
 

Stable interactions in higher derivative field theories of derived type

V. A. Abakumova* and S. L. Lyakhovich†

Physics Faculty, Tomsk State University, Tomsk 634050, Russia

D. S. Kaparulin‡

Physics Faculty, Tomsk State University, Tomsk 634050, Russia
and Lebedev Institute of Physics, Leninsky Avenue 53, Moscow 119991, Russia

(Received 22 December 2018; published 28 February 2019)

We consider the general higher derivative field theories of derived type. At free level, the wave operator
of derived-type theory is a polynomial of the order n ≥ 2 of another operatorW which is of the lower order.
Every symmetry ofW gives rise to the series of independent higher order symmetries of the field equations
of derived system. In its turn, these symmetries give rise to the series of independent conserved quantities.
In particular, the translation invariance of operator W results in the series of conserved tensors of the
derived theory. The series involves n independent conserved tensors including canonical energy-
momentum. Even if the canonical energy is unbounded, the other conserved tensors in the series can
be bounded, that will make the dynamics stable. The general procedure is worked out to switch on the
interactions such that the stability persists beyond the free level. The stable interaction vertices are
inevitably non-Lagrangian. The stable theory, however, can admit consistent quantization. The general
construction is exemplified by the order N extension of Chern-Simons coupled to the Pais-Uhlenbeck-type
higher derivative complex scalar field.
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I. INTRODUCTION

The higher derivative field theories are notorious for the
stability problems at interacting level, and also in quantum
theory, see [1–4] for discussions and further references. The
most frequently discussed higher derivative field theories
are the modified models of gravity where the stability is an
issue [5–7]. Among the modified gravity theories, fðRÞ
models (for review and further references see [8,9]) provide
the best known example of stable nonlinear higher deriva-
tive field theory. Some other models with similar properties
can be found in the Refs. [10–12]. The stability of this
exceptional class of higher derivative theories is related to
the fact that the canonical energy is bounded because of
strong second class constraints. For discussion of stability
in various nonlinear higher derivative mechanical models
we refer to [13–17] and references therein.
In this paper, we consider a certain class of higher

derivative models which we call derived theories. At free

level, the field equations of the derived theory are defined
by the higher derivative wave operator M being a poly-
nomial of another differential operator W. The latter is
supposed to be of the first or second order. As we
demonstrate, this class of systems admits, under certain
conditions, inclusion of stable interactions, and the stability
persists at quantum level.
Many well-known higher derivative models fall into the

class of derived theories. For example, the higher derivative
scalar field of the Pais-Uhlenbeck type [1] is a derived
system, where W is the d’Alembert operator. Podolsky
electrodynamics [18] is a derived system, with the wave
operator being a second-order polynomial of Maxwell
operator. The extended Chern-Simons [19] is a derived
theory of the vector field in 3d Minkowski space, with the
wave operator being a third-order polynomial in the Chern-
Simons operator �d, where � is the Hodge star operator and
d is the de Rham differential. The Podolsky and Chern-
Simons electrodynamics have been discussed for many
years from various viewpoints, see [20–22] and references
therein. In the conformal gravities in 4 and 6 dimensions
[23,24] the linearized equations of motion for spin 2 fields
belong to the derived type. The stability is studied in these
works for the small fluctuations in the vicinity of constant
curvature backgrounds further extending earlier observa-
tion of the work [25]. With a special choice of boundary
conditions, it is observed that the theory might be stable.
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In the present work, we follow a different idea being
unrelated to the special boundary conditions.
The simplest derived-type field equations correspond to

the wave operator being the second-order polynomial in
another operator. This case has been studied in [26]. In this
class of models, it turns out that at free level one can
connect two different conserved quantities to the time-shift
symmetry. One of these quantities is the canonical energy,
while another one is a different independent integral of
motion. If the second quantity is bounded, the theory will
be stable at classical level, and the stability can be promoted
to quantum level [26]. In the paper [27], a more general
setup of the derived systems is studied when the wave
operator is a polynomial of arbitrary finite order n in
another operator [see relation (6) in the present work]. Once
the primary operator W admits some symmetry, it can be
connected to n conserved quantities of the derived system.
In particular, if one of the symmetries of W is the
homogeneity of time, then one gets n independent con-
served quantities, which includes the canonical energy. In
this paper, we adopt a slightly more general setup for the
derived systems aimed at relaxing restrictions on inclusion
of stable interactions. The fields are divided into several
subsets such that the wave operator in each subset is a
polynomial in a certain operator. Unlike a more simple case
studied in [27], the primary operators can be different for
different subsets of fields, and the wave operators are
defined by different polynomials for different fields. This
more general setup at free level provides more flexibility
for inclusion of stable interactions.
The stability of interactions in various particular types of

higher derivative theories of derived type has been pre-
viously studied in [26–29]. The proper deformation method
has been suggested in [30] to systematically include stable
interactions in the derived theory which is stable at free
level. The crucial ingredient of the proper deformation
method is the Lagrange anchor. The Lagrange anchor has
been first introduced in the work [31] to Becchi-Rouet-
Stora-Tyutin embed and quantize not necessarily
Lagrangian dynamics. Later, it has been found [32] that
the Lagrange anchor connects conserved quantities to
symmetries for any system of field equations, be they
Lagrangian or not. For the Lagrangian system the unit
operator serves as the Lagrange anchor that establishes one-
to-one correspondence between symmetries and conserved
currents. In principle, the Lagrange anchor is not neces-
sarily unique for given system of field equations. Once the
field equations admit multiple Lagrange anchors, the same
symmetry can be connected to different conserved quan-
tities. As is noticed in the paper [26], even the simplest
derived system, with the wave operator M being the
second-order polynomial of another differential operator
W, admits two different Lagrange anchors. This explains
the existence of one more conserved quantity connected to
time-independence besides the canonical energy. Given the

Lagrange anchor, the general method of [30] allows one to
consistently include the interactions into field equations of
motion deforming the conserved quantities connected with
the symmetries by the anchor. If the anchor connects the
symmetry with the bounded quantity, the system remains
stable upon inclusion of interaction by the proper defor-
mation scheme of [30].
In this paper, we provide a more simple scheme for

inclusion stable interactions in a wider class of derived
theories, skipping to explicitly employ the Lagrange
anchor. The basic idea is that we have two subsets of
fields such that the wave operator in each subset is a
polynomial in certain primary operator. The primary
operators are assumed to be Poincaré invariant. One of
the primary wave operators is supposed to be gauge
invariant. We also assume that the primary theories admit
appropriate covariant interaction vertex consistent with the
gauge symmetry. To construct the stable interactions
between two derived theories, we identify the series of
conserved tensors at free level such that every item is
connected to the space-time translation symmetry. Some of
the conserved tensors can have bounded 00-component,
while the other ones are unbounded. Then, we seek for the
interactions in the derived theories such that generalize
couplings between primary models and keep the appro-
priate bounded quantity conserved at interacting level. If
the theory admits bounded conserved quantity, the stability
will persist at the interacting level once it is constructed by
this method. The proposed construction can reproduce all
the previously known stable interactions in higher deriva-
tive systems of derived type [26–28] and we also add a new
example in this paper, to illustrate the method.
As the illustration of the general method described in the

paper, we construct the consistent and stable interaction
between the order N extension of Chern-Simons and order
2n Pais-Uhlenbeck-type higher derivative complex scalar
field. These models have been discussed earlier at free level
in the papers [26–29] for some specific orders n and N. In
this paper, the N þ n-parameter series of conserved sec-
ond-rank tensors is constructed for the free model being
connected to the translation invariance. Also n-parameter
series of conserved currents is identified to be connected to
a single Uð1Þ-symmetry of the scalar. There are bounded
quantities among the conserved observables that make the
theory stable at free level, while the canonical energy is
unbounded. Nonminimal gauge invariant couplings are
identified such that the higher derivative theory remains
stable at interacting level. The stable interaction vertices are
inevitably non-Lagrangian. That does not necessarily
obstruct quantization as we explain in the conclusion.
The article is organized as follows. In the next section,

we define the free derived theories and elaborate on the
series of symmetries and conserved quantities connected to
each symmetry of the primary wave operatorW. In Sec. III,
we identify the gauge invariant couplings such that provide
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conservation of any fixed representative of the series of
conserved quantities of the derived-type free system. In
Sec. IV, we consider interactions between the higher
derivative complex scalar field and higher derivative
extension of Chern-Simons. Following general pattern of
the previous section, we explicitly construct the conserved
quantities and keep track of the stability making use of the
bounded integrals of motion. In the conclusion, we discuss
the results.

II. DERIVED-TYPE THEORIES, HIGHER
SYMMETRIES, AND CONSERVATION LAWS

Consider a set of fields ϕa in d-dimensional Minkowski
space with local coordinates xμ; μ ¼ 0;…; d − 1. We sys-
tematically use the DeWitt condensed notation [33] in this
paper. The fields are labeled by the condensed indices
a; b;…. Every condensed index accommodates all the
vector, tensor, spinor, isotopic, etc. indices and the
space-time coordinates. Summation in the condensed
indices implies integration in xμ. In this notation, the linear
differential operators are represented by matrices with
condensed indices. We assume that the theory admits a
constant metric which is used to raise and lower multi-
indices. In this way, every linear operator has the quadric
form. These quadratic forms correspond to the local func-
tionals which are bilinear in the fields. We also imply that
the fields vanish at the infinity, so if the quadratic form
vanishes in the condensed notation, this means that the
corresponding local functional is the integral of total
divergence.
In the condensed notation, any system of linear field

equations reads:

Mabϕ
b ¼ 0; ð1Þ

where Mab is the integral kernel of matrix differential
operator. For the sake of simplicity, we assume that the
matrix Mab is square, so that the number of equations in
each space-time point coincides with the number of fields.
In this class of theories, Mab is usually called the wave
operator. The formal adjoint of the wave operator is
defined by

M†
ab ¼ Mba: ð2Þ

The field equations are variational whenever M† ¼ M, in
which case the action functional S½ϕ� reads

S½ϕ� ¼ 1

2
hϕ;Mϕi; ð3Þ

where the brackets h; i denote the natural pairing between
the fields,

hϕ;Mϕi≡ ϕaðMϕÞa; ðMϕÞa ≡Mabϕ
b; ð4Þ

and summation is implied over the repeated multi-indices
a when they stand at different levels. If M†� ¼ −M� for
some other operator M�, its diagonal elements are total
divergencies,

Z
ddx∂μjμðϕÞ ¼ hϕ;M�ϕi; ∀ϕ: ð5Þ

Once the expression M�ϕ vanishes on-shell (1), the latter
formula establishes the relation between conserved currents
and anti-self-adjoint operators.
We say that the variational theory (1) is of the derived-

type if the wave operator is a finite-order polynomial of
another self-adjoint operator Wa

b, i.e.,

Mðα;WÞ ¼
Xn
p¼0

αpWp;

ðWpÞab ¼ Wa
c1W

c1
c2…Wcp−1

b;

p ¼ 2;…; n; W† ¼ W; ð6Þ

where all the multi-indices are raised and lowered by the
metric, and αp, p ¼ 0;…; n, are some real constants. The
order of the polynomial is assumed to be irreducible, so
the coefficient at the highest order is nonzero, αn ≠ 0. In
accordance with the definition, each derived theory is
defined by two ingredients: the self-adjoint operator Wa

b
and finite-order polynomial,

Mðα; zÞ ¼
Xn
p¼0

αpzp; ð7Þ

with z being formal complex-valued variable. We call
Mðα; zÞ the characteristic polynomial, while Wa

b is
referred to as the primary wave operator. Being considered
in itself, the primary operator defines the primary free field
theory,

Wabϕ
b ¼ 0: ð8Þ

As Wab is self-adjoint, the primary theory is variational. In
our article, we mostly deal with the class of theories, where
the primary wave operator does not involve higher deriv-
atives. In this setting, the higher derivative derived model
(1), (6) can be considered as originating from the lower
order primary theory (8).
In this paper, we consider the linear operator Xa

b as
a symmetry1 of linear equations (1) if it is interchangeable
with the wave operator of theory in the following sense:

1The notion of symmetry can be understood in various ways.
In this section, we provide the simple non-rigorous understand-
ing, which is sufficient for the purposes of this work.
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½X;M�ab ¼ Ya
cMc

b;

½X;M�ab ¼ Xa
cMc

b −Ma
cXc

b; ð9Þ

with Ya
c being some other operator. Once this relation is

valid, the operator Xa
b defines the linear transformation of

the fields such that leaves the mass shell (1) intact,

δξðMϕÞa ¼ ξðX þ YÞabðMϕÞb ≈ 0;

δξϕ
a ¼ ξXa

bϕ
b; ð10Þ

where ξ is the transformation parameter, being some
constant. The sign ≈ means equality modulo equations (1).
Each theory admits the trivial symmetries that read

Xa
b ¼ X̃a

cMc
b; Ya

b ¼ ½X̃;M�ab; ð11Þ

where X̃a
b can be any operator. The corresponding trans-

formations of fields vanish on-shell and do not contain any
valuable information about the dynamics of model. We
systematically ignore the trivial symmetries, considering
any symmetry modulo trivial one.
The nontrivial symmetries of linear system are known to

form an associative algebra. The multiplication operation is
just a composition of operators. It is easy to verify the latter
fact: for each pair of symmetries ðX1Þab; ðX2Þab, we get

½X1X2;M�ab¼ðX1Þac½X2;M�cbþ½X1;M�acðX2Þcb
¼ððY1ÞadðX2ÞdcþðX1ÞadðY2ÞdcþðY2ÞacÞMc

b:

ð12Þ

The elements of associative algebra that commute with the
wave operator form a subalgebra. In this paper, we mostly
consider this subalgebra as it is connected to conserved
quantities.
Now, consider the derived equations (1), (6). Assume

that the primary model (8) has the symmetry Xa
b such that

commutes with the primary wave operator,

½X;W� ¼ 0: ð13Þ

Even if the primary theory admits a single symmetry, the
associative algebra of symmetries of derived theory has the
two natural generators—X and W—that commute with
each other,

½X;M� ¼ ½W;M� ¼ 0: ð14Þ

By composing the primary symmetry X with the degree of
the primary wave operator W we get the symmetry of the
derived equations (6):

½Xp;M� ¼ 0;

ðXpÞab ¼ Xa
cðWpÞcb; p ¼ 0;…; n − 1: ð15Þ

Only the terms with p ¼ 0;…; n − 1 are relevant, because
the higher powers of primary operator can be absorbed by
the wave operator (6). In this way, for p ≥ n, the symmetry
reduces on-shell to the symmetry with p < n. The gen-
erators Xp can be assembled into the n-parameter series of
derived symmetries of derived model,

Xa
bðβÞ ¼

Xn−1
p¼0

βpðXpÞab; ð16Þ

with βp, p ¼ 0;…; n − 1, being real numbers. As is seen,
all the representatives of the series originate from one and
the same symmetry X of primary model.
The symmetry (9) preserves the action functional (3) if

its operator is anti-self-adjoint and commutes with the wave
operator,

½X;M� ¼ 0; X† ¼ −X: ð17Þ

The corresponding conserved current jμðϕÞ, being quad-
ratic in the fields, is defined by the condition

Z
ddx∂μjμðϕÞ ¼ hϕ; XMϕi: ð18Þ

This formula represents the Noetherian relationship
between symmetries and conservation laws. In the class
of derived theories, a single symmetry (13) of primary
model (8) determines the series of derived symmetries (16).
The associated n-parameter series of conserved currents
reads

jμðβÞ ¼
Xn−1
p¼0

βpjpμðϕÞ;
Z

ddx∂μjpμðϕÞ ¼ hϕ; XpMϕi; ð19Þ

where the quantities jpμ; p ¼ 0;…; n − 1, come from
symmetries (15). In particular, j0μ represents the Noether
conserved current for the symmetry (13) of primary model,
while jpμ; p ¼ 1;…; n − 1, are other quantities.
The simplest possible symmetry of the free field theory is

the translation invariance. The translation generators ∂μ are
automatically anti-self-adjoint and they commute with the
primary wave operator (8),

½∂μ;W� ¼ 0: ð20Þ

Once the primary wave operator is translation invariant, the
derived theory enjoy n-parameter series (16) of derived
symmetries originating from this invariance:
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Xμa
bðβÞ ¼

Xn−1
p¼0

βpðXpÞμab;

ðXpÞμab ¼ ð∂μWpÞab: ð21Þ

Each of these symmetries preserves the action (3) of the
derived model (1), (6). The corresponding conserved
currents (19) constitute the series of second-rank energy-
momentum tensors

ΘμνðβÞ ¼
Xn−1
p¼0

βpTp
μνðϕÞ;

∂νTp
μνðϕÞ ¼ hϕ; ∂μWpMϕi: ð22Þ

This series includes the canonical energy-momentum as
T0

μνðϕÞ, while Tp
μν; p ¼ 1;…; n − 1, are different con-

served tensors associated with space-time translation
invariance of the model. In this way, the translation
invariance of the derived-type field theory results in the
series of the conserved tensors.
As the stability of higher derivative model is concerned,

the 00-component of the conserved tensor is of interest. The
00-component of tensor (22) reads

Θ00ðβÞ ¼
Xn−1
p¼0

βpTp
00ðϕÞ: ð23Þ

This expression is given by the sumof canonical energyT0
00

and the other contributions Tp
00; p ¼ 1;…; n − 1. Even if

the canonical energy is unbounded due to higher derivatives,
the quantity (23) can define bounded conserved charge. The
bounded conserved quantity, if it exists, stabilizes classical
dynamics of derived model (1), (6) at free level.
The entries of conserved current series (19) [or con-

served tensor series (22)] are independent in general, even
though it is not a theorem. This fact is supported by the
following observations: (i) the quantities jpμ are bilinear
forms in the fields ϕa and their space-time derivatives, and
(ii) the total number of derivatives involved in jpμ increases
with p. Once the symmetry X and primary operator W are
the matrix differential operators of orders nX and nW , the
conserved current jpμ involves at most

ðpþ nÞnW þ nX − 1 ð24Þ

derivatives of fields. The term with the highest number of
derivatives contributes to the conserved quantity, and it is
on-shell nontrivial at least in the case without gauge
symmetry and constraints. Applying this argument to
jn−1μ, we conclude that the highest order term cannot
come from the linear combination of other currents with the
lower number of derivatives. Thus, jn−1μ is an independent
conserved quantity. Proceeding with the same argument to

jn−2μ; jn−3μ;…; j0μ, we conclude that all these quantities
are not functions of each other. The maximal number of
independent entries in the conserved current series (19)
equals to the order n of characteristic polynomial (7). In the
higher derivative scalar field model the maximal number of
independent conserved quantities is connected with the
space-time translation invariance [26]. In gauge theories,
some generators of series (19) can be on-shell trivial. For
example, the extended Chern-Simons model of order n
admits n − 1 independent conserved tensors (22) [27]. All
the above applies to free theories. At the nonlinear level, the
procedure of inclusion of interaction is sensitive to the
choice of representative in the conserved tensor series (19)
which is conserved at the interacting level. This motivates
us to work with the full series of conserved quantities, even
if some of its generators are dependent.
The discussion above does not address the gauge

symmetries. Now we explain how the gauge symmetry
is accounted for in the field theories of derived type. The
wave operator may have a null-vector,

Ma
bRb

α ¼ 0: ð25Þ

In this case, the derived theory (1), (6) admits the gauge
transformation such that preserves the mass shell,

δεðMabϕ
bÞ ¼ 0; δεϕ

a ¼ Ra
αε

α; ð26Þ

where εα are the gauge parameters, being arbitrary func-
tions of space-time coordinates. The operator Ra

α is the
gauge symmetry generator. In the present work, we con-
sider the class of derived models whose gauge symmetries
come from null-vectors of primary model, i.e.,

Ma
bRb

α ¼ 0 ⇔ Wa
bRb

α ¼ 0: ð27Þ

This property is not automatically satisfied for general
derived theory, so this is an additional assumption. The
Podolsky’s electrodynamics and the extended Chern-
Simons are consistent with this assumption, for example.

III. CONSISTENT INTERACTIONS
OF DERIVED MODELS

In this section, we construct the class of consistent
interactions between two Poincaré invariant derived theo-
ries, with one of them being gauge. At free level, these
theories admit series of conserved energy-momentum
tensors. We construct the interaction such that provides
conservation of the deformation of certain representative of
energy-momentum tensor series. In so doing, we admit not
necessarily Lagrangian vertices.2 To solve the problem we

2For general problems of inclusion of consistent interactions
between not necessarily Lagrangian theories see [34].
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proceed from the assumption that the two primary theories
admit consistent interaction vertex. Then, we seek for the
way to lift this vertex to the level of derived theory in such a
way that does not spoil the stability of the free derived
theory.
Consider two subsets of fields ϕa;Φi on d-dimensional

Minkowski space, with the multi-indices a, i labeling the
fields. The primary operators are denoted byWab andWij,
so the primary field equations read

Wabϕ
b ¼ 0; WijΦj ¼ 0: ð28Þ

These equations are variational, with the action functional
being the sum of actions (3) of the fields ϕa and Φi. The
primary operators are assumed to be invariant under the
space-time translations,

½∂μ;W� ¼ ½∂μ;W� ¼ 0: ð29Þ

The Poincaré symmetry implies the existence of conserved
energy-momentum tensor

Θμνðϕ;ΦÞ ¼ TμνðϕÞ þ TμνðΦÞ; ð30Þ

where TμνðϕÞ and TμνðΦÞ denote the contributions of free
fields ϕ and Φ. The quantity Θμν is determined by the
formula

Z
ddx∂νΘμνðϕ;ΦÞ ¼ hϕ; ∂μWϕi þ hΦ; ∂μWΦi: ð31Þ

The theory of the field Φi is assumed to be gauge invariant.
The gauge symmetry generator Ri

α of the field is the null-
vector of the primary operator Wij,

WijRj
α ¼ 0; ð32Þ

see Eq. (25). The corresponding gauge transformation
reads

δεΦi ¼ Ri
αε

α; δεϕ
a ¼ 0; ð33Þ

where εα are gauge parameters. We do not allow gauge
freedom for the fields ϕa.
We assume that there exists a variational interaction

vertex between primary models such that (i) the gauge
transformation (33) is preserved at the interacting level and
(ii) the action functional is at most quadratic in ϕ. The most
general action such that meets these requirements has the
form

S½ϕ;Φ� ¼ 1

2
ðWab þ ΓabðβΦÞÞϕaϕb þ 1

2
WijΦiΦj; ð34Þ

where the operator of vertex ΓabðβΦÞ is a function of
quantity βΦ, and β is the coupling constant, which can be

arbitrary real number. We assume that ΓabðβΦÞ is a finite-
order polynomial in Φi, i.e.,

ΓabðβΦÞ ¼
Xkmax

k¼1

βkΓðkÞ
abðΦÞ; kmax < þ∞; ð35Þ

with Γð1Þ
ab;Γð2Þ

ab;… being linear, quadratic etc. in the
field Φ. The expression βk means the kth power of β. The
presence of such decomposition ensures that the equations
of motion of the model are finite-order polynomials in the
coupling constant β. The Lagrange equations for the action
functional (34) read

∂aS≡WabðβΦÞϕb ¼ 0;

∂iS≡WijΦj þ βJiðϕ; βΦÞ ¼ 0; ð36Þ

where

WabðβΦÞ ¼ Wab þ ΓabðβΦÞ;
Jiðϕ; βΦÞ ¼ ∂iΓabðβΦÞϕaϕb; ð37Þ

and the derivatives ∂a, ∂i are understood as variational in
ϕa;Φi. As is seen, in the model with interaction, the
operator of vertex ΓabðβΦÞ is added to free equations of
originally nongauge field ϕa, while the gauge field theory
get additional current-like contribution Jiðϕ; βΦÞ. This
structure of nonlinear theory is typical for lower spin
fields. For example, it includes the minimal coupling
between the electromagnetic field and the charged matter
fields.
The infinitesimal gauge transformation of the action

functional (34) reads

δεϕ
a ¼ βRa

bαϕ
bεα; δεΦi ¼ Ri

αε
α; ð38Þ

where Ri
α is the null-vector of primary operator Wij (32),

and Ra
bα is some field-independent structure function. We

assume that it is antisymmetric in the indices ab,

Rabα ¼ −Rbaα: ð39Þ

The invariance of action (34) with respect to the gauge
transformations (38) is equivalent to the condition

ðW þ ΓðβΦÞÞacRc
bα − Ra

cαðW þ ΓðβΦÞÞcb
þ Ri

α∂iΓa
bðβΦÞ ¼ 0: ð40Þ

As the gauge symmetries and gauge identities of
Lagrangian theories are connected by the Noether theorem,
conditions (39), (40) determine the selection rule for the
structure functions Γa

b; Ra
bα. The meaning of these con-

ditions is that the wave operator WabðβΦÞ (37) is gauge
invariant in the following sense:
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½WðβΦÞ; Rα�ab þ Ri
α∂iΓabðβΦÞ ¼ 0;

½WðβΦÞ; Rα�ab ¼ WacðβΦÞRc
bα − RacαWc

bðβΦÞ; ∀ β:

ð41Þ

The latter relation immediately ensures the gauge invari-
ance of equations of motion of the field ϕa.
The translation invariance of interacting theory (34) is

understood in the following sense:

½WðβΦÞ;∂μ�ab þ β∂μΦi∂iΓabðβΦÞ ¼ 0;

½WðβΦÞ;∂μ�ab ¼WabðβΦÞ∂μ − ∂μWabðβΦÞ; ∀β: ð42Þ

Once this condition is met, the action functional (34) is
preserved by the space-time translations. The energy-
momentum tensor of the nonlinear theory has the following
structure:

Θμνðϕ;ΦÞ ¼ Tμνðϕ;ΦÞ þ TμνðΦÞ: ð43Þ

The expression Tμνðϕ;ΦÞ is the gauge invariant extension
of the tensor TμνðϕÞ (30) of free theory, while TμνðΦÞ is the
energy-momentum of free gauge field. The defining con-
dition for the conserved tensor reads

Z
ddx∂νΘμνðϕ;ΦÞ¼hϕ;∂μWðβΦÞϕiþhΦ;∂μWΦi: ð44Þ

The right-hand side (rhs) of this expression is a total
divergence because ∂μWðβΦÞ; ∂μW are anti-self-adjoint
operators.
Let us explain the meaning of conditions (39), (40) and

its impact on the structure of interactions. Assume that the
gauge transformation of the gauge field Φi has a null-mode
ε ¼ ε̄ðxÞ such that

Ri
αε̄

α ¼ 0: ð45Þ

In this case, the action functional (34) is preserved by the
following transformation:

δε̄ϕ
a ¼ ξRa

bαε̄
α; δε̄Φi ¼ 0; ð46Þ

with the parameter ξ being a constant. In the free limit, this
transformation corresponds to certain internal symmetry of
the free model of the fields ϕa, which localizes at the
interacting level. This symmetry does not follow from the
relativistic invariance of equations (28), so we have addi-
tional prerequisite for constriction of interaction at free
level. As we deal with internal symmetry, this gives a
restriction on the multiplet of fields ϕa that are involved
into the interaction.
The currentlike term Ji (37) originates from the internal

symmetry (46). As a consequence of relations (39), (40), it
is gauge invariant and satisfies gauge identity,

δεJi ¼ 0; Ri
αJi þ Ra

bα∂aSϕb ¼ 0: ð47Þ

If the internal symmetry is the Uð1Þ-transformation, and
gauge generator Ri

α is gradient, the currentlike term
literally corresponds to the current of the Uð1Þ-charge,

Ji ¼ JμðxÞ; ð48Þ

which meets condition (47). Once currentlike term Ji is
added to the equations of motion of the gauge field, and the
primary operator W is replaced by its gauge invariant
extension WðβΦÞ, the nonlinear theory remains gauge
invariant. This means that interactions (36) imitate the
electromagneticlike couplings between gauge and matter
fields.
Let us now turn to the details of inclusion of interactions

between derived theories. The most general ansatz for two
derived theories with the primary operators W and W has
the form

Mabðα;WÞϕb ¼ 0; MijðA;WÞΦj ¼ 0: ð49Þ

The characteristic polynomials of derived models (49) are
the most general of orders n and N, respectively,

Mðα; zÞ ¼
Xn
p¼0

αpzp; MðA; zÞ ¼
XN
q¼1

Aqzq; ð50Þ

where z is a formal complex-valued variable. The real
numbers αp, p ¼ 0;…; n, and Aq, q ¼ 1;…; N, are model
parameters that distinguish different theories in the con-
sidered class.
The derived theories (49) have the same space-time and

gauge symmetries as primary models. In particular, models
(49), (50) are invariant under gauge transformation (33). As
for space-time translation, a single symmetry of primary
theory induces the nþ N-parameter series of derived
symmetries such that

Xμa
bðβÞ ¼

Xn−1
p¼0

βpð∂μWpÞab;

Xμi
jðBÞ ¼

XN−1

q¼0

Bqð∂μWqÞij; ð51Þ

where the real numbers βp, Bq are parameters. The
corresponding set of the conserved quantities is given by
the series of energy-momentum tensors

Θμνðβ; BÞ ¼
Xn−1
p¼0

βpTp
μνðϕÞ þ

XN−1

q¼0

BqTq
μνðΦÞ; ð52Þ
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where the quantities Tp
μνðϕÞ, Tq

μνðΦÞ are defined by the
conditions

Z
ddx∂νΘμνðβ; BÞ ¼

Xn−1
p¼0

βphϕ; ∂μWpMϕi

þ
XN−1

q¼0

BqhΦ; ∂μWqMΦi: ð53Þ

By construction, the canonical energy-momentum tensor of
the model is included in the series as

Θμν
canðϕ;ΦÞ ¼ T0

μνðϕÞ þ T0
μνðΦÞ: ð54Þ

Even though the canonical energy-momentum is almost
always unbounded due to higher derivatives, the other
bounded quantities can present in the series. Free higher
derivative theory can be stabilized by these quantities.
By interaction between two gauge models (49) we mean

a formal deformation of free theory with coupling param-
eter β such that the nonlinear equations of motion read

EaðβÞ≡Mabϕ
b þ

X∞
k¼1

βkΓðkÞ
aðϕ;ΦÞ ¼ 0;

EiðβÞ≡MijΦj þ
X∞
k¼1

βkΓðkÞ
iðϕ;ΦÞ ¼ 0: ð55Þ

The structure functions ΓðkÞ are assumed to have the
homogeneity degree kþ 1 in the variables ϕa;Φi, so
Γð1Þ are quadratic in the fields, Γð2Þ are cubic, and etc.
No action principle is required for interacting theory, so
nonlinear equations (55) can be non-Lagragian. We con-
sider interaction (55) consistent if the number of gauge
symmetries and gauge identities is preserved by coupling
and at least one representative of the free series of energy-
momentum tensors (52) is still conserved at the non-
linear level.
The nþ N-parameter series of interaction vertices for

free equations (49) can be presented in the following form

Ea ≡ M̄abðβ; BÞϕb ¼ 0;

Ei ≡MijΦj þ
Xn−1
p¼0

βpðJ̄pÞiðβ; BÞ ¼ 0; ð56Þ

where the notation is used:

M̄abðβ; BÞ ¼
Xn
p¼0

αpW̄pðβ; BÞ;

ðJ̄pÞiðβ; BÞ ¼
1

2
∂ihϕ; W̄pðβ; BÞM̄ðβ; BÞϕi; ð57Þ

and the line above means that the gauge fieldΦi is replaced
by more general expression:

W̄ðβ; BÞ ¼ WðβΦÞjβΦ¼Φ̄ðβ;BÞ;

Φ̄iðβ; BÞ ¼ βΦi þ
XN−1

q¼1

BqðWqΦÞi: ð58Þ

The coupling constants are real numbers β; βp; Bq;
p ¼ 0;…; n − 1; q ¼ 1;…; N − 1. Interactions (56) gen-
eralize couplings of the primary theory (36) in the follow-
ing sense: the free wave operator M of the fields ϕa is
replaced by its gauge invariant extension M̄ðβ; BÞ, and the
series of current like terms ðJ̄pÞiðβ; BÞ is added to the free
gauge equations.
The following facts ensure consistency of interaction

(56): (i) the equations of motion are preserved by the gauge
transformation (38), while transformation law for the
equations of motion reads

δϵEa ¼ βRa
bαEbεα; δεEi ¼ 0; ð59Þ

(ii) there are the gauge identities between equations of
motion,

Ri
αEi þ

Xn−1
p¼0

βpRabαðW̄pÞbcEaϕc ≡ 0; ð60Þ

(iii) the second-rank conserved tensorΘμν is defined by the
condition

Z
ddx∂νΘμνðβ; BÞ ¼

Xn−1
p¼0

βphϕ; ∂μW̄pEi

þ
XN−1

q¼0

BqhΦ; ∂μWqEi; B0 ≡ β:

ð61Þ

The proof of relations (59), (60) uses identities

ðaÞ δεðW̄pϕÞa ¼ βRa
bαðW̄pϕÞbεα;

ðbÞ Ri
αðJ̄pÞi þ RabαðW̄pÞbcEaϕc ≡ 0;

ðcÞ δεðJ̄pÞi ¼ 0; ð62Þ

which hold for p ¼ 0;…; n − 1. We deduce these relations
in the Appendix A. The conserved tensor Θμν (61) is a
deformation of a selected representative of free energy-
momentum series (53), whose parameters are defined by
coupling constants. In Appendix B, we ensure the rhs of
Eq. (61) is a total divergence and establish the structure of
conserved quantity.
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Let us comment on the origin of interactions (56). The
model (49) admits n-parameter series of gauge invariant
currentlike terms

JiðβÞ ¼
Xn−1
p¼0

βpðJpÞiðβÞ;

ðJpÞiðβÞ ¼
1

2
∂ihϕ;WpðβΦÞMðβΦÞϕi: ð63Þ

Once the primary wave operatorW is replaced by its gauge
invariant extension WðβΦÞ, the inclusion of such current-
like terms preserves gauge invariance. This means that
theory (56) with the gauge-invariant primary operator (37)
and current-like term (63) is consistent. At this ways, we
conclude that there is nþ 1-parameter series of interactions
with coupling constants β; β0;…; βn−1. To involve coupling
constants Bq into account, we perform the shift of the gauge
field βΦ ↦ Φ̄ðβ; BÞ (58). This step preserves consistency
of interactions and inserts N − 1 coupling parameters
B1;…; BN−1 into the field equations.
The nonlinear theory (56) is stable if the bounded

representative of free energy-momentum tensor series
(52) is still conserved at the interacting level. The latter
requirement can be interpreted as the selection rule for
admissible couplings. The derived theories, whose charac-
teristic polynomial (7) has nondegenerate real roots, are
usually stable at free level.3 This gives a good chance for
existence of stable interactions between such models. The
theories with multiple real or/and complex roots of the
characteristic polynomial usually have the degrees of
freedom whose dynamics is unbounded by any conserved
quantity. These degrees of freedom are the true ghosts
unless they are suppressed by constraints or gauged out.
The stability of interactions in the models having no
bounded conserved quantity at free level is a subtle issue,
which we do not consider in the present paper.
The general representative in the class of interacting

theories (56) is non-Lagrangian as the equations of motion
are not given by the variational derivatives of any func-
tional. The field equations are Lagrangian if the values of
coupling parameters meet the condition

β0 ¼ β; ð64Þ

and all other constants vanish. The action functional reads

S ¼ 1

2
ðhϕ;MðβΦÞϕi þ hΦ;MΦiÞ: ð65Þ

The corresponding conserved quantity is the canonical
energy-momentum tensor of the model. In the class of higher
derivative derived equations, the variational interaction

vertex usually suffers from the Ostrogradski instability.
In contrast to Lagrangian interactions, the non-Lagrangian
couplings can preserve bounded representative in the series
of free conserved quantities (52). These couplings define
the stable nonlinear theory.
Let us summarize the results of this section. Relations

(56)–(58) provide a general receipt of construction of series
of gauge invariant interaction vertices between two derived
theories, if the gauge invariant coupling is known for
primary models. The structure of interaction vertex resem-
bles couplings between electromagnetic field and charged
matter: the wave operator of originally non-gauge field is
replaced by its gauge invariant extension, while the current-
like term is added to equations of motion of gauge field.
If the characteristic polynomials of derived theories have
the orders n and N, there are nþ N coupling constants.
Any specific choice of coupling constants selects certain
representative in the series of free conserved energy-
momentum such that still conserves at the interacting level.
If the free theory has bounded conserved quantities, it
admits the stable interactions, though the stable couplings
are non-Lagrangian.

IV. COUPLINGS BETWEEN EXTENDED
CHERN-SIMONS AND HIGHER

DERIVATIVE SCALAR

Following the general pattern of the previous section, let
us consider the interactions between the gauge vector field
and the charged scalar. In this case, we have two subsets of
fields on 3d Minkowski space,

ϕa ¼ ðReϕÞðxÞ þ iðImϕÞðxÞ; Φi ¼ ΦμðxÞ: ð66Þ

The primary operators read

W ¼ m−2∂μ∂μ; Wμν ¼ m−1εμρν∂ρ: ð67Þ

To make contact with the general scheme of previous
section, we identify the d’Alembertian as the primary
operator for the scalar. For the vector field, the Chern-
Simons operator serves as the primary operator. The
constant m > 0 has the dimension of mass. Here we use
it to make the primary operators dimensionless. The
primary equations of motion,

m−2∂μ∂μϕ ¼ 0; m−1εμνρ∂νΦρ ¼ 0; ð68Þ

have the gauge symmetry (33), with the gauge generator for
the vector field being gradient, Ri

α ≡ ∂μ.
The primary models (68) admit obvious variational

interaction vertex,

S½ϕ;Φ� ¼ 1

2

Z
½ϕ�DμDμϕþmεμνρΦμ∂νΦρ�d3x; ð69Þ3Several known examples confirm this observation [27,29,28],

though it is not a theorem at the moment.
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where Dμ is the covariant derivative,

DμðβÞϕ ¼ ð∂μ − iβΦμÞϕ: ð70Þ

For the complex conjugate field ϕ�, the covariant derivative
is given by the complex conjugation of (70). The action
functional (69) has form (34) with the operator of vertex,

Γ≡DμDμ − ∂μ∂μ

¼ ð∂μ − iβΦμÞð∂μ − iβΦμÞ − ∂μ∂μ; ð71Þ

being the second-order polynomial in the coupling constant
β. The Lagrange equations for the action functional (69)
read

δS
δΦμ ≡mεμνρ∂νΦρ þ iβðϕ�Dμϕ − ϕDμϕ

�Þ ¼ 0;

δS
δϕ

≡ 1

2
DμDμϕ� ¼ 0: ð72Þ

These equations have form (36) with

Ji ≡ Jμðϕ; βΦÞ ¼ iðϕ�Dμϕ − ϕDμϕ
�Þ;

WðβΦÞ ¼ DμDμ: ð73Þ

As the gauge field is a vector, the current-like term holds
world index. As we can see, the quantity Jμðϕ; βΦÞ is the
charge current of complex scalar field. The infinitesimal
gauge transformation (38) of the action functional (69)
reads

δϕ ¼ iβϕ�ε; δΦμ ¼ ∂με: ð74Þ

The canonical energy-momentum tensor (43) for the action
(69) has the form

Θμν ¼ FμFν −
1

2
ημνFλFλ þDμϕ

�DνϕþDνϕ
�Dμϕ

− ημνDλϕ
�Dλϕ; Fμ ≡mεμνρ∂νΦρ: ð75Þ

It is obvious that its 00-component is bounded. So, the
theory of interacting Chern-Simons and charged scalar is
stable at the level of primary theories.
Now we consider interactions between two derived

theories, whose primary operators are given by (67). The
free equations (49) are chosen in the form

Mðα;WÞϕ≡m2
Yn−1
p¼0

ðm−2∂μ∂μ þ α2pÞϕ ¼ 0;

MμνðA;WÞΦν ≡m2

2

XN
q¼1

AqðWqÞμνΦν ¼ 0: ð76Þ

Here we assume that all the roots of characteristic poly-
nomial (7) for scalar field are different and positive. We
ignore all the other options because they do not result to the
stable theory at the free or interacting level. The extended
covariant derivative D̄μ is defined as follows:

D̄μðβ; BÞϕ ¼
�
∂μ − i

XN−1

q¼0

BqðWqÞμνΦν

�
ϕ; B0 ≡ β:

ð77Þ

The gauge invariant extension of the free wave operator
Mðα;WÞ (76) reads

M̄ðα; W̄ðβΦÞÞϕ≡m2
Yn−1
p¼0

ðm−2D̄μD̄μ þ α2pÞϕ ¼ 0: ð78Þ

The series of currentlike terms (63) can be represented in
the form

ðJpÞμ¼ iðϕ�ðpÞD̄μϕ
ðpÞ−ϕðpÞD̄μϕ

�ðpÞÞ; p¼ 0;…;n−1;

ð79Þ

where the notation is used:4

ϕðpÞ ¼
Yn−1
p0¼0
p0≠p

m−2D̄μD̄μ þ α2p0

α2p − α2p0
ϕ; p ¼ 0;…; n − 1: ð80Þ

Let us notice that ðJpÞμ are the linear combinations of
ðJpÞi in (63). We deal with objects ðJpÞμ for reasons of
convenience.
The nþ N-parameter series of interaction vertices (56)

for free equations (76) read

E≡m2
Yn−1
p¼0

ðm−2D̄μðβ;BÞD̄μðβ;BÞþα2pÞϕ¼0;

Eμ≡m2

2

XN
q¼1

AqðWqÞμνΦν

þ i
Xn−1
p¼0

βpðϕ�ðpÞD̄μðβ;BÞϕðpÞ−ϕðpÞD̄μðβ;BÞϕ�ðpÞÞ¼0;

ð81Þ

4The fields ϕðpÞ describe irreducible components of reducible
representation of the Poincaré group that is described by the
higher derivative theory of complex scalar. The vectors
ðJpÞμ; p ¼ 0;…; n − 1, are charge currents of irreducible com-
ponents, while the coupling constants βp; p ¼ 0;…; n − 1, can
be interpreted as the charges of components.
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where D̄μðβ; BÞ is the covariant derivative (77),ϕðpÞ is given
by (80), and β; βp; Bq; p ¼ 0;…; n − 1; q ¼ 1;…; N − 1,
are the coupling parameters.
Equations (81) are obviously gauge invariant with

respect to gauge symmetry (74). The gauge identity
between Eq. (81) is seen in the form

∂μEμ − i
Xn−1
p¼0

Yn−1
p0¼0
p0≠p

βp
α2p − α2p0

ðϕ�ðpÞE − ϕðpÞE�Þ ¼ 0: ð82Þ

The series of the energy-momentum tensors (52) for
nonlinear theory (81) has the structure

Θμνðϕ;ΦÞ¼
Xn−1
p¼0

βpðTpÞμνðϕ;ΦÞþ
XN−1

q¼0

BqðTqÞμνðΦÞ; ð83Þ

where the quantities ðTpÞμν; p ¼ 0;…; n − 1, and ðTqÞμν;
q ¼ 0;…; N − 1, read

ðTpÞμνðϕ;ΦÞ ¼ D̄μϕ
�ðpÞD̄νϕ

ðpÞ þ D̄νϕ
�ðpÞD̄μϕ

ðpÞ

− ημνD̄λϕ
�ðpÞD̄λϕðpÞ þm2α2pημνϕ

�ðpÞϕðpÞ;

ð84Þ

ðTqÞμνðΦÞ¼
XN−1

r;s¼1

XN
q0¼1

Cq;q0
r;s Aq0 ðΦðrÞ

μΦðsÞ
νþΦðrÞ

νΦðsÞ
μ

−ημνΦðrÞ
λΦðsÞλÞ; ΦðqÞ

μ≡ ðWqÞμνΦν: ð85Þ

The constants Cq;q0
r;s are defined as follows:

Cq;q0
r;s ¼

8>>>>>><
>>>>>>:

−1; q > q0; q > r; s;

qþ q0 ¼ rþ sþ 1;

1; q < q0; q ≤ r; s;

qþ q0 ¼ rþ sþ 1;

0; otherwise:

ð86Þ

As is seen from (83), the quantityΘμν is the deformation of
selected representative of energy-momentum tensor series
of free complex scalar and Chern-Simons,

Θfree
μν ðϕ;ΦÞ ¼

XN−1

q¼0

BqðTqÞμνðΦÞ þ
Xn−1
p¼0

βpð∂μϕ
�ðpÞ∂νϕ

ðpÞ

þ ∂νϕ
�ðpÞ∂μϕ

ðpÞ − ημν∂λϕ
�ðpÞ∂λϕðpÞ

þm2α2pημνϕ
�ðpÞϕðpÞÞ: ð87Þ

In this formula all the parameters of the conserved quantity
are fixed by the interaction, so a single representative of
free series of conserved quantities survives at the interact-
ing level.

Let us discuss the stability of the theory (81) at the
interacting level. The 00-component of (83) can be written
in the form

Θ00ðϕ;ΦÞ ¼ m2

2

XN−1

r;s¼1

Cr;sðA;BÞΦðrÞ
μΦðsÞ

μ

þ
Xn−1
p¼0

βpðD̄μϕ
�ðpÞD̄μϕ

ðpÞ þm2α2pϕ
�ðpÞϕðpÞÞ:

ð88Þ

where the matrix Cr;sðA;BÞ is defined by

Cr;sðA;BÞ ¼
XN−1

q¼0

XN
q0¼1

Cq;q0
r;s BqAq0 : ð89Þ

The expression (88) is a quadratic form in the variables
ΦðqÞ

μ;ϕðpÞ. It is bounded if Cr;sðA;BÞ; r; s ¼ 1;…; N − 1,
is a positive definite matrix, and βp > 0; p ¼ 0;…; n − 1,
are positive numbers.5

We consider the stability condition of interacting theory
as the natural selection rule for admissible couplings. In the
sector of scalar field, it restricts the coupling parameters βp.
In the sector of gauge field, the matrix Cr;sðA;BÞ can be
positive definite or indefinite depending on the values of the
free model parameters Aq and coupling constants Bq. In the
work [27] the following fact is noticed about the free
extended Chern-Simons theory: the series of conserved
quantities (85) includes the bounded representative if the
characteristic polynomial of the theory (76) has simple real
nonzero roots and a zero root of multiplicity one or two. In
all the other cases, the theory is unstable. For the viewpoint
of representation theory, the stability condition requires
from the free extended Chern-Simons theory to describe the
unitary representation of the Poincaré group. The roots of

5The quantity Cr;sðA; BÞ is the Bezout matrix of the character-
istic polynomial (7) of free extended Chern-Simons theory and
characteristic polynomial of derived symmetry (15), (16). It is
defined by the relation

XN−1

r;s¼1

Cr;sðA; BÞzrus ¼
MðA; zÞNðB; uÞ −MðA; uÞNðB; zÞ

z − u
;

where

MðA; zÞ ¼
XN
q¼1

Aqzq; NðB; zÞ ¼
XN−1

q¼0

Bqþ1zqþ1:

Accounting this definition, formula (86) takes the form

Cq;q0
r;s ¼ ∂2CðA; BÞ

∂Aq∂Bq0
:
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characteristic equation determine the masses of irreducible
representations in this case. Once the roots of the character-
istic equation of extended Chern-Simons theory are such
that any conserved quantity is unbounded in the series (85),
and therefore the stable interactions are impossible to
include, the free theory corresponds to the nonunitary
representation. It seems quite natural that the nonunitary
theory cannot be stable at interacting level.
In general, the interaction (81) is non-Lagrangian. The

Lagrangian interaction vertex corresponds to the following
values of coupling parameters:

β ¼ β0; B1 ¼…¼ BN ¼ β1 ¼…¼ βn−1 ¼ 0: ð90Þ

The conserved quantity for variational couplings is the
canonical energy-momentum tensor.As the canonical energy
ðΘcanÞ00 is unbounded, the Lagrangian interaction is unsta-
ble. The field equations (81) include stable interactions, so
the corresponding coupling is non-Lagrangian. The coupling
parameters that lead to stable interactions are determined by
conditions βp > 0; p ¼ 0;…; n − 1, and positive definite-
ness requirement for the form Cr;sðA; BÞ (89).

V. CONCLUSION AND DISCUSSION
OF RESULTS

At first, let us summarize the basic assumptions about
their consequences for the class of higher derivative field
theories we study in this paper. We consider inclusion of
stable interactions in certain class of higher derivative field
theories which we term as derived models. The derived
higher derivative theory implies that the same field admits
free field equation with the wave operatorW without higher
derivatives. We call this model a primary theory. The wave
operator of the derived theory is a nth order polynomial in
W. We call it a characteristic polynomial of the derived
theory. Every symmetry of primary theory results in the n-
parametric series of symmetries of the derived theory.
These symmetries are connected to the series of indepen-
dent conserved quantities. In particular, the translation
invariance of the primary model results in the n-parametric
series of conserved tensors. Under certain assumptions
about the roots of characteristic polynomial, the series can
include bounded conserved quantities. The canonical
energy-momentum is included into the series, though it
is always unbounded. Once the free derived theory admits
bounded conserved quantities, it is considered stable.
We consider inclusion of interactions between two

different derived field theories. One of these is supposed
to be gauge invariant, and another one is non-gauge. We
assume that the primary theories of these two models admit
consistent and stable interactions, with the gauge symmetry
remaining Abelian at interacting level. We also impose
certain technical restrictions on the interaction between
primary theories as explained in the Sec. III. In particular,
these restrictions exclude the “gauging” scenarios of

inclusion of interactions.6 In principle, these restrictions
could be relaxed without breaking the general scheme of
inclusion of stable interactions in the derived-type theories,
though this would make the consideration much more
cumbersome. Once the primary theories admit consistent
interactions, these can be lifted to the level of derived
theory. The lift is not unique, we get nþ N-parametric
series of consistent interactions, where n, N are the orders
of characteristic polynomials of the two models. At free
level, the two derived theories admitted nþ N-parametric
series of the conserved tensors. Upon inclusion of inter-
action, only one tensor conserves with any fixed set of the
interaction parameters. The canonical energy momentum is
conserved if the interaction is Lagrangian. As the canonical
energy is unbounded, the Lagrangian interaction is unsta-
ble. Once the free derived theory admits bounded con-
served quantity, its conservation can be always preserved
with appropriate consistent and Poincaré invariant inter-
action, so the stability persists at interacting level, though
with the non-Lagrangian vertex.
Also notice that even if the interaction is included in such

a way that none of the bounded conserved quantities (from
the series identified in Sec. II) of the free theory remains
conserving at interacting level, these nonconserved currents
can be still informative. So they can be still relevant for
Lagrangian interactions. If the dynamics is known of
bounded nonconserved quantity, than we learn about the
compact evolving phase-space surface where the dynamics
is confined. This might be useful for identifying the isles of
stability, and evaluating the velocity of running away
solutions. For discussion of these ideas and further refer-
ences see the recent work [37].
Even though the vertices of stable interactions are always

non-Lagrangian in this class of higher derivative theories,
they can still admit quantization. The matter is that these
non-Lagrangian field equations can admit Lagrange anchor
which allows one to quantize the non-Lagrangian field
theory. The examples are provided in the paper [26] where
the some special interactions are considered between the
derived model with the quadratic characteristic polynomial,
and the theory without higher derivatives. Another side of
the existence of the Lagrange anchor is that the theory
should admit Hamiltonian formalism even though the
higher derivative equations are non-Lagrangian. The
explicit examples of Hamiltonian formalism for third-order
non-Lagrangian derived systems can be found in papers
[28,29]. The constrained Hamiltonian formalism for n-th
order derived theory with the stable interactions con-
structed in Sec. IV is developed in the recent work [38].

6The “gauging” schemes mean that the gauge symmetry of
self-interacting gauge fields can change upon inclusion of the
non-gauge matter fields. Concerning the literature on gauging, we
can mention [35,36] and references therein.
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APPENDIX A: THE PROOF OF IDENTITIES (62)

Let us mention at first the obvious fact we make use of
below. The anticommutator f; g of self-adjoint and anti-
self-adjoint operators is anti-self-adjoint. This means, the
diagonal elements vanish of the anticommutator

hϕ; fW̄p; Rαgϕi≡ 0; p ¼ 0; 1; 2…: ðA1Þ

If the space-time translation, being the anti-self-adjoint
operator, is substituted in this relation, the diagonal element
will vanish. This means, we get the integral of a total
divergence

hϕ; fW̄p; ∂μgϕi ¼
Z

ddx∂νΣp
μνðϕ;ΦÞ; p ¼ 0; 1; 2…;

ðA2Þ

with Σμν
p being some second-rank tensor.

The relation (62.a)) is proved by induction. The state-
ment is obviously true for p ¼ 0. Assuming that (62.a))
holds for some unspecified value of p ¼ k and using (40),
we find

δεðW̄kþ1ϕÞa ¼ βεαðW̄a
cRc

bα þ Ri
α∂iΓa

bÞðW̄kϕÞb
¼ βεαRa

bαðW̄kþ1ϕÞb: ðA3Þ

As k is arbitrary positive number, the statement holds for
any nonnegative p ¼ 0; 1; 2;….
Consider relation (62.b). Using the Leibnitz rule to

compute variational derivative, we can represent the quan-
tity ðJ̄pÞi in the following form

ðJ̄pÞi ¼
1

2

Xn
k¼0

Xpþk

l¼1

αkhϕ; W̄l−1∂iΓW̄pþk−lϕi: ðA4Þ

Contracting this relation with the gauge generator Ri
α,

we get

Ri
αðJ̄pÞi ¼

1

2

Xn
k¼0

Xpþk

l¼1

αkhϕ; W̄l−1Ri
α∂iΓW̄pþk−lϕi: ðA5Þ

With the account of relations (A1) and equations of motion
(56), we see that

RabαðW̄pÞbcϕcEa ¼ hϕ; M̄ W̄ Rαϕi

¼ 1

2

Xn
k¼0

αkhϕ; ½W̄pþk; Rα�ϕi: ðA6Þ

The latter quantity can be expressed as a sum of commu-
tators,

½Rα; W̄pþk� ¼
Xpþk

l¼1

W̄l−1½Rα; W̄�W̄pþk−l: ðA7Þ

Substituting this expression into (A6) and adding the result
to (A5), we obtain

Ri
αðJ̄pÞi þ RabαðW̄pÞbcϕcEa

¼ 1

2

Xn
k¼0

Xpþk

l¼1

αkhϕ; W̄l−1ð½W̄; Rα� þ Ri∂iΓÞW̄pþk−lϕi:

ðA8Þ

Due to identity (41), this expression vanishes identically.
This proves the formula (62.b).
Now consider the issue of gauge invariance of current-

like term ðJ̄pÞi. Computing the gauge variation of the
expression (A5) and using formula (62.a), we obtain

δεðJ̄pÞi ¼
1

2
βεα

Xn
k¼0

Xpþk

l¼1

αkhϕ; W̄l−1∂ið½W̄; Rα�

þ Rj
α∂jΓÞW̄pþk−lϕi: ðA9Þ

Again, this expression vanishes identically as a result of
identity (41). This proves formula (62.c).

APPENDIX B: EXISTENCE AND STRUCTURE
OF SECOND-RANK CONSERVED

TENSOR Θμνðβ;BÞ
In this Appendix, we prove that the rhs of Eq. (61) is the

conserved tensor. Substituting the equations of motion (56)
into this relation, using the definition of currentlike term
(57), we get

Z
ddx∂νΘμνðβ; BÞ

¼
Xn
k¼0

Xn−1
p¼0

αkβp
D
ϕ;

�
∂μW̄pþk þ 1

2
Φ̄i∂i∂μW̄pþk

�
ϕ
E

þ
XN−1

q¼0

BqhΦ; ∂μMΦi: ðB1Þ
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The second term defines the series of energy-momentum
tensors of free theory of gauge field (53),

∂νTμνðΦÞ ¼
XN−1

q¼0

BqΦið∂μMΦÞi;

TμνðΦÞ ¼
XN−1

q¼0

BqT
μν
q ðΦÞ: ðB2Þ

It remains to prove that the first term is a divergence of
some tensor. Integrating by parts, we decompose the entries
of the sum into three contributions

1

2
f−hϕ;ð½W̄pþk;∂μ�þ∂μΦ̄i∂iW̄pþkÞϕiþhϕ;fW̄pþk;∂μgϕi

þ
Z

ddx∂μhϕ;Φ̄i∂iW̄pþkϕig; ðB3Þ

where the square brackets ½; � and braces f; g denote the
commutator and anticommutator of enclosed operators.
The first term vanishes identically due to (42). The second
term is the total divergence (A2), as well as the third one.
The consistency of formula (61) is proven.

The conserved tensor Θμνðβ; BÞ has the following
structure:

Θμνðβ; BÞ ¼
Xn
k¼0

Xn−1
p¼0

αkβp

�
Σpþk

μνðϕ;ΦÞ

þ 1

2
ημνhϕ; Φ̄i∂iW̄pþkϕi

�
þ
XN−1

q¼0

BqTq
μνðΦÞ;

ðB4Þ

where Tq
μνðΦÞ are the energy-momentum tensors of free

gauge field, and Σpþk
μνðϕ;ΦÞ is defined in (A2). As in the

free limit

Tp
μνðϕÞ ¼

Xn
k¼0

αkΣpþk
μν; hϕ; Φ̄i∂iW̄pþkϕi ¼ 0; ðB5Þ

the quantity Θμνðβ; BÞ is a deformation of an exclusive
representative in the series of energy-momentum
tensors (53).
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