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We holographically investigate the decay of the heavy-flavored baryonic hadron involving a glueball by
using the Witten-Sakai-Sugimoto model. Since the baryon in this model is recognized as the D4-brane
wrapped on S4 and the glueball field is identified as the bulk gravitational fluctuations, the interaction of the
bulk graviton and the baryon brane could be naturally interpreted as a glueball-baryon interaction through
the holography which is nothing but the close-open string interaction in string theory. In order to take the
heavy flavor into account, an extra pair of heavy-flavored branes separated from the other flavor branes
with a heavy-light open string is embedded into the bulk. Due to the finite separation of the flavor branes,
the heavy-light string creates massive multiplets which could be identified as the heavy-light meson fields
in this model. As the baryon brane on the other hand could be equivalently described by the instanton
configuration on the flavor brane, we solve the equations of motion for the heavy-light fields with the
Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton solution for the Nf ¼ 2 flavored gauge fields.
Then, with the solutions, we evaluate the soliton mass by deriving the flavored onshell action in the strong
coupling limit and heavy quark limit. After the collectivization and quantization, the quantum mechanical
system for the glueball and heavy-flavored baryon is obtained in which the effective Hamiltonian is time
dependent. Finally, we use the standard technique for the time-dependent quantum mechanical system to
analyze the decay of the heavy-flavored baryon involving the glueball, and we find one of the decay
processes might correspond to the decay of the baryonic B-meson involving the glueball candidate
f0ð1710Þ. This work is a holographic approach to studying the decay of the heavy-flavored hadron in
nuclear physics.

DOI: 10.1103/PhysRevD.99.046013

I. INTRODUCTION

Quantum chromodynamics (QCD) as the fundamental
theory of nuclear physics predicts the bound state of pure
gluons [1–3] because of its non-Abelian nature. Such a
bound state is always named a “glueball,” which is believed
to be the only possible composite particle state in the pure
Yang-Mills theory. In general, glueball states could have
various Lorentz structures, e.g., a scalar, pseudoscalar,
or a tensor glueball with either normal or exotic JPC

assignments. Although the glueball state has not been
confirmed by the experiment, its spectrum has been studied
by the simulation of lattice QCD [4–6]. According to the
lattice calculations, it indicates that the lightest glueball
state is a scalar with assignment of 0þþ and its mass is
around 1500–2000 MeV [4,7]. These results also suggest

that the scalar meson f0ð1710Þ could be considered as a
glueball state. The glueball may be produced by the decay
of various hadrons in the heavy-ion collision [8–10], so the
dynamics of the glueball is very significant. However,
lattice QCD involving real-time quantities is extremely
complex, and phenomenological models usually include a
large number of parameters with some corresponding
uncertainties. Thus, it is still challenging to study the
dynamics of glueball with traditional quantum field
theory.
Fortunately, there is an alternatively different way to

investigate the dynamics of glueball based on the famous
AdS/CFT correspondence or the gauge-gravity duality
pioneered in [11] where a top-down holographic approach
from string theory by Witten [12] and Sakai and Sugimoto
[13] (i.e., the WSS model) is employed. Analyzing the
AdS/CFT dictionary with the WSS model, the glueball
field is identified as the bulk gravitational fluctuations
carried by the close strings while the meson states are
created by the open strings on the Nf probe flavor branes.
Hence this model naturally includes the interaction of
glueball and meson through the holography which is
nothing but the close-open string interaction in string
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theory. Along this direction, decay of glueball into mesons
has been widely studied with this model e.g., in [14–16].1
Keeping the above information in mind and partly

motivated by [8–10], in this work we would like to
holographically explore the glueball-baryon interaction
particularly involving the heavy flavor as an extension to
the previous study in [19]. In the WSS model, baryon is
identified as the D40-brane2 wrapped on S4 [13,20] (namely
the baryon vertex) which could be equivalently described
by the instanton configuration on the flavored D8-branes
according to the string theory [21,22]. The configuration of
various D-branes is illustrated in Table I. In order to take
into account the heavy flavor, we embed an extra pair of
flavored D8=D8-brane into the bulk geometry which is
separated from the other Nf (light-flavored) D8=D8-branes
with an open string (the heavy-light string) stretched
between them [23,24] as illustrated in Fig. 1. In this
configuration, there would be additional multiplets created
by the heavy-light (HL) string and they would acquire mass
due to the finite separation of the flavor branes. Hence, we
could interpret these multiplets as the HL meson fields and
the instanton configuration on the D8-branes with the
multiplets would include heavy flavor and, thus, can be
identified as the heavy-flavored baryon [25,26]. So, sim-
ilarly to the case of the glueball and meson, there must be
glueball-baryon interaction in holography as the close
string interacting with the D40-brane carrying the heavy
flavor through the HL string or, namely, as the graviton
interacting with the heavy-flavored instantons.
Let us outline the content and the organization of this

manuscript here. We consider the baryonic bound states
created by the baryon vertex in this model with two flavors
i.e., Nf ¼ 2. Following [22,24–26], baryons are identified
as Skyrmions in the WSS model and they can be described
by a quantum mechanical system for their collective modes
in the moduli space. The effective Hamiltonian could be
obtained by evaluating the classical mass of the soliton
Sonshel ¼ −

R
dtMsoliton. So the main goal of this paper is to

evaluate the effective Hamiltonian involving glueball-
baryon interaction with heavy flavor. In Sec. II, we specify
the setup with the heavy flavor in this model and solve the
classical equations of motion for the HL meson field on the

flavor brane. In Sec. III, we search for the analytical
solutions of the bulk gravitational fluctuations then explic-
itly compute the onshell action with these solutions. All the
calculations are done in the limitation of large ’t Hooft
coupling constant λ where the holography is exactly valid.
The final formulas of the effective Hamiltonian depend on
the glueball field and the number of heavy-flavored quarks
so that it is time dependent. Therefore, the method for the
time-dependent system in quantum mechanics would be
suitable to describe the decay of heavy-flavored baryons
under the classical glueball field. Consequently, we obtain
several possible decay processes with the effective
Hamiltonian and pick out one of them which might
probably correspond to the decay of baryonic B-meson
involving the glueball candidate f0ð1710Þ as discussed
in [8–10].
Since the WSS model has been presented in many

lectures, for reader’s convenience we only collect some
relevant information about this model in Appendixes A, B,
and C which can be also reviewed in [13,22,25–27].
Respectively the gravitational polarization used in this
paper are collected in Appendix A. Some useful formulas
about the D-brane action and the embedding of the probe
branes and string in our setup can be found in Appendix B.
In Appendix C, it reviews the effective quantum mechani-
cal system for the collective modes of baryon. At the end of
this manuscript, some messy but essential calculations
about our main discussion have been summarized in
Appendix D.

II. BARYON AS INSTANTON
WITH HEAVY FLAVOR

The baryon spectrum with pure light flavors in this
model is reviewed in Appendix C, so we only outline how
to include the heavy flavor in this section. Some necessary
information about the embedding of the probe branes and
string in our setup could be reviewed in Appendix B.
A simple way to involve the heavy flavor in this model is

to embed an extra pair of flavored D8=D8-brane separated
from the other Nf (light-flavored) D8=D8-branes with an
open string (the heavy-light string) stretched between them
as illustrated in Fig. 1. The HL string creates additional
multiplets according to the string theory [27] since it
connects to the separated branes. And these multiplets
could be approximated by local vector fields near the
worldvolume of the light flavor branes. Note that the
multiplets acquire mass due to the finite length, or namely

TABLE I. The brane configuration of the WSS model: “� � � ” denotes the world volume directions of the D-branes.

0 1 2 3 (4) 5ðUÞ 6 7 8 9

Colored NcD4 � � � � � � � � � � � � � � �
Flavored Nf D8=D8 � � � � � � � � � � � � � � � � � � � � � � � � � � �
Baryon vertex D40 � � � � � � � � � � � � � � �

1Since theWSSmodel is based onAdS7=CFT6 correspondence,
several previous work is also relevant to this model e.g., [17,18].

2We will use “D40-brane” to distinguish the baryon brane from
those Nc D4-branes as color branes throughout the manuscript.
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the nonzero vacuum expectation value (VEV) of the HL
string. Therefore, we could interpret the multiplets created
by the HL string as the heavy-flavored mesons with
massive flavored (heavy-flavored) quarks. Actually, this
mechanism to acquire mass is nothing but the “Higgs
mechanism” in string theory. So let us replace the gauge
fields on the light flavor branes by its matrix-valued form to
involve the heavy flavor,

Aa → Aa ¼
�

Aa Φa

−Φ†
a 0

�
: ð2:1Þ

In our notation, Aa is an Nf × Nf matrix-valued 1-form
while Aa is an ðNf þ 1Þ × ðNf þ 1Þ matrix-valued
1-form. Φa is an Nf × 1 matrix-valued vector which
represents HL meson field and the index runs over the
light flavor brane. Thus, the field strength of Aa also
becomes matrix-valued as a 2-form,

F ab → F ab ¼
 

F ab −Φ½aΦ
†
b� ∂ ½aΦb� þA½aΦb�

−∂ ½aΦ
†
b� −Φ†

½aAb� −Φ†
½aΦb�

!
;

ð2:2Þ

where F ab refers to the field strength ofAa. Imposing (2.1)
(2.2) into D8-brane action (C1) and keep the quadric terms
of Φa, it leads to a Yang-Mills (YM) action3

SYMDBI ¼ −
1

4
ð2πα0Þ2T8Tr

Z
D8=D8

d9xe−Φ
ffiffiffiffiffiffi
−g

p
gabgcdF acF bd

¼ −
1

4
ð2πα0Þ2T8

Z
D8=D8

d9xe−Φ

×
ffiffiffiffiffiffi
−g

p ½gabgcdTrðF acF bd − αacF bd − F acαbdÞ
− 2gabgcdf†acfbd�; ð2:3Þ

where

fab ¼ ∂ ½aΦb� þ A½aΦb�;

f†ab ¼ −∂ ½aΦ
†
b� −Φ†

½aAb�; αab ¼ Φ½aΦ
†
b�: ð2:4Þ

We should notice that from the full formula of the DBI
action, it would contain an additional term of the transverse
mode Ψ of D8=D8-branes as shown in Appendix B. And
this term could be written as

SD8Ψ ¼ −T̃8Tr
Z
D8=D8

d9xe−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p

×

�
1

2
DaΨDaΨþ 1

4
½Ψ;Ψ�2

�
; ð2:5Þ

with DaΨ ¼ ∂aΨþ ½Aa;Ψ� and T̃8 ¼ ð2πα0Þ2T8. In the
case of Nf pairs of light-flavored D8=D8 branes separated
from one pair of heavy-flavored D8=D8 branes, we can
define the moduli solution of Ψ with a finite VEV v by the
extrema of the potential contribution or ½Ψ; ½Ψ;Ψ�� ¼ 0
[27,28] as

UD8 L( )

D8 L( )

D8 H( )

D8 H( )

U = U KK

U U = UH

X 4

UD8 L( )

D8 L( )

U = U KK

Baryon vertex Baryon vertex

FIG. 1. The various D-brane configurations in the WSS model. Left: The configuration of the standard WSS model according to
Table I. The bulk geometry is produced by Nc coincident D4-branes which represent “colors” in QCD. The flavors are introduced into
the model by embedding Nf pairs of coincident D8=D8-branes at the antipodal position of the bulk geometry. U refers to the
holographic direction and X4 is compactified on S1. The D40-brane as the baryon vertex looks like a point in the U − X4 plane. Mesons
are created by the open string on the flavored D8=D8-branes while baryons are created by the wrapped D40-branes. Right: The WSS
model with heavy flavor. An additional pair of flavored D8=D8-brane (denoted by the red line) as the heavy-flavored (H) brane separated
from the other Nf pairs of light-flavored (L) D8=D8-branes with a HL string (denoted by the green line) is embedded. The baryon vertex
contains heavy flavor in this configuration through the HL string.

3We do not given the explicit formula of the CS term with HL
fields since it is independent on the metric; thus, it is irrelevant to
the glueball-baryon interaction.
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Ψ ¼
�− v

Nf
1Nf

0

0 v

�
: ð2:6Þ

So the action (2.5) could be rewritten by plugging the
solution (2.6) into (2.5) as

SΨ ¼ −T̃8v2
ðNf þ 1Þ2

N2
f

Tr
Z

d4x

×
Z þ∞

−∞
dZe−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
gabΦ†

aΦb; ð2:7Þ

which is exactly the mass term of the HL field. Then
perform the rescaling (C3), we could obtain the classical
equations of motions for Φa from (2.3) (2.7) as

DMDMΦN −DNDMΦM þ 2FNMΦM þOðλ−1Þ ¼ 0:

DMðD0ΦM −DMΦ0Þ − F 0MΦM

−
1

64π2a
ϵMNPQKMNPQ þOðλ−1Þ ¼ 0; ð2:8Þ

where xM ¼ fxi; Zg, i ¼ 1, 2, 3 and the 4-form KMNPQ is
given as

KMNPQ ¼ ∂MAN∂PΦQ þAMAN∂PΦQ

þ ∂MANAPΦQ þ 5

6
AMANAPΦQ: ð2:9Þ

Since the holographic approach is valid in the strong
coupling limit λ → ∞, the contributions from Oðλ−1Þ have
been dropped off. Note that the light flavored gauge field
Aa satisfies the equations of motion obtained by varying
the action (C1), so their solution remains to be (C2) in the
large λ limit. And we could further define Φa ¼ ϕae�imHx0

in the heavy quark limit i.e., mH → ∞ as in [25,26] so that
D0ΦM ¼ ðD0 � imHÞϕM where “�” corresponds to quark
and antiquark, respectively. By keeping these in mind,
altogether we find the full solution for (2.8) as

ϕ0 ¼ −
1

1024aπ2

�
25ρ

2ðx2 þ ρ2Þ5=2 þ
7

ρðx2 þ ρ2Þ3=2
�
χ;

ϕM ¼ ρ

ðx2 þ ρ2Þ3=2 σM χ; ð2:10Þ

where χ is a spinor independent on xM. Then in the double
limit i.e., λ → ∞ followed by mH → ∞, the Hamiltonian
for the collective modes involving the heavy flavor could be
calculated as in (C7) by following the procedures in
Appendix C.

III. GLUEBALL-BARYON INTERACTION
WITH HEAVY FLAVOR

The dynamic of the free glueball is reviewed in
Appendix A, so in this section we will focus on the
interaction of the glueball and baryon with heavy flavor
characterized by the collective Hamiltonian. As the glueball
field is included by the metric fluctuations, the Chern-
Simons (CS) term is independent on the metric; thus, it
does not involve the glueball-baryon interaction. Hence, let
us start with the five-dimensional YM action plus the mass
term which are collected in (2.3) (2.7). The onshell form of
(2.3) (2.7) corresponds to the effective interaction
Hamiltonian of the glueball and heavy-flavored baryon
through the relation Sonshel ¼ −

R
dtHG−B, accordingly we

first need to solve the eigenvalue equations for function
HE;D;T in large λ limit.
The eigenvalue equations for HE;D;T are given in (A9)

and (A13). In the rescaled coordinate Z → λ−1=2Z, the
equations are written as

H00
EðZÞ þ

�
1

Z
þ 2Z

λ

�
H0

EðZÞ þ
�
16

3λ
þ M2

E

M2
KK

1

λ

�
HDðZÞ

þOðλ−2Þ ¼ 0;

H00
D;TðZÞ þ

�
1

Z
þ 2Z

λ

�
H0

D;TðZÞ þ
M2

D

M2
KK

1

λ
HD;TðZÞ

þOðλ−2Þ ¼ 0; ð3:1Þ

and they could be easily solved as

HEðzÞ ¼ CE

�
1 −

3M2
E þ 16M2

KK

12M2
KKλ

Z2

�
λ−1=2N−1

c M−1
KK

þOðλ−3=2Þ;

HD;TðzÞ ¼ CD;T

�
1 −

M2
D;T

4M2
KKλ

Z2

�
λ−1=2N−1

c M−1
KK

þOðλ−3=2Þ: ð3:2Þ

Next we perform the rescaling as in (C3), then insert the
BPST solution (C2) for the gauge field A and (A9) for the
heavy-light meson field Φa into the action (2.3) (2.7).
Afterwards by plugging the metric (A6) plus the dilaton
(A7) with the solution (3.2) and various fluctuations which
include the exotic scalar, dilatonic scalar and tensor glue-
ball field all given in Appendix A into the action (2.3) (2.7),
the onshell form of action (2.3) (2.7) could be obtained
with the dimensionless variable xμ → xμ=MKK;Aμ →
AμMKK as

SonshellGE;D;T−B¼aCE;D;T

Z
d4xdZTr½λ1=2LE;D;T

1=2 þLE;D;T
0

þλ−1=2LE;D;T
−1=2 þλ−1=2LE;D;T

Ψ þOðλ−1m0
HÞ�; ð3:3Þ
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where a ¼ 1
216π3

, “E,D,T ” refers, respectively, to “exotic
scalar, dilatonic scalar, and tensor glueball.” Although the
above calculation is very straightforward, the explicit forms
of LE;D;T

1=2;0;−1=2 and LE;D;T
Ψ are quite lengthy. So we summa-

rize the full formulas of LE;D;T
1=2;0;−1=2 and LE;D;T

Ψ with some
essential instructions in Appendix D and here skip to the
final results. Using the relation SonshellG−B ¼−

R
dtHG−Bðt;X sÞ,

the dimensionless interaction Hamiltonians are computed
as,4

HGE−Bðt;X sÞ ¼−CEλ−1=2M−1
KK

�
5m2

Hπ
2aþ 15mH

32ρ2

�
GE χ

† χ

þOðλ−1m0
HÞ

HGD−Bðt;X sÞ ¼ CDλ−1=2M−1
KK

�
3mH

8ρ2
− 6m2

Hπ
2a

�
GD χ

† χ

þOðλ−1m0
HÞ

HGT−Bðt;X sÞ ¼−CTλ−1=2M−1
KK

�
7

2
m2

Hπ
2aþmH

4ρ2

�
GT χ

† χ

þOðλ−1m0
HÞ; ð3:4Þ

The constants CE;D;T are determined by the eigenvalue
equations for HE;D;T, and they depend on the mass of the
various glueballs. We numerically evaluate CE;D;T in
Table II with the corresponding glueball mass. Notice that
the operator GE;D;T satisfies the equations of motion by
varying action (A10) (A14); thus, its classical solution is
GE;D;T ¼ 1

2
ðe−iME;D;T t þ c:cÞ and it is time dependent. On

the other hand, the spinor χ has to be quantized by its
anticommutation relation f χα; χ†βg ¼ δαβ in the full quan-
tum field theory so χ† χ is the number operator of heavy
quarks. Therefore, in our theory, the glueball field could be
treated as the classical field while baryon is quantized in the
moduli space and we can identify χ† χ ¼ NQ as the number
of heavy quarks in a baryonic bound state. Moreover,
the Hamiltonians in (3.4) is definitely suitable to be
perturbations to the quantum mechanics (C7) since they
are all proportional to λ−1=2 in the large λ limit. Then
the interaction of the glueball and heavy-flavored baryon
could be accordingly described by using the method of
time-dependent perturbation in the quantum mechanical
system. Last but not least, the decay rates/width Γ can be
evaluated by using the standard technique for the time-
dependent perturbation in quantum mechanics, which is
given as

ΓB→GþX

mH
¼ 1

mH

				
Z

dthijHG−Bðt;X sÞjjie−iðEi−EjÞt
				2;

¼ 1

mH
hijHG−BðX sÞjji2δðEj−Ei−ME;D;TÞ; ð3:5Þ

jii, jji, Ei;j refers to the eigenstate and the associated
eigenvalue of (C7). And the above decay occurs only if
several physical quantities e.g., energy, total angular
momentum J, are also conserved. Note that the interaction
Hamiltonians in (3.4) are independent on Z, so
hijHG−BðX sÞjji would be vanished unless the states jii,
jji take the same quantum number of nZ and l. The
Hamiltonians in (3.4) can also describe the decay of an
antibaryon if we replace mH by −mH.
With the perturbed Hamiltonian in (3.4), this model

includes various decays of heavy-flavored hadrons involving
the glueball. So we are going to examine the possible
transitions involving one glueball with the leading low-
energy excited baryon states nρ ≤ 5. Since our concern is the
situation of two-flavored meson, we could follow [22] by
setting l

2
¼ J ¼ 0, NQ ¼ 1, Nc ¼ 3 in order to fit the

experimental data of the (pseudo) scalar meson states with
one heavy flavor. Then let us first take account into the

energy conservation Eðnρ¼n0ρþΔnρ;l¼0;NB¼1;nZÞ−
Eðn0ρ;l¼0;NB¼1;nZÞ≡EðΔnρÞ¼MðnÞ

E;D;T if the transition

of hadron decay would happen, where MðnÞ
E;D;T refers to the

glueball mass given in Table II andEðnρ; l; NB; nZÞ refers to
the baryonic spectrum in (C9). By keeping these inmind, the
following relations are picked out,

EðΔnρ ¼ 3Þ=Mðn¼1Þ
D;T ≃ 0.986;

EðΔnρ ¼ 4Þ=Mðn¼2Þ
E ≃ 1.008; ð3:6Þ

while EðΔnρÞ; nρ ≤ 5 with Δnρ ¼ 0, 1, 2 does not match to

any MðnÞ
E;D;T. Hence we could find the following possible

decays involving the glueball according to (3.6),

TABLE II. The glueball mass spectrumMðnÞ
E;T in the WSS model

in the units of MKK is collected from [14] and the numerical
values of the associated coefficients presented in (3.4) CE;D;T are
evaluated.

Excitation of glueball ðnÞ n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Glueball mass MðnÞ
E 0.901 2.285 3.240 4.149 5.041

Glueball mass MðnÞ
D;T 1.567 2.485 3.373 4.252 5.124

The coefficients n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

CE 144.545 114.871 131.283 146.259 157.832
CD 29.772 36.583 42.237 47.220 51.724
CT 72.927 89.609 103.46 115.664 126.696

4The glueball field GE;D;T in (3.4) is dimensional which
is in the unit of MKK while the other parameters are
dimensionless.
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I∶ BaryonicjJ ¼ 0; nρ ¼ 3i
→ jGðn¼1Þ

D ; JPC ¼ 0þþi þ BaryonicjJ ¼ 0; nρ ¼ 0i
II∶ BaryonicjJ ¼ 0; nρ ¼ 4i

→ jGðn¼1Þ
D ; JPC ¼ 0þþi þ BaryonicjJ ¼ 0; nρ ¼ 1i

III∶ BaryonicjJ ¼ 0; nρ ¼ 5i
→ jGðn¼1Þ

D ; JPC ¼ 0þþi þ BaryonicjJ ¼ 0; nρ ¼ 2i
IV∶ BaryonicjJ ¼ 0; nρ ¼ 3i

→ jGðn¼1Þ
T ; JPC ¼ 2þþi þ BaryonicjJ ¼ 0; nρ ¼ 0i

V∶ BaryonicjJ ¼ 0; nρ ¼ 4i
→ jGðn¼1Þ

T ; JPC ¼ 2þþi þ BaryonicjJ ¼ 0; nρ ¼ 1i
VI∶ BaryonicjJ ¼ 0; nρ ¼ 5i

→ jGðn¼1Þ
T ; JPC ¼ 2þþi þ BaryonicjJ ¼ 0; nρ ¼ 2i

VII∶ BaryonicjJ ¼ 0; nρ ¼ 4i
→ jGðn¼2Þ

E ; JPC ¼ 0þþi þ BaryonicjJ ¼ 0; nρ ¼ 0i
VIII∶ BaryonicjJ ¼ 0; nρ ¼ 5i

→ jGðn¼2Þ
E ; JPC ¼ 0þþi þ BaryonicjJ ¼ 0; nρ ¼ 1i;

ð3:7Þ

where we have denoted the states by their quantum numbers
and the associated decay rates Γ are numerically evaluated in
Table III by using the effective Hamiltonian in (3.4). Notice
that the mass of the dilatonic and exotic scalar glueball in

(3.7) are given asMðn¼2Þ
E =Mðn¼1Þ

D ≃ 1.30which is close to the
mass ratio of the glueball candidates f0ð1710Þ and f0ð1500Þ
as Mf0ð1710Þ=Mf0ð1500Þ ≃ 1.14, moreover all of them should
be the state of JPC ¼ 0þþ. Accordingly, we could identify
the dilatonic and exotic scalar glueball in (3.7) as f0ð1500Þ
and f0ð1710Þ, respectively, which are the two glueball
candidates discussed frequently in many lectures.
If we furthermore consider the parity of baryonic states

as discussed in [22], the above states with odd nZ in this
model would correspond to the meson states with odd
parity since the parity transformation is Z → −Z. In this
sense, the transition II, V, VII describes the decay of the
heavy-flavored scalar (nonglueball) meson involving the

glueball, while the pure scalar meson with even parity is
less evident according to the current experimental data. On
the other hand, as the glueball states we discussed in this
manuscript all have even parity, it implies that the parity of
the transition I, III, IV, VI may be violated. We also notice
that if l

2
¼ J is identified as the quantum number of the spin,

the decay processes IV, V, VI in (3.7) involving the tensor
glueball JPC ¼ 2þþ may be probably forbidden since the
initial and final baryonic states are all pure scalars i.e., the
total angular momentum may not be conserved in these
transitions,5 and this result would be in agreement with the
previous discussion in [19]. Therefore we could conclude
that only the decay process VIII in (3.7) might be realistic.
This transition describes the decay of the baryonic meson
consisted of one heavy- and one light-flavored quark. So
while the identification of the other transitions might be less
clear, the transition VIII could be interpreted as the decay of
the baryonic B-meson involving the glueball candidate
f0ð1710Þ as discussed e.g., in [8–10] since the correspond-
ing quantum numbers of the states could be identified.

IV. SUMMARY

In this paper, with the top-down approach of WSS
model, we propose a holographic description of the decay
of heavy-flavored meson involving the glueball. The HL
field is introduced into the WSS model to describe the
dynamics of heavy flavor, and it is created by the HL string
with a pair of heavy-flavored D8=D8-brane separated from
the other light flavored D8=D8-brane. Since baryon in this
model could be equivalently represented by the instanton
configurations on the light-flavored brane and the glueball
field is identified as the bulk gravitational waves, we solve
the classical equations of motion for the HL field with
instanton solution for the gauge fields. In the limitation of
large λ followed by large mH, we derive the mass formula
of the soliton as the onshell action of the flavor brane by
taking account of the HL field and bulk gravitational
waves. Then following the collectivization and quantiza-
tion of the soliton in [22,25,26], the effective Hamiltonian
for the collective modes of heavy-flavored baryons is
obtained which includes the interaction with the glueball.
Afterwards, we examine the possible decay processes and
compute the associated decay rates with the effective
Hamiltonian. We find these decay rates are in agreement
with the previous works by using this model as in
[14–16,19] since they are proportional to λ−1. Then by
comparing the quantum numbers of the baryonic states
with some experimental data and employing the identi-
fication of baryonic states in [22], we find that one decay
process might be realistic and could be interpreted as the

TABLE III. The corresponding decay rates in the units ofmH to
the transitions in (3.7) by setting l ¼ 0,NQ ¼ 1,Nc ¼ 3,Nf ¼ 2.

I II III IV

Γ 0.0392λ−1 0.0628λ−1 0.0785λ−1 0.1046λ−1

V VI VII VIII

Γ 0.1674λ−1 0.2093λ−1 0.6316λ−1 1.0527λ−1

5For a tensor glueball, we suggest considering a tensor field
dependent on the coordinates of the moduli space yI in order to
obtain the correct decay process. We would like to leave it for
future study and focus on the scalar glueball in the current work.
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decay of baryonic B-meson involving the glueball candi-
date f0ð1710Þ as discussed in [8–10]. Noteworthily accord-
ing to lattice QCD f0ð1710Þ is an excited state in the
glueball candidates which is just consistent with that the
glueball state discussed in transition VIII is also an
excitation.
As an improvement of [19], this work provides an

alternative way to investigate the interaction of the glueball
and heavy-flavored baryons in the strong coupling system
through the holographic approach of the underlying string
theory. Although this approach is quite principal and
contains few parameters, it is actually valid in the large
Nc limit. So phenomenological theories or models are
always needed as a comparison with holography.
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APPENDIX A: THE BULK SUPERGRAVITY AND
GLUEBALL DYNAMICS IN THE WSS MODEL

The WSS model is based on the AdS7=CFT6 correspon-
dence of Nc M5-branes in string theory which can be
reduced to Nc D4-branes compactified on S1 in the ten-
dimensional bulk. So taking the large Nc limit, the bulk
dynamic is described by the ten-dimensional type IIA
supergravity action which is given as

SIIA ¼ 1

2k210

Z
d10x

ffiffiffiffiffiffi
−g

p
e−2Φ

�
Rþ4∇MΦ∇MΦ−

1

2
jF4j2

�
;

ðA1Þ

where Φ denotes the dilaton field, 2k210 ¼ 16G10=g2s ¼
ð2πÞ7l8s .R, G10 is the ten-dimensional scalar curvature and
Newton constant, respectively. F4 ¼ dC3 is the field
strength of the Romand-Romand (R-R) 3-form C3. The
geometrical solution for the bulk metric is given as

ds2 ¼
�
U
R

�
3=2

½ημνdXμdXν þ fðUÞðdX4Þ2�

þ
�
R
U

�
3=2
�
dU2

fðUÞ þU2dΩ2
4

�
;

fðUÞ ¼ 1 −
U3

KK

U3
; eΦ ¼

�
U
R

�
3=4

;

F4 ¼
2πNc

V4

ϵ4; R3 ¼ πgsNcl3s ; ðA2Þ

with a periodic condition for X4,

X4 ∼ X4 þ 2πδX4; δX4 ¼ 1

MKK
: ðA3Þ

And the r, z, Z coordinate used in the paper is defined as

U3 ¼ U3
KK þUKKz2; Z ¼ z

UKK
;

1þ Z2 ¼ r6

r6KK
; UKK ¼ r2KK

4R
: ðA4Þ

Note that ϵ4 represents a unit volume element on S4. gs, ls
denotes the string coupling constant and the length
of string. The indices μ, ν in (A2) run from 0 to 3.
Additionally we could define the QCD variables in
terms of

λ ¼ g2YMNc; g2YM ¼ 2πgslsMKK; ðA5Þ

where gYM, λ respectively denotes the Yang-Mills and the
’t Hooft coupling constant.
In this model, the glueball fields are identified as the

gravitational fluctuations to the bulk solution (A2); thus,
we could rewrite the metric as GMN → Gð0Þ

MN þ δGMN in
order to involve the glueball field. The ten-dimensional
metric reduced from eleven-dimensional supergravity with
gravitational fluctuations is

gμν¼
r3

L3

��
1þ L2

2r2
δG11;11

�
ημνþ

L2

r2
δGμν

�
;

g44¼
r3f
L3

�
1þ L2

2r2
δG11;11þ

L2

r2f
δG44

�
;

grr¼
L
rf

�
1þ L2

2r2
δG11;11þ

r2f
L2

δGrr

�
;

grμ ¼
r
L
δGrμ; gΩΩ ¼ r

L

�
L
2

�
2
�
1þ L2

2r2
δG11;11

�
; ðA6Þ

with the dilaton

e4Φ=3 ¼ r2

L2

�
1þ L2

r2
δG11;11

�
: ðA7Þ

Since different formulas of δGMN corresponds to various
glueball, in this paper we consider the following forms
of δGMN :

1. The exotic scalar glueball

The exotic scalar glueball corresponds to the exotic
polarizations of the bulk graviton whose quantum number
is JCP ¼ 0þþ. The eleven-dimensional components of
δGMN are given as
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δG44¼−
r2

L2
fðrÞHEðrÞGEðxÞ;

δGμν ¼
r2

L2
HEðrÞ

�
1

4
ημν−

�
1

4
þ 3r6KK
5r6−2r6KK

�∂μ∂ν

M2
E

�
GEðxÞ;

δG11;11¼
r2

4L2
HEðrÞGEðxÞ;

δGrr ¼−
L2

r2
1

fðrÞ
3r6KK

5r6−2r6KK
HEðrÞGEðxÞ;

δGrμ ¼
90r7r6KK

M2
EL

2ð5r6−2r6KKÞ2
HEðrÞ∂μGEðxÞ; ðA8Þ

with the eigenvalue equation for function HEðrÞ as

1

r3
d
dr

�
rðr6 − r6KKÞ

d
dr

HEðrÞ
�

þ
�

432r2r12KK
ð5r6 − 2r6KKÞ2

þ L4M2
E

�
HEðrÞ ¼ 0: ðA9Þ

In the ten-dimensional bulk, the above components
in (A8) satisfy the asymptotics δG44¼−4δG11¼−4δG22¼
−4δG33¼−4δG11;11 for r → ∞. Plugging the solution (A2)
and the fluctuations (A8) with the eigenvalue equation (A9)
into the action (A1), it leads to the kinetic term of the exotic
scalar glueball,

SGEðxÞ ¼ −
1

2

Z
d4x½ð∂μGEÞ2 þM2

EG
2
E�; ðA10Þ

where the pre-factor in (A10) has been normalized to −1=2
by choosing the boundary value of HEðrÞ.

2. The dilatonic and tensor glueball

The fluctuations of the metric,

δG11;11 ¼ −3
r2

L2
HDðrÞGDðxÞ;

δGμν ¼
r2

L2
HDðrÞ

�
ημν −

∂μ∂ν

M2
D

�
GDðxÞ; ðA11Þ

corresponds to another mode of the scalar glueball 0þþ. We
employ “dilatonic” for the upon mode since δG11;11 reduces
to the ten-dimensional dilaton.
Besides the tensor glueball corresponds to the metric

fluctuations with a transverse traceless polarization whose

quantum number is JCP ¼ 2þþ. We can choose the
following components of the graviton polarizations as
tensor glueball field,

δGμν ¼ −
r2

L2
HTðrÞTμνðxÞ; ðA12Þ

where Tμν ≡ T μνGTðxÞ. T μν is a constant symmetric
tensor satisfying the normalization and traceless condition
T μνT μν ¼ 1, ημνT μν ¼ 0. The functions HD;TðrÞ satisfies
the eigenvalue equation,

1

r3
d
dr

�
rðr6 − r6KKÞ

d
dr

HD;TðrÞ
�
þ L4M2

D;THD;TðrÞ ¼ 0:

ðA13Þ

We can also obtain the kinetic action of the dilatonic scalar
and tensor glueball as

SGDðxÞ ¼ −
1

2

Z
d4x½ð∂μGDÞ2 þM2

DG
2
D�;

STðxÞ ¼ −
1

4

Z
d4x½Tμνð∂2 −M2

TÞTμν�; ðA14Þ

once the solution (A2) and fluctuations (A11) (A12) with
eigenvalue equation (A13) are imposed on the action (A1)
and the boundary value of HD;T has to been determined by
the normalization conditions in (A14).

APPENDIX B: THE FULL Dp-BRANE
ACTION AND THE EMBEDDING OF

THE PROBE BRANES

1. The complete DBI action

We give the complete formula of the Dp-brane here and it
could also be reviewed in many textbooks of string theory,
Let us consider D dimensional spacetime parametrized by
fXμg, μ ¼ 0; 1…D − 1 with a stack of Dp-branes. In this
subsection, the indices a; b ¼ 0; 1…p and i; j; k ¼ pþ
1…D − 1 denote respectively the directions parallel and
vertical to the Dp-branes. The complete bosonic action of a
Dp-branes is

SDp−branes ¼ SDBI þ SCS; ðB1Þ

where [27]

SDBI ¼ −TpSTr
Z

dpþ1ξe−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detf½Eab þ EaiðQ−1 − δÞijEjb þ 2πα0Fab�Qi

jg
q

;

SCS ¼ μp
X
n¼0;1

Z
Dp−branes

Cp−2nþ1 ∧ ðBþ 2πα0FÞn
n!

;

Qi
j ¼ δijþ 2πα0½φi;φk�Ekj; Eμν ¼ gμν þ Bμν: ðB2Þ
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We have denoted the metric of the D dimensional space-
time and the 2-form field as gμν, Bμν, respectively. F is the
gauge field strength defined on the D-brane and “STr”
refers to the “symmetric trace.”We use φi ’s to represent the
transverse modes of the Dp-branes which are given by the
T-duality relation 2πα0φi ¼ Xi. So the DBI action in (B2)
could be expanded as

SBDI ¼ −TpTr
Z

dpþ1ξe−Φ
ffiffiffiffiffiffi
−g

p �
1þ 1

4
ð2πα0Þ2FabFab

þ 1

2
Daφ

iDaφ
i þ 1

4
½φi;φj�2

�
þ high orders: ðB3Þ

The 2-form field B has been gauged away. The gauge field
Aa and scalar field φi ’s are all in the adjoint representation
of UðNÞ. Note that there is only one transverse coordinate
for the D8=D8-brane which has been defined as Ψ≡ φ9 in
the main text.

2. Comments about the probe branes and strings

Here let us briefly outline the embedding of the probe
D8=D8-brane and the HL string. Using the bulk metric
(A2), the induced metric on the probe D8=D8-branes is
obtained as

ds2
D8=D8

¼
�
U
R

�
3=2
�
fðUÞþ

�
R
U

�
3 U02

fðUÞ
�
ðdX4Þ2

þ
�
U
R

�
3=2

ημνdXμdXνþ
�
R
U

�
3=2

U2dΩ2
4; ðB4Þ

where U0 ¼ dU
dX4. Then insert the metric (B4) into the DBI

action of D8=D8-branes, it yields the formula

SD8=D8 ∝
Z

d4xdUU4

�
fðUÞ þ

�
R
U

�
3 U02

fðUÞ
�
1=2

: ðB5Þ

Hence we can obtain the equation of motion for the
function UðX4Þ as

d
dX4

�
U4fðUÞ

½fðUÞ þ ðRUÞ3 1
fðUÞU

02�1=2
�

¼ 0: ðB6Þ

Using the boundary condition in [13], as UðX4 ¼ 0Þ ¼ U0

and U0ðX4 ¼ 0Þ ¼ 0, the generic solution for (B6) is
computed as

X4ðUÞ¼EðU0Þ
Z

U

U0

dU
ðUÞðRUÞ3=2

fðUÞ½U8fðUÞ−E2ðU0Þ�1=2
; ðB7Þ

where EðU0Þ ¼ U4
0f

1=2ðU0Þ and we have used U0 to
denotes the connected position of the D8=D8-branes.

Afterwards let us further introduce the coordinates ðr;ΘÞ
and ðy; zÞ which satisfy,

y ¼ r cosΘ; z ¼ r sinΘ;

U3 ¼ U3
KK þUKKr2; Θ ¼ 2π

β
X4 ¼ 3

2

U1=2
KK

R3=2 : ðB8Þ

In the standard WSS model, the probe D8=D8-branes are
embedded at Θ ¼ � 1

2
π respectively i.e., the position of

y ¼ 0, which exactly corresponds to the antipodal D8=D8-
branes (blue) in Fig. 1. In this case, the solution for the
embedding function is X4ðUÞ ¼ 1

4
β and U0 ¼ UKK . In

addition, the (B7) also allows the nonantipodal solution if
we choose Θ ¼ �ΘH ≠ � 1

2
π, U0 ¼ UH ≠ UKK which

corresponds to the nonantipodal D8=D8-branes (red) in
Fig. 1. On the other hand, while each end point of the HL
string could move along the flavored branes, in our setup it
is stretched between the heavy- (nonantipodal) and light-
flavored (antipodal) D8=D8-branes. So it connects the
positions respectively on the heavy- and light-flavored
D8=D8-branes which are most close to each other and
in the U − X4 plane, they are the positions of ðUKK; 0Þ on
the light-flavored branes and ðUH; 0Þ on the heavy-flavored
branes. And this is the configuration of the HL string with
minimal length i.e., the VEV.

APPENDIX C: THE COLLECTIVE MODES OF
THE BARYON AND ITS QUANTIZATION

As the D40-brane is identified as baryon in the WSS
model, it is equivalent to the instanton configuration on the
D8-branes according to the string theory. So the dynamic of
the D8=D8-brane is given by the Dirac-Born-Infield (DBI)
action plus the Chern-Simons (CS) action (B2) while the
baryonic D40-brane is identified as the instanton configu-
ration of the gauge field strength on the D8=D8-brane.
Altogether the action of the flavors with baryons can be
simplified as a five-dimensional Yang-Mills (YM) plus CS
action by integrating over the S4 which is given as

S ¼ SYM þ SCS:

SYM ¼ −κTr
Z

d4xdze−Φ
ffiffiffiffiffiffi
−g

p
gabgcdF acF bd;

SCS ¼
Nc

24π
Tr
Z

d4xdz

�
AF 2 −

1

2
A3F −

1

10
A5

�
; ðC1Þ

where the indices α, β run over Xμ and z. In particular, in
the situation of two flavors i.e., Nf ¼ 2, the classical
instanton configuration could be adopted as the Belavin-
Polyakov-Schwarz-Tyupkin (BPST) solution which is
given as
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AM ¼ −σ̄MN
xN

x2 þ ρ2
; M;N ¼ 1; 2; 3; z;

A0 ¼ −
i

8π2ab3=2x2

�
1 −

ρ4

ðx2 þ ρ2Þ2
�
; ðC2Þ

where A is Uð2Þ and A0 is Uð1Þ gauge field. The gauge
field strength is defined as F ¼ dAþ ½A;A�.6 And
x2 ¼ ðxM − XMÞ2, XM ’s are constants. Since the instanton
size ρ is of order λ−1=2, it would be convenient to employ
the rescaling,

ðx0; xMÞ → ðx0; λ−1=2xMÞ; ðA0;AMÞ → ðA0; λ1=2AMÞ;
ðC3Þ

in order to obtain the explicit dependence of λ in the actions
in (C1). Inserting (C2) into the rescaled gauge field A, the
mass M of the classical soliton could be evaluated by
Sonshellcl ¼ −

R
dtM. Afterwards the baryon states could be

identified as Skyrmions so that the characteristics of baryon
are reflected by their collective modes. Therefore we could
quantize the classical soliton in the moduli space to obtain
the baryon spectrum.
In the large λ limit, the topology of the moduli space for

Nf ¼ 2 case is given as R4 ×R4=Z2 since the contribution
of Oðλ−1Þ could be neglected. Then the collective coor-
dinates fXMg parametrize the first R4 while the size ρ and
the SUð2Þ orientation of the instanton parametrize R4=Z2.
Let us denote the SUð2Þ orientation as aI ¼ yI

ρ , I ¼ 1, 2, 3,

4 with the normalization
P

4
I¼1 a

2
I ¼ 1 so that the size of the

instanton satisfies ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ � � � y24

p
. The quantization

procedures of the Lagrangian for the collective coordinates
follows those in Ref. Specifically we need to assume that
the moduli of the solution is time dependent. Thus, the
gauge transformation also becomes time dependent as

AM → VðAcl
M − i∂MÞV−1;

FMN → VF cl
MNV

−1; F0M → Vð _Xα∂αAcl
M −Dcl

MΦÞV−1;

ðC4Þ

The Lagrangian of the collective coordinates in such a
moduli space takes the form as

L ¼ mX

2
Grs

_X s _X r −UðX sÞ þOðλ−1Þ; ðC5Þ

where X s ¼ fXM; aIg. The the kinetic term in (C5)
corresponds to the line element of the moduli space while
the potential corresponds to the onshell action of the soliton
adopting the time-dependent gauge transformation,

Sonshell
D8=D8

≃ SonshellYMþCS ¼ −
Z

dtUðX sÞ: ðC6Þ

Using the solution (C2), the above integral is easy to
calculate in the case of pure light flavors while it becomes
quite difficult if the heavy flavor is involved. Without loss
of generality, let us consider the large λ limit followed by
heavy mass limit of the heavy flavor. Hence the dimension-
less quantized Hamiltonian corresponding to (C5) for the
collective modes is calculated as

H ¼ M0 þHy þHZ þOðλ−1m0
HÞ;

Hy ¼ −
1

2my

X4
I¼1

∂2

∂y2I þ
1

2
myω

2
yρ

2 þ Q
ρ2

;

HZ ¼ −
1

2mZ

∂2

∂Z2
þ 1

2
mZω

2
ZZ

2; ðC7Þ

where

M0¼ 8π2κ; ω2
Z ¼

2

3
; ω2

ρ¼
1

6
; κ¼ λNc

216π3
;

Q¼QLþQH; QL¼
Nc

40π2a
; QH ¼ NQ

8π2a

�
NQ

3Nc
−
3

4

�
:

ðC8Þ

The value of Q corresponds to the situation of a baryonic
bound state consisting of NQ heavy flavored quarks. The
eigenfunctions and mass spectrum of (C7) can be evaluated
by solving its Schrodinger equation, respectively they are
obtained as7

ψðyIÞ ¼ RðρÞTðlÞðaIÞ;
RðρÞ ¼ e−

myωρ
2

ρ2ρl̃Hypergeometric1

× F1ð−nρ; l̃þ 2;myωρρ
2Þ;

Eðl; nρ; nzÞ ¼ ωρðl̃þ 2nρ þ 2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2

6
þ 640

3
a2π4Q2

r
þ 2ðnρ þ nzÞ þ 2ffiffiffi

6
p :

ðC9Þ

Notice that TðlÞðaIÞ satisfies∇2
S3T

ðlÞ ¼ −lðlþ 2ÞTðlÞ which
is the function of the spherical part because Hy can be
written with the radial coordinate ρ as

Hy ¼−
1

2my

�
1

ρ3
∂ρðρ3∂ρÞþ

1

ρ2
ð∇2

S3 −2myQÞ
�
þ1

2
myω

2
ρρ

2:

ðC10Þ

6In our notation, A is anti-Hermitian which means A† ¼ −A. 7l and l̃ are related as l̃ ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 þ 2myQ

q
.
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APPENDIX D: EXPLICIT FORMULAS OF LE;D;T
1=2;0;− 1=2 AND LE;D;T

Ψ

Here we collect the explicit formulas of LE;D;T
1=2;0;−1=2 and LE;D;T

Ψ . For the exotic scalar glueball,

LE
1=2 ¼

1

MKK

�
−

5

4M2
E
∂i∂jGEF ikF

k
j þ

3

16
GEF ijF

ij þ 5

16M2
E
∂2GEF ijF

ij

−
5

4M2
E
∂i∂jGEF iZF jZ −

7

8
ηijGEF iZF jZ þ 5

8M2
E
∂2GEη

ijF iZF jZ

�
;

LE
0 ¼ 1

M2
E

�
20

3
∂kGEη

ijZF ikF jZ −
5

2MKK
∂0∂kGEη

ijF ikF j0 −
5

2MKK
∂0∂iGEFZiFZ0

�
;

LE
−1=2 ¼

Z2

MKK

�
5

16M2
KK

∂i∂jGEF ikF
k
j þ

15

4M2
E
∂i∂jGEF ikF

k
j −

5

64M2
KK

∂2GEF ijF
ij

−
3M2

E

64M2
KK

GEF ijF
ij −

35

48
GEF ijF

ij −
15

16M2
E
∂2GEF ijF

ij þ 5

16
∂i∂jGEF iZF jZ

þ 25

12

M2
KK

M2
E
∂i∂jGEF iZF jZ −

5

32
∂2GEη

ijF iZF jZ þ 7

32
M2

EGEη
ijF iZF jZ

þ 9

8
GEM2

KKη
ijF iZF jZ −

25

24

M2
KK

M2
E
∂2GEη

ijF iZF jZ

�
þ 1

M2
EMKK

�
5

4
∂i∂jGEF i0F j0

−
3

8
M2

EGEη
ijF i0F j0 −

5

8
∂2GEη

ijF i0F j0 −
5

4
∂0∂0GEη

ijF i0F j0

�

þ 1

M2
EMKK

�
7

8
GEM2

EFZ0FZ0 −
5

8
∂2GEFZ0FZ0 −

5

4
∂0∂0GEFZ0FZ0

�
−

20

3M2
E
Z∂0GEη

ijF jZF i0;

LE
Ψ ¼ −v2

ðNf þ 1Þ2
N2

f

�
−

5

12M2
EMKK

∂i∂jGEΦ
†
iΦj þ

5

24M2
EMKK

∂2GEδ
ijΦ†

iΦj

−
5

12MKK
GEΦ†

ZΦZ þ 5

24M2
EMKK

∂2GEΦ†
ZΦZ

�
: ðD1Þ

For the dilatonic scalar glueball,

LD
1=2 ¼ −

∂i∂jGD

M2
DMKK

F ikF
k
j þ

3GD

4MKK
F ijF

ij þ ∂2GD

4M2
DMKK

F ijF
ij −

∂i∂jGD

M2
DMKK

F iZF jZ

þ 1

2
GDM−1

KKFZiF
i
Z þ ∂2GD

2M2
DMKK

FZiF
i
Z;

LD
−1=2 ¼

∂i∂jGD

4M3
KK

Z2F ikF
k
j þ

∂i∂jGD

3M2
DMKK

Z2F ikF
k
j −

∂2GD

16M3
KK

Z2F ijF
ij −

3GDM2
D

16M3
KK

Z2F ijF
ij −

GD

4MKK
Z2F ijF

ij

−
∂2GD

12M2
DMKK

Z2F ijF
ij þ ∂i∂jGD

4M3
KK

Z2F iZF jZ −
∂i∂jGDZ2

M2
DMKK

F iZF jZ −
∂2GDZ2

8M3
KK

FZiF
i
Z −

GDM2
DZ

2

8M3
KK

FZiF
i
Z

þ 1

2
GDM−1

KKZ
2FZiF

i
Z þ ∂2GDZ2

2M2
DMKK

FZiF
i
Z þ ∂i∂jGD

M2
DMKK

F i0F j0 −
3

2

GD

MKK
F 0iF

i
0 −

∂2GD

2M2
DMKK

F 0iF
i
0

−
∂0∂0GD

M2
DMKK

F 0iF
i
0 −

1

2
GDM−1

KKF
2
0Z −

∂2GD

2M2
DMKK

F 2
0Z −

∂0∂0GD

M2
DMKK

F 2
0Z;L

D
0 ¼ 0;

LD
Ψ

aCD
¼ v2

ðNf þ 1Þ2
N2

f

�
−

∂i∂jGD

3M2
DMKK

Φ†
iΦj þ

2GD

3MKK
ηijΦ†

iΦj þ
∂2GD

6M2
DMKK

ηijΦ†
iΦj þ

GD

3MKK
Φ†

ZΦZ þ ∂2GD

6M2
DMKK

Φ†
ZΦZ

�
:

ðD2Þ

For the tensor glueball,
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LT
1=2¼−

Tkl

MKK
ηijF ikF jl−

Tij

MKK
F iZF jZ;

LT
0 ¼−

2T0k

MKK
ηijF ikF j0−

2T0i

MKK
FZiFZ0;

LT
−1=2¼

Tklηij

3MKK
Z2F ikF jlþ

M2
TT

klηij

4M3
KK

Z2F ikF jl

−MKKTijZ2F iZF jZþ
M2

T

4MKK
TijZ2F iZF jZ

þ Tij

MKK
F i0F j0−

T00

MKK
ηijF i0F j0−

T00

MKK
FZ0FZ0;

LT
Ψ¼−

ðNfþ1Þ2
3N2

fMKK
v2TijΦ†

iΦi: ðD3Þ

We assume the glueball field is onshell so that GE;D;T

could be chosen as GE;D;T ¼ 1
2
ðe−iME;D;T t þ c:cÞ in the rest

frame of the glueball; hence, we have ∂iGE;D;T ¼ 0;

∂μ∂μGE;D;T ¼ M2
E;D;TGE;D;T which could greatly simplify

(D1) (D2) (D3). Since the LE;D;T
Ψ refers to the mass term of

the HL field, the mass of the heavy quarks mH must be
related to the separation of the flavor branes i.e., the VEV
of Ψ. In the heavy quark limit, the explicit relation is given
as [24–26],

mH ¼ 1

πl2s
lim

zH→∞

Z
zH

0

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−g00gzz

p
;

≃
1

πl2s
U1=3

KKz
2=3
H þOðz0HÞ:

≡ 1ffiffiffi
6

p Nf þ 1

Nf
v; ðD4Þ

where zH refers to the position U ¼ UH. Then we further
collect the terms ofOðm2

HÞ andOðmHÞ then integral out the
part of z, it finally leads to the formulas in (3.4).
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