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We study the first-order α0 corrections to the singular four-dimensional massless stringy black holes
studied in the 1990s in the context of the heterotic superstring. We show that the α0 corrections not only
induce a nonvanishing mass and give rise to an event horizon but also eliminate the singularity, giving rise
to a regular spacetime whose global structure includes further asymptotically flat regions in which the mass
of the spacetime is positive or negative. We study the timelike and null geodesics and their effective
potential, showing that the spacetime is geodesically complete. We discuss the validity of this solution,
arguing that the very interesting and peculiar properties of the solution are associated to the negative energy
contributions coming from the terms quadratic in the curvature. As a matter of fact, the ten-dimensional
configuration is singular. We extract some general lessons on attempts to eliminate black-hole singularities
by introducing terms of higher order in the curvature.
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A very well-known class of four-dimensional extremal
stringy black holes is characterized by four real functions
Z0, Zþ, Z−, H that occur in the metric and real scalar
fields ϕ, k, l as follows [1],

ds2¼ e2Udt2−e−2Udx⃗2;

e−2U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0ZþZ−H

p
; e2ϕ¼ e2ϕ∞

Z0

Z−
;

l¼l∞

�
Z0ZþZ−

H3

�
1=6

; k¼ k∞

�
Z2þ

Z−Z0

�
1=4

; ð1Þ

where

Z0;þ;− ¼ 1þ q0;þ;−

r
and H ¼ 1þ q

r
: ð2Þ

This configuration is a solution at zeroth order in the
parameter α0 ¼ l2

s (ls is the string length; see the Appendix)
of the so-calledSTUmodel that arises in the compactification
on a 6-torus of the ten-dimensional heterotic superstring
effective action [2,3].
Reexpressed in ten-dimensional variables, it belongs to

the family of solutions considered in Ref. [4] that describe

fundamental strings (associated to Z−), Kaluza-Klein (KK)
monopoles (associated to H), solitonic, or Neveu-Schwarz
(NS) 5-branes (associated to Z0), and waves traveling
along the fundamental strings (associated to Zþ).
In Ref. [4], we showed that Z− andH do not receive any

first-order α0 corrections. We also showed that, althoughZ0

gets corrections, all of them can be eliminated by choosing
appropriate SU(2) instanton fields (“symmetric” solutions).
Finally, Zþ also has first-order α0 corrections of the form
[5,10]

Zþ ¼ 1þ qþ
r

þ α0qþ
2qq0

r2 þ rðq0 þ q− þ qÞ þ qq0 þ qq− þ q0q−
ðrþ qÞðrþ q0Þðrþ q−Þ

þOðα02Þ ð3Þ

that cannot be canceled using the mechanism mentioned
above.
Due to the structure of the T-tensors, it can be argued as

in Ref. [11] that the symmetric solution with any number of
charges and with just the above first-order α0 correction
of Zþ may also be an exact solution to all orders in α0,
or that, at least, the higher-order corrections should be
much smaller so the Oðα02Þ terms can be neglected for all
purposes. It is interesting to investigate if these corrected
and probably exact solutions satisfy some of the properties
that are expected to occur in a UV complete theory and,
in particular, the resolution of singularities.
We have already observed that α0 corrections might

resolve the singular horizon of small black holes (with two
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or three charges) [10,11] as in the classical example of
Ref. [12], yielding a smooth horizon with nonvanishing
area, though some divergencies would persist in the KK
scalars. In this paper, we are going to study a particularly
interesting set of singular solutions that have four non-
vanishing charges: the so-called massless black holes of
Refs. [6,13] (referred to as massless quadruholes in
Ref. [14]). Research on massless black holes was originally
motivated by Strominger’s description of the conifold
transition in Ref. [15]. Although his description was based
on type II string theory and black holes with Ramond-
Ramond charge, the solutions may be related by duality,
and the metrics are indeed identical.
The massless quadruholes are a particular case of the

solutions in Eq. (1) corresponding to the choice

q0 ¼ q− ¼ −q ¼ −qþ ¼ Q ≥ 0; ð4Þ

which is possible if the string coupling constant gs and the
radii of the compactification circles at infinity satisfy

gs ¼
ffiffiffiffiffiffiffiffi
NS5

NF1

s
;

R5

ls
¼

ffiffiffiffiffiffiffiffiffiffiffi
−NW

NF1

s
;

R4

ls
¼

ffiffiffiffiffiffiffiffiffiffiffi
−NS5

NKK

s
: ð5Þ

Here, NS5, NF1, NW , and NKK are integer numbers
associated to the stringy objects of the ten-dimensional
configuration. The usual requirements gs ≪ 1, R4;5 > ls

are satisfied if these numbers fulfill the hierarchy

jNW j > NF1 ≫ NS5 > jNKKj: ð6Þ

At zeroth order in α0, the metric of the massless quadru-
holes reads

ds2 ¼
�
1 −

Q2

r2

�−1
dt2 −

�
1 −

Q2

r2

�
ðdr2 þ r2dΩ2

ð2ÞÞ: ð7Þ

The metric has an obvious naked singularity at r ¼ Q,
where the curvature as well as some scalars diverge. It has
some interesting properties, though, such as the fact that
this solution is massless and that the dilaton takes a
constant value e2ϕ ¼ e2ϕ∞ . The repulsive behavior noticed
in Ref. [13] is characteristic of timelike singularities such
as those of the Reissner-Nordström or negative-mass
Schwarzschild solutions.
Taking into account the α0 corrections given by the

general formula (3), the metric function e−2U reads

e−2U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

Q2

r2

�
2

þ α0

2Q

�
1

r
þ Q
r2

−
Q2

r3

�s
; ð8Þ

and many interesting things start happening:

(1) Now, this solution has a mass

M ¼ α0

8QGð4Þ
N

: ð9Þ

(2) The geometry [16] is now regular at r ¼ Q. Indeed,
for Q2 > α0=8, the solution can be extended up to
r ¼ 0, where a smooth AdS2 × S2 near-horizon
geometry arises. The area of the horizon is given
by the α0-independent expression [17]

A ¼ 4πQ2: ð10Þ
This is the standard expression, in terms of the

charges, for the entropy of an extremal 4-charge
black hole up to α0 corrections. However, the relation
between the entropy and the mass is very unconven-
tional: A grows with Q, while M goes to zero.

(3) The most striking property of the metric (1) when α0
corrections are taken into account (8) is that, if

Q2 > α0
8
, which corresponds to masses M <

ffiffiffi
α0
8

q
=

Gð4Þ
N , it does not contain any singularity behind the

horizon. In order to extend the solution beyond
r ¼ 0, let us introduce the tortoise coordinate r�
such that dr� ≡ e−2Udr. We define the ingoing
Eddington-Finkelstein coordinate

v≡ tþ r�; ð11Þ
which is constant along ingoing null radial geo-
desics. In terms of v, the metric reads

ds2 ¼ e2Udv2 − 2dvdr − e−2Ur2dΩ2
ð2Þ: ð12Þ

The metric is clearly regular at r ¼ 0, and it can be
extended to r < 0. A singularity would appear
whenever e−2U ¼ 0, but looking at (8), we see that
this function is strictly positive for all values of r if
Q2 > α0=8. Hence, this spacetime contains no sin-
gularity, and we can extend it up to r → −∞, where
it describes another asymptotically flat region.

(4) Without loss of generality, we can consider the
motion of a test particle in the equatorial plane
θ ¼ π=2. Associated to the Killing vectors ∂v and
∂φ, there are two constants of motion ϵ and L, which
are given by

ϵ≡ e2U _v − _r; ð13Þ
L≡ r2e−2U _φ: ð14Þ

Then, we can write the mass-shell condition as

_r2 þ VeffðrÞ ¼ ϵ2; ð15Þ
where the radial effective potential for massless and
massive particles (κ ¼ 0, 1 resp.) is given by
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VeffðrÞ ¼ e2U
�
κ þ e2U

L2

r2

�
: ð16Þ

The qualitative behavior of the geodesics can be
found by studying this effective potential, which we
have plotted for several values of Q for timelike and
null geodesics in Fig. 1.
The effective potential has a smoother form for

larger values of Q [20]. In all cases, it presents two
hills and a valley separating them which contains the
black-hole horizon. Let us consider the geodesic of a
massive particle. Coming from large positive values
of r, the first hill represents a repulsive behavior
that can be overcome if the particle has enough
energy. If the particle passes over the first, rightmost,
hill, it will cross the horizon at r ¼ 0 and it will meet
the second hill, which is always taller than the first.
If the total energy is lower than the tip of the hill,

which lies at some negative value of r the particle
will bounce towards larger values of r, but, since it is
not allowed to cross the horizon (by the very
definition of event horizon) it will go into a different
region of the spacetime for which r ¼ 0 is a past
horizon. Such a particle can reach the infinity of the
new asymptotically-flat region unless some force
pushes it towards the future event horizon of that
region. The same discussion can be repeated and it
is clear that an infinite number of asymptotically-flat
regions connected as in Figure 2 exist.
If the energy of the particle is higher than the

summit of the second, leftmost, hill of the effective
potential, it will cross over it toward the r → −∞ of
the type II region in the Penrose diagram, pushed by
a repulsive force. This repulsive force is, now,
associated to the negativity of the mass of the central

FIG. 1. Effective potential for different types of geodesics and
for several values of the charge Q. Top: Massive particle moving
along radial geodesics (L ¼ 0). Middle: Massive particle in a
nonradial geodesic with L ¼ α0. Bottom: Massless particle in a
general geodesic (for L ¼ 0, Veff ¼ 0).

FIG. 2. Penrose diagram of the α0-corrected massless black
holes. We have represented four kinds of possible timelike
geodesics (described in the main text), including one correspond-
ing to motion confined in the central valley of the effective
potential.
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object as seen from the type II regions. In some
sense, it can be said that the mass of the α0-corrected
solution remains zero because it has opposite values
in contiguous type I and type II regions of the Penrose
diagram.

(5) The effective potential for null geodesics, plotted in
Fig. 1, has two hills of the same height; if a light
ray has small enough impact parameter L=ϵ, then it
always goes from type I to type II regions in the
Penrose diagram. The maxima of the potential are
exactly

Vmax
eff ¼ 16L2Q2

α0ð8Q2 − α0Þ : ð17Þ

(6) In the central valleys of the effective potentials, it is
possible to have geodesics that never reach infinity
and are confined between the hills. The particles cross
the horizons (future and past) of different regions an
arbitrary number of times and for an arbitrary number
of regions as shown in the Penrose diagram.

(7) Finally, observe that, in the timelike case, the effective
potential has another minimum in the right-hand side
of the diagram (type I region) that becomes shallower
the larger Q is. This happens even for L ¼ 0 (radial
motion), which means that there can be massive
particles with purely radial motion confined between
two radii.

Summarizing, we have found that α0 corrections trans-
form the singular massless black holes (7) into a geodesi-
cally complete spacetime which represents a regular black
hole with no singularity. We focused on the particular
example of the massless black holes for convenience, but
the same result is found for more general values of the
charges, provided that their signs are chosen as in (4).
Being extremal and supersymmetric, these solutions

might evade some of the stability issues related to regular
black holes, like the ones reported in Ref. [21]. In particular,
we note that our black holes have a different structure as
compared to the models analyzed there: they do not contain
a de Sitter core, and the instability associated to it does not
directly apply.
Although we have argued that the α0-corrected solutions

may receive no further corrections, it is not clear to us how
seriously they should be taken from the string theory point of
view [22] because they are singular in d ¼ 10 dimensions.
The singularity is to be expected because some compacti-
fication circles diverge (shrink to zero radii in the dual theory)
at given values of r. This pathology, on the other hand, may
be interpreted as a sign of the relationbetween these solutions
and the massless black holes of Ref. [15].
A feature of these solutions that may also be considered

as another sign of this relation is the two-sided structure
of the solution, which exhibits masses of opposite signs
in contiguous type I and type II regions of the Penrose

diagram. Some of the states that become massless in the
conifold transition could be two-particle states, and, there-
fore, they should have opposite masses.
Despite the pathological character of the ten-dimensional

solution, it should be noted that the cancellation of the
black-hole singularity in d ¼ 4 is a highly nontrivial
effect related to the precise form of the corrections in
Zþ given in (3). This function diverges with the right
degree precisely at the points where the functions H, Z0

and Z− vanish, and this is the only way in which the
singularity could be removed. Although the compactifica-
tion is singular, everything conspires to produce a regular
four-dimensional geometry.
Finally, since these solutions are also solutions of General

Relativity with complicated couplings to matter, an explan-
ation for their completely out of the ordinary featuresmust be
proposed. As we mentioned, the mass of the solution has
opposite signs in the type I and type II regions. The presence
of negative masses is usually associated to that of naked
singularities, and the absence of the latter can only be
attributed to the lack of positivity of the energy in the theory
that we are considering. The terms of higher order in the
curvature associated to the α0 corrections typically have the
wrong sign compared with terms quadratic in Yang-Mills
curvatures [23]. Repulsive gravitational behavior associated
to these higher-curvature corrections has been observed, for
instance, in Ref. [24].
There have been many attempts in the literature to get rid

of the singularities at the core of black holes, though the
analysis is usually restricted to finding appropriate regular
black-hole models [25,26]. The theories that achieve that
goal usually introduce higher-derivative terms in the curva-
ture [27–30] or in the matter fields [31,32] which may (or
may not) be associated to quantum corrections of a theory of
quantum gravity such as string theory. Effectively, many of
those terms may introduce negative energy in the theory in a
more or less consistent way (nobody really knows) that is
ultimately responsible for the removal or softening of the
singularities. We believe that this aspect of the higher-
derivative terms deserves to be understood in depth if these
theories are to be considered internally consistent.
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APPENDIX: THE HETEROTIC SUPERSTRING
EFFECTIVE ACTION AT Oðα0Þ

We work with the effective action of the Heterotic
Superstring at the first order in α0 derived in [1]

S ¼ g2s

16πGð10Þ
N

Z
d10x

ffiffiffiffiffi
jgj

p
e−2ϕ

�
R − 4ð∂ϕÞ2 þ 1

2 · 3!
H2

−
α0

8
ðFA

μνFAμν þ Rð−Þμν
a
b
Rð−ÞμνbaÞ

�
; ðA1Þ

where FA is the curvature of the Yang-Mills connection AA,
and Rð−Þab is the curvature of the torsionful spin connection
Ωð−Þab ¼ ωa

b − 1
2
Hμ

a
bdx

μ, i.e.

FA ¼ dAA þ 1

2
εABCAB ∧ AC; ðA2Þ

Rð−Þab ¼ dΩð−Þab −Ωð−Þac ∧ Ωð−Þcb: ðA3Þ

The 3-form field strength H receives corrections due to the
Lorentz and Yang-Mills Chern-Simons terms

H ¼ dBþ α0

4
ðωYM þ ωL

ð−ÞÞ; ðA4Þ

where

ωYM ¼ dAA ∧ AA þ 1

3
εABCAA ∧ AB ∧ AC; ðA5Þ

ωL
ð−Þ ¼ dΩð−Þab ∧ Ωð−Þba −

2

3
Ωð−Þab ∧ Ωð−Þbc ∧ Ωð−Þca:

ðA6Þ

Consequently, the Bianchi identity also gets corrected by

dH −
α0

4
ðFA ∧ FA þ Rð−Þab ∧ Rð−ÞbaÞ ¼ 0: ðA7Þ

Finally, the equations of motion for configurations that
already solve the zeroth-order equations of motion are

Rμν − 2∇μ∂νϕþ 1

4
HμρσHν

ρσ −
α0

4
ðFA

μρFA
ν
ρ þ Rð−Þμρ

a
b
Rð−Þν

ρb
aÞ ¼ 0;

ð∂ϕÞ2 − 1

2
∇2ϕ −

1

4 · 3!
H2 þ α0

32
ðFA

μνFAμν þ Rð−Þμν
a
b
Rð−ÞμνbaÞ ¼ 0;

dðe−2ϕ⋆HÞ ¼ 0;

α0½dðe−2ϕ⋆FAÞ þ εABCAB ∧ ⋆FC þ ⋆H ∧ FA� ¼ 0: ðA8Þ
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