
 

What is the no-boundary wave function of the Universe?
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We specify the semiclassical no-boundary wave function of the Universe without relying on a functional
integral of any kind. The wave function is given as a sum of specific saddle points of the dynamical theory
that satisfy conditions of regularity on the geometry and field and that together yield a time-neutral state
that is normalizable in an appropriate inner product. This specifies a predictive framework of semiclassical
quantum cosmology that is adequate to make probabilistic predictions, which are in agreement with
observations in simple models. The use of holography to go beyond the semiclassical approximation is
briefly discussed.
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I. INTRODUCTION

It is an inescapable inference from the physics of the last
century that we live in a quantum mechanical Universe. If
so, the Universe must have a quantum state, which we
denote byΨ. A theory of that state is a necessary part of any
“final theory” along with a theory of the dynamics, which
we denote by I. There are no predictions of any kind that do
not involve both at some level. Theories of dynamics I can
be specified by an appropriate action as in a quantum field
theory coupled to relativistic gravity. Our theory is thus
ðI;ΨÞ . This paper is concerned with the specification of the
no-boundary quantum state as a candidate for Ψ.
The no-boundary idea was introduced in Ref. [1] to

understand the quantum origin of the Universe’s classical
spacetime we observe today. The singularity theorems that
Hawking and others had developed showed that our
Universe could not have had a classical beginning with
a Lorentzian geometry. Earlier work by one of us with
Hawking [2] on the quantum radiation from black holes had
demonstrated the power of Euclidean geometry in under-
standing quantum effects in gravity. It was thus a natural
conjecture that the Universe could have a quantum begin-
ning corresponding, at least semiclassically, to a Euclidean
geometry [3].
Observations suggested the Universe was simpler

earlier than it is now—more homogeneous, more isotropic,
and more nearly in thermal equilibrium. Simplicity is a

characteristic of ground states in many familiar physical
systems. So, it was a natural idea that the state of the
Universe should be something like the cosmological analog
of a ground state. Ground states of familiar systems are the
lowest eigenstate of the system’sHamiltonian. The analog of
the Hamiltonian is zero in time-reparametrization invariant
theories like general relativity. But the wave function of the
ground state of many familiar systems can also be calculated
by a Euclidean functional integral of the form

R
exp ð−I=ℏÞ,

where I is the dynamical action. It was therefore natural to
conjecture that the no-boundary wave function (NBWF)
could be defined by a similar integral over an appropriate
contour of integration such that it converged and satisfied the
Wheeler-DeWitt (WD) equation. It was hoped that the
integral would lead to a deeper connection of the wave
function of the Universe with quantum gravity.
The semiclassical approximation to the wave function

is logically independent of any integral representation.
Properties of functional integrals thus cannot be used to
falsify the semiclassical NBWF. We know of no funda-
mental quantum mechanical reason why a cosmological
wave function has to be defined by an integral of any
particular kind. Most wave functions in ordinary quantum
mechanics are rather defined as appropriate solutions of the
Schrödinger equation. Indeed, the mathematical complex-
ities associated with integrals over quantum spacetimes
lead one to suspect there might be a simpler, more direct
approach to defining cosmological wave functions in the
semiclassical approximation. This is relevant also for the
comparison of theories of the state of the Universe with
observations, which is mostly done in the semiclassical
approximation only.
There is a simpler approach. In this paper, we define

the semiclassical NBWF directly as a collection of
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appropriately regular saddle points of the action of the
dynamical theory coupled to gravity. We also provide a
predictive framework for semiclassical quantum cosmol-
ogy that is adequate to derive probabilistic predictions for
observable features of the Universe from semiclassical
wave functions. The collections are not arbitrary. They
must satisfy some general conditions that include the
following:
(1) The wave function must satisfy the constraints of

general relativity and the matter theory.
(2) The wave function must be consistent with the

principles of the quantum framework used to make
predictions. For example, it must be normalizable in
an appropriate Hilbert space inner product.

(3) At least at the semiclassical level, the wave function
must provide predictions that are consistent with
observation.

We will find that these principles combined with the
assumptions of saddle-point uniqueness and time-reversal
invariance are sufficient to fix the definition of the semi-
classical NBWF. No integral is necessary.1

With the definition of the semiclassical NBWF secure
and based on this minimal set of principles, and assump-
tions, one can proceed to distinguish it clearly from other
models of the state and discuss possible definitions beyond
the semiclassical approximation.
The paper is structured as follows. We begin in Sec. II

with a discussion of a very simple example: the ground-
state wave functional of linearized gravity. We show this
can be represented by functional integrals in various
different ways and from saddle points of an appropriately
defined action with no integral at all. Section III introduces
the general semiclassical quantum framework for predic-
tion that we employ throughout. Section IV defines the
semiclassical NBWF. Section V describes how the NBWF
defined in Sec. IV makes predictions for our observations
of the Universe. Section VI offers brief conclusions
including a discussion of how holography could enable
going beyond the semiclassical approximation.

II. LINEARIZED GRAVITY

A. Linearizing Einstein gravity

We consider near-flat metrics onR × T3 where T3 is the
3-box with opposite sides identified. We can think of the
inside of the box as a model of the Universe. Nearly flat
Lorentzian metrics have the form

ds2 ¼ ½ηαβ þ qαβðxÞ�dxαdxβ: ð2:1Þ

Here, ηαβ is the Minkowski background metric in standard
Cartesian coordinates xα ¼ ðt; xiÞ. The quantity qαβðxÞ is a

small metric perturbation periodic on the opposite sides of
the box. The action for these perturbations is invariant
under the gauge transformations

qαβðxÞ → qαβðxÞ þ∇ðαξβÞ ð2:2Þ

for arbitrary small periodic functions ξαðxÞ. These gauge
transformations implement diffeomorphism invariance at
the linearized level.
As a consequence of the gauge symmetry (2.2), the

linearized theory has four constraints. These can be solved
and the gauge can be fixed so as to exhibit the two true
physical degrees of freedom (d.o.f.) of quantum gravity as
the two components of a transverse-traceless metric per-
turbation, viz., qTTij ðxÞ. This process is called deparame-
trizing the theory.
The (Lorentzian) action for the true d.o.f. is

l2Š ¼ 1

4

Z
d4x½ð _qTTij Þ2 − ð∇iqTTjk Þ2�; ð2:3Þ

where, in c ¼ 1 units, l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πℏG

p
is a multiple of the

Planck length, a dot denotes a time derivative, and a square
includes a sum over indices, viz., ðtijÞ2 ≡ tijtij. We define
the Euclidean action for these two d.o.f. as

l2Ǐ½qTTij � ¼
1

4

Z
d4x½ð _qTTij Þ2 þ ð∇iqTTjk Þ2�: ð2:4Þ

The action (2.3) defines a free field theory equivalent to
a collection of harmonic oscillators. This can be made
explicit by expanding of qTTij ðxÞ in discrete modes on T3

labeled by mode vectors k⃗ with frequencies ωk⃗ ¼ jk⃗j.
The quantum mechanics of this system is straightfor-

ward. Quantum states are functionals of the two true d.o.f.
hTTij ðx⃗Þ on any constant time slice of (2.1), say, the one at
t ¼ 0. viz.,

ψ ¼ ψ ½hTTij ðx⃗Þ�: ð2:5Þ

There is no Wheeler-DeWitt constraint. The constraints
have already been solved explicitly at the classical level.
The ground state of linearized gravity (GSLG) is the state in
which all the oscillators are in their ground state. Explicitly,

Ψ0½hTTij ðx⃗Þ� ∝ exp

�
−

1

4l2

X
k⃗

ωk⃗jhTTij ðk⃗Þj2
�
: ð2:6Þ

This is indeed the ground-state wave functional for linear-
ized gravity arrived at by Hamiltonian methods [5,6]. As
we shall see, the ground state for this model is analogous to
the NBWF for cosmology in many ways. We now consider
other ways in which the GSLG could be specified.

1A recent paper by S. deAlwis [4] has some overlap with our
approach.
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B. Semiclassical GSLG defined by saddle points

In the semiclassical approximation, a wave function can
be specified by the saddle points of the Euclidean action
(2.4) that match the argument of the wave function at τ ¼ 0

and are regular on R × T3 for τ ¼ ð0;−∞Þ, where τ ¼ −it
denotes the Euclidean time coordinate. There is one such
saddle point for each mode k⃗ that matches the argument
of the wave function at τ ¼ 0 and decays exponentially
(regularity) as τ → −∞. The result, weighting all the modes
equally, is just (2.6). In the linearized case, the saddle-point
approximation is exact.

C. GSLG defined by a Euclidean integral
over physical d.o.f.

This ground-state wave function can be expressed as a
functional integral over perturbations qTTij ðxÞ on the range
ð0;−∞Þ that satisfy the boundary conditions above:

Ψ0½hTTij ðx⃗Þ� ∝
Z

δqTT exp f−Ǐ½qTTij ðxÞ�g: ð2:7Þ

Since the action is quadratic, the integrals can be carried out
explicitly and equality with (2.6) verified.

D. GSLG defined by an integral over geometry
on a complex contour

In the full nonlinear theory of Einstein gravity, it is not
possible to exhibit the two true physical d.o.f. explicitly
as in the case of linearized gravity. The consequences of
this for constructing wave functions by integrals can be
illustrated in linearized gravity simply by retaining all of
the metric qαβ in the action. The Euclidean version of the
full linearized action is

4l2I2 ¼
Z

d4x½ð∇αq̄βγÞð∇αqβαÞ − 2ð∇αq̄αβÞ2�

þ ðsurface termsÞ; ð2:8Þ

where

q̄αβ ≡ qαβ −
1

2
δαβq

γ
γ: ð2:9Þ

This action exhibits the diffeomorphism invariance of the
theory explicitly but is unbounded below. To see this,
consider the particular metric perturbation qαβ ¼ −2δαβχ.
Its contribution to the action I2 is

−6
Z

d4xð∇αχÞ2: ð2:10Þ

The full action is thus unbounded below, and a functional
integral of exp ð−I=ℏÞ over real values of qαβ will diverge.
But an integral over an imaginary contour for χ will

converge. This complex contour can be chosen to imple-
ment the “conformal rotation” of Gibbons et al. [7]. Thus,
with an appropriate choice of a complex contour C, we have
the Euclidean functional integral for the ground-state wave
function of linearized gravity,

Ψ½qTTij ðx⃗Þ� ¼
Z
C
δq expf−I2½qαβðxÞ�g; ð2:11Þ

which gives the correct ground-state wave function (2.6).
(For more details, see Ref. [8].)
It is important to emphasize that such a complex contour

is not an ad hoc choice. It can be derived from the process
of reparametization using the methods described by
Faddeev and Popov [9]. Deparametrization was the process
of using the constraints and gauge conditions to eliminate
from the action d.o.f. other than the two physical ones qTTij .
Reparametrzation is the process of putting them back in the
integral defining ground-state wave function (2.6) to get a
manifestly covariant expression for it.
The reparametrization of linearized gravity was worked

out in Ref. [8]. The procedure involves inserting resolutions
of the identity consisting of convergent Gaussian integrals
over the unphysical d.o.f. into the functional integral in
(2.11). In this way, an integral representation of the ground-
state wave function can be built with a covariant action, but
with the conformal factor rotated to complex values so that
the integral manifestly converges. The necessary gauge-
fixing machinery with Faddeev-Popov determinants is
automatically included. That is how the conformal rotation
can be derived in linearized gravity. Indeed, many forms of
the action can be exhibited that lead to convergent func-
tional integrals.

E. Transition amplitudes are not wave functions

We have described some integrals to which the ground-
state wave function of linearized gravity (2.6) is connected.
In this section, we consider an integral to which it is not
connected. It is not directly connected to the transition
amplitudes expressing their evolution in time. To see this,
we work in the Schrödinger picture denoting states of a
perturbation in mode k⃗ by jhTTij ðk⃗Þ; ti. Since the modes are
effectively harmonic oscillators, the transition amplitudes
are readily constructed. For example, the transition ampli-
tude between a state of zero field at t ¼ 0 to a state of a
different field at a later time t is in c ¼ G ¼ 1 units,

hhTTij ðk⃗Þ; tj0; 0i ∝ exp

�
iωk

4l2
ðhTTij ðk⃗ÞÞ2 cotωkt

�
: ð2:12Þ

Needless to say, Eq. (2.12) is not the ground-state wave
function (2.6).
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F. What do we learn from linearized gravity?

What we learn from the above analysis is that the
ground-state wave function of linearized gravity can be
represented in several different ways. First, in the semi-
classical approximation, it corresponds to a collection of
regular saddle points, one for each mode. Second, we learn
that this collection can be represented by a functional
integral in several different ways. The functional integral in
(2.7) in the deparametrized theory can legitimately be
called a Euclidean functional integral because it is of the
form

R
expð−I=ℏÞ with I real. But the representation in the

parametrized theory in (2.11) is not pure Euclidean all
along the contour C. Neither can it be called Lorentzian, that
is, of the form

R
expðiS=ℏÞ with S real. Thus, there cannot

be a distinction of principle about the form of a functional
integral that defines the ground-state wave function—at
least in linearized theory.

III. SEMICLASSICAL QUANTUM FRAMEWORK

Before we turn to specifying the NBWF, we first specify
the general semiclassical quantum framework for predic-
tion. We consider spatially closed cosmologies only. Wave
functions2 representing quantum states are assumed to be
functionals on the configuration space of metrics hijðx⃗Þ and
matter fields on a compact spatial 3-surface Σwith 3-sphere
topology. For simplicity we generally consider only a
single matter scalar field ϕðxÞ, which we write as χðx⃗Þ
on Σ so that

Ψ ¼ Ψ½hijðx⃗Þ; χðx⃗Þ�; ð3:1Þ

where x⃗ stands for three coordinates on Σ.
In the canonical framework, wave functions like (3.1)

must satisfy an operator implementation of the constraints
of general relativity; in particular, they must satisfy the WD
equation

H0Ψ ¼ 0; ð3:2Þ

where H0 is an operator implementing the Hamiltonian
constraint. The WD equation (3.2) will not have a unique
solution. Our aim is to characterize the class of solutions
that are no-boundary wave functions.
The useful outputs for a quantum theory of the Universe

ðI;ΨÞ are the probabilities for alternative histories of the
Universe that describe its observable properties on large
scales of space and time. We therefore must specify what
that quantum framework is. For a theory that aims at
describing the early Universe when no measurements were
being made and no observers were around to make them,

this cannot be familiar Copenhagen quantum mechanics.
Rather, we employ a more general framework suitable for
closed systems like the Universe that incorporates the ideas
of Everett and decoherent histories quantum theory.3

The essential points of the quantum framework we use
can be motivated by analogy with the nonrelativistic
quantum mechanics of fields and particles in a closed
box. We can consider a set of alternative coarse-grained
histories fcαg, α ¼ 1; 2;… of how the particles and fields
evolve in the box. The individual coarse-grained histories
are represented by a set of class operators Cα defined
by path integrals over fine-grained histories of particles
and fields. Assuming the set of alternative histories fcαg
decoheres, the probability pðαÞ for an individual history cα
to occur is

pðαÞ ¼ kCαjΨik2
kjΨik2 : ð3:3Þ

The inner product for the wave functions in the non-
relativistic case is the usual L2 one leading to square
integrable wave functions. Evidently, jΨi has to be normal-
izable in that inner product.
The important point for the present discussion is that a

wave function representing a quantum state of the Universe
has to be normalizable to be part of the predictive
framework giving consistent quantum probabilities. In
the analogous construction in the gravitational case, the
class operators are for histories of the geometry and field,
and the inner product is the induced inner product on
superspace.4 Any normalizable wave function (3.1) that
satisfies the constraints is a possible candidate for the
quantum state of our Universe from which the probabilities
for various types of Lorentzian 4-geometries describing our
Universe can be derived. We now describe the semiclassical
no-boundary wave function.

IV. SEMICLASSICAL NO-BOUNDARY
WAVE FUNCTION

In the semiclassical approximation, the defining princi-
ples of Sec. III are enforced only to the first few orders in ℏ.
This is the approximation that is closest to the classical
behavior of the Universe that we observe. This is the
approximation in which quantum gravity is straightfor-
ward. This is the approximation that most directly supplies
quantum probabilities from ðI;ΨÞ for the classical histories
of the Universe that might occur. And, not surprisingly,
this is the approximation in which the connection
between the state and probabilities has been most explored
(see, e.g., Refs. [13–16]). Working in this semiclassical

2Estimating the risk of confusion as small, we use the term
“wave function” even when it is represented by a functional as
in (3.1).

3For more background and detail on this, see, e.g.,
Refs. [10–12].

4See, for example, Ref. [11] and the references therein.
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approximation, we aim at defining the no-boundary wave
function of the Universe.

A. Semiclassical wave functions of the Universe

To explore the semiclassical approximation, we begin by
writing a general wave function in the form

Ψ½hijðx⃗Þ; χðx⃗Þ�≡ expf−Î½hijðx⃗Þ; χðx⃗Þ�=ℏg; ð4:1Þ

thus defining the functional Î that is an equivalent way of
expressing Ψ. We then expand the WD equation (3.2) in
powers of ℏ. In the leading order, the result is the classical
Hamilton-Jacobi (HJ) equation for Î½hij; χ�. That equation is
solved if Î is the action Isp½hijðx⃗Þ; χðx⃗Þ� of a saddle point
(extremum) of the action defining the dynamical theory.Note
that if Isp½hijðx⃗Þ; χðx⃗Þ� is a solution to the HJ equation then so
is −Isp½hijðx⃗Þ; χðx⃗Þ� and Isp½hijðx⃗Þ; χðx⃗Þ��. We will return to
this below. The next order in ℏ supplies a consistency
condition on a prefactor to expð−Isp½hijðx⃗Þ; χðx⃗Þ�=ℏÞ.
A semiclassical wave function of the Universe is there-

fore defined by a weighted collection of saddle points to the
action I½g;ϕ� of which the geometries have at least one
spacelike boundary Σ on which the geometry and field
match the arguments of the wave function ½hijðx⃗Þ; χðx⃗Þ�,
viz.,

Ψ½hijðx⃗Þ;χðx⃗Þ� ¼
X
sp

dsp expf−Isp½hijðx⃗Þ;χðx⃗Þ�=ℏg; ð4:2Þ

where Isp½hijðx⃗Þ; χðx⃗Þ� is the action of the saddle point
labeled by sp and the dsp’s are suitable coefficients.5

This kind of prescription provides a degree of unification
of the theory of dynamics I with the theory of the quantum
state Ψ. Different dynamical theories I, such as different
theories of quantum gravity, will generally lead to different
theories of the quantum state Ψ. But even assuming one
dynamical theory I, different theories of Ψ can arise from
different choices for the collection of saddle points con-
tributing. If the collection is different, the corresponding
wave functions will be different. More importantly, differ-
ent collections will generally lead to different predictions
for observations. That is because, as we show in Sec. V,
predictions for the probabilities of alternative classical
histories of the Universe follow simply and directly from
saddle points.

B. Semiclassical no-boundary wave function

A semiclassical no-boundary wave function is defined
by a weighted collection of saddle points (extrema) of the
action I½g;ϕ� on a 4-disk that match ðhij; χÞ on its only
boundary and are otherwise regular inside. Regularity of

saddle points is what singles out the semiclassical NBWF
from other semiclassical wave functions of the Universe.
These saddle-point geometries are generally complex.
Thus, the NBWF captures Hawking’s insight that, although
the Universe could not have begun with a regular
Lorentzian geometry, it could begin with a non-
Lorentzian regular geometry. In a rough but intuitive sense,
semiclassical NBWFs are the simplest class of candidates
for the quantum state of the Universe defined by collections
of saddle points. There are many more ways for saddle
points to be irregular than to be regular. One possible
geometric representation of a no-boundary saddle point in a
model with a positive cosmological constant is shown
in Fig. 1.
Explicit calculations in minisuperspace models (see, e.g.,

Refs, [14,17–20]) suggest that for a given ½hijðx⃗Þ; χðx⃗Þ� the
actions of a no-boundary saddle point are essentially
unique up to a change of sign and complex conjugation.
Assuming this uniqueness, the construction of the semi-
classical no-boundary wave function is straightforward.
The principles of Sec. III limit which saddle points

contribute to the sum (4.2). In particular, the wave function
must be normalizable in order for it to fit in the predictive
framework sketched in Sec. III that is employed to derive
probabilities for observables. As noted above, if Isp is a
saddle point, then −Isp is also. One might be tempted to
include both saddle points in the sum (4.2). However, these
saddle points have very different physical consequences,
especially if the configuration space includes fluctuations
away from homogeneity and isotropy. If the fluctuations
are damped in one case, they will be anti-damped in the
other, risking violating the normalization principle. One
expects only the saddle points with damped fluctuations
yield normalisable wave functions [19,21], and this is borne
out by explicit calculations in minisuperspace models
(e.g., Ref. [20]).

FIG. 1. The iconic representation of a no-boundary saddle point
in the absence of matter other than a cosmological constant.
The geometry is regular and Euclidean near the south pole and
evolves across a matching surface into an expanding de Sitter
universe.5Including, if necessary, beyond leading-order determinants.
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When the saddle points with actions Isp and I�sp are
included with equal weight, the resulting wave function
will be real and time-reversal invariant in a sense appro-
priate for gravitational physics.6 The wave function can
then be said to be invariant under C, P, and T separately
[22], consistent with dynamical theories that generally
display the same symmetries.
But what if there is not a unique saddle point for given

ðhij; χÞ? Then, on the face of it, there could be many
NBWFs constructed from different collections of no-
boundary saddle points.7 However, in the presence of
multiple contributing saddle points, it is typically the case
that there is essentially only one dominant saddle point for
small ℏ and the rest must be discarded for consistency of
the approximation. Furthermore, even if there were two or
more with comparable contributions, as measured by the
negativity of the real part of the Euclidean action, one might
argue that any difference in their weighting [i.e., the values
of their coefficients dsp in (4.2)] would be irrelevant to
leading order in the small ℏ expansion. Hence, there are
grounds to believe that the semiclassical NBWF defined in
this way is essentially unique.

C. Classical Lorentzian histories of the Universe
from semiclassical saddle points

As already mentioned, most of what we observe of
our Universe on large scales is properties of its classical
history—for example, its expansion history, the cosmic
microwave background (CMB), the evolution of density
fluctuations into the large-scale distribution of galaxies, etc.
A model of the semiclassical wave function of the Universe
is thus most directly tested by the probabilities it predicts
for the classical cosmological history of geometry and field
that we observe.
Classical behavior is not a given in quantum mechanics.

It is a matter of quantum probabilities. A quantum system
behaves classically when, in a particular patch of configu-
ration space and with a suitable set of coarse-grained
alternative histories, the probability is high for histories
exhibiting correlations in time by deterministic classical
laws (e.g., Ref. [14]). Coarse graining is essential for

classicality. For instance, in the quantum mechanics of a
single particle, we expect classical behavior to emerge only
when its position and momentum are followed to coarse-
grained intervals consistent with the uncertainty principle
and then only when these are followed, not at each and
every time, but only in a series of times. Similarly, in eternal
inflation, the evolution of the Universe on the largest scales
is dominated by stochastic quantum effects, and we expect
classical behavior to emerge only after coarse graining over
the fluctuations on those scales [23].
A semiclassical wave function is tested first by whether it

predicts classical spacetime and matter evolution in patches
of configuration space at all and then whether the prob-
abilities of these are significant for those with the space-
times we observe. The saddle-point geometries and fields
featuring in NBWFs will generally be complex, so their
action has both real and imaginary parts. For a given saddle
point, we have

I½hijðx⃗Þ; χðx⃗Þ�≡ IR½hijðx⃗Þ; χðx⃗Þ� − iS½hijðx⃗Þ; χðx⃗Þ�: ð4:3Þ

The resulting wave function then has a WKB form, viz.,

Ψ½hijðx⃗Þ;χðx⃗Þ�
∝ expðf−IR½hijðx⃗Þ;χðx⃗Þ�þ iS½hijðx⃗Þ;χðx⃗Þ�g=ℏÞ; ð4:4Þ

where both IR and S are real. Analogy with WKB in
nonrelativistic quantum mechanics suggests that when S
varies rapidly compared to IR (the classicality condition)
this wave function predicts an ensemble of appropriately
coarse-grained8 classical histories of the Universe that are
integral curves of S. By “integral curve,” we mean a
solution of the Hamilton-Jacobi relations between the
momenta conjugate to hij and χ and the functional
derivatives of the action S. Continuing the analogy, we
expect probabilities for these histories to be proportional to
exp f−2IR½hijðx⃗Þ; χðx⃗Þ�=ℏg. The WD equation shows that
this is constant along classical histories to lowest relevant
order in ℏ. Of course, the predicted classical histories need
not be complete. One expects the above conditions for
classical behavior to be predicted from the wave function
not to hold inside black holes and in the early Universe.
This is indeed born out by explicit calculations of the
original semiclassical NBWF in simple models (e.g.,
Refs. [14,23]).

V. PREDICTIONS FOR OBSERVATIONS

In this section, we briefly discuss some of the key
predictions of the semiclassical NBWF. We concentrate on

6In nonrelativistic quantum mechanics, if ψðx; tÞ is a solution
of the Schrödinger equation, then ψ�ðx;−tÞ is also a solution of
the time-reversed Schrödinger equation. Then, it is consistent
with dynamical theories that are also time-reversal invariant.
Thus, a wave function is time-reversal invariant if it is real. The
same result can be seen to hold for closed cosmologies in
quantum general relativity using a representation in which the
wave function depends on the conformal 3-metric h̃ij, the field
χðx⃗Þ, and the extrinsic curvature scalar Kðx⃗Þ that plays the role
of time.

7This was discussed in the context of integral representations
of the NBWF in which different contours in integration could
single out different saddle points contributing in the steepest
descents approximation to the integral [21].

8The amount of coarse graining required for classicality can
vary from the minimum consistent with the uncertainty principle
all the way up to large regions of the Universe in the case of
eternal inflation.
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the original NBWF [1] defined here semiclassically as a
particular sum over saddle points, which together yield a
real wave function. For more details, we refer the reader to
Refs. [14–16,23–25].
The most striking prediction of the semiclassical NBWF

is that it says our classical history emerged from a period of
inflation. Cosmic inflation is the mechanism in the NBWF
through which our Universe became classical. In a given
dynamical theory, the NBWF thus selects those regions of
the scalar potential in which the slow-roll conditions for
inflation hold. Intuitively, this is because the regularity of
the no-boundary saddle points requires the Universe to be
dominated by potential rather than gradient energy at
early times.
In dynamical models in which the scalar potential has

more than one slow-roll region, the relative probabilities of
the different kinds of classical histories in theNBWF implies
a relative weighting of the different models of inflation
contained in the potential, which in turn yields a prior over
various observables for use in comparing theory with
observation. We are especially interested in such prior
probabilities for local observables connected to the CMB.
The NBWF predicts the usual probabilities for nearly
Gaussian scalar and tensor perturbations around each infla-
tionary background in its ensemble. Their statistical proper-
ties are specified by the shape of the potential patch probed
by the background as usual. If the NBWF prior is sharply
peaked around inflationary backgrounds associated with a
particular region of the potential, then the theory predicts the
observed CMB perturbation spectrum should exhibit the
features characteristic of the potential in that region.
To determine the region of a given potential that

dominates the NBWF prior, it is important to take in
account our observational situation. The NBWF by itself is
heavily biased toward histories of the Universe with a low
amount of inflation. However, we do not observe the entire
Universe. Instead, our observations are limited to a small
patch mostly along part of our past light cone. Probabilities
for local observations are conditional probabilities
weighted by the volume of a surface of constant measured
density, to account for the different possible locations of
our past light cone. This transforms the probability dis-
tribution for the amount of inflation and leads to the
prediction that our Universe emerged from a region of
the potential where the conditions for eternal inflation hold.
Combined with the general tendency of the NBWF to favor
inflation at low values of the potential [14,15], this leads to
the prediction that our observed classical Universe emerged
from the lowest exit of eternal inflation, e.g., near a broad
maximum of the scalar potential.

VI. CONCLUSION

We have given a formulation of the semiclassical NBWF
directly in terms of a collection of saddle points that
satisfy a specific minimal set of criteria. We have argued

that it determines a unique wave function. This formulation
disentangles the status and predictions of the semiclassical
NBWF from its representation as a functional integral.
Beyond its obvious geometric underpinnings, we advance
the requirement that the saddle-point NBWF be normal-
izable in a suitable inner product. This specifies the
predictive framework of semiclassical quantum cosmology
needed to derive probabilistic predictions for features of our
observed Universe.
The formulation of the NBWF given here clarifies the

comparison between the NBWF and alternative models of
the quantum state of the Universe in semiclassical quantum
cosmology. Examples are the tunneling wave function and
Lorentzian functional integral approaches more generally.
In its original form [26], the tunneling wave function was
defined in terms of outgoing mode boundary conditions on
the Wheeler-DeWitt equation and involved regular no-
boundary saddle points at the semiclassical level. The
functional integral constructions of Refs. [17,21] generated
(among other results) tunnelinglike wave functions, but
these suffered from undamped inhomogeneous fluctuations
and hence were non-normalizable. However, this problem
was due to using boundary conditions different from the
usual outgoing mode conditions defining the tunneling
wave function. A functional integral construction of the
tunneling wave function that implements the outgoing
mode conditions on the fluctuations was recently given
in Ref. [27] and yields a wave function in which the
fluctuations are damped in agreement with the behavior of
fluctuations in the original tunneling wave function [28] but
at the expense of the saddle points defining the semi-
classical wave function being singular. This highlights a
clear difference between the tunneling wave function and
the NBWF: at the semiclassical level, they are constructed
from different classes of saddle points. A different
Lorentzian path integral construction, originally put for-
ward in Ref. [29] and more recently discussed in
Refs. [30,31], does not yield a solution of the Wheeler-
DeWitt equation but rather a Green function. Moreover, the
resulting wave function is dominated by saddle points that
differ from those specifying the semiclassical NBWF
[20,32] and yields fluctuation wave functions that imply
large fluctuations are not suppressed. Therefore, in its
current form, the Lorentzian construction of Refs. [30,31]
fails to provide a predictive framework for semiclassical
quantum cosmology.
Finally, the form of the NBWF we put forward naturally

connects to new routes toward a completion of the theory.
Holographic cosmology in particular indicates that the no-
boundary wave function as we know it need not have a
fundamental representation as a gravitational path integral
but rather emerges as an approximation to the partition
functions of dual (Euclidean) field theories defined directly
on the final boundary [33–35]. The arguments of the
wave function in this holographic approach source
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deformations of the dual theory. The dependence of the
partition functions on the values of the sources specifies a
holographic “no-boundary” measure for cosmology.
Recent explicit calculations of partition functions, mostly
performed in the context of vector toy models, exhibit a
remarkable qualitative agreement with the predictions of
the semiclassical NBWF [36–38]. Of course, this does not
exclude the existence of a convenient path integral repre-
sentation that organizes the saddle points of the resulting
semiclassical NBWF with a contour that is, possibly
uniquely, specified by holography.
To summarize, a theory of a quantum state is a necessary

part of any final theory of the Universe. The no-boundary
quantum state of the Universe is defined and successfully
predictive in the semiclassical approximation to the

quantum cosmological predictive framework we have
described. It provides a model of how theory is compared
with observation in any state of the Universe in quantum
cosmology. It also exhibits a promising connection with
contemporary theories of quantum gravity with which it
may be extended beyond the semiclassical approximation
to new realms of prediction and test.
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