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In general relativity, Maxwell’s equations are embedded in curved spacetime through the minimal
prescription, but this could change if strong-gravity modifications are present. We show that with a
nonminimal coupling between gravity and a massless vector field, nonperturbative effects can arise in
compact stars. We find solutions describing stars with nontrivial vector field configurations, some of which
are associated with an instability, while others are not. The vector field can be interpreted either as the
electromagnetic field or as a hidden vector field weakly coupled with the standard model.
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I. INTRODUCTION

Astronomical measurements on binary pulsar systems
[1,2], together with observations of gravitational waves
(GWs) emitted by binaries containing neutron stars (NSs),
such as GW170817 detected by the LIGO-Virgo observa-
tory [3], have improved our knowledge about compact
stars. The near future promises to bring in a wealth of data
that will allow us to understand compact objects with an
unprecedented precision. Theoretical predictions about the
NS spacetime and the equation of state of matter at such
high densities will be compared with observational data,
cementing our knowledge of extreme spacetimes.
Accurate observations concerning regions of spacetime

where gravity is “strong” will also test general relativity
(GR) and long-held beliefs about how matter behaves in
curved spacetime. One example—which will be the focus
of this work—is the coupling of vector fields to curved
spacetime. In Einstein-Maxwell theory, the massless vector
field Xμ is embedded in curved spacetime through the
standard “colon-goes-to-semicolon” rule [4], but there are
endless other possibilities. Ultimately, it is up to observa-
tions to determine the appropriate description. We will
focus on a simple and elegant extension proposed by
Hellings-Nordtvedt [5] (HN), detailed below in Eq. (1), in

which a further coupling between the curvature and the
vector field is included.
The vector field discussed in this article can be interpreted

in different ways, either as (i) the well-known electromag-
netic field or as (ii) a still unknown vector field, which is
“hidden” since it is weakly coupled with the standard model.
Within the interpretation (i), we are studying strong-

gravity modifications of the coupling between gravity and
the electromagnetic field. We remark that the effects we are
seeking only show up in the presence of a very large
spacetime curvature, such as those in the core of neutron
stars or near the horizon of black holes. Therefore, despite
the enormous accuracy of existing experimental data on the
electromagnetic field, the effects studied in this article are not
ruled out by current observations. In particular, we mainly
study the effects of the inclusion of a coupling ∼RXμXμ

(where R is the spacetime curvature) in the action [see
Eq. (1) below]. This coupling resembles a mass term (but
with a nonconstant and nonuniform “mass”). We note that
even the existence of a photon mass has not been definitely
ruled out [6,7]; a photon-curvature coupling is more elusive,
since it shows up only in strong curvature regions.
Within the interpretation (ii), one tries to enlarge the

standard model with as many fields as possible and
question which of those fields can be constrained with
experiments. In this context, the theory (1) arises natu-
rally, in the sense that (hidden, with small couplings to the
standard model) vectors are a generic prediction of string
theory [8] and are promising dark matter candidates [9].1Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

1Generalized theories with vector fields, avoiding ghosts and
other pathologies, have recently been studied in Ref. [10].
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A natural approach in this framework is to look for
smoking-gun effects of such new fields and couplings.
Note that within this interpretation, the vector field has a
double role, as a “matter” field belonging to a hidden
sector of the standard model and as a carrier, together with
the spacetime metric, of the gravitational interaction; thus,
HN gravity can be considered as an example of a “vector-
tensor” theory.
In the context of scalar-tensor theories, a nonminimal

coupling to curvature leads generically to nonperturbative
effects inside compact stars: compact stars acquire a scalar
charge. This phenomena has been dubbed “spontaneous
scalarization,” since it corresponds to an instability of
general-relativistic configurations [11] (see also [12]). The
scalar chargeopensup a newchannel for energy loss, through
dipolar scalar radiation [13]. Thus, interesting constraints
on massless scalar-tensor theories arise from pulsar timing
(see, e.g., [14]) (see also [15] and references therein).Wenote
that if the scalar is massive, the constraints become weaker,
because massive scalar fields decay exponentially ϕðrÞ≈
e−rμϕ=r, and thus the dipolar emission may be possible, but
only in the late-inspiral phase [16]; if the field is too massive
the scalar is never excited.
We find that when a vector field is nonminimally coupled

to gravity, as in HN gravity, compact star solutions with a
nontrivial, asymptotically vanishing vector field configu-
ration may arise. Our results suggest that such “vectorized”
solutions belong to two classes: One is spherically sym-
metric and “induced” by nontrivial initial conditions or
environments. We build fully nonlinear spacetimes describ-
ing such stars. The second family may arise as the end-state
of the instability ofGR solutions and are thus “spontaneously
vectorized” stars.
In HN gravity, the vector field is coupled to the gravita-

tional sector, not with the matter composing the star. This
feature is of course an approximation within the interpreta-
tion (i), in which the vector field is the electromagnetic
field, while it is consistent with the interpretation (ii) of a
hidden vector field, decoupled from the other matter fields.
This representation is analog to the so-called “Jordan frame”
of scalar-tensor theory. However, while in scalar-tensor
theories the Jordan frame representation is equivalent to an
“Einstein frame” representation, in which the scalar field is
minimally coupled to gravity and coupled to matter, there is
no reason to believe that a similar correspondence exists in
vector-tensor theories, such as HN gravity, and that the theory
studied in this article admits an Einstein frame representation.
Recently, a theory with a massive scalar field minimally
coupled to gravity and nonminimally coupled to matter (i.e.,
an Einstein frame vector-tensor theory) has been studied in
[17]. For the same reason discussed above, we think that there
is no fundamental reason to believe that a Jordan frame
representation of such theory exists. See, however, Ref. [18]
for a thorough discussion on this issue.

II. HELLINGS-NORDTVEDT GRAVITY

In the HN gravity theory [5], a single massless vector
field is nonminimally coupled to the gravitational field. The
action for the HN theory is (henceforth we use geometric
units G ¼ c ¼ 1)

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π
ðR − FμνFμν − ΩXμXμR

− ηXμXνRμνÞ þ SM; ð1Þ

where Xμ is a massless vector field, Fμν ¼ Xν;μ − Xμ;ν, Rμν

and R are the Ricci tensor and scalar, respectively, Ω
and η2 are dimensionless coupling constants, and SM is
the matter fields action. The action (1) yields the field
equations [13]

Rμν −
1

2
gμνR −ΩΘðΩÞ

μν − ηΘðηÞ
μν þ ΘðFÞ

μν ¼ 8πGTμν; ð2Þ

Fμν
;ν þ 1

2
ΩXμRþ 1

2
ηXνRμ

ν ¼ 0; ð3Þ

where

ΘðΩÞ
μν ¼ XμXνRþ XαXαRμν −

1

2
gμνXαXαR

− ðXαXαÞ;μν þ gμν□ðXαXαÞ; ð4Þ

ΘðηÞ
μν ¼ 2XαXðμRνÞα −

1

2
gμνXαXβRαβ

− ðXαXðμÞ;νÞα þ
1

2
□ðXμXνÞ þ

1

2
gμνðXαXβÞ;αβ ð5Þ

ΘðFÞ
μν ¼ −2

�
Fα

μFνα −
1

4
gμνFαβFαβ

�
; ð6Þ

and Tμν is the matter stress-energy tensor.
We consider perturbations of static, spherically symmet-

ric stars in HN gravity, composed by a perfect fluid. The
background is thus described by a spacetime metric with
the form

ds2 ¼ −Fdt2 þ 1

G
dr2 þ r2dθ2 þ r2sin2θdϕ2; ð7Þ

where FðrÞ and GðrÞ are general functions of the radial
coordinate r, and by a stress-energy tensor with the form

Tμν ¼ ðpþ ρÞuμuν þ gμνp; ð8Þ

2We choose the signs convention for the coupling constants
different from those used in Ref. [5]. Our conventions are
consistent with those used in studies of scalar-tensor theories.
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where

uμ ¼ ðF−1=2; 0; 0; 0Þ ð9Þ

is the four-velocity of the fluid, pðrÞ is its pressure, and
ρðrÞ is its energy density.
We study two different equations of state (EOS) for the

fluid composing the star. The first is a constant density
(CD) EOS (see, e.g., [19]) with radius R and mass M,
where ρ ¼ 3M=ð4πR3Þ ¼ const, and

G ¼ 1 −
8

3
πr2ρ;

p ¼

0
B@ρðG1=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
Þ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R

q
−G1=2

1
CA;

F ¼
 
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

r
−
1

2
G1=2

!
2

: ð10Þ

The second is the polytropic (Poly) EOS which has been
used in [11] to study spontaneous scalarization in scalar-
tensor theories,

ρðpÞ ¼
�

p
Kn0mb

�1
Γ
n0mb þ

p
Γ − 1

; ð11Þ

where n0 ¼ 0.1 fm−3 ¼ 1053 km−3, mb ¼ 1.66×10−24 g¼
1.23×10−57 km is the average baryon mass, Γ ¼ 2.34 and
K ¼ 0.0195 are dimensionless parameters.

III. LINEARIZED FLUCTUATIONS OF STARS

When Xμ ¼ 0, the field equations (2) and (3) reduce to
those of GR. Therefore, all vacuum or matter solutions of
GR are also solutions of the HN theory, including those
describing spherically symmetric compact stars in GR. We
shall now study the stability of these solutions, considering
a small vector field perturbation

Xμ ¼ εξμ; ð12Þ

where ε ≪ 1 is a dimensionless bookkeeping parameter.
At first order in ε, Eq. (2) reduces to Einstein’s equations,
and the vector field equation (3) can be written as

Fμν
;ν − 4πGΩXμT þ 4πGηXν

�
Tμ
ν −

1

2
δμνT

�
¼ 0: ð13Þ

The vector perturbation ξμ can be expanded in vector
spherical harmonics,

ξμ ¼
X
l

0
BBB@
2
6664

0

0

alðrÞðsinθÞ−1∂ϕYl

−alðrÞsinθ∂θYl

3
7775 þ

2
6664

flðrÞYl

hlðrÞYl

klðrÞ∂θYl

klðrÞ∂ϕYl

3
7775
1
CCCAe−iωt;

ð14Þ

where Ylmðθ;ϕÞ are scalar spherical harmonics, and, since
the perturbation equations do not depend on the azimuthal
index m, we leave that index implicit. The perturbations
alðrÞ (with l ≥ 1) have axial parity, i.e., they transform as
ð−1Þlþ1 for a parity transformation θ → π − θ, ϕ →
ϕþ 2π, while the perturbations flðrÞ and hlðrÞ with
l ≥ 0, and klðrÞ with l ≥ 1, have polar parity, since they
transform as ð−1Þl for a parity transformation. These two
classes of perturbations can be studied separately, because
they are decoupled in the perturbations equations.
We note thatwhenTμν ¼ 0, Eq. (13) reduces toMaxwell’s

equations, while the equations for the gravitational field (2)
coincide with Einstein’s equations plus terms quadratic in
the vector field. Therefore, at first order in the perturbations
HN gravity coincides with Einstein-Maxwell theory for
black hole (BH) spacetimes. Thus, since BHs are stable in
Einstein-Maxwell theory, they are also stable against linear
perturbations in HN gravity.

A. Instabilities and spontaneous vectorization
in the axial sector

The harmonic decomposition of the linearized vector
field [Eq. (13)] yields a system of ordinary differential
equations for the perturbation functions. For the axial part,
we get (for l ≥ 1)

FGa00l þ
1

2
ðGF0 þ FG0Þa0l þ

�
ω2 − F

�
lðlþ 1Þ

r2

��
al

− 2πF½ηðρ − pÞ þ 2Ωðρ − 3pÞ�al ¼ 0; ð15Þ

where a prime denotes a derivative with respect to the
coordinate r. The term

ηðρ − pÞ þ 2Ωðρ − 3pÞ ð16Þ

in Eq. (15) behaves as an effective mass (squared) for the
vector field. When it is negative, one expects GR configu-
rations to be unstable against radial perturbations. For
instance, in theories with η ¼ 0, this is the case when the
coupling constant Ω is negative and ρ > 3p, or when Ω is
positive and ρ < 3p. A similar approach has been used for
a qualitative study of the stability properties of scalar-tensor
theories in [12,20].
We have solved numerically Eq. (15), for CD and Poly

stars, as an eigenvalue problem for the frequencies ω. In
both cases, we have used direct integration to search for
instabilities [21,22], looking for unstable solutions with
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purely imaginary frequency ωI > 0 and imposing regular-
ity at the center of the star and at infinity. Further details on
the integration method are given in Appendix B.
We found that unstable modes are present for some

configurations, the properties of which are summarized in
Figs. 1 and 2. Figure 1 shows the radial profile of dipolar
(l ¼ 1) unstable modes for a CD star with compactness
M=R ¼ 0.2 and couplings constants ðΩ; ηÞ ¼ ð−20; 0Þ and
for a CD star with compactness M=R ¼ 0.4 and coupling
constants ðΩ; ηÞ ¼ ð0;−20Þ.
When Ω; η > 0, we find unstable solutions as well. For

each choice of η and Ω we find a sequence of characteristic
frequencies corresponding to unstable solutions with nodes.

In Fig. 2 we show the stability diagram for different values
of the coupling constant Ω, assuming η ¼ 0, obtained by
considering dipolar axial perturbations of stellar configura-
tions with different values of the compactnessM=R. The left
panel refers to CD stars, while the right panel refers to Poly
stars. The shaded region corresponds to configurations
which are unstable under axial perturbations. Strictly speak-
ing, these regions correspond to instability to dipolar (l ¼ 1)
perturbations, but we find strong evidence that the configu-
rations unstable to l > 1 axial perturbations are also unstable
to dipolar ones. The dotted horizontal line represents the
Buchdal limit MR < 4

9
, which we verified to be satisfied in HN

theory, while the dot-dashed curve corresponds to the
Newtonian configurations for CD stars (see discussion
below). Note that, as discussed above, for negative couplings
Ω, η, even Newtonian stars can become unstable. We find
that unstable configurations also exists in the case of η ≠ 0.
The separation between the stable and unstable regions,

i.e., the boundaries of the shaded regions in Fig. 2, corre-
spond to zero-mode solutions, i.e., static regular solutions
with nonvanishing vector field. In order to improve our
understanding of this boundary, we shall now consider zero-
mode solutions in the Newtonian limit (i.e., MR ≪ 1) for a CD
star. In this limit Eq. (15) reduces to

a00l −
�
lðlþ 1Þ

r2
þ μ2

�
al ¼ 0; ð17Þ

where μ2 ¼ 2πρð2Ωþ ηÞ is the effective mass of the vector
inside the star. Imposing regularity at the origin, the general
solution of Eq. (17) inside the star is (modulo an arbitrary
multiplicative constant) al ¼

ffiffiffi
r

p
Jlþ1=2ð−iμrÞ, with Jν

Bessel function. Outside the star ρ ¼ 0 and imposing
regularity at infinity Eq. (17) gives al ∝ r−l. Matching the

0 20 40 60 80 100
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2
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FIG. 1. Unstable dipolar vector perturbation profile for a CD
star. The solid blue line (η ¼ 0, Ω ¼ −20) corresponds to an
instability rate Mω ¼ 0.094i for a CD star compactness
M=R ¼ 0.2. The dashed red line (Ω ¼ 0, η ¼ −20) corresponds
to a rate Mω ¼ 0.071i for a CD star compactness M=R ¼ 0.4.

FIG. 2. The shaded region represents CD (left) and Poly (right) star configurations with different values of Ω and M=R, which are
unstable under axial perturbations in HN gravity with η ¼ 0. The green dot-dashed curve is the Newtonian solution for a CD star,
Eq. (18). The dashed red line corresponds to the Buchdal limit on the compactness of a CD star (M=R < 4=9 ≈ 0.444).
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interior and the exterior solution at the radius of the star
r ¼ R we find that a regular solution exists only for
Il−1=2ð−iμRÞ ¼ 0, where Iν is the modified Bessel function,
i.e., for μR ¼ iπ, which corresponds to

−3Mðηþ 2ΩÞ ¼ 2π2R: ð18Þ

When η ¼ 0, this equation admits a nontrivial solution for
negative values of Ω. Thus, for η ¼ 0, Ω < 0 we expect the
presence of unstable solutions.
The Newtonian prediction (18) is shown in Fig. 2 (green

dot-dashed curve). We note that this line is close to the
boundary of the unstable region, and it is closer for smaller
values of the compactness, as expected. At fixed negative
coupling constant Ω, as the compactness increases to large
values, the quantity ρ − 3P decreases. For Poly stars, at
M=R ∼ 0.27 it becomes negative. The effective squared
mass of the vector (16) is then positive, and the star is stable.
Thus, all the main features of Fig. 2 can be understood in
simple terms. For the same reasons, unstable solutions lying
on the right side of the plot (positive coupling constants)
exist for very large values of the compactness, when the
effective mass squared is again negative.
It is worth noting that our results resemble those of

scalar-tensor theories (compare our Fig. 2 with Fig. 1 of
Ref. [12]). The root of the mechanism is the same: a
tachyonic instability that is either triggered by a “wrong”
sign of the coupling constants or by the wrong sign of the
trace of the stress-energy tensor. Despite these similarities,
we are here discussing the dipolar axial sector excitations of
the vector field, which have a very different behavior from
those of the scalar field. The end state of this instability is
unknown to us.
Including backreaction on Einstein’s equations, the axial

perturbations give a contribution to the ðθ; θÞ component of
Einstein’s equations, which can be considered as an effective
stress-energy tensor. This suggests that the star will be made
to rotate as a result of such instability. Another outcome is
possible: that the star exits the instability window through
mass shedding. The fate of stars on the unstable branch
remains an open issue.

B. Spontaneous and induced vectorization
in the polar sector

Since we are interested in static and spherically sym-
metric solutions of the full nonlinear field equations in HN
gravity, we shall now study linear vector field perturbations
with polar parity in this theory.

1. Dynamical case

To begin with, let us consider monopolar (l ¼ 0) pertur-
bations. In the exterior of the star, we find that the l ¼ 0
polar perturbation equations reduce to those of GR, i.e.,

ðiωh0 þ f00ÞðrFG0 þ 4FG − rGF0Þ
þ 2rGFðiωh0 þ f00Þ0 ¼ 0;

ωðiωh0 þ f00Þ ¼ 0: ð19Þ

Since the radial electric fieldEr is proportional to iωh0 þ f00,
when ω ≠ 0 the second of Eq. (19) implies that Er ¼ 0,
and thus the wave is pure gauge: there are no spherically
symmetric electromagnetic waves with radial electric fields
in the exterior of the star, in HN gravity as in GR. Then, since
the solution inside the star has to match the exterior solution,
Er is pure gauge in the entire spacetime. In other words,
there is no dynamical linear instability for spherically
symmetric modes.
Let us now consider the polar perturbations with the

l ≥ 1 case. By replacing the expansion (14) in the r
component of Eq. (13) we find

hl¼
−lðlþ1ÞFk0lþ ir2ωf0l

Fð2πr2ðð6ΩþηÞp− ðηþ2ΩÞρÞ− lðlþ1ÞÞþ r2ω2
:

ð20Þ

Replacing Eq. (20) in the t and θ components of Eq. (13)
we obtain a system of coupled ordinary differential
equations (ODEs) in fl and kl, that is shown in
Appendix A, Eqs. (A1) and (A2).
The perturbation equations have simpler expressions in

the exterior of the star. Indeed, as ρ ¼ p ¼ 0 Eqs. (A1) and
(A2) can be cast as a single “master equation” in terms of
the quantity

ψ ¼ fl þ iωkl; ð21Þ

which is

ðl2 þ lÞψ
2Mr − r2

þ lðlþ 1Þð2M − rÞψ 00

lðlþ 1Þð2M − rÞ þ r3w2

þ 2lðlþ 1Þðlðlþ 1Þðr − 2MÞ2 −Mr3w2Þψ 0

rðlðlþ 1Þð2M − rÞ þ r3w2Þ2 ¼ 0: ð22Þ

Solving the Cauchy problem given by Eqs. (A1) and (A2),
with appropriate initial conditions (as discussed in
Appendix B) and matching at the boundary of the star
with Eq. (22), we find unstable configurations for CD stars.
In Fig. 3, for instance, we show the radial profile of an
unstable mode with l ¼ 1 for a constant density star of
compactness M=R ¼ 0.2, for Ω ¼ −20, η ¼ 0 or η ¼ 20,
Ω ¼ 0. As in the case of axial perturbations, we can
construct the instability diagram in the space (Ω, M=R).
The static zero-mode solutions in the Newtonian limit
M=R ≪ 1 yields

3Mðη − 2ΩÞ ¼ 2π2R: ð23Þ
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In Fig. 4 we show the instability region (shaded region) in
the (Ω, M=R) plan, for η ¼ 0 and negative values of the
coupling constant Ω. The horizontal dotted line represents
the Buchdal limit, and the dot-dashed curve represents the
Newtonian zero-mode solutions corresponding to Eq. (23).
An interesting feature of these results is that the con-

tribution of the coupling η to the effective mass squared has
the opposite sign from that of axial perturbations: large
negative η make Newtonian stars unstable against axial
perturbations, and large positive η turn Newtonian stars
unstable against polar perturbations.

2. Static case

We showed that spherically symmetric polar modes have
no interesting dynamics. However, there is still room for the
existence of nontrivial static (ω ¼ 0) solutions. Replacing
the expansion (14) in the field equations (13) we find

h0 ¼ 0; ð24Þ

and3

½ − f00ð2rðm0 − 2Þ þ rðr − 2mÞν0 þ 6mÞ þ 2rðr − 2mÞf000
þ 4πr2ð2Ωð3p − ρÞ þ ηð3pþ ρÞÞf0�

e−ν

2r2
¼ 0: ð25Þ

Solving Eq. (25) we find a class of linear static vector field
solutions, for both the CD and the Poly star configurations.
Equation (25) also implies an analytical relation between
the compactness and the coupling constant, in the
Newtonian regime for a CD star. Indeed, since h0 ¼ 0,
we can assume the following form for the vector field:

Xμ ¼ ðf0ðrÞ=r; 0; 0; 0Þ: ð26Þ

In the limit M=R ≪ 1, for a CD star Eq. (25) reduces to

f000 − μ2f0 ¼ 0; ð27Þ

where μ2 ¼ 2πρð2Ω − ηÞ is the effective mass of the vector
inside the star. Imposing regularity at the origin we find
f0 ¼ eμr − e−μr inside the star, and imposing regularity at
infinity we find f0 ¼ const in the exterior. By matching the
interior and exterior solutions at the radius of the star we
find

6Mðη − 2ΩÞ ¼ π2R: ð28Þ

The static solutions are summarized in Fig. 5. These
solutions might be said to be induced, rather than arising
spontaneously as the end product of an instability: they
arise as the end product of (perhaps special) initial con-
ditions. Such vectorized solutions have no parallel in
scalar-tensor theory and do not exist in the axial sector
of HN gravity itself. Note again that η contributes with the
opposite sign, relative to axial perturbations in Eq. (17).
From these solutions we can conclude that in GR, a

vector field coupled with the curvature of the spacetime can
have a nontrivial profile around compact stars. Moreover,
this result suggests that vectorized stars can appear even in
full nonlinear HN gravity.
We should mention that, generically, the vector Xμ will

tend to grow all its components. Thus, with the exception

0 20 40 60 80
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0.05
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0.15

0.20

0.25

FIG. 3. Unstable dipolar vector perturbation profile for a
constant density star with compactness M=R ¼ 0.2. The solid
blue line (η ¼ 0, Ω ¼ −20) corresponds to an instability rate
Mω ¼ 0.103i. The dashed red line (Ω ¼ 0, η ¼ 20) corresponds
to a rate Mω ¼ 0.0989i.

CD stars

Newtonian limit

20 15 10 5 0
0.0

0.1

0.2

0.3

0.4

0.5

M
R

FIG. 4. Instability diagram for CD stars, for polar perturbations
with l ¼ 1. The shaded region represents solutions which are
unstable under polar perturbations in HN gravity with η ¼ 0. The
green dot-dashed curve describes zero-frequency modes in the
Newtonian regime, Eq. (23). The dashed red line corresponds to
the Buchdal limit (M=R < 4=9 ≈ 0.444).

3It is possible to show that k0 can be canceled out by the use of
an appropriate combination of the independent components of the
modified Maxwell equation.
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of a measure-zero set of initial conditions, finding only a
nonzero time component is impossible. In other words, the
spherically symmetric state that occurs at linear (and
nonlinear, as we show below) level is not generic and
should always be accompanied by the linear instability of
the nonsymmetric modes. However, from a purely math-
ematical level the distinction between induced and sponta-
neous processes can be made and we have adopted such
nomenclature here.

IV. STATIC, VECTORIZED NEUTRON STARS
IN THE HN THEORY

A. Formalism

We shall now determine full nonlinear, stationary, and
spherically symmetric NS configurations in HN theory,
solutions of Eqs. (2) and (3). In other words, we show that
the induced vectorized solutions, found above at a linear
level, do indeed exist at full nonlinear level. Hereafter, we
assume η ¼ 0. For convenience, we rewrite the line element

of Eq. (7) defining F ¼ eνðrÞ and G ¼ 1 − 2mðrÞ
r . A spheri-

cally symmetric vector field can only have nonvanishing t
and r components. Moreover, the r component of the vector
field equation reduces to

Xr

4r3
½Ωðr − 2mÞð−2m0ðrν0 þ 4Þ þ ð4r − 6mÞν0Þ
þ 2rðr − 2mÞν00 þ rðr − 2mÞν02� ¼ 0; ð29Þ

which implies Xr ≡ 0. Therefore, all the space components
of the vector field identically vanish,

Xμ ¼ fXðrÞ; 0; 0; 0g: ð30Þ

The structure equations for the star are given by the ðt; tÞ,
ðr; rÞ components of the Einstein equations (2), the vector
field equation (3), and the conservation of the stress-energy
tensor

∇νTμν ¼ 0: ð31Þ

We note that Eq. (31) holds in HN gravity because the GR
modifications do not affect the matter section of the action
(1); therefore, as explicitly shown in Ref. [13], the four-
divergence of the stress-energy tensor vanishes in this
theory, as in GR. We thus obtain a system of four ODEs in
the variables

fmðrÞ; νðrÞ; pðrÞ; XðrÞg: ð32Þ

These modified Tolman-Oppenheimer-Volkoff (TOV)
equations are shown explicitly in Appendix C, Eq. (C1);
their expansion near the center of the star is shown in
Appendix D.
We numerically solve the modified TOV equations,

assuming the polytropic EOS introduced in Eq. (11). At
the surface of the star (where the pressure vanishes) we
evaluate the components of the spacetime metric, of the
vector field, and of its first derivative. Then, we numerically
integrate the equations in the exterior, which correspond to
the modified TOV equations with ρ ¼ p ¼ 0, from the
stellar surface to infinity. With this procedure, we have a
unique solution of the modified TOV equations for any
choice of the quantities

fpc; Xc;Ωg; ð33Þ

i.e., for any choice of the pressure and of the (time
component of the) vector field at the center of the star,
and for any value of the coupling constant Ω. At infinity,
the vector field has the form

X0ðr ≫ RÞ ¼ X∞ þ α

r
; ð34Þ

where α is a constant which can be considered as a sort of
vector charge (although it is not a Noether charge, as in the
case of the scalar charge in scalar-tensor theories [23]), and
X∞ is the asymptotic value of (the time component of) the
vector field.
We search for solutions of the modified TOV equations

with a nontrivial vector field configuration and with the
same asymptotic behavior as GR solutions, i.e., X∞ ¼ 0.
Is it worth noting that the mass function does not remain
constant in the exterior of the star, due to the energy
contribution of the nontrivial vector field. The gravitational
mass that a far away observer can measure, i.e., the
Arnowitt-Deser-Misner mass of the spacetime, is the
asymptotic value of MðrÞ. This is the definition of gravi-
tational mass that we are going to use in the rest of the paper.

Poly stars

CD stars

Newtonian limit

20 15 10 5 0
0.0

0.1

0.2

0.3

0.4

0.5
M

R

FIG. 5. Linear static vector field solutions for a NS background
(solid black line) and for a CD star (dot-dashed red line) for
η ¼ 0. The dashed green line corresponds to the Newtonian
analytic solution for the polar sector in the CD star background.
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The baryonic mass of the NS is defined as [24]

m̄ ¼ mb

Z
d3x

ffiffiffiffiffiffi
−g

p
u0nðrÞ; ð35Þ

where u0 is the time component of the four-velocity and
nðrÞ is the number density of baryons, which is related to
the pressure by

pðrÞ ¼ Kn0mb

�
nðrÞ
n0

�
Γ
: ð36Þ

For each vectorized solution, we can evaluate the normal-
ized binding energy of the stars defined as

Eb

M
¼ m̄

M
− 1: ð37Þ

In order to have a bound object, we need Eb to be positive.
Moreover, the dependence of the gravitational mass on the
central density often conveys information on the stability of
the configuration. Indeed, in GR a necessary condition for
radial stability of a stellar configuration is dM=dρc < 0, or
equivalently dM=dR > 0 [19,25]. The condition for sta-
bility in generalized theories depends on the number of
extra fields and becomes more complicated [26].

B. Vectorized stars

In Fig. 6 we show the results of the numerical integration
of the modified TOV equations in the case of Ω ¼ −5. In
the figure the asymptotic value of the vector field X∞ is
shown as a function of the vector field at the center Xc.
Each curve corresponds to a different value of the central
pressure pc. The “physical” solutions, i.e., those with the
same asymptotic behavior as the GR solutions, correspond

to the intersections of the curves with the X∞ ¼ 0 axis. We
see that all curves intersect the X∞ ¼ 0 axis at the origin
(corresponding to the GR solution), but some of them also
have a second intersection, which corresponds to the
vectorized solutions.
We computed the vectorized solutions for a wide range of

values of the central pressure and of the coupling constantΩ.
Themasses and the radii of these configurations are shown in
Fig. 7; the corresponding values of the vector charge α [see
Eq. (34)] is shown in Fig. 8 as a function of the compactness.

0.00 0.02 0.04 0.06 0.08

0.05

0.00

0.05

FIG. 6. Time component of the vector field at infinity, as a
function of its value at the center of the star, for Ω ¼ −5 and for
different values of the central pressure. From top to bottom,
pc ¼ 10−8, 10−7, 10−6, 10−5, 10−4, 10−3 Km−2.

GR

6 8 10 12 14 160.0

0.5

1.0

1.5

2.0

2.5

FIG. 7. Mass-radius configurations for different coupling con-
stants. The longest line (black) represents the solution for NSs in
GR given the EOS in Eq. (11), while the other branches
correspond to vectorized solutions.
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1.0

1.2

M R

FIG. 8. Vector field charge as a function of the compactness, for
different stellar configurations. All the stars carrying a zero
charge (α ¼ 0) are always a solution of the theory, although they
are not explicitly shown in the figure. In fact, in the range in
which there are stars with a nonzero charge, the solutions are
always two, as it was clear from Fig. 6.
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We can see that comparing different compact star configu-
rations (for a given value of the coupling Ω), as the
compactness decreases there is a smooth transition between
GR stars and vectorized solutions. Then, below a threshold
value of the compactness, the vectorized solution does not
exist anymore. As discussed in Appendix D, this behavior is
due to the fact that, when the compactness reaches the
threshold value, the modified TOV equations are not well
behaved near the center of the star, since they become
degenerate. Below the threshold value, the weak energy
condition is violated, leading to an unphysical object. For
positive values of Ω, our linearized results (see Sec. III)
suggest that there is more than one solution corresponding to
every value of the central pressure, with different numbers of
nodes in the profile of X0ðrÞ.
We did not perform a dynamical stability analysis of

such vectorized solutions. However, important information
is conveyed by the dependence of the total (normalized)
gravitational mass on the central energy density [ρc ¼
mbnð0Þ]. This function is shown in Fig. 9. In GR, a
criterium for stability is that dM=dρc < 0. Such criterium
holds only approximately in modified theories [26,27].
We will use this as merely indicative, as more sophisticated
analysis tools include a dynamical evolution or the analysis
done in Ref. [26]. With such criterium, all the vectorized
solutions associated with a negative coupling constant are
stable: they are in the stable branch of the dM=dρc curve.
Moreover, in the inset of Fig. 9 we can see how the
solutions in vector-tensor theory are associated with larger
binding energy than in GR, indicating that they are the

preferred configuration. For positive couplings, however,
the behavior is the opposite.
Finally, we note that the instability of solutions in the

positive Ω semiplane is consistent with previous results in
scalar-tensor gravity [28]. Thus, none of the solutions
associated with a positive coupling constant are stable
and most likely do not play any astrophysical role.
Somewhat surprisingly, our results show that the changes

in the NS structure with respect to the GR are smaller for
larger values of the coupling constants. This finding is
consistent with previous reported results in a related theory
[17]. In fact, it is apparent from Fig. 8 that the charge (and
so the field) inside vectorized stars is larger for smaller
(absolute) values of the compactness. This is probably due
to the role of the coupling constant Ω in the modified TOV
system. In fact, it resembles the role of a mass for the scalar
field in scalar-tensor gravity: the larger the scalar mass, the
smaller are the modifications from GR. Taking into account
this, from the mass-radius plot one can quantify the range
of values of Ω that allow vectorized stars to exist,

Ω ≈ ½−12;−2�: ð38Þ
Finally, let us stress that there is no linear instability of

spherically symmetric stars in GR. Thus, there is no linear
mechanism to drive a GR star to these new vectorized states
that we just described. Such vectorized spherical stars must
therefore arise out of nonlinear effects (such as selected
initial conditions).

V. DISCUSSION

We have shown that very simple extensions of the
Einstein-Maxwell theory allow for nontrivial phenomena
to exist. Once curvature couplings are allowed, general
relativistic stars are allowed but generically unstable. We
are unable at this point to follow the evolution of such
instability or even to understand its end state, since it drives
a nonspherically symmetric mode. The end state could be a
star with a nontrivial vector field, but it could also simply be
a GR solution away from the instability region.
We find interesting novel spherically symmetric star

configurations in this theory. They do not seem to arise
out of any “spontaneous-vectorization” mechanism but are
rather induced by initial conditions. These stars carry a
nonzero electric charge and give rise to dipolar electromag-
netic radiation when accelerated. The calculation of such
fluxes and its use in astrophysical observations to constrain
the coupling constants is an interesting open problem.
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APPENDIX A: EQUATIONS FOR POLAR
PERTURBATIONS

The perturbation equations with polar parity are

Gf00l ð1 − r2ω2

Fð2πr2ðð6ΩþηÞp−ðηþ2ΩÞϵÞ−lðlþ1ÞÞþr2ω2Þ
F

þ ilðlþ 1ÞωGk00l
Fðlðlþ 1Þ þ 2πr2ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞÞ − r2ω2

−
flðlðlþ 1Þ þ 2πr2ð3ð−η − 2ΩÞpþ ð−ηþ 2ΩÞϵÞÞ

r2F
−
ilðlþ 1Þωkl

r2F

þ ilðlþ 1Þωk0l
2rFðFð2πr2ðð6Ωþ ηÞpþ ð−η − 2ΩÞϵÞ − lðlþ 1ÞÞ þ r2ω2Þ2 ðrFð−GF

0ðlðlþ 1Þ

þ 2πr2ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞÞ − r2ω2G0Þ þ r3ð−ω2ÞGF0 þ F2ðrG0ðlðlþ 1Þ þ 2πr2ðð−η − 6ΩÞp
− ð−η − 2ΩÞϵÞÞ þ 4Gðlðlþ 1Þ þ πr3ðð6Ωþ ηÞp0 þ ð−η − 2ΩÞϵ0ÞÞÞÞ

−
f0l

2rFðFð2πr2ðð6Ωþ ηÞpþ ð−η − 2ΩÞϵÞ − lðlþ 1ÞÞ þ r2ω2Þ2 ðrFðGðl
2ðlþ 1Þ2F0

þ 4πr2ðð−η − 6ΩÞpðF0ðlðlþ 1Þ − 2πr2ð−η − 2ΩÞϵÞ þ 2rω2Þ − ð−η − 2ΩÞϵðlðlþ 1ÞF0 þ 2rω2Þ
þ πr2ð−η − 6ΩÞ2p2F0 þ πr2ð−η − 2ΩÞ2ϵ2F0 þ r2ω2ðð−η − 6ΩÞp0 − ð−η − 2ΩÞϵ0ÞÞÞ þ r2ω2G0ðlðlþ 1Þ
þ 2πr2ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞÞÞ þ r3ω2GF0ðlðlþ 1Þ
þ 2πr2ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞÞ − F2ðrG0 þ 4GÞðlðlþ 1Þ þ 2πr2ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞÞ2Þ ¼ 0; ðA1Þ

þ iωGf00l
Fð2πr2ðð6Ωþ ηÞp − ðηþ 2ΩÞϵÞ − lðlþ 1ÞÞ þ r2ω2

þ iωfl
r2F

−
Gk00l ð2πFðð6Ωþ ηÞpþ ð−η − 2ΩÞϵÞ þ ω2Þ

Fð2πr2ðð6Ωþ ηÞpþ ð−η − 2ΩÞϵÞ − lðlþ 1ÞÞ þ r2ω2
þ klð2πFðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞ − ω2Þ

r2F

þ iωf0l
2rFðFð2πr2ðð6Ωþ ηÞpþ ð−η − 2ΩÞϵÞ − lðlþ 1ÞÞ þ r2ω2Þ2 ðrFðGF

0ðlðlþ 1Þ

þ 2πr2ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞÞ þ r2ω2G0Þ þ r3ω2GF0 þ F2ð4Gðπr3ðð−η − 6ΩÞp0

− ð−η − 2ΩÞϵ0Þ − lðlþ 1ÞÞ − rG0ðlðlþ 1Þ þ 2πr2ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞÞÞÞ

−
k0l

2rFðFð2πr2ðð6Ωþ ηÞpþ ð−η − 2ΩÞϵÞ − lðlþ 1ÞÞ þ r2ω2Þ2 ðrω
2FðGF0ðlðlþ 1Þ

þ 4πr2ðð6Ωþ ηÞpþ ð−η − 2ΩÞϵÞÞ þ r2ω2G0Þ − F2ð−2πrGF0ðð−η − 6ΩÞp
− ð−η − 2ΩÞϵÞðlðlþ 1Þ þ 2πr2ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞÞ þ rω2G0ðlðlþ 1Þ þ 4πr2ðð−η − 6ΩÞp
− ð−η − 2ΩÞϵÞÞ þ 4lðlþ 1Þω2GÞ þ r3ω4GF0 þ 2πF3ðrG0ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞðlðlþ 1Þ
þ 2πr2ðð−η − 6ΩÞp − ð−η − 2ΩÞϵÞÞ þ 2lðlþ 1ÞGðrð−η − 6ΩÞp0 þ 2ð−η − 6ΩÞp
− rð−η − 2ΩÞϵ0 − 2ð−η − 2ΩÞϵÞÞÞ ¼ 0: ðA2Þ
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APPENDIX B: NUMERICAL INTEGRATION OF
THE PERTURBATION EQUATIONS

We here discuss the numerical integration of perturbation
equations of static, spherically symmetric stars in HN
gravity. In order to enforce a regular behavior near the
center of the star, we perform an asymptotic expansion of
the axial perturbation equation (15), by expanding the
perturbation function as

al ¼
XN
i¼0

ailr
i: ðB1Þ

We truncate the expansion at N ¼ 4 because we found that
further coefficient does not affect significantly the results.
Thus, we find the values of the coefficients ai>0

l in terms of
a0l (which can be set to an arbitrary value). In terms of these
coefficients we can compute alðr0Þ and al;rðr0Þ at r0 ≪ R.
We then numerically integrate Eq. (15) from r0 to the
surface of the star r ¼ R and, imposing regularity of the
perturbations, from the surface to r ≫ R.
Unstable modes have frequency ω ¼ ωR þ iωI, with

ωI > 0. Since we look for the onset of the instability,

we look for solutions with purely imaginary frequency,
i.e., ωR ¼ 0, by matching the solution far away from the
star with

alðrÞ ≈ eωIrc1 þ e−ωIrc2; ðB2Þ

where c1 and c2 are two constants of integration. Finally,
since we require an asymptotically flat spacetime, we impose
c1 ¼ 0. We thus find a perturbation which grows in time and
regular at spatial infinity, behaving asymptotically as

alðt; rÞ ¼ c2e−ωIreωIt: ðB3Þ

In order to solve the perturbation equations with polar parity
(A1) and (A2), we follow the same approach. The only
difference is that, for each value of the harmonic index l, we
have two perturbation functions flðrÞ and klðrÞ.

APPENDIX C: MODIFIED TOV EQUATIONS

In the following, we show the full nonlinear system
of equations that describes static, nonrotating stars in HN
gravity:

e−ν

2r2
½−4e2νð4πr2ρ −m0Þ − 4r2X02 þ −eνΩX2ð4m0ðrν0 þ 1Þ þ 4ð3m − 2rÞν0 þ rðr − 2mÞðν02 − 4ν00ÞÞ
− eνð4ΩXðrðr − 2mÞX00 − X0ðrm0 þ 2rðr − 2mÞν0 þ 3m − 2rÞÞ þ 2rð2Ω − 1Þðr − 2mÞX02Þ� ¼ 0;

e−ν

2r2ðr − 2mÞ ½2mð−2r2ð4eν − 1ÞX02 − 2eνðrν0 þ 1Þ − 2rΩXðrν0 þ 4ÞX0 þΩX2ðrν0ðrν0 þ 2Þ − 2ÞÞ

þ 16rm2eνX02 þ r2ð−16πrpeν þ 2ΩXðrν0 þ 4ÞX0 þ 2eνðν0 þ 2rX02Þ − 2rX02 −ΩX2ν0ðrν0 þ 2ÞÞ� ¼ 0;

e−ν

4r2
½−2X0ð2rðm0 − 2Þ þ rðr − 2mÞν0 þ 6mÞ
þ ΩXð−2m0ðrν0 þ 4Þ þ 2ð2r − 3mÞν0 þ rðr − 2mÞð2ν00 þ ν02ÞÞ þ 4rðr − 2mÞX00� ¼ 0;

ðr − 2mÞð2p0 þ ðpþ ρÞν0Þ
2r

¼ 0: ðC1Þ

This system is invariant if under the transformation

fνðrÞ → ν0 þ ν̃ðrÞ; X → e
ν0
2 X̃g; ðC2Þ

where ν0 is an arbitrary constant.

APPENDIX D: EXPANSION AT THE CENTER OF THE MODIFIED TOV EQUATIONS

The asymptotic expansion near the center of the star of the modified TOV equations (C1) is

ρ ¼ ρc þ ρ1rþ
ρ2
2
r2; pðrÞ ¼ pc þ p1rþ

p2

2
r2; νðrÞ ¼ νc þ ν1rþ

ν2
2
r2;

XðrÞ ¼ Xc þ X1rþ X2

r2

2
; mðrÞ ¼ m3r3: ðD1Þ
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Performing the transformation (C2), we solve the modified TOVequations for ν̃ ¼ ν − νc and X̃. Comparing order by order,
the nonvanishing coefficients of the expansion (D1) are

m3 ¼
4πð3pcX̃2

cΩðΩþ 2Þ þ ρcðX̃2
cΩð2Ωþ 1Þ − 1ÞÞ

9X̃2
cΩ2ðX̃2

cðΩ − 1Þ þ 1Þ − 3
;

ν̃2 ¼
8πð3pcðX̃2

cΩð2Ωþ 1Þ − 1Þ
9X̃2

cΩ2ðX̃2
cðΩ − 1Þ þ 1Þ − 3

þ 8πρcðX̃2
cΩð4Ω − 1Þ − 1ÞÞ

9X̃2
cΩ2ðX̃2

cðΩ − 1Þ þ 1Þ − 3
;

X̃0;2 ¼
4πX̃cΩð3X̃2

cΩð3pc þ ρcÞ þ 3pc − ρcÞ
9X̃2

cΩ2ðX̃2
cðΩ − 1Þ þ 1Þ − 3

;

p2 ¼ −
4πðpc þ ρcÞð3pcðX̃2

cΩð2Ωþ 1Þ − 1Þ
9X̃2

cΩ2ðX̃2
cðΩ − 1Þ þ 1Þ − 3

−
4πðpc þ ρcÞρcðX̃2

cΩð4Ω − 1Þ − 1ÞÞ
9X̃2

cΩ2ðX̃2
cðΩ − 1Þ þ 1Þ − 3

: ðD2Þ

In the limit Ω ¼ 0 these coefficients reduce to those of the TOV equations in GR. Moreover, we note that as

9X̃2
cΩ2ðX̃2

cðΩ − 1Þ þ 1Þ − 3 ¼ 0; ðD3Þ

all the coefficients defined in (D2) diverge. Thus, when Eq. (D3) admits solution r ¼ r̄ inside the star, i.e., 0 ≤ r̄ ≤ R, then
the modified TOVequations do not allow for a regular vectorized solution. Since, as the compactness of the star decreases,
the root r̄ becomes smaller, this is the reason for the existence of a threshold compactness under which the vectorized
solution disappears (see, e.g., Fig. 8).
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