B6) is Mcrossedðs; tÞ ¼ Mðu; tÞ with

u < 0. At high energy u ≈ −s such that Mcrossedðs; tÞ ¼
ReMcrossedðs; tÞ ¼ ReMð−s; tÞ ¼ ReMðs; tÞ for the leading
DLA part of our ansatz for the amplitude Mðs; tÞ,
which is what is implied in the diagrammatic equality
Eq. (B6).
The Re sign in Eq. (B6) applies to the amplitude M,

rather than to the diagram, which is iM, such that

ðB7Þ

We conclude that
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ðB8Þ

This result is in agreement with Eq. (56) of [11]. In addition, the expectation value of the operator from Eq. (35) is real, thus
justifying the assumption made in [11].
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