
 

Neutrino nonstandard interactions as a portal to test flavor symmetries

TseChun Wang* and Ye-Ling Zhou†

Institute for Particle Physics Phenomenology, Department of Physics, Durham University,
Durham DH1 3LE, United Kingdom

(Received 9 August 2018; published 26 February 2019)

Imposing non-Abelian discrete flavor symmetries on neutrino nonstandard interactions (NSIs) is
discussed for the first time. For definiteness, we choose A4 as the flavor symmetry, which is subsequently
broken to the residual symmetry Z2 in the neutrino sector. We provide a general discussion on the flavor
structures of NSIs from higher-dimensional operators (d ≤ 8) without inducing unnecessary tree-level four-
charged-fermion interactions. Both A4- and Z2-motivated NSI textures are obtained. UV completions of
higher-dimensional operators lead to extra experimental constraints on NSI textures. We study the
implementation of matter-effect NSIs in DUNE from a phenomenological point of view, and discover that
DUNE can test A4 with a high level of statistics. We also present the exclusion limits of sum rules suggested
by UV-complete models. Our results show that the NSI effects, though predicted to be small for DUNE,
could provide useful information that might extend our understanding of the flavor symmetry.
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I. INTRODUCTION

Neutrino oscillation experiments have achieved great
success in the last two decades [1–4]. Two neutrino
mass-squared differences (Δm2

21, jΔm2
31j) and three mixing

angles (θ12, θ23, θ13) have been measured in the standard
three-neutrino framework. Several next-generation oscilla-
tion experiments are proposed, such as the long-baseline
(LBL) accelerator experiments DUNE [5] and T2HK [6],
the intermediate-baseline reactor experiment JUNO [7,8],
the SBN program [9], and the muon-decay experiments
NuSTORM [10], MOMENT [11], and Neutrino Factory
[12]. They are aimed at answering the remaining questions
about neutrino oscillations: if CP is violated in neutrino
oscillations, what is the value of the Dirac-type CP-violating
phase δ, and which mass ordering (Δm2

31 > 0 or Δm2
31 < 0)

is true? In addition, the already known oscillation parameters
can be measured to the percent level and the octant of θ23
(θ23 < 45° or θ23 > 45°) will be determined [13,14].
These experiments will also test the standard three-

neutrino mixing scenario and might unveil new neutrino
couplings beyond the Standard Model (SM). Neutrino non-
standard interactions (NSIs) provide a model-independent
framework for studying new physics in neutrino oscillation
experiments (for some reviews, see Ref. [15]). They are

usually considered as effective descriptions of contribu-
tions from higher-dimensional operators mediated by
heavy mediators [16–19], although they may also be
induced by light mediators with very weak couplings
(see, e.g., Refs. [20,21]). In neutrino oscillation experi-
ments, NSIs may appear at neutrino sources, detectors, or
during neutrino propagation. There are no experimental
hints for NSIs at the source and the detector [15,22].
Current global-fit results for NSIs during neutrino propa-
gation, i.e., matter-effect NSIs, have reached precisions
from a few to tens of percent of the strength of the standard
matter effect induced by the weak interaction [23]. Due to
precision upgrades and because of non-negligible matter
effects, the testability of NSIs in DUNE and T2HK (as well
as its alternative, T2HKK) and the influences on measure-
ments of mass ordering and CP violation have received a
lot of attention (see, e.g., Refs. [24–28]). For the study of
NSIs in other future experiments, see, e.g., Refs. [29–33].
One important theoretical development promoted by

neutrino oscillations is the application of flavor symmetries
to understand lepton flavor mixing. It is directly triggered
by the measured values of the mixing angles sin2 θ12 ∼ 1=3
and sin2 θ23 ∼ 1=2. In the framework of flavor symmetries,
it is assumed that an underlying discrete flavor symmetry
Gf that unifies the three flavors exists at some high energy
scale. After the flavor symmetry is broken at a lower energy
scale, special flavor structures arise. The most famous
group used as a flavor symmetry is the tetrahedral group A4

[34]. Most A4 models naturally predict sin2 θ12 ¼ 1=3 and
sin2 θ23 ¼ 1=2, but sin2 θ13 ¼ 0 [35–37], i.e., the so-called
tribimaximal (TBM) mixing [38]. One important feature of
these models is the correspondence between the mixing and
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the existence of the residual symmetries Z3 and Z2 after A4

breaking (for some reviews, see, e.g., Ref. [39]). Z3 and Z2

are subgroups of A4. They are approximately preserved in
the charged lepton and neutrino sectors, respectively, acting
on charged leptons and neutrinos separately as

Z3∶ e→ e; μ→ e−i2π=3μ; τ→ ei2π=3τ;

Z2∶ νe →
1

3
ð−νeþ2νμþ2ντÞ; νμ →

1

3
ð−νμþ2ντþ2νeÞ;

ντ →
1

3
ð−ντþ2νeþ2νμÞ: ð1Þ

A slight breaking of the residual symmetries provides
small corrections to the mixing, specifically generating a
nonzero θ13 and making all mixing parameters compatible
with oscillation data. The preferred parameters of these
models will be tested by the future neutrino oscillation
experiments.
Imposing flavor symmetries may not only influence

the flavor mixing measured by neutrino oscillation experi-
ments, but also contribute to other flavor-dependent phe-
nomenological signatures, such as charged lepton flavor
violation (CLFV). The influence of flavor symmetries on
CLFV processes has been discussed in Refs. [40–46]. In
particular, the essential contribution of A4 and Z3 to the
CLFV decays of charged leptons have been carefully
analyzed in Ref. [45]. The branching ratio sum rules of
these processes were obtained therein, which can be
regarded as specific features of flavor symmetries. In the
neutrino sector, as the couplings are too weak, the phe-
nomenological signatures of flavor symmetries beyond
the standard neutrino oscillation measurements have been
rarely discussed.
Previous discussions of NSIs in flavor symmetries have

been limited to the Abelian case [20,21,47–49]. In these
papers, by assuming a gauged Uð1Þ flavor symmetry,
relatively sizable NSIs were generated via flavor-dependent
gauge interactions mediated by a gauge boson with a
mass around or below the GeV scale. Note that the Uð1Þ
symmetries proposed in these works were not supposed to
explain lepton flavor mixing. Thus, we do not expect any
connection between NSIs and lepton flavor mixing.
In the non-Abelian case, e, μ, and τ lepton doublets are

arranged as a triplet in the flavor space, which both
complicates the NSI construction and strengthens experi-
mental constraints. However, if the non-Abelian discrete
symmetry is a true symmetry, a combined study of the flavor
symmetry and NSIs will be required in the future neutrino
experiments. Regarding the A4 case, the measurement of
NSIs in neutrino oscillations provides an excellent oppor-
tunity to study the connection with A4 and the residual
symmetry Z2 in the neutrino sector, as we will see later.
This work is aimed at discussing how to look for

flavor symmetries and residual symmetries in the NSI
measurements in neutrino oscillation experiments. We fix

the flavor symmetry A4 and residual symmetry Z2 for
definiteness. It is complementary to studies of A4 and Z3 in
CLFV processes and in the standard neutrino oscillation
measurements. By imposing the flavor symmetry in the
fermion sectors, interesting NSI textures or sum rules of
NSI parameters are obtained. Both NSIs from higher-
dimensional operators in the effective field theory (EFT)
approach with respect to the electroweak symmetry and
those mediated by specific beyond-the-SM particles will be
discussed. The rest of this paper is organized as follows. We
briefly review the TBM mixing realized in A4 models in
Sec. II. Section III is devoted to a systematic analysis of
how to impose A4 or Z2 on higher-dimensional operators
(with the dimension d ≤ 8) which result in NSIs. A class of
NSI textures based on A4 and Z2 are obtained. We only
require that the three lepton doublets form a triplet of A4;
there are no requirements for the representations of other
fermions in the flavor space. In Sec. IV we consider the
UV completion of these operators. New particles in the UV
sector impose additional experimental constraints on NSI
parameters, and thus some textures are less constrained
than others. We suggest that these textures have a priority to
be discussed in the context of NSI measurements. In Sec. V,
based on DUNE’s experimental setup, we analyze the
discovery potential of these textures. We summarize our
paper in Sec. VI. In the main text of this paper, we focus on
NSIs in matter. Connections between flavor symmetries
and NSIs at the source and detector are strongly dependent
upon the representations of the other fermions.

II. FLAVOR SYMMETRIES AND RESIDUAL
SYMMETRIES IN LEPTON MIXING

We briefly review the realization of the TBM mixing in
A4 models and residual symmetries after A4 is broken. A4 is
generated by two generators S and T with the requirements
S2 ¼ T 3 ¼ ðST Þ3 ¼ 1, and it contains 12 elements. It has
four irreducible representations: three singlet representa-
tions 1, 10, and 100, and one triplet representation 3. The
Kronecker products of two irreducible representations are
reduced in the following way:

1 × 1ð0;00Þ ¼ 1ð0;00Þ; 10 × 10 ¼ 100;

100 × 100 ¼ 10; 10 × 100 ¼ 1;

3 × 1ð0;00Þ ¼ 3; 3 × 3 ¼ 1þ 10 þ 100 þ 3S þ 3A; ð2Þ

where the subscripts S and A stand for the symmetric and
antisymmetric components, respectively.
We work in the Altarelli-Feruglio (AF) basis [36], where

T and S are, respectively, given by

T ¼

0
B@

1 0 0

0 ω2 0

0 0 ω

1
CA; S ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA: ð3Þ
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This basis is widely used in the literature since the charged
lepton mass matrix invariant under T is diagonal in this
basis. The products of each two triplet representations a ¼
ða1; a2; a3ÞT and b ¼ ðb1; b2; b3ÞT can be expressed as

ðabÞ1 ¼ a1b1 þ a2b3 þ a3b2;

ðabÞ10 ¼ a3b3 þ a1b2 þ a2b1;

ðabÞ100 ¼ a2b2 þ a1b3 þ a3b1;

ðabÞ3S ¼
1

2

0
B@

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a3b1 − a1b3

1
CA;

ðabÞ3A ¼ 1

2

0
B@

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

1
CA: ð4Þ

The A4 symmetry is broken at a certain lower scale. After
the A4 breaking, the residual symmetries Z3 and Z2 (which
are generated by T and S, respectively) are approximately
preserved in the charged lepton and neutrino sectors,
respectively. The residual symmetries constrain the lepton
mass matrices and lead to the TBM mixing [38]. A sketch
of how to realize the TBM mixing from A4 is shown
in Fig. 1.
The Lagrangian terms for generating charged lepton and

neutrino masses are effectively realized by some higher-
dimensional operators. In the flavor space, the lepton
doublets L1¼ðνeL;eLÞ, L2¼ðνμL;μLÞ, and L3¼ðντL;τLÞ
are often arranged as a triplet, L≡ ðL1; L2; L3ÞT . This
arrangement holds for most flavor models with non-
Abelian discrete symmetries, not just for A4 models, in
which the flavor symmetry contains a triplet irreducible

representation [39]. In A4 models, the right-handed charged
leptons eR, μR, and τR are often assigned as singlets 1, 10,
and 100, respectively [35,36]. The relevant Lagrangian terms
are effectively written as

−Ll ¼
ye
Λ
ðLφÞ1eRH þ yμ

Λ
ðLφÞ100μRH þ yτ

Λ
ðLφÞ10τRH

þ H:c:;

−Lν ¼
y1

2ΛΛW
ððL H̃ H̃TLcÞ3S χÞ1 þ

y2
2ΛW

ððL H̃ H̃TLcÞ1
þ H:c:; ð5Þ

where the HiggsH ∼ 1 of A4 and H̃ ¼ iσ2H�. We apply the
dimension-five Weinberg operator ðL H̃ H̃TLcÞ to generate
neutrino masses and ΛW is the corresponding UV-complete
scale. The operators in Eq. (5) involve flavons, denoted by
φ and χ, and a new scaleΛ corresponding to the decoupling
of some heavy A4 multiplets.
Flavons play the key role in the flavor mixing. They

gain vacuum expectation values (VEVs), leading to the
breaking of the flavor symmetry and leaving residual
symmetries in the charged lepton and neutrino sectors,
respectively. The flavon VEVs φ and χ preserving Z3 and
Z2, respectively,

1 i.e.,

T φ ¼ φ; S χ ¼ χ; ð6Þ
take the following forms:

φ ¼ ð1; 0; 0ÞTvφ; χ ¼ ð1; 1; 1ÞTv χ : ð7Þ

The resulting lepton mass matrices are represented as

Ml ¼

0
B@

ye 0 0

0 yμ 0

0 0 yτ

1
CA vvφffiffiffi

2
p

Λ
;

Mν ¼

0
B@

2aþ b −a −a
−a 2a −aþ b

−a −aþ b 2a

1
CA; ð8Þ

where v ¼ 246 GeV is the Higgs VEV, a≡ y1v χv2=
ð4ΛΛWÞ, and b≡ y2v2=ð2ΛWÞ. It is straightforward to
check that the lepton mass matrices Ml and Mν satisfy Z3

and Z2, respectively,

T MlM
†
l T

† ¼ MlM
†
l ; SMνST ¼ Mν: ð9Þ

They are consistent with the residual symmetries satisfied
by the flavon VEVs in Eq. (6). The charged lepton mass
matrix Ml is diagonal, and the neutrino mass matrix Mν is
diagonalized by the unitary matrix

FIG. 1. A sketch of how the TBM mixing is generated in A4

models. After A4 is broken, residual symmetries (Z3 in the
charged lepton sector and Z2 in the neutrino sector) are preserved.
These symmetries constrain the charged lepton and neutrino mass
matrices, respectively, and finally result in the TBM mixing. The
residual symmetries are just approximative symmetries in the
model. Besides, there may be additional accidental symmetries in
the model, which are not shown here.

1In the following, we do not specify the notation of flavons
with flavon VEVs.
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UTBM ¼

0
BB@

2ffiffi
6

p 1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

− 1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p

1
CCA ð10Þ

and has eigenvalues m1 ¼ j3aþ bj, m2 ¼ jbj, and m3 ¼
j3a − bj. The mixing matrix is identical to UTBM. This is
the so-called the TBM mixing pattern, from which we
obtain sin θ13 ¼ 0, sin θ12 ¼ 1=

ffiffiffi
3

p
, and sin θ23 ¼ 1=

ffiffiffi
2

p
.

Figure 1 presents a sketch of how the TBM mixing is
generated in A4 models.
The TBMmixing should only be considered as a leading-

order result since it is not consistent with neutrino oscillation
data. Deviations from the TBM mixing have to be included
in flavor model construction. The deviations are usually
obtained from certain subleading interactions which break
the Z3 or Z2 residual symmetries. It is crucial to obtain
suitable deviations that are all compatible with current data.
(For very recent A4 models consistent with current oscil-
lation data, see, e.g., Refs. [50,51] and references therein.)
These deviations may contribute to NSIs as subleading
effects. However, there are various successful flavor models,
and the deviations are usually model dependent. In addition,
these subleading effects are negligible in current NSI
measurements. Therefore, we will not consider small cor-
rections to NSIs resulted from small deviations from the
TBM mixing.

III. NSI TEXTURES PREDICTED BY FLAVOR
SYMMETRIES IN EFT

In neutrino oscillation experiments, NSIs may appear in
processes of neutrino production at the source, propagation
in matter and detection at the detector. The matter-effect
NSIs are customarily described by a 3 × 3Hermitian matrix
ϵ added to an effective Hamiltonian H in the flavor basis,

H ¼ 1

2E

8>><
>>:
U

0
B@

0 0 0

0 Δm2
21 0

0 0 Δm2
31

1
CAU† þ A

0
B@

1 0 0

0 0 0

0 0 0

1
CA

þ A

0
B@

ϵee ϵeμ ϵeτ

ϵμe ϵμμ ϵμτ

ϵτe ϵτμ ϵττ

1
CA
9>>=
>>;
; ð11Þ

where ϵαβ ¼ ϵ�βα holds, and A ¼ 2
ffiffiffi
2

p
GFNeE is the usual

matter effect where Ne is the electron number density in the
Earth and E is the neutrino beam energy. The effective
Hamiltonian for antineutrino oscillation is obtained after
the replacements U → U�, A → −A and εαβ → ε�αβ. In
this section, by assuming NSIs obtained from higher-
dimensional operators, we embed A4 or its residual
symmetry Z2 into these operators and systematically
analyze how to obtain NSI textures from the symmetry.

A. NSIs from higher-dimensional operators

We assume that NSIs arise from effective higher-dimen-
sional operators and these operators satisfy the following
conditions:
(1) Lorentz invariance and the SM gauge symmetry

SUð2ÞL ×Uð1ÞY around or above the electroweak
scale are required.

(2) Since neutrino oscillation experiments cannot test
lepton-number-violating (LNV) or baryon-number-
violating processes, we select lepton- and baryon-
number-conserving operators.2

(3) We only focus on operators with four fermions.
The simplest operators have dimension d ¼ 6, and
the operators with d > 6 consist of four fermions
and d − 6 Higgs fields.3 In the following, we briefly
denote the remaining SM fermion contents as

ER ¼ ðeR;μR; τRÞT; UR ¼ ðuR; cR; tRÞT;
DR ¼ ðdR; sR; bRÞT; Q¼ ðQ1;Q2;Q3ÞT; ð12Þ

where Q1 ¼ ðuL; dLÞ, Q2 ¼ ðcL; sLÞ, Q3 ¼ ðtL; bLÞ.
(4) For neutrinos propagating in matter, at least two L’s

must be involved in the relevant operators. As a
comparison, operators for neutrino production and
detection involve at least one L.

(5) Furthermore, we impose one more requirement: we
only consider NSIs that avoid the strong constraints
from four-charged-fermion interactions, e.g., rare
lepton-flavor-violating decays of leptons and ha-
drons. Since left-handed charged leptons and neu-
trinos belong to the same electroweak doublet in the
SM, any NSI effects from higher-dimensional oper-
ators are related to an interaction involving at least
one charged lepton. Once all final and initial states of
the latter interaction are electrically charged fer-
mions, i.e., charged leptons and quarks, the operator
and the relevant NSI parameters should have been
strongly constrained by these “visible” processes.
For example, the nonstandard νμ þ ðe; u; dÞ → νe þ
ðe; u; dÞ propagation in matter may be constrained by
μþðe;u;dÞ→eþðe;u;dÞ in CLFV measurements.

The following classes of operators and their conjugates
are allowed by the first four requirements:

LERDRQ; LERQUR; LLFF; with F ¼ L;

ER; Q; UR; DR ð13Þ

2This does not mean that the lepton number or baryon number
cannot be broken at the UV-complete scale, as will be discussed
in the next section.

3Operators modifying neutrino kinetic terms may also con-
tribute to the NSIs through the nondiagonal Z mediation. These
effects are small (≲10−3) due to the nonunitarity of the PMNS
matrix [28,52], and will not be considered here.
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for d ¼ 6 and

LLDRURH�H�; LERURQHH; LERQDRHH; LERLERHH;

LERDRQH�H; LERQURH�H; LLFFH�H; with F ¼ L; ER; Q; UR; DR ð14Þ
for d ¼ 8. Here we have not written out the necessary Γ matrices, gauge indices, and flavor indices. Lepton and baryon
number conservation forbids any dimension-seven operators involving four fermions. After the Higgs acquires a VEV
hHi ¼ ð0; 1ÞTð2 ffiffiffi

2
p

GFÞ−1=2, these operators can be classified into two types: those that preserves electroweak symmetry
and those that do not. Taking the last requirement into account, we extract the following operators:
(1) The first class is explicitly given by

εacεbdðLaαγ
μLbβÞðLcγγμLdδÞ; εacεbdðLaαγ

μLbβÞðLcγγμLdδÞH†H; ð15Þ

whereα, β, γ, δ ¼ 1, 2, 3 are flavor indices,a,b, c,d ¼ 1, 2 areSUð2ÞL doublet indices, and nonvanishing entries of εab
are given by ε12¼−ε21¼1. Specifically, we denote the flavor indices in the lepton sector as ð1; 2; 3Þ ¼ ðe; μ; τÞ. Using
the relation εacεcd ¼ δabδcd − δadδbc and the Fierz identity, we expand the first term of the above equation and obtain
ðLaαγ

μLaβÞðLcγγμLcδÞ − ðLaαγ
μLaδÞðLcγγμLcβÞ, i.e.,

ðναLγμνβLÞðEγLγμEδLÞþðνγLγμνδLÞðEαLγμEβLÞ− ðναLγμνδLÞðEγLγμEβLÞ− ðνγLγμνβLÞðEαLγμEδLÞ; ð16Þ

which we denote as O1
αβγδ. Note that O

1
αβγδ ¼ −O1

γβαδ ¼ −O1
αδγβ ¼ O1

γδαβ is satisfied. This term can lead to NSIs of
neutrinos interacting with electrons (ναe → νβe) during neutrino propagation, but it has no influence on four-charged-
lepton interactions, such as the scattering μe → ee or the rare decay μ → eee, and thus are not directly constrained by
the latter. The second term in Eq. (15) gives the same information asO1

αβγδ, and thus it is not necessary to consider them
separately.

(2) The second class of operators are

ðLα H̃ γμH̃†LβÞðUγRγμUδRÞ; ðLα H̃ γμH̃†LβÞðDγRγμDδRÞ; ðLα H̃ γμH̃†LβÞðEγRγμEδRÞ;
ðLα H̃ γμH̃†LβÞðQγγμQδÞ; ðLα H̃ γμH̃†LβÞðLγγμLδÞ;
ðLα H̃ γμLbβÞðQbγγμH̃†QδÞ; εbcðLα H̃ γμLbβÞðQγHγμQcδÞ;
ðLα H̃ γμH†LβÞðDγRγμUδRÞ; ðLα H̃ σμνEβRÞðQγHσμνUδRÞ;
ðLα H̃ EβRÞðDγRH̃†QδÞ; ðLα H̃ EβRÞðQγHUδRÞ: ð17Þ

After the Higgs acquires a VEV, the above operators are effectively reduced to 11 four-fermion interactions:

ðναLγμνβLÞðUγRγμUδRÞ; ðναLγμνβLÞðDγRγμDδRÞ; ðναLγμνβLÞðEγRγμEδRÞ;
ðναLγμνβLÞðUγLγμUδLþDγLγμDδLÞ; ðναLγμνβLÞðνγLγμνδLþEγLγμEδLÞ;
ðναLγμνβLÞðUγLγμUδLÞþðναLγμEβLÞðDγLγμUδLÞ; ðναLγμνβLÞðDγLγμDδLÞ−ðναLγμEβLÞðDγLγμUδLÞ;
ðναLγμEβLÞðDγRγμUδRÞ; ðναLσμνEβRÞðDγLσμνUδRÞ;
ðναLEβRÞðDγRUδLÞ; ðναLEβRÞðDγLUδRÞ: ð18Þ

In the above operators, the first five terms, denoted by O2;3;4;5;6
αβγδ , respectively, contribute to NSIs in matter during

neutrino propagation. The next two terms, denoted byO7;8
αβγδ, respectively, contribute to and correlate between NSIs at

the neutrino source and detector and NSIs for neutrino mediation in matter. The final four terms, denoted by
O9;10;11;12

αβγδ , respectively, contribute to NSIs in the neutrino production and detection processes. For more discussions
on textures of NSIs in these processes, please see Appendix B.

The effective operators describing neutrino NSIs for neutrino propagation can be expressed as

LNSI ¼ 2
ffiffiffi
2

p
GF

X8
p¼1

cpαβγδO
p
αβγδ þ H:c:; ð19Þ
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where two same-flavor indices should be summed. The
operators in Eqs. (16) and (18) form a full list of NSI
operators with d ≤ 8 before electroweak symmetry break-
ing. We have checked that all of the other NSIs with d ≤ 8
operators can be represented as a linear combination of
these Op

αβγδ. Matching with the effective NSI matrix ϵ in
Eq. (11), we obtain

ϵαβ ¼ ϵeαβ þ
�
2þ Nn

Ne

�
ϵuαβ þ

�
1þ 2

Nn

Ne

�
ϵdαβ; ð20Þ

where Nn is the neutron number density and

ϵeαβ ¼ c1αβ11 þ c4αβ11 þ c6αβ11;

ϵuαβ ¼ c2αβ11 þ c5αβ11 þ c7αβ11;

ϵdαβ ¼ c3αβ11 þ c5αβ11 þ c8αβ11: ð21Þ

For O1
αβγδ, it is easy to confirm that c1αβγδ ¼ −c1γβαδ ¼ c1αδγβ,

and thus c1eβ11 and c1αe11 always vanish. Therefore, O1
αβγδ

will not contribute to the first column or first row of ϵ.

B. NSI textures predicted by A4

We consider how neutrino NSIs from the higher-
dimensional operators are constrained by A4. We require
that the higher-dimensional operators are invariant under
the symmetry A4 and consider which kinds of NSI textures
we could gain from the symmetry. As we only care about
matter-effect NSI textures, we limit our discussion to the
operators O1−8. In Appendix B, we list the NSI textures at
the source and detector from the operators O7−12.
We follow Sec. II in which the lepton doublets L ¼

ðL1; L2; L3ÞT are often arranged as a triplet 3 of A4.
4

Besides, we do not specify the representations for the
other fermions in the flavor space. In other words, the right-
handed charged leptons, left-handed quarks, and right-
handed quarks could be any irreducible representations of
A4, 1; 10; 100, or 3. It is worth noting that we do not specify
whether A4 can be responsible for the quark mixing in this
work. If all quarks are arranged as the singlet representation
1, quark flavor mixing is totally independent of A4. We scan
for all of these possibilities, and find the following NSI
textures:

T11 ≡ 1 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; T 12 ¼

0
B@

2 0 0

0 −1 0

0 0 −1

1
CA;

T13 ¼

0
B@

0 0 0

0 1 0

0 0 −1

1
CA: ð22Þ

In the following, we explain how to get these textures.
The first operator c1αβγδO

1
αβγδ, i.e., the dimension-six

εacεbdc1αβγδðLaαγ
μLbβÞðLcγγμLdδÞ, satisfies the antipermu-

tation property of two L’s and two L’s, as shown in
Eq. (16), which results in c1eβ11 ¼ c1αe11 ¼ 0. There are five
independent A4-invariant operators:

ðLLÞ1ðLLÞ1; ðLLÞ10 ðLLÞ100 ; ðLLÞ3SðLLÞ3S ;
ðLLÞ3AðLLÞ3A ; ðLLÞ3SðLLÞ3A : ð23Þ

Here we have ignored the unnecessary flavor-independent
notations, including the SUð2ÞL indices, Γmatrices, and the
Higgs field. The subscripts are the same as in Eq. (4).
Taking account of the Clebsch-Goldan (CG) coefficients in
Eq. (4), we obtain

c1μμ11 ¼ c1ττ11; c1ee11 ¼ c1αβ11 ¼ 0 for α ≠ β ð24Þ

for the first four operators, which lead to the NSI texture

T 0
12 ≡

0
B@

0 0 0

0 1 0

0 0 1

1
CA ∝ 2T11 − T12: ð25Þ

The last operator gives a vanishing c1αβ11 and thus does not
contribute to NSIs.
For the second entry in Table I, c2αβγδO

2
αβγδ, i.e., the

dimension-eight ðLα H̃ γμH̃†LβÞðUγRγμUδRÞ, the A4-
invariant operators depend on the flavor representation
of UR:
(1) If U1R is arranged as a singlet 1ð0;00Þ of A4, there is

only one A4-invariant operator:

ðLLÞ1ðU1RU1RÞ1: ð26Þ

It leads to the following relations of the coefficients:

c2ee11¼ c2μμ11¼ c2ττ11; c2αβ11 ¼ 0 for α≠ β: ð27Þ

Representations of U2R and U3R are irrelevant for
our discussion since U2R and U3R do not contribute
to the low-energy NSIs.

(2) If UR ¼ ðU1R; U2R; U3RÞT is a triplet 3 of A4, there
are seven independent A4-invariant operators:

ðLLÞ1ðURURÞ1; ðLLÞ10 ðURURÞ100 ; ðLLÞ100 ðURURÞ10 ;
ðLLÞ3SðURURÞ3S ; ðLLÞ3AðURURÞ3S ;
ðLLÞ3SðURURÞ3A ; ðLLÞ3AðURURÞ3A : ð28Þ

The first operator gives the same correlation
as in Eq. (27), while ðLLÞ3SðURURÞ3S and
ðLLÞ3AðURURÞ3S give rise to

4In the AF basis, the conjugate of L should be arranged as
L̄ ¼ ðL̄1; L̄3; L̄2ÞT .
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c2ee11¼−2c2μμ11¼−2c2ττ11; c2αβ11¼0 for α≠β;

c2μμ11¼−c2ττ11; c2ee11¼c2αβ11¼0 for α≠β; ð29Þ

respectively, where all nonvanishing values are
real. The rest [ðLLÞ10 ðURURÞ100 , ðLLÞ100 ðURURÞ10 ,
ðLLÞ3SðURURÞ3A , and ðLLÞ3AðURURÞ3A] do not
contribute to c2αβ11.

The correlations of the coefficients c2αβ11 directly determine
the flavor structure of matter-effect NSIs. In particular,
Eq. (27) directly gives rise to T11, and Eq. (29) leads to T12

and T13. The discussion of O2
αβγδ applies to O3−8

αβγδ. In other
words, the NSI textures T11, T12, and T 13 can be derived
from

ðLLÞ1ðFFÞ1; ðLLÞ3SðFFÞ3S ; ðLLÞ3AðFFÞ3S ; ð30Þ

respectively, where F represents any fermions in the SM.

C. NSI textures predicted by the residual
symmetry of A4

In order to break A4 and obtain residual symmetries, we
include the flavon VEV in the NSI operators. We consider
that the operators cpαβγδO

p
αβγδ are effectively realized via5

cφ;pα0αβγδ
φα0

vφ
Op

αβγδ or c χ;p
α0αβγδ

χα0

v χ
Op

αβγδ: ð31Þ

These operators are A4-invariant before flavons get VEVs.
Taking the VEVs in Eq. (7), we obtain cpαβγδO

p
αβγδ with

cpαβγδ ¼ cφ;p1αβγδ or c χ;p
1αβγδ þ c χ;p

2αβγδ þ c χ;p
3αβγδ: ð32Þ

They are no longer A4-invariant, but they only preserve a Z3

or Z2 symmetry, since φ and χ preserve Z3 and Z2

symmetries, respectively. The Z3-invariant operators φO
do not give any new information, and we recover Eq. (22).
The reason is that the generator of Z3, T , is diagonal, and
the predicted NSI textures must also be diagonal. In the
following, we will not consider the Z3-invariant operator
φO anymore.
Now we focus on the A4-breaking Z2-invariant operators

χO. We first define the following nondiagonal textures:

T21 ¼

0
B@

0 1 1

1 0 1

1 1 0

1
CA; T22 ¼

0
B@

0 −1 −1
−1 0 2

−1 2 0

1
CA;

T23 ¼

0
B@

0 −1 1

−1 0 0

1 0 0

1
CA;

T31 ¼

0
B@

0 −i i

i 0 −i
−i i 0

1
CA; T 32 ¼

0
B@

0 i −i
−i 0 −2i
i 2i 0

1
CA;

T33 ¼

0
B@

0 i i

−i 0 0

−i 0 0

1
CA: ð33Þ

T2n represent nondiagonal real NSI textures, while T 3n
represent pure imaginary NSI textures.
For c χ;1

α0αβγδ χα0O
1
αβγδ, there are nine Z2-invariant operators

that can contribute to NSIs:

TABLE I. Higher-dimensional operators (d ≤ 8) that may contribute to NSIs in neutrino oscillation experiments.
S, M, and D represent NSIs at a source, in matter, and at a detector, respectively.

Label Before EW breaking After EW breaking Observation

O1 εacεbdð ¯Laαγ
μLbβÞðL̄cγγμLdδÞ,

εacεbdð ¯Laαγ
μLbβÞðL̄cγγμLdδÞH†H

ð ¯ναLγ
μνβLÞð ¯EγLγμEδLÞ þ ð ¯νγLγ

μνδLÞð ¯EαLγμEβLÞ−
ð ¯ναLγ

μνδLÞð ¯EγLγμEβLÞ − ð ¯νγLγ
μνβLÞð ¯EαLγμEδLÞ

M

O2 ðL̄α H̃ γμH̃†LβÞð ¯UγRγμUδRÞ ð ¯ναLγ
μνβLÞð ¯UγRγμUδRÞ M

O3 ðL̄α H̃ γμH̃†LβÞðD̄γRγμDδRÞ ð ¯ναLγ
μνβLÞðD̄γRγμDδRÞ M

O4 ðL̄α H̃ γμH̃†LβÞð ¯EγRγμEδRÞ ð ¯ναLγ
μνβLÞð ¯EγRγμEδRÞ M

O5 ðL̄α H̃ γμH̃†LβÞðQ̄γγμQδÞ ð ¯ναLγ
μνβLÞðŪγLγμUδL þ D̄γLγμDδLÞ M

O6 ðL̄α H̃ γμH̃†LβÞðL̄γγμLδÞ ð ¯ναLγ
μνβLÞð ¯νγLγμνδL þ ¯EγLγμEδLÞ M

O7 ðL̄α H̃ γμLbβÞðQ̄bγγμH̃†QδÞ ð ¯ναLγ
μνβLÞðŪγLγμUδLÞ þ ð ¯ναLγ

μEβLÞðD̄γLγμUδLÞ S,M,D

O8 εbcðL̄α H̃ γμLbβÞðQ̄γHγμQcδÞ ð ¯ναLγ
μνβLÞðD̄γLγμDδLÞ − ð ¯ναLγ

μEβLÞðD̄γLγμUδLÞ S,M,D

O9 εbcðL̄α H̃ γμLbβÞðQ̄γHγμQcδÞ ð ¯ναLγ
μEβLÞðD̄γRγμUδRÞ S,D

O10 ðL̄α H̃ σμνEβRÞðQ̄γHσμνUδRÞ ð ¯ναLσ
μνEβRÞðD̄γLσμνUδRÞ S,D

O11 ðL̄α H̃ EβRÞðD̄γRH̃†QδÞ ð ¯ναLEβRÞðD̄γRUδLÞ S,D

O12 ðL̄α H̃ EβRÞðQ̄γHUδRÞ ð ¯ναLEβRÞðD̄γLUδRÞ S,D

5Since the conjugates of φ and χ are identical to φ and χ,
respectively, it is not necessary to write out operators realized by
φ� or χ� separately.
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χðLLÞ3SðLLÞ1; χðLLÞ3SðLLÞ10 ; χðLLÞ3SðLLÞ100 ;
χðLLÞ3AðLLÞ1; χðLLÞ3AðLLÞ10 ; χðLLÞ3AðLLÞ100 ;
χððLLÞ3SðLLÞ3SÞ3S ; χððLLÞ3AðLLÞ3AÞ3S ;
χððLLÞ3SðLLÞ3AÞ3S ; χððLLÞ3SðLLÞ3AÞ3A : ð34Þ

Because both α and γ, and β and δ are antisymmetric,
c1eβ11 ¼ c1αe11 ¼ 0 for all cases. The other coefficients
satisfy the following relations, respectively. Taking the
CG coefficients in Eq. (4) into account, we obtain

2c1μμ11 ¼ 2c1ττ11 ¼ c1μτ11 ¼ c1τμ11 ð35Þ

for χððLLÞ3SðLLÞ1;10;100 Þ3, χððLLÞ3SðLLÞ3SÞ3S , and
χððLLÞ3AðLLÞ3AÞ3S , and

c1μμ11 ¼ −c1ττ11; c1μτ11 ¼ c1τμ11 ¼ 0 ð36Þ

for χððLLÞ3AðLLÞ1;10;100 Þ3, χððLLÞ3SðLLÞ3AÞ3S , and
χððLLÞ3SðLLÞ3AÞ3A . The first two relations give

1

3
ð2T11 − T12 þ 2T 21 þ 2T 23Þ ¼

0
B@

0 0 0

0 1 2

0 2 1

1
CA ð37Þ

and T 13, respectively.
For c χ;2

α0αβγδ χα0O
2
αβγδ, i.e., the first dimension-eight oper-

ator ðLα H̃ γμH̃†LβÞðUγRγμUδRÞ, depending on the repre-
sentation of UR, there are several Z2-invariant operators:
(1) If U1R is a trivial singlet 1, 10, or 100 of A4, there are

two Z2-invariant operators:

χðLLÞ3SðU1RU1RÞ1; χðLLÞ3AðU1RU1RÞ1: ð38Þ

They lead to the following relations of the coeffi-
cients:

c2ee11 ¼ c2μτ11 ¼ c2τμ11 ¼ −2c2μμ11 ¼ −2c2ττ11
¼ −2c2eμ11 ¼ −2c2μe11 ¼ −2c2eτ11 ¼ −2c2τe11;

−c2μμ11 ¼ c2ττ11 ¼ c2eμ11 ¼ c2μe11 ¼ −c2eτ11 ¼ −c2τe11;

c2ee11 ¼ c2eτ11 ¼ c2τe11 ¼ 0; ð39Þ

respectively. They give rise to two textures, T 2 ≡
T12 þ T 22 and T 3 ≡ T 13 þ T23, respectively.

(2) If U1R is arranged as one component of a triplet
UR ¼ ðU1R; U2R; U3RÞT ∼ 3 of A4, there are six
independent Z2-invariant operators contributing to
NSIs:

χðLLÞ3SðURURÞ1; χðLLÞ3AðURURÞ1;
χððLLÞ3SðURURÞ3SÞ3S ;
χððLLÞ3SðURURÞ3SÞ3A ; χððLLÞ3AðURURÞ3SÞ3S ;
χððLLÞ3AðURURÞ3SÞ3A : ð40Þ

The first two give the same two correlations as in
Eq. (39). The remaining four give rise to

c2ee11¼−2c2μμ11¼−2c2ττ11¼−2c2μτ11¼−2c2τμ11
¼4c2eμ11¼4c2μe11¼c2eτ11¼4c2τe11;

c2μμ11¼−c2ττ11¼2c2eμ11¼2c2μe11¼−2c2eτ11¼2c2τe11;

c2ee11¼c2eτ11¼c2τe11¼0;

ic2μτ11¼−ic2τμ11¼−2ic2eμ11¼2ic2μe11

¼2ic2eτ11¼−2ic2τe11;

c2ee11¼c2μμ11¼c2ττ11¼0;ic2eμ11¼−ic2μe11
¼ ic2eτ11¼−ic2τe11;

c2ee11¼c2μμ11¼c2ττe11¼c2μτe11¼c2τμ11¼0; ð41Þ

respectively, where all nonvanishing values are real
(as required by the Hermitian of the Lagrangian).
They give rise to

2T12 − T22 ¼

0
B@

4 1 1

1 −2 −2
1 −2 −2

1
CA;

2T13 − T23 ¼

0
B@

0 1 −1
1 2 0

−1 0 −2

1
CA; ð42Þ

and T 32 and T 33, respectively.
A similar discussion applies to O3−8, and the same textures
as predicted by O2 are obtained from these operators.
The nine textures Tmn in Eqs. (22) and (33) form a

complete basis for a Hermitian 3 × 3 matrix. Any two of
these textures are orthogonal in the Hilbert-Schmidt inner
product, trðT †

mnTm0n0 Þ ∝ δmm0δnn0 . Matter-effect NSIs con-
tribute to the effective Hamiltonian term via the matrix

ϵ≡
0
B@
ϵee ϵeμ ϵeτ

ϵμe ϵμμ ϵμτ

ϵτe ϵτμ ϵττ

1
CA≡

0
B@

ϵee jϵeμjeiϕeμ jϵeτjeiϕeτ

jϵμeje−iϕeμ ϵμμ jϵμτjeiϕμτ

jϵeτje−iϕeτ jϵμτje−iϕμτ ϵττ

1
CA

¼
X

m;n¼1;2;3

αmnTmn=Nmn; ð43Þ

where Nmn are the normalization factors N11 ¼
ffiffiffi
3

p
, N12 ¼ffiffiffi

6
p

, N13 ¼
ffiffiffi
2

p
, N21 ¼ N31 ¼

ffiffiffi
6

p
, N22 ¼ N32 ¼ 2

ffiffiffi
3

p
, and
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N23 ¼ N33 ¼ 2. The relations between ϵαβ and αmn are
shown in Table III, and the following properties are
satisfied:

trðϵϵ†Þ ¼
X

α;β¼e;μ;τ

jϵαβj2 ¼
X

m;n¼1;2;3

α2mn: ð44Þ

Note that T 11 ≡ 1 is unobservable in neutrino oscillations
experiments.
We list all A4- and Z2-motivated matter-effect NSI

textures predicted by A4- and Z2-invariant operators Op

and χOp in Table II, where χ is the flavon VEV inducing
A4 breaking to Z2. As seen in the table, an NSI texture
predicted by an A4-invariant (Z2-invariant) operator usually
does not preserve A4 (Z2). This is because the matter-effect
NSIs have specified the first-generation charged fermions.
These charged fermions, if not arranged as a singlet 1 of A4,
are not invariant in A4 (Z2), and thus the NSI texture does
not respect A4 (Z2). In a specific A4 model, the NSI matrix ϵ
could be a linear combination of Tmn. However, it is notable
that T31 cannot be obtained directly from the above
analysis. The analysis based on higher-dimensional

operators cannot determine which texture is more important
and dominant in oscillation experiments. However, as we
will discuss in the next section, once we consider UV
completion for these textures and include experimental
constraints, some of them are suppressed and cannot be
measured in neutrino experiments.

IV. NSI TEXTURES REALIZED IN
RENORMALIZABLE FLAVOR MODELS

In this section, we consider how to realize higher-
dimensional operators in UV-complete models. We follow
the widely used technique in Refs. [16,17], where the
dimension-six operator is mediated by singly charged
gauge-singlet scalars and the dimension-eight operators
can be realized with the help of singly charged gauge-
singlet scalars and neutral fermions. Imposing the A4

symmetry changes the analysis in the following ways.
1) It requires extending the heavy particles as relevant
multiplets of A4. 2) The mass matrices of these particles
gain special structures constrained by A4 or Z2 (if the
Z2-invariant flavon VEV χ is included), which further
contribute to the NSI structure. 3) Although experimental

TABLE III. Expressions for the conventional parameters ϵαβ in terms of the texture parameters αmn according to
Eqs. (22), (33), and (43).

ϵ̃eeð≡ϵee − ϵμμÞ 3α12=
ffiffiffi
6

p
− α13=

ffiffiffi
2

p
ϵ̃ττð≡ϵττ − ϵμμÞ −2α13=

ffiffiffi
2

p
ϵeμ α21=

ffiffiffi
6

p
− α22=

ffiffiffiffiffi
12

p
− α23=2þ ið−α31=

ffiffiffi
6

p þ α32=
ffiffiffiffiffi
12

p þ α33=2Þ
ϵeτ α21=

ffiffiffi
6

p
− α22=

ffiffiffiffiffi
12

p þ α23=2þ iðα31=
ffiffiffi
6

p
− α32=

ffiffiffiffiffi
12

p þ α33=2Þ
ϵμτ α21=

ffiffiffi
6

p þ 2α22=
ffiffiffiffiffi
12

p þ ið−α31=
ffiffiffi
6

p
− α32=

ffiffiffiffiffi
12

p Þ

TABLE II. NSI textures in matter predicted by A4 and the residual symmetry Z2, where F represents any SM fermion. The textures T1n
are defined in Eq. (22), T 2n and T3n are defined in Eq. (33), and χ is defined in Eq. (7).

Representations A4-invariant operators NSI textures

O1 L ∼ 3 ðL̄LÞ1ðL̄LÞ1, ðL̄LÞ10 ðL̄LÞ100 ,
ðL̄LÞ3SðL̄LÞ3S , ðL̄LÞ3AðL̄LÞ3A

2T11 − T12

O2−8 L ∼ 3; F ∼ 1; 10; 100; 3 ðL̄LÞ1ðF̄FÞ1 T 11

L ∼ 3; F ∼ 3 ðL̄LÞ3SðF̄FÞ3S T 12

ðL̄LÞ3AðF̄FÞ3S T 13

Representations Z2-invariant operators NSI textures
χO1 χ ∼ 3; L ∼ 3 χððL̄LÞ3SðL̄LÞ1;10;100 Þ3, χððL̄LÞ3SðL̄LÞ3SÞ3S ,

χððL̄LÞ3AðL̄LÞ3AÞ3S
1
3
ð2T 11 − T 12 þ 2T 21 þ 2T23Þ

χððL̄LÞ3AðL̄LÞ1;10;100 Þ3, χððL̄LÞ3SðL̄LÞ3AÞ3S T 13

χ ∼ 3; L ∼ 3; F ∼ 1; 10; 100; 3 χðL̄LÞ3SðF̄FÞ1 T12 þ T22

χðL̄LÞ3AðF̄FÞ1 T13 þ T23

χO2−8 χ ∼ 3; L ∼ 3; F ∼ 3 χððL̄LÞ3SðF̄FÞ3SÞ3S 2T12 − T22

χððL̄LÞ3AðF̄FÞ3SÞ3S 2T13 − T23

χððL̄LÞ3SðF̄FÞ3SÞ3A T 32

χððL̄LÞ3AðF̄FÞ3SÞ3A T 33
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constraints on the heavy particles have been studied in
Refs. [16,17] and later work (e.g., Refs. [18,53]), the non-
Abelian flavor symmetry connects channels of different
flavors and may result in stronger constraints. Due to these
differences, NSIs with A4-invariant UV completion deserve
a careful consideration.

A. UV completion of the dimension-six operator

We first consider the UV completion of O1,
εacεbdðLaαγ

μLbβÞðLcγγμLdδÞ. The only way to do this is
to introduce a singly charged scalar S which is a SUð2ÞL
singlet with Y ¼ þ1 and assume that it couples to L in an
“antisymmetric” form [16]. Together with the kinetic and
mass terms of S, we write down the renormalizable
Lagrangian terms as

LS ¼ ðDμSÞ†ðDμSÞ − ðM2
SÞαβS�αSβ

þ λαβγεabLC
aαLbβSγ þ H:c:; ð45Þ

where λαβγ ¼ −λβαγ . In the framework of A4, S cannot be
arranged as a singlet representation (1; 10, or 100) of A4 since
the symmetric CG coefficients of A4 and the antisymmetric

property of λ lead to SðLCLÞ1ð00;0Þ ≡ 0. Similarly, by arrang-

ing S ∼ 3 we obtain SðLCLÞ3S ¼ 0. The only term that can

contribute to the operator in Eq. (45) is SðLCLÞ3A for S ∼ 3.
All nonvanishing coefficients satisfy

λ123 ¼ λ231 ¼ λ312 ¼ −λ132 ¼ −λ213 ¼ −λ321 ≡ λ0: ð46Þ

After S decouples and by using the Fierz identity, we obtain
O1 and the resulting NSI parameters are obtained as

ϵeαβ ¼
1ffiffiffi
2

p
GF

λβeðM2
SÞ−1λ†αe; ð47Þ

where each λαβ is a 1 × 3 matrix given by λαβ ¼
ðλαβ1; λαβ2; λαβ3Þ.
The structures of ϵeαβ are fully determined by the flavor

structure of M2
S. We constrain the M2

S structure as follows.
(1) An A4-invariant mass term for the charged scalar can

only take the form μ2SðS�SÞ1 ¼ μ2S
P

αS
�
αSα, with

μ2S > 0, leading to the charged scalar mass matrix
M2

S ¼ μ2S1. From this mass matrix, we obtain the

texture ϵe ¼ α0T 0
12 with α0 ¼ μ2Sffiffi

2
p

GF
.

(2) In order to obtain nonvanishing off-diagonal NSI
entries, A4 has to be broken. As shown in the last
section, the key is to introduce a flavon with the
Z2-preserving VEV χ. We add the following renor-
malizable couplings to the Lagrangian:

μ2S
v χ

�
2

3
hSðχðS�SÞ3SÞ1 −

2ffiffiffi
3

p hAðχðS�SÞ3AÞ1
�
; ð48Þ

where hS and hA are real dimensionless coefficients
as required by the Hermiticity of the Lagrangian.
Then, the S mass matrix is nondiagonal and the
resulting NSI matrix becomes

ϵe¼ α0

2
64T 0

12þ
1

3

0
B@
0 0 0

0 hS−h2S 2hSþh2S
0 2hSþh2S hS−h2S

1
CA

þ1

3

0
B@
0 0 0

0
ffiffiffi
3

p
hA−h2A h2A

0 h2A −
ffiffiffi
3

p
hA−h2A

1
CA
3
75; ð49Þ

where α0 ¼ jλ0j2=½
ffiffiffi
2

p
GFμ

2
Sð1 − h2S − h2AÞ�. ϵe con-

tains three real parameters: ϵμμ, ϵττ, and jϵμτj. The
renormalizable quartic terms ððχ χÞ3SðS�SÞ3SÞ1 and
ððχ χÞ3SðS�SÞ3AÞ1 are also allowed by the symmetry,
as such terms do not modify the flavor structures of
M2

S and ϵe except by redefinitions of hS and hA.
However, it is difficult to realize sizable NSI textures in

this approach due to the strong constraint from the radiative
charged LFV measurements. Although the tree-level four-
charged-fermion interactions have been avoided, radiative
decays Eα → Eβγ involving S and neutrinos in the loop are

triggered by the interaction LCLS, and the relative branch-
ing ratios are ∝jG−1

F λαγðM2
SÞ−1λ†βγj2, where γ ≠ α, β. The

general upper bounds of the τ → eγ and τ → μγ branching
ratios are around 10−8 [54,55], and that of μ → eγ is
4.2 × 10−13 [56]. Without flavor symmetries, the coeffi-
cients λαβγ and mass terms ðM2

SÞαβ are free parameters, and
τ → eγ and μ → eγ do not provide direct constraints on
NSIs [16]. Once the flavor symmetry is included, relations
such as Eqs. (46) and (48) are satisfied. In the limit
hS; hA → 0, all radiative decays are forbidden. However,
off-diagonal NSIs are also forbidden in this case, becoming
less interesting in oscillation experiments. On the other
hand, by assuming hS or hA ∼Oð1Þ, the very strong
constraint jϵeαβj < 7 × 10−5 is obtained from the upper limit
of μ → eγ.

B. UV completions of dimension-eight operators

In the following, we will only consider NSIs from UV
completions of dimension-eight operators. Before perform-
ing a detailed analysis, we directly state our main result that
in UV-complete models with the Z2 residual symmetry
only linear combinations of the following NSI textures are
worth studying in neutrino oscillation experiments:
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T1 ¼
1

3

0
B@

2 −1 −1
−1 2 −1
−1 −1 2

1
CA; T 2 ¼

1

3

0
B@

2 −1 −1
−1 −1 2

−1 2 −1

1
CA;

T3 ¼
1ffiffiffi
3

p

0
B@

0 −1 1

−1 1 0

1 0 −1

1
CA; T4 ¼

1ffiffiffi
3

p

0
B@

0 −i i

i 0 −i
−i i 0

1
CA:

ð50Þ

We refer to them as “major NSI textures.” They are
combinations of some Tmn, T 1 ¼ 1

3
ð2T11 − T 21Þ, T 2 ¼

1
3
ðT12 þ T22Þ, T3 ¼ 1ffiffi

3
p ðT 13 þ T23Þ, and T 4 ¼ 1ffiffi

3
p T31. As

discussed later in this section, the other NSI textures T 12,
T13, T 32, T 33 and their combinations are strongly con-
strained by nonoscillation data. Therefore, we call them
“minor NSI textures.” Here, we classify them into “major”
and “minor” due to their testability. In the former case,
although they are small, we may still have the opportunity
to detect them, while in the later case, we will have no
chance to test them in the next-generation neutrino experi-
ments. Throughout this paper, we focus on the “major NSIs
textures.”

1. Major NSI textures realized
in UV-complete A4 models

We consider how to realize the major NSI textures in the
renormalizable A4 models and consider their experimental
constraints. Before electroweak symmetry breaking, the
operatorsO2−6 take the form of a dimension-eight operator
ðL H̃ γμH̃†LÞðFγμFÞ. A popular way to realize large NSIs
is to introduce a vector boson Z0. Then, the four-charged-
fermion interaction ðFγμFÞðFγμFÞ is unavoidable. In order
to be consistent with experimental data, the coupling
must be very small. Here, we will carefully avoid the
four-charged-fermion interactions introduced after the
decoupling of the new particles in the UV sector. Thus,
interactions mediated by Z0 will not be considered.
We focus onO4 by using a singly charged scalar ϕ and a

neutral fermion N to realize major NSI textures. The
renormalizable interactions are given by

Lϕ;N ¼ ðDμϕÞ†ðDμϕÞ − ðM2
ϕÞαβϕ�

αϕβ þ Ni∂N
−MNαβNαRNβL − καβγEαRNβLϕ

�
γ

− yαβLα H̃ NβR þ H:c:; ð51Þ

where Dμ ¼ ∂μ þ ieAμ. The charged scalar is a SUð2ÞL
singlet with Y ¼ −1. In order to distinguish it from S in the
last subsection, we denote it as ϕ. There is no LNV
coupling in the above interactions. For the neutral fermion
N, we require a vector-like mass term MNNRNL as shown
above. If there is an additional small LNV mass term

μN C
LNL and hierarchical masses y=

ffiffiffiffiffiffiffi
GF

p
≪ MN , we re-

cover the inverse seesaw model [57]. But here we do not
specify whether N is related to the origin of active neutrino
masses. Regardless of whether there is a small LNV mass
term, we can always arrive at a dimension-eight operator

∼ κ2y2

M2
ϕM

2
N
ðL H̃ ERÞðERH̃†LÞ after the decoupling of the

charged scalar and sterile neutrinos, from which we obtain
O4. Once the flavor structure is included, the 3 × 3 NSI
parameter matrix ϵe is expressed as

ϵe ¼ 1

8G2
F
ðyM−1

N κeÞðM2
ϕÞ−1ðyM−1

N κeÞ†; ð52Þ

where κe is a 3 × 3 matrix defined via ðκαÞβγ ¼ καβγ for
α ¼ e, μ, τ.
We now discuss how the A4 symmetry can constrain

NSIs originating from this renormalizable model. We first
consider A4-motivated NSI textures without the involve-
ment of flavons. In the flavor space, since we have arranged
L ∼ 3, the fields NL, NR, and ϕ must be triplets to ensure
the invariance of the Lagrangian in A4. We follow the setup
of most A4 models in which E1R is fixed as a singlet 1 of A4.
An A4-invariant mass term for the charged scalar can only
take the form μ2ϕðϕ�ϕÞ1 ¼ μ2ϕ

P
iϕ

�
iϕi, with μ2ϕ > 0, i.e., the

charged scalar mass matrix M2
ϕ ¼ μ2ϕ1. Similarly, to be

invariant under transformations of A4, the Dirac mass
matrix of the sterile neutrinosMN and the Yukawa coupling
between L and NR, y is also proportional to the identity
matrix, MN ¼ μN1, y ¼ y01. The structures of the cou-
plings y and κ depend on the representations of ER.
Interactions involving ϕ and N are given by

κ0E1RðNLϕ
�Þ1 þ y0ðL H̃ NRÞ1 þ H:c: ð53Þ

Thus, both coupling matrices κ and y appear to be
proportional to the identity matrix: κ ¼ κ01 and y ¼ y01.
After ϕ and N are integrated out of the Lagrangian, we find
that theO4 takes the form ðLLÞ1ðFFÞ1, as listed in Table II
for F ¼ ER. Finally, we obtain the NSI texture ϵe ¼ α01,
where

α0 ¼
jy0κ0j2

8G2
Fμ

2
Nμ

2
ϕ

: ð54Þ

Since 1 is the identity matrix, ϵe in this special case has no
observable signatures in neutrino oscillation experiments.
The involvement of χ breaks A4 to Z2 and modifies the

correlation relations of the NSI parameters. In order to
realize relatively large and measurable NSI effects, we only
consider the contribution of renormalizable couplings of χ.
There are cases [as shown in Figs. 2(b) and 2(c)] where χ
couples to ϕ and N and modifies their mass matrices.
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(1) The charged scalar ϕ mass matrix is modified by the
coupling between χ and ϕ. We add the following
renormalizable coupling to the Lagrangian:

μ2ϕ
v χ

�
2

3
fSðχðϕ�ϕÞ3SÞ1 −

2ffiffiffi
3

p fAðχðϕ�ϕÞ3AÞ1
�
; ð55Þ

where fS and fA are real dimensionless coefficients
as required by the Hermiticity of the Lagrangian. The
relevant higher-dimensional operators after ϕ and N
are integrated out take the forms χðLLÞ3SðFFÞ1 and
χðLLÞ3AðFFÞ1, respectively. The modified ϕ mass
matrix turns out to be

M2
ϕ=μ

2
ϕ ¼ 1þ fST 2 þ fAT3: ð56Þ

Terms such as ððχ χÞ3Sðϕ�ϕÞ3SÞ1, ððχ χÞ3Sðϕ�ϕÞ3AÞ1
are also renormalizable and should be considered for
completeness. These terms will not induce new
structures different from Eq. (56).

(2) The Dirac mass matrix of N is modified by cou-
plings between χ and N. The related renormalizable
Lagrangian term is given by

μN
v χ

�
2

3
gSðχðNLNRÞ3SÞ1 −

2ffiffiffi
3

p gAðχðNLNRÞ3AÞ1
�

þ H:c:; ð57Þ

where gS and gA are in general complex parameters.
The Dirac mass matrix MN is modified as

MN=μN ¼ 1þ gST2 þ gAT3: ð58Þ

Taking the flavon-modified mass matrices of ϕ and N into
account, we state that the final detectable (i.e., ignoring the
undetectable 1) NSI matrix ϵe in Eq. (52) is always a linear
combination of T i for i ¼ 1, 2, 3, 4. This is guaranteed by
the algebra of T i and can be straightforwardly proven by
implying Eqs. (C2) and (C3) in Appendix C. From Table II,
one can expect to find the textures T 2 and T3. The other
two textures, T1 and T 4, which do not arise from higher-
dimensional operators, are obtained from the inverse

transformations of M2
ϕ and MN and the matrix product

T2T3 ¼ −iT4. T1 and T 4 appear at the second order of
fS; fA and gS; gA. If fS; fA; gS; gA ≪ 1 is satisfied, the T 1

and T 4 parts are negligible compared with the T 2 and T 3

parts. However, these coefficients, as coefficients of renor-
malizable terms, may take Oð1Þ values, and thus in this
case T1 and T 4 may have NSI effects comparable to those
of T2 and T3.
The flavor structures of NSIs can be further discussed in

the following scenarios, dependent on the role of the flavon
VEV χ:
(1) With the assumption of additional symmetries, χ

may only couple to ϕ, and not to N, i.e., gA; gS ¼ 0.
The resulting detectable NSI matrix is explicitly
expressed as

ϵe ¼ α0½ðf2S þ f2AÞT 1 − fST2 − fAT3�: ð59Þ

Here, only T 1, T2, and T 3 appear, and α0 has been
redefined.

(2) On the other hand, if χ only couple to N, we obtain
the following NSI matrix:

ϵe ¼ α0f½−ð2þ jgSj2 þ jgAj2ÞðjgSj2 þ jgAj2Þ
þ 4Reðg2S þ g2AÞ þ 4½Imðg�SgAÞ�2�T 1

− 2ReðgSÞT 2 − 2ReðgAÞT3 − 2Imðg�SgAÞT 4g;
ð60Þ

where α0 has been redefined. It is a linear combi-
nation of all four T i, but T4 is important only if both
jgSj and jgAj are sizable and there is a relative phase
between gS and gA.

(3) If the antisymmetric couplings fA and gA are for-
bidden, the NSI matrix can be simplified to a linear
combination of T1 and T2. On the other hand, if the
symmetric couplingsfS and gS are forbidden, theNSI
matrix is a linear combination of T 1 and T3. These
two cases are valid if the group A4 is replaced by
larger groups. For example, in the hexahedron group
S4 [58], there are two triplet irreducible representa-
tions, and the symmetric and antisymmetric products

FIG. 2. Diagrams that give rise to sizable NSI textures corresponding to the dimension-eight operator O4 in leptonic A4 models.

TSECHUN WANG and YE-LING ZHOU PHYS. REV. D 99, 035039 (2019)

035039-12



3S and 3A correspond to two different representa-
tions. By arranging χ to be one of the triplets, the
antisymmetric (or symmetric) products can be for-
bidden, and thus only the symmetric (or antisym-
metric) couplings are left.

Naively, one may expect that NSIs from the UV
completion of the dimension-eight operator are more con-
strained than those of the dimension-six operator, but this is
not the case in the framework of flavor symmetry. First of
all, no tree-level CLFV interactions have been introduced
by the Lagrangian in Eq. (51), as required. Although
radiative CLFV processes are induced by the coupling
ERNLϕ, they essentially rely on the coupling with the
second- or third-generation charged lepton E2R or E3R. By
arranging E1R, E2R, and E3R as different singlets of A4, the
relevant coefficients are theoretically independent of those
involved in matter NSIs [59,60]. Constraints on CLFV do
not apply to NSIs. Regarding collider searches, with a
careful treatment of ϕ decaying to e=μ plus missing
transverse momentum or τ plus missing transverse momen-
tum, the existing LEP and LHC data still allow a singlet
charged scalar as light as 65 GeV [61]. The main constraint
in this model is the bound of the nonunitarity of the lepton
mixing. The decoupling of sterile neutrinos contributes to

the active neutrino kinetic mixing as y2

M2
N
ðL H̃Þ∂ðH̃†LÞ.

After rescaling the kinetic terms of active neutrinos, the
nonunitarity of the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix is

η≡ V†
PMNSVPMNS − 1 ¼ 1

2
ffiffiffi
2

p
GF

ðyM−1
N ÞðyM−1

N Þ†: ð61Þ

The nonunitarity bound from a global analysis of LFV
decays, probes of the universality of weak interactions,
Cabibbo-Kobayashi-Maskawa unitarity bounds, and
electroweak precision data is around η ∼ 10−3 [52].
Combined with the above constraints, we see that it is
still possible to achieve the major NSI textures with
coefficients ∼η=ðGFM2

ϕÞ at the 10−2 or 10−3 level.
These values may be measured by the next-generation
accelerator neutrino oscillation experiments.
In the above, we have constructed UV-complete models

for O4 and χO4. A similar discussion can be directly
extended to O2;3;5 and χO2;3;5 by replacing the singly
charged scalar ϕ by ϕUR;DR;Q, which are an SUð2ÞL
gauge singlet, singlet, and doublet with hypercharges
Y ¼ −2=3;þ1=3, and −1=6, respectively, and replacing
the singlet F ¼ E1R with F ¼ U1R, D1R, and Q1, respec-
tively. The resulting NSI matrix is also a linear combination
of the textures T 1, T 2, T 3, and T4. The textures T 1, T 2, T 3,
and T 4 are obtained by assuming that the charged fermions
are singlets of A4. This treatment can avoid strong con-
straints from the second- and third-generation charged

fermions. These textures are less constrained than the other
textures discussed below, and thus we call them major NSI
textures.

2. Minor NSI textures realized
in UV-complete A4 models

The minor NSI textures T12, T 13, T32, and T33 and their
combinations cannot be realized in the above discussions.
This is compatible with Table II, where the minor textures
are obtained by setting F ∼ 3. To achieve these textures, as
shown in Table II, F has to be assumed to be a triplet of A4.
Then F cannot be chosen as right-handed charged leptons
and not realized in the O4 and χO4 series. We will discuss
how to realize them in UV-complete A4 models.
To realize the A4-motivated T 12 and T 13, we choose F ¼

UR ≡ ðU1R; U2R; U3RÞT ∼ 3 of A4 and consider the UV
completion of O2. The latter is obtained by replacing the
singly charged scalar ϕ with a fractionally charged scalar
ϕUR

, i.e., a scalar leptoquark, with hypercharge Y ¼ −2=3,
and couplings to NL andUR. The renormalizable couplings
are given by

κUR
S ððURNLÞ3Sϕ�

UR
Þ1 þ κUR

A ððURNLÞ3Aϕ�
UR
Þ1 þ H:c: ð62Þ

Then, the coupling matrix κ is modified as κUR
¼ κUR

S T12 þ
κUR
A T 13 and the A4-preserved NSI texture

ϵu ≡ 1

8G2
F
ðyM−1

N κUR
ÞðM2

ϕUR
Þ−1ðyM−1

N κUR
Þ† ð63Þ

is obtained as a linear combination of T 12 and T13. Finally,
we include the A4-breaking effect in the ϕUR

and N mass
matrices, as in Eqs. (56) and (58). Nonzero T 32 and T 33 can
be extracted in principle.
The minor textures T12, T 13, T32, and T33 are expected to

receive stronger constraints. The main reason is that UR ¼
ðU1R; U2R; U3RÞ is arranged as a triplet of A4 and con-
straints from the second- and third-generation charged
fermions should be included. The neutrino kinetic mixing
leads to the coupling URνLϕ

�
UR
. It further modifies the SM

predictions of certain processes, e.g., (semi)leptonic decays
Uα → Uβνν at tree level, radiative decays Uα → Uβγγ at
loop level, and flavor-changing neutral-current processes
Uα → UβUγUδ at loop level. As a consequence, precision
measurements of charm mesons and baryons can give
strong constraints on ϵu. A detailed discussion of these
constraints is the subject of this paper. Realizations of
sizable NSI textures T12, T13, T 32, and T 33 via UV
completions of the other dimension-eight operators are
also hard. Those via O3;5;7;8 gain strong constraints from K
and B decays, and those viaO6 gain constraints from Eα →
Eβγ decays. Since it is hard to generate sizable NSI for
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textures T 12, T 13, T 32, and T33 or their combinations, we
refer to them as minor NSI textures.

V. TESTING NSI TEXTURES AT LBL
EXPERIMENTS

Long-baseline experiments with wide-band beams and
sizable matter effects are expected to measure more than
one ϵαβ, which implies that the flavor dependence of NSIs
ϵαβ can be tested. As a result, an experiment of this kind is
able to study the flavor symmetry model through the
operators O1−8. In this section we will study the matter
NSI effects for the DUNE experiment under the flavor
symmetry A4 or Z2. We summarize the connection between
the texture parameters αmn and the conventional parameters
ϵαβ in Table III. There are some benefits to considering
matter-effect NSIs under flavor symmetries. When we
assume that A4 symmetry is not broken, only two types
of NSIs can be seen, both of which are flavor conserving. If
A4 symmetry is broken and the residual Z2 symmetry is
preserved, there are no such benefits as all textures are
predicted under this symmetry, until we impose a UV-
complete model. Therefore, we expect good performance
from DUNE in studying these scenarios. We test the NSI
textures from the A4 symmetry without assuming any UV-
complete model in Sec. V B. In Sec. V C, we study the Z2

testing, following the discussion in Sec. IV B. The approxi-
mation to oscillation probabilities with NSI matter effects is
presented in Appendix D; the true values used for the
oscillation parameters throughout the simulation in this
section are given in Table IX.
The current global fit for matter-effect NSIs [23] includes

solar, atmospheric, reactor, and LBL neutrino data. With the
assumption that all NSIs come entirely from up quarks or
down quarks to avoidNSIs at the source and the detector, the
current global fit to the standard NSI parameters ϵuαβ and ϵ

d
αβ

was performed in Ref. [23]. We adopt these results to
estimate the bounds forαu;dmn.We only take the bound for each
ϵu;dαβ , i.e., the results of a 1D projection. Furthermore, we
neglect underlying corrections between any two or among
more than two parameters, which are ϵαβ, mixing angels, or
mass-squared differences. Assuming Gaussian distributions
and taking the 90%C.L. limits fromRef. [23], the bounds on
ϵu;dαβ at 1σ are shown in Table IV. Since in their analysis the
imaginary part was assumed to be 0 or π, we directly
translate their bounds to αu;d1n and αu;d2n by setting the
imaginary αu;d3n ¼ 0, and the results are shown in Table V.
NSIs with down quarks ϵu;dαβ have very similar constraints as

those with ϵu;dαβ . As we neglect some correlations among the
parameters, our results can be viewed as optimal. In Table V,
we see thatmost parameters are constrained around or below
the percent level of weak interactions, except for αu;d12 , for
which 1σ bounds are around 15%.

The matter-effect NSIs are predicted to be small, as we
see in Table IV. Fortunately, DUNE can improve the
sensitivity and it is possible to detect these effects. In this
section, our goal is to see whether these minor features6

appearing in DUNE can provide any extra information
about the flavor symmetry. We first discuss how matter-
effect NSIs αmn affect neutrino oscillations in DUNE, and
then we study the physics capacity for DUNE to test A4

symmetry and Z2 residual symmetry via NSI measure-
ments. We emphasize that the results in Secs. V B and V C
are from a general point of view; we consider all possible
correlations by using the conventional parametrization
(three mixing angles, one Dirac CP phase, and two
mass-squared differences) instead of implementing any
possible flavor model for the oscillation parameters. The
final note is that for a given model that consistently predicts
values for both oscillation and NSI parameters, we should
further adopt Wilks’ theorem that the Δχ2 value for nested
hypothesis testing asymptotically follows a χ2 distribution,
where the number of degrees of freedom is equal to the
difference between the number of free parameters in the
two models [63]. Therefore, we will further study two cases

TABLE V. The 1σ bounds for αu12 (α
d
12), α

u
13 (α

d
13), and α

u
2i (α

d
2i),

with fixed αu3i ¼ 0 (αd3i ¼ 0), from the global fit results [23]
shown in Table IV. See text for details.

1σ bounds by global fit results

αu12 [0.089, 0.247] αd12 [0.099, 0.26]
αu13 ½−0.003; 0.007� αd13 ½−0.003; 0.007�
αu21 ½−0.045; 0.049� αd21 ½−0.045; 0.047�
αu22 ½−0.037; 0.03� αd22 ½−0.035; 0.0302�
αu23 ½−0.019; 0.096� αd23 ½−0.0154; 0.096�

TABLE IV. Taken from the current global fit results [23] for ϵuαβ
and ϵdαβ. In these results, the authors [27] assume that off-diagonal
elements ϵα≠β are real, consider that NSIs is only contributed by u
(d) quarks for ϵuαβ (ϵ

d
αβ), but do not include NSIs at the source and

the detector.

1σ bounds of global fit results

ϵ̃uee [0.188, 0.376] ϵ̃dee [0.203, 0.384]
ϵ̃uττ ½−0.003; 0.012� ϵ̃dττ ½−0.003; 0.012�
ϵueμ ½−0.046; 0.002� ϵdeμ ½−0.048; 0�
ϵueτ ½−0.038; 0.065� ϵdeτ ½−0.036; 0.066�
ϵuμτ ½−0.004; 0.003� ϵdμτ ½−0.004; 0.003�

6Assuming an equal amount of NSI effects with u, d quarks
and electrons, the 1σ size of the total NSI matter effect in the
Earth is roughly 3 times that of the 1σ region shown Table IV.
This estimate will be applied in the following (Tables VI and
VIII) for comparison.
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with the maximum and minimum possible number of
degrees of freedom for a χ2 distribution.

A. Oscillation probabilities in DUNE

As mentioned in the Introduction, matter-effect NSIs in
DUNE have been widely discussed. Because of the long
propagation distance (1300 km) of neutrinos in the Earth,
the non-negligible matter density, and the GeV-energy-
scale neutrino beam, matter effects play a substantial role in
oscillations. Before discussing the physics potential of
understanding any flavor symmetries, we first study the
impact of αmn on the oscillation probability in DUNE.
The DUNE experiment consists of a neutrino source

known as the Long Baseline Neutrino Facility (LBNF), a
detector based at Fermilab, and a liquid argon time-
projection chamber (LArTPC) detector complex located
at Sanford Underground Research Facility a distance of
1300 km away. The beam design is based on both long
baseline neutrino experiment (reference design) and LBNF
studies (optimized design). The beam is optimized accord-
ing to the physics capability of δ discovery. The 1 MW
beam generates a large amount of νμ (POT/year ∼1021). At
the other end, the detector configuration consists of four
10-kiloton LArTPC detectors. LArTPC technology has a

particularly strong particle identification capability as well
as good energy resolution, which are both crucial to
provide high-efficiency searches and low backgrounds.
DUNE covers the first maximum of the appearance
channel (0.5–5 GeV), and the wide-band design and
LArTPC technology allows it to observe the behavior of
Pðνμ → νeÞ at energies around the first maximum of the
appearance channel with high precision.
We show the difference between oscillation probabilities

with one nonzero αmn and those without NSIs,
δPNSIðνα → νβÞ≡ Pðνα → νβÞ − P0ðνα → νβÞ, in Fig. 3.
The coefficient αmn is fixed at 0.1, but the other NSI
parameters are fixed at zero. The Dirac phase δ ¼ 270° and
the normal mass ordering is assumed.
For the appearance channels in the upper two panels of

Fig. 3, we see that the NSI parameters nontrivially modify
the oscillation probability. NSIs modify the amplitude of
the oscillation probability and distort the oscillation behav-
ior against L=E. α23, α31, and α33 have larger impacts on
δPNSI than the other NSI parameters, and δPNSI around the
first maximum reaches up to or over 0.01 for the neutrino
mode. These impacts are slightly larger in the neutrino
mode than in the antineutrino mode, and this is due to our
assumption of the normal mass ordering. DUNE’s wide-
band-beam fluxes (grey shaded regions) observe a variation

FIG. 3. Oscillation probabilities δPNSIðνμ → νeÞ (upper left), δPNSIðν̄μ → ν̄eÞ (upper right), δPNSIðνμ → νμÞ (lower left), and
δPNSIðν̄μ → ν̄μÞ (lower right) against L=E [km=GeV] for the case with one αmn, fixed at 0.1. We use the oscillation parameters from the
current global fit results [62] (shown in Table IX) for the normal ordering with δ ¼ 270°, and the oscillation baseline is 1300 km. In the
left (right) panels, the grey shaded regions show the ν (ν̄) flux of the two-horn-optimized design for DUNE at the far detector without
oscillations.
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of δPNSI around the first maximum. As a result, the
complex behavior in the appearance channel around the
first maximum plays the role of distinguishing different
textures.
In the lower two panels of Fig. 3, we observe the

oscillation behavior of δPNSI in L=E in the disappearance
channels, and except for α13 it goes to 0 at the first and
second minima. As a result, it is clear that we will not see
the NSI effects if we focus on the first minimum, which is
the approximate location of DUNE’s flux peaks. The wide-
band-beam feature of DUNE (grey shaded regions) pro-
vides more information about how much αmn affects the
disappearance channels around the first minimum. Further,
it is obvious that the disappearance channels can be
sensitive to α21 and α22 as their impacts δPNSI are
significantly larger than the others. An interesting feature
is that for neutrino and antineutrino modes δPNSI behaves
oppositely, i.e., δPNSIðνμ → νμÞ ≅ −δPNSIðνμ → νμÞ. This
is because Pðνμ → νμ; δ; AÞ ≅ Pðνμ → νμ;−δ;−AÞ, and
also due to the fact that the contribution of αmn is propor-
tional to A in the leading approximation for the disappear-
ance channel. We see this correlation in Fig. 4, in which the
event rates with α21 ¼ 0.1 (green curve), α22 ≈ 0.7 (blue
circles), and those without NSIs (red curve) are presented in
the ν and ν disappearance channels. The overlap of the blue
circles and the green curve demonstrates the difficulty of
distinguishing α21 and α22 in the disappearance channels.
We conclude that the wide-band-beam feature of DUNE

is an advantage for detecting NSI textures. Different NSI
textures result in different distortions of the probabilities in
the appearance channel. Therefore, we can distinguish
different textures by reading out the variation of
Pðνμ → νeÞ with energy. In addition, this feature helps
us to measure the size of the NSI effects in the disappear-
ance channel.

B. Testing “A4 symmetry” in DUNE

Matter NSI effects predicted by A4-invariant operators
only allow diagonal entries. After the breaking of A4 by the

Z2-preserving flavon VEV χ, the textures T2n, T3n, or their
linear combinations are involved in the NSI matrix ϵ.
Equations (D1) and (D2) indicate that accelerator LBL
experiments can be sensitive to off-diagonal terms in ϵ,
because of the fact that ϵμτ is the leading term in the
disappearance channel, and ϵeμ and ϵeτ are the leading
terms in the appearance channel. As a result, experiments of
this kind can test the conservation of A4 symmetry.
Throughout this section, we adopt the General Long

Baseline Experiment Simulator (GLOBES) library [64,65].
To simulate probabilities with matter-effect NSIs, we
modify the default probability engine of GLOBES by
simply adding the matrix Aϵ to the Hamiltonian. For the
simulation in DUNE, we implement the simulation package
in Ref. [66], with a total run time of 7 years (corresponding
to 300 MW× kton × years) and a two-horn-optimized
beam design with 80 GeV protons. The other sets of
oscillation parameters are described in Appendix A.
We study the capacity for DUNE to rule out the “A4

symmetry” hypothesis. The statistics quantity that we
study is

Δχ2A4
≡ χ2jα2n¼α3n¼0 − χ2b:f:; ð64Þ

where χ2jα2n¼α3n¼0 is the χ2 value with the assumption that
α2n ¼ α3n ¼ 0 (n ¼ 1, 2, 3), and χ2b:f: is the χ2 value for the
best fit. The expression for χ2 is

χ2 ¼ min
Θ;ξ¼fξs;ξbg

�
2
X
i

�
ηiðΘ; ξÞ − ni þ ni ln

ni
ηiðΘ; ξÞ

�

þ pðξ; σÞ þ PðΘOSCÞ
�
: ð65Þ

The sum in this expression is over the i energy bins of the
experimental configuration, with simulated true event rates
ni and simulated event rates ηiðΘ; ξÞ for the hypothesis
parameters Θ≡ fθij;Δm2

ij;NSI parametersg and system-
atic error parameters ξ. Based on different conventions or

FIG. 4. The event rates with α21 ¼ 0.1 (green curve), α22 ≈ 0.07 (blue circles), and the case without NSIs (red curve). The overlap of
the green curve and blue circles represents the correlation between α21 and α22.
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assumptions, we may adopt different parametrizations for
the NSI parameters; in this subsection, we use αmn. The
systematic errors of the experiments are treated using the
method of pulls, parametrized as ξs for the signal error and
ξb for the background error. These parameters are given
Gaussian priors which form the term pðξ; σÞ ¼
ξ2s=σ2s þ ξ2b=σ

2
b, where σ ¼ fσs; σbg are the sizes of the

systematic errors given in Ref. [66]. PðΘOSCÞ comprises a
sum of Gaussian priors for the oscillation parameters
ΘOSC., except for δ. For the central values and widths
we use the best-fit and 1σ width NuFit results, respectively,
which are given in Table IX. The value of χ2b:f: is always 0,
as the best fit is exactly the true value. In the following
results, we allow α12 and α13 to vary freely. While varying
the true value for one of fα21; α22; α23; α31;α32; α33g, we set
the true values of α12 and α13 to be 0.
We scan all possible true values for the targeted

parameter to test the “A4 symmetry” hypothesis, i.e., α2n ¼
α3n ¼ 0 (for n ¼ 1, 2, 3) in Fig. 5. The solid curves and
dashed curves correspond to oscillation parameters fixed at
their best-fit values and values varying in 1σ ranges, as
given in Appendix A. The solid (dashed) curves represent
the cases with minimum (maximum) correlations with the
oscillation parameters. This is for all possible correlations
among the parameters. For any flavor model consistent
with oscillation data, the Δχ2A4

value is located between
these two curves. We summarize the above setting in
Appendix A 1. The larger Δχ2A4

values are seen for α21,

α22, α23, and α33. For the other two parameters α31 and α32,
which don’t perform as well, a minor asymmetry feature is
seen. α31 < 0 has a slightly higher significance than
α31 > 0. At α31 ¼ 0.1, the exclusion level can reach
1 ≤ Δχ2A4

≤ 6; however, at α31 ¼ −0.1, Δχ2A4
ranges from

2.5 to 9.5. We see the opposite asymmetry for α32, as 1.6 ≤
Δχ2A4

≤ 6.3 (0.4 ≤ Δχ2A4
≤ 4.8) at α32 ¼ 0.1 (−0.1).

To understand the statistical meaning of the result in
Fig. 5, we need to look at Table VI. Given a flavor model
that predicts both oscillation and NSI parameters, we
should adopt Wilks’ theorem. Considering the maximum
and minimum of the possible number of degrees of freedom
for the χ2 distribution, in Table VI we show the average
statistical significance Nσ to exclude the A4 symmetry by
simply usingWilks’ theorem in the case with a matter effect
corresponding to the 1σ bounds in Table V. The exclusion
level for α23 is from 7σ to about 10σ, while that for α21 and
α22 ranges from ∼4σ to ∼6σ.
We conclude this subsection by noting that DUNE has a

high potential to test textures predicted by the “A4

symmetry” hypothesis, which only predicts diagonal
entries of ϵ.

C. Testing “Z2 symmetry” in DUNE

From the EFT point of view, combining dimension-eight
operators with the Z2-preserving flavon VEV can predict
plenty of off-diagonal NSI textures. Therefore, testing
the “Z2 symmetry” by using Z2-motivated NSI textures
is more complicated than testing the “A4 symmetry.”
Fortunately, some of them have stronger constraints
than others if UV completions of these operators are
accounted for, and only T1, T2, T 3, and T 4 may reach
the percent level, as shown in Sec. IV B. To simplify
our discussion, we will only focus on these textures.
For clarity, we reparametrize their linear combination as
follows:

TABLE VI. The averaged statistical significance to exclude
the A4 symmetry at the 1σ bounds in Table V for two cases with
different degrees of freedom (d.o.f.) using Wills theorem. These
two cases are considered to be the maximum and minimum of the
possible degrees of freedom. The range is for all possible
correlations. The maximum (minimum) number of d.o.f. corre-
sponds to the case with six free oscillation parameters and eight
free NSI parameters, compared to the A4-symmetry-preserved
case with zero (six) free oscillation parameters and two free NSI
parameters: jð6þ 8Þ − ð0þ 2Þj ¼ 12 for the maximum, while for
the minimum jð6þ 8Þ − ð6þ 2Þj ¼ 6.

Parameter
d.o.f. α21 α22 α23

6 4.8σ–5.7σ 4.8σ–5.5σ 7.8σ–10.2σ
12 3.7σ–4.6σ 3.7σ–4.4σ 6.9σ–9.4σ

FIG. 5. Δχ2A4
to exclude the “A4 symmetry” hypothesis

(α2n ¼ α3n ¼ 0) over the true value from −0.3 to 0.3. α2n or
α3n are forbidden under the flavor symmetry A4. Normal mass
ordering with δ ¼ 270° is assumed. The solid (dashed) curves
represent the fixed (free) oscillation parameters, which can been
seen as the cases with the minimum (maximum) correlation with
the oscillation parameters. More details about the setting can be
seen in Table X. The oscillation parameters are taken from the
current global fit results [62] (shown in Table IX).
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0
B@

−x xþ y − z − iw xþ yþ zþ iw

x − zþ iw z y − iw

xþ z − iw yþ iw −z

1
CA ð66Þ

where x≡ α2, y≡ − α1
3
þ 2α2

3
ffiffi
2

p , z≡ α3ffiffi
3

p , and w≡ α31ffiffi
6

p . This

parametrization applies two strong constraints Δϵμτ and
Δϵ̃ττ to y and z, respectively. As we will see later, this helps
us to focus on a simple but not highly excluded structure for
the NSI matrix.
Table VII shows the 1σ constraint on x, y, z, w in Eq. (66)

translated from Table IV, and the predicted sensitivity for
DUNE with fixed oscillation parameters, assuming
w ¼ x ¼ y ¼ z ¼ 0. For both cases, we test one parameter
and allow the others to vary, except for w in the fitting with
global fit results. Keeping in mind that xu;d, yu;d and zu;d

should be multiplied by a factor ∼3 when comparing with
x, y, and z, we find that the precision for x, y, and z for
DUNE is competitive with current global fit results.
Besides, DUNE is sensitive to the imaginary part w, which
however is assumed to be zero in the global fit.
We find that the result in Table VII imposes very

restrictive bounds on y and z around zeros through the
elements ϵ̃ττ and ϵμτ, and the possibility of a nonzero x. This
result leads to the structure

ϵ ¼

0
B@

0 x x

x x 0

x 0 x

1
CA: ð67Þ

Two sum rules can be read from Eq. (67),

ϵeμ ¼ ϵeτ ¼ −ϵ̃ee; ð68Þ

ϵμτ ¼ ϵ̃ττ ¼ 0: ð69Þ

In the following, we study the exclusion level for DUNE
to exclude the matter-effect NSIs in the form of Eq. (67).
The statistical quantity that we study is

Δχ2Z2
≡ χ2jx − χ2b:f:; ð70Þ

where χ2jx is the χ2 value defined in Eq. (65), assuming ε
satisfies the structure in Eq. (67). Thus, for χ2jx we use x
for the NSI parameters, while for χ2b:f:, the parametrization
ϵαβ is used.
In Fig. 6, we show Δχ2Z2

for all possible correlations
from ϵαβ or ϵαβ ¼ −0.65 to 0.65. We vary the true value of
one certain ϵαβ, but fix the others to be zero. We use the

FIG. 6. Δχ2Z2
value [defined in Eq. (70)] to exclude the sum

rules in Eqs. (68) and (69) over the true value of
−0.65 < ϵαβ < 0.65, for normal mass ordering with δ ¼ 270°.
The solid (dashed) curves represent the fixed (free) oscillation
parameters, which can been seen as the cases with the minimum
(maximum) correlation with the oscillation parameters. Also, we
consider all possible numbers of degrees of freedom. In the right
panel we show the average statistical significance Nσ to exclude
this model using Wilks’ theorem with the 1σ bounds in Table IV.

TABLE VII. The 1σ bounds for xu;d, yu;d, and zu;d from the
global fit [23] shown in Table IV, and expected 1σ bounds on w,
x, y, and z for DUNE with fixed oscillation parameters, assuming
true values w ¼ x ¼ y ¼ z ¼ 0. The superscripts u and d denote
NSIs with only u and d quarks, respectively. For both fittings, we
allow the other NSI parameters to vary, except for w in the fit
using the global fit results. To avoid conflict with the “real ϵα≠β”
assumption of the global fit, we set w ¼ 0 in the second and
fourth columns.

Global Fit Global Fit DUNE sensitivity

wu � � � wd � � � w ½−0.013; 0.025�
xu ½−0.034; 0.013� xd ½−0.035; 0.012� x ½−0.1; 0.1�
yu ½−0.004; 0.003� yd ½−0.004; 0.003� y ½−0.01; 0.01�
zu ½−0.002; 0.005� zd ½−0.002; 0.005� z ½−0.007; 0.017�

TABLE VIII. The averaged statistical significance to exclude
the texture in Eq. (67) for the value of ϵ̃αα or ϵαβ corresponding to
the 1σ bounds in Table IV for two possible numbers of degrees of
freedom, approximated by adopting Wilks’ theorem. These two
cases are considered to be the maximum and minimum of the
possible number of degrees of freedom. The range is for all
possible correlations. For the number of d.o.f., the maximum
(minimum) is the case with six free oscillation parameters and
eight free NSI parameters, compared to the hypothetical holding
pattern in (67) for NSIs with zero (six) free oscillation parameters
and one free NSI parameter: jð6þ 8Þ − ð0þ 1Þj ¼ 13 for the
maximum, while for the minimum jð6þ 8Þ − ð6þ 1Þj ¼ 7.

Parameter
d.o.f. ϵ̃ee ϵ̃ττ ϵeμ ϵeτ ϵμτ

7 2.2σ–4.7σ ∼0 3.1σ–6.1σ 5.7σ–9.4σ ∼0
13 1.1σ–3.7σ ∼0 2σ–5.1σ 4.7σ–8.6σ ∼0
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same experimental setting and the same oscillation param-
eter values as in Sec. V B. For the first sum rule, in Eq. (68),
within the range ½−0.05;þ0.05�, ϵeμ and ϵeτ can reach a
significance Δχ2Z2

> 10. The performance of the ee com-
ponent is the worst one. For the second sum rule, in
Eq. (69), a “Δχ2Z2

< 1” significance covers roughly
−0.05 < ϵ̃ττ < 0.05 and −0.03 < ϵμτ < 0.03.
As discussed in Sec. V B, we show the statistical

significance of every element of the NSI matrix with
two possible degrees of freedom, at values of ϵ̃αα and
ϵαβ corresponding to the 1σ bounds in Table IV. These two
cases again are for the maximum and minimum of the
possible number of degrees of freedom. We find that for the
ττ and μτ elements, there is no chance to exclude this
model. This is because of the tight constraint on these two
elements in the global fit results. We see a high exclusion
level for ϵeτ; it ranges from 4.7σ to 9.4σ. In the following
for ϵeμ, the significance is expected to be from 2σ to 6.1σ.
For the ee element, we also see a high significance from
1.1σ to 4.7σ.

VI. CONCLUSION

Non-Abelian discrete flavor symmetries, originally pro-
posed to explain lepton flavor mixing, may contribute to
other phenomenological signatures beyond the standard
case of third-generation neutrino oscillations. The tests of
flavor symmetries have been discussed for a while in the
charged lepton sector, but they have not been mentioned in
the neutrino sector so far. In this paper, under the
assumption of an A4 flavor symmetry, we investigated
the constraints on matter-effect NSIs imposed by A4

symmetry and, after its breaking, those imposed by the
residual symmetry Z2. We established connections between
NSIs and flavor symmetries on two levels: the effective
field theory level and the UV completion level.
On the effective field theory level, we imposed A4

symmetry on higher-dimensional operators (d ≤ 8),
which results in NSIs in neutrino oscillations. We only
considered operators involving four SM fermions. We have
carefully removed those operators that introduce
tree-level four-charged-fermion interactions to avoid the
strong constraints from the relevant flavor-violating
processes. Only one dimension-six operator [O1¼
εacεbdðLaαγ

μLbβÞðLcγγ
μLdδÞ� and seven dimension-eight

operators [O2;3;4;5;6 ¼ ðναLγμνβLÞðFγγμFδÞ (for F ¼
UR; DR; ER; Q; L), O7 ¼ ðLα H̃ γμLbβÞðQbγγμH̃†QδÞ, and
O8 ¼ εbcðLα H̃ γμLbβÞðQγHγμQcδÞ] contribute to matter-
effect NSIs, as shown in Table I. Following the general
approach used in flavor models, the three lepton doublets
L1, L2, and L3 were arranged as a triplet of A4. For any
other SM fermions, we performed a scan of all possible
representations in the flavor space. By including a flavon
with a Z2-preserving VEV, A4 is broken to Z2, and we

obtained Z2-motivated NSI textures. Both A4-motivated
textures and Z2-motivated textures have been systemati-
cally investigated in this work, with the main result listed in
Table II.
Then, we considered how to realize these operators by

introducing new particles in renormalizable models of A4.
The dimension-six operator is realized by introducing
electroweak singly charged scalars as mediators.
However, this case is strongly suppressed since couplings
for L1, L2, and L3 in A4 are correlated with each other, and
thus strong constraints from CLFV measurements cannot
be avoided. Dimension-eight operators are realized by
including heavy sterile neutrinos and charged scalars.
The operators O2;3;4;5 involve extra fermions F ¼
UR; DR; ER; Q. By arranging F as singlets of A4, the
couplings for different generation fermions, i.e., Fi and
Fj (for i ≠ j), are not correlated with each other, and the
constraints from CLFV measurements or quark-flavor-
violating processes do not apply to NSIs. Imposing A4

does not give interesting observable NSI textures. After A4

is broken to Z2, four interesting textures T1, T 2, T3, and T 4,
were obtained, as shown in Eq. (50). We refer to them as
major textures. The main constraints to these textures are
from the measurement of the nonunitary effect of the lepton
mixing. Including the experimental constraints, the coef-
ficients of these textures may maximally reach the 10−2 or
10−3 level. Arranging F as triplets of A4 gives additional
NSI textures, all strongly constrained by experiments, and
we refer to them as minor textures.
To understand what we can do with NSI textures in the

near future, we used the A4- and Z2-motivated NSI textures
to analyze how to test the flavor symmetry by measuring
NSIs in DUNE. We considered all possible correlations and
the maximum and minimum numbers of free parameters,
which affect the corresponding statistical significance. Two
applications were studied. One was a test of “A4 sym-
metry.” The off-diagonal entries of the NSI matrix are
forbidden by A4 symmetry, i.e., α21 ¼ α22 ¼ α23 ¼ α31 ¼
α32 ¼ α33 ¼ 0. Excluding this hypothesis would allow us
to exclude the “A4 symmetry,” and we predict that DUNE
will be able to accomplish this. For the cases with the
maximum and minimum numbers of degrees of freedom
for the χ2 distribution, in Table VI we show the average
statistical significance Nσ to exclude the A4 symmetry
using Wilks’ theorem in the case with a matter effect
corresponding to the 1σ bounds in Table V. The exclusion
level for α23 is from 7σ to about 10σ, while that for α21 and
α22 ranges from ∼4σ to ∼6σ. High exclusion levels for α3n
(n ¼ 1, 2, 3) are also expected. DUNE can constrain NSI
parameters competitively with current global data. In
particular, it can measure the imaginary part w with percent
precision. We also suggested testing the two sum rules of
the NSI parameters, as shown in Eqs. (68) and (69). We
showed the statistical significance to exclude the texture in
Eq. (67) for every element of the NSI matrix at values
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corresponding to the 1σ bounds in Table IV, in the cases
with the maximum and minimum numbers of degrees of
freedom. We found that, although for the ττ and μτ
elements there is no way to exclude this model, the high
exclusion level of ϵeτ ranges from 4.7σ to 9.4σ. For ϵeμ and
ϵ̃ee, the significance is expected to be from 2σ to 6.1σ and
1.1σ to 4.7σ, respectively. We now see good performance
for both applications in DUNE.
To summarize, NSIs in neutrino oscillations have been

studied in the framework of non-Abelian discrete flavor
symmetries for the first time. The textures of NSIs were
predicted using flavor symmetries. Measuring these tex-
tures can in principle provide a new way to test flavor
symmetries and residual symmetries. It is a complimentary
to the studies of flavor symmetries in standard neutrino
oscillation measurements and CLFV processes. Our sim-
ulation results show that even though matter NSI effects are
predicted to be small for DUNE in general, these could
provide extra information that might extend our under-
standing of flavor symmetries. And, we showed how useful
they are. What we wished to show in this article was
not only the theoretical features of flavor symmetries, but
also the idea that we cannot waste these small but useful
effects. In particular, we note that if A4 is conserved at the
NSI level, it could be hard to see matter-effect NSIs in
DUNE. This is because DUNE is less sensitive to the
flavor-conserving effects. Therefore, the null result for the
matter-effect NSIs in DUNE could mean that “A4 sym-
metry” is conserved at the NSI level. And this could still
extend our knowledge of flavor symmetries at higher
energies.
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APPENDIX A: NEUTRINO
OSCILLATION PARAMETERS

In the standard case, neutrino oscillations are described
by the mass-squared differences Δm2

21, Δm2
31, and Δm2

32,
where Δm2

ji ¼ m2
j −m2

i and the mixing matrix U is para-
metrized by three mixing angles θij and a CP-violating
phase δ as

U≡
0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

1
CA

×

0
B@

c12 s13 0

−s13 c23 0

0 0 1

1
CA; ðA1Þ

where sij ¼ sin θij and cij ¼ cos θij. Except for δ, we
generally adopt the last global fit results in Table IX, taken
from Ref. [62], for the true values and the priors. For
consistency, we should assume a flavor model for both the
oscillation and NSI parameters. However, we do not expect
that this will make a large difference since the flavor model
should be allowed by global fit results. Further, as the current
global result is not significantly changed after including
NOνA data, which may have the impact of NSIs, our results
do not lose predictability. Except for δ, we implement priors:
we assume Gaussian distributions, centred at the true value
with thewidth taken as the 1σ bound from the current global
fit results, shown in Table IX.

TABLE IX. The true values used in this work, unless otherwise
stated explicitly, with their uncertainties (the 1σ range of the priors
we have used in our fit). These are based on NuFit 3.0 (2016) [62].
The definition of Δm2

3l is as the same in NuFit 3.0, for normal
ordering Δm2

3l ¼ Δm2
31, while for the inverse one Δm2

3l ¼ Δm2
32.

Parameter Normal ordering Inverted ordering

θ12 [°] 33.56þ0.77
−0.75 33.56þ0.77

−0.75
θ13 [°] 8.46þ0.15

−0.15 8.49þ0.15
−0.15

θ23 [°] 41:6þ1.5
−1.2 50:0þ1.1

−1.4
Δm2

21 [×10−5 eV2] 7.49þ0.19
−0.17 7.49þ0.19

−0.17
Δm2

3l [×10
−3 eV2] þ2.524þ0.039

−0.040 −2.514þ0.038
−0.041

δ [°] 270 270

TABLE X. Summary of the settings for the true and tested
values used to study Δχ2A4

. The oscillation parameters (Osc.
Para.) are fixed at the best fit (b.f.) values from the global fit
results in Table IX for the true values. We study both scenarios
with fixed and varying oscillation parameters with priors, con-
sidering all possible correlations. The widths of the priors for the
oscillation parameters are the sizes of the 1σ uncertainties from
the global fit results in Table IX. The flavor symmetry A4 only
allows fα12; α13g, which are fixed at 0 for true values, but are
allowed to vary freely for tested values. The parameters fα2n,
α3ng are not allowed by A4. For their true values, we study each of
them by changing one value from −0.3 to 0.3, but fixing the other
at 0. For the tested values, we fix all of them at 0.

Osc. Para. α12, α13 α2n; α3n

True values Fix them
at b.f.

Fix them at 0 Change one; fix
the other at 0

Tested values All fixed
or free

Allow them
varying

Fix all at 0
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1. Parameter settings for the A4 symmetry study

In Sec. V B we study the potential to exclude the
hypothesis of A4 symmetry preservation in DUNE. The
settings for the oscillation and NSI parameters in the
simulation are summarised in Table X.

APPENDIX B: TEXTURES OF NSIS AT THE
SOURCE AND DETECTOR PREDICTED BY A4

In this Appendix, we list the textures of NSIs at the
source and detector in the framework of A4 symmetry.
These textures are directly dependent on the fermion
representations in the flavor symmetry.
NSIs at the source and detector are expressed as 3 × 3

complex matrices ϵs and ϵd, respectively, contributing to the
superpositions of flavor states,

jνsαi ¼
1

nsα

�
jναi þ

X
β

ϵsαβjνβi
�
;

hνdβj ¼
1

ndβ

�
hνβj þ

X
α

ϵdαβhναj
�
; ðB1Þ

where nsα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

βjδαβ þ ϵsαβj2
q

and ndβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

αjδαβ þ ϵdαβj2
q

(for α ≠ β ≠ γ ≠ α) are normalization factors. Replacing
εd;s with εd;s�, we obtain NSIs for antineutrinos. The
effective operators describing NSIs for neutrino produc-
tion at the source and measured at the detector can be
expressed as

LNSI ¼ 2
ffiffiffi
2

p
GF

X12
p¼7

cpαβγδO
p
αβγδ þ H:c: ðB2Þ

Given the higher-dimensional operators in Eq. (19), the
relations between the NSI parameters at the source and the
detector (ϵsαβ and ϵ

d
αβ) and the higher-dimensional operators

are given by

ϵsαβ ¼
X12
p¼7

ns;pcpαβ11; ϵdαβ ¼
X12
p¼7

nd;pcpαβ11; ðB3Þ

where ns;p and nd;p are order-one coefficients related to the
number densities of electrons and neutrons.
We only require that the lepton doublets L ¼

ðL1; L2; L3ÞT be a triplet 3 of A4 (L3) to realize large
mixing angles, but we do not specify the representations of
A4 for the rest of the fermions. In other words, they could
have any of the following representations:
(1) Three right-handed charged leptons E1R; E2R; E3R

are arranged as different singlets of A4 or form a
triplet 3. The former case is helpful for realizing
hierarchical charged lepton masses. Without loss of

generality, we consider two cases ðER1Þ and ðER3Þ
for right-handed charged leptons:

ðER1Þ E1R ∼ 1; E2R ∼ 10; E3R ∼ 100;

ðER3Þ ER ¼ ðE1R; E2R; E3RÞ ∼ 3: ðB4Þ
(2) The left-handed quarks Q1, Q2, Q3 may also be

arranged as different singlets or form a triplet. We
consider four cases:

ðQ1Þ Q1 ∼ 1;

ðQ10Þ Q1 ∼ 10;

ðQ100Þ Q1 ∼ 100;

ðQ3Þ Q ¼ ðQ1; Q2; Q3ÞT ∼ 3: ðB5Þ

Since Q2 and Q3 do not contribute to NSIs in
neutrino oscillations, we do not care about their
representations.

(3) Similarly, we consider two cases for up-type and
down-type right-handed quarks, respectively:

ðUR1Þ U1R ∼ 1; ðDR1Þ D1R ∼ 1;

ðUR10Þ U1R ∼ 10; ðDR10Þ D1R ∼ 10;

ðUR100Þ U1R ∼ 100; ðDR100Þ D1R ∼ 100;

ðUR3Þ UR ¼ ðU1R; U2R; U3RÞT ∼ 3;

ðDR3Þ DR ¼ ðD1R; D2R; D3RÞT ∼ 3: ðB6Þ
All of the above possibilities are considered in this
Appendix.

1. A4-invariant operators

We scan all A4-invariant operators c7−12αβγδO
7−12
αβγδ , which

contribute to NSIs at the source and detector. Besides T 11,
T12, and T13 in Eq. (22), we find six additional NSI
textures:

T 0
11 ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; T 0

12 ¼

0
B@

0 −1 0

0 0 2

−1 0 0

1
CA;

T 0
13 ¼

0
B@

0 −1 0

0 0 0

1 0 0

1
CA;

T 00
11 ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; T 00

12 ¼

0
B@

0 0 −1
−1 0 0

0 2 0

1
CA;

T 00
13 ¼

0
B@

0 0 1

−1 0 0

0 0 0

1
CA: ðB7Þ
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The operators that may result in these correlations are listed
in Table XI.
For c7−9αβγδO

7−9
αβγδ, the same discussions on c2αβγδO

2
αβγδ apply

to these operators. c10−12αβγδ O10−12
αβγδ provides more textures for

NSIs at the source and detector. Here we take O12
αβγδ as an

example to obtain these textures in detail.
(1) If L ∼ ER ∼Q ∼ UR ∼ 3, the A4-invariant combina-

tions ðLERÞ3SðQURÞ3S and ðLERÞ3AðQURÞ3S result
in T12 and T13, respectively.

(2) If L ∼ ER ∼Q ∼ 3 and U1R ∼ 10, the A4-invariant
combinations ðLERÞ3SðQURÞ3 and ðLERÞ3AðQURÞ3
result in T 0

12 and T 0
13, respectively. Replacing

UR ∼ 10 by UR ∼ 100 leads to another two textures,
T 00
12 and T 00

13, respectively. These relations are
also valid for L ∼ ER ∼UR ∼ 3, Q ∼ 100, and 10,
respectively.

(3) If L ∼ ER ∼ 3 and Q1 ∼U1R ∼ 1; 10; 100, the A4-
invariant combinations ðLERÞ1ðQURÞ1 result in
T11. If Q1 and U1R belong to different singlets of
A4, we obtain T 0

11 and T 00
11 for Q1U1R ∼ 10 and 100,

respectively.
(4) If L ∼Q ∼UR ∼ 3, E1R ∼ 1; E2R ∼ 10; E3R ∼ 100,

we obtain the A4-invariant combinationsP
iyiðLEiRÞ3ðQURÞ3 and

P
iy

0
iðLEiRÞ3ðQURÞ3A ,

which we denote as ðLERÞ3ðQURÞ3 and
ðLERÞ3ðQURÞ3A , respectively. Here, yi and y0i are
arbitrary parameters. For the first term we find

cαβ11 ¼ 0 for α ≠ β: ðB8Þ

Then, the NSI matrix ϵs;d can be reexpressed as
D1T11, where D1 is an arbitrary diagonal matrix.
The second operator does not contribute to the NSIs.

(5) If L∼UR∼3, E1R∼1;E2R∼10;E3R∼100 and Q ∼ 1,
the A4-invariant combinations ðLERÞ3ðQURÞ3S only
result in an arbitrary diagonal matrix, just like the
former item, and we express the NSI matrix ϵs;d as
D2T11, where D2 is an arbitrary matrix. Once we
change the representation of Q to be 100ð0Þ, the order
of the three components of the triplet ðQURÞ3S will
be changed, and we arrive at D2T

0ð00Þ
11 .

Since O10
αβγδ is only different from O12

αβγδ by the Lorentz
indices, it gives the same types of correlations as the latter.
O11

αβγδ has a different particle arrangement than O12
αβγδ. By

making the replacements Q → DR and Q → UR, all of the
discussions regarding O12

αβγδ apply to O11
αβγδ.

The textures in Eq. (B7) only appear at the neutrino
source and detector and the NSI matrices ϵs;d may be
combinations of some of Ii, I0i, and I00i , depending on the
choices for the representations of A4 to which ER, Q, UR,
and DR belong. For instance, if E1R ∼ 1, E2R ∼ 10,
E3R ∼ 100, Q ∼ 3, U1R ∼ 1, D1R ∼ 1, we get the same
combination of NSI textures at the source and the detector
as in matter,

ϵs;d ¼ T11α
s;d
11 þ T12α

s;d
12 þ T13α

s;d
13 ; ðB9Þ

where αs;d1n are complex parameters. Changing the repre-
sentation of U1R to 10, we arrive at

TABLE XI. Operators preserving A4 symmetry and the predicted NSI textures at the neutrino source and detector, where F represents
any fermion content in the SM and 10 ≡ 1,Di are arbitrary diagonal matrices. Regarding the notation of the representations, for instance,

ðL3; E3; Q1ð0;00Þ; U3Þmeans L ∼ 3; e ∼ 3; Q ∼ 1ð0;00Þ; u ∼ 3, andDR can take arbitrary representations of A4. The textures T
ð0;00Þ
1n are shown

in Eq. (B7).

Representations A4-invariant operators NSI textures

O7−9 ðL3Þ ðL̄LÞ1ðF̄FÞ1 T 11

ðL3; F3Þ ðL̄LÞ3SðF̄FÞ3S T 12

ðL̄LÞ3AðF̄FÞ3S T 13

O10;12 ðL3; ER3; Q3; UR3Þ ðL̄ERÞ1ðQ̄URÞ1 T 11

ðL̄ERÞ3SðQ̄URÞ3S T 12

ðL̄ERÞ3AðQ̄URÞ3S T 13

ðL3; ER3; Q3; UR1ð0;00ÞÞ or ðL3; ER3; Q1ð00;0Þ; UR3Þ ðL̄ERÞ3SðQ̄URÞ3 T ð0;00Þ
12

ðL̄ERÞ3AðQ̄URÞ3 T ð0;00Þ
13

ðL3; ER3; Q1; UR1ð0;00ÞÞ, ðL3; ER3; Q10; UR10ð00;0ÞÞ
or ðL3; ER3; Q100; UR100ð0;0ÞÞ

ðL̄ERÞ1ð00;0Þ ðQ̄URÞ1ð0;00Þ T ð0;00Þ
11

ðL3; ER1; Q3; UR3Þ ðL̄ERÞ3ðQ̄URÞ3S D1T11

ðL3; ER1; Q1ð00;0Þ; UR3Þ or ðL3; ER1; Q3; UR1ð0;00ÞÞ ðL̄ERÞ3ðQ̄URÞ3 D2T
ð0;00Þ
11

O11 Results are obtained from those of O10;12 after the replacements Q̄ → D̄R and UR → Q.
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ϵs;d ¼ T 11α
s;d
11 þ T12α

s;d
12 þ T13α

s;d
13 þ T 0

11α
0s;d
11

þ T12α
0s;d
12 þ T13α

0s;d
13 ; ðB10Þ

where αð0Þs;d1n are complex parameters.

2. Z2-invariant operators

Once the operators O7−12 couple to the flavon VEV,
χ ¼ ð1; 1; 1ÞTv χ , new NSI textures at the source and
detector are predicted, as summarized in Table XII.
χα0O7−9

αβγδ give rise to the same textures as in Eq. (33).
For χα0O10−12

αβγδ , we follow the same procedure as in the last
section, taking χα0O12

αβγδ as an example:
(1) If L ∼ ER ∼Q ∼UR ∼ 3, the Z2-invariant opera-

tors χððLERÞ3SðQURÞ3SÞ3S , χððLERÞ3AðQURÞ3SÞ3S ,
χððLERÞ3SðQURÞ3SÞ3A , and χððLERÞ3AðQURÞ3SÞ3A
result in the textures 3T 12 − T 22, 3T13 þ T 23, T 32,
and T 33, respectively. By changing the representa-
tions to L ∼ ER ∼Q ∼ 3 and U1R ∼ 1ð0;00Þ, or L ∼
ER ∼UR ∼ 3 and Q1 ∼ 1ð0;00Þ, we arrive at the same
textures.

(2) If L ∼ ER ∼ 3 and Q1, U1R ∼ 1; 10; 100, the Z2-
invariant combinations χððLERÞ3SðQURÞ1;10;100 Þ3,
χððLERÞ3AðQURÞ1;10;100 Þ3 result in T21 and T 22,
respectively.

(3) If L ∼Q ∼UR ∼ 3, E1R ∼ 1; E2R ∼ 10; E3R ∼ 100, the
operator

P
iy

00
i χðLEiRÞ3ðQURÞ1 requires

cee11 ¼ ceμ11 ¼ ceτ11; cμe11 ¼ cμμ11 ¼ cμτ11;

cτe11 ¼ cτμ11 ¼ cττ11; ðB11Þ

where there is no correlation between cαβ11 and
cα0β011 once α ≠ α0. It gives rise to the NSI texture

0
B@
y001 y001 y001
y002 y002 y002
y003 y003 y003

1
CA¼

0
B@
y001 0 0

0 y002 0

0 0 y003

1
CAT 0

1T11; ðB12Þ

where

TABLE XII. Operators preserving the residual symmetry Z2, Z2 ⊂ A4, and the resulting NSI textures at the neutrino source and
detector, where F represents any fermion content in the SM. The NSI parameter correlations T 2n and T3n are shown in Eq. (33). Di are
arbitrary diagonal matrices.

Representations Z2-invariant operators NSI textures

χO7−9 ðL3Þ χðL̄LÞ3SðF̄FÞ1 T 12 þ T 22

χðL̄LÞ3AðF̄FÞ1 T 13 þ T 23

ðL3; F3Þ χððL̄LÞ3SðF̄FÞ3SÞ3S 2T 12 − T 22

χððL̄LÞ3AðF̄FÞ3SÞ3S 2T 13 − T 23

χððL̄LÞ3SðF̄FÞ3SÞ3A T32

χððL̄LÞ3AðF̄FÞ3SÞ3A T33

χO10;12 ðL3; ER3; Q3; UR3Þ χððL̄ERÞ3SðQ̄URÞ3SÞ3S 2T 12 − T 22

χððL̄ERÞ3AðQ̄URÞ3SÞ3S 2T 13 − T 23

χððL̄ERÞ3SðQ̄URÞ3SÞ3A T32

χððL̄ERÞ3AðQ̄URÞ3SÞ3A T33

ðL3; ER3; Q3; UR1ð0;00ÞÞ or ðL3; ER3; Q1ð0;00Þ; UR3Þ χððL̄ERÞ3SðQ̄URÞ3Þ3S 2T 12 − T 22

χððL̄ERÞ3AðQ̄URÞ3Þ3S 2T 13 − T 23

χððL̄ERÞ3SðQ̄URÞ3Þ3A T32

χððL̄ERÞ3AðQ̄URÞ3Þ3A T33

ðL3; ER3; Q1; UR1ð0;00ÞÞ, ðL3; ER3; Q10; UR10ð00;0ÞÞ
or ðL3; ER3; Q100; UR100ð0;0ÞÞ

χððL̄ERÞ3SðQ̄URÞ1;10;100 Þ3 T 12 þ T 22

χððL̄ERÞ3SðQ̄URÞ1;10;100 Þ3 T 13 þ T 23

ðL3; ER1; Q3; UR3Þ χðL̄ERÞ3ðQ̄URÞ1 D3T 0
1T 11

χððL̄ERÞ3ðQ̄URÞ3SÞ3S D4T 0
1T 12

χððL̄ERÞ3ðQ̄URÞ3SÞ3A D5T 0
1T 13

ðL3; ER1; Q1ð0;00Þ; UR3Þ or ðL3; ER1; Q3; UR1ð0;00ÞÞ χððL̄ERÞ3ðQ̄URÞ3Þ3S D6T 0
1T 12

χððL̄ERÞ3ðQ̄URÞ3Þ3A D7T 0
1T 13

χO11 Results are obtained from those of χO10;12 after the replacements Q̄ → D̄R and UR → Q.
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T 0
1 ¼

0
B@

1 1 1

1 1 1

1 1 1

1
CA: ðB13Þ

χððLERÞ3ðQURÞ3SÞ3S and χððLERÞ3ðQURÞ3SÞ3A
lead to

cee11 ¼ −2ceμ11 ¼ −2ceτ11;

cμe11 ¼ −2cμμ11 ¼ −2cμτ11;

cτe11 ¼ −2cτμ11 ¼ −2cττ11;

ceμ11 ¼ −ceτ11; cμμ11 ¼ −cμτ11;

cτμ11 ¼ −cττ11; ðB14Þ
respectively, and there is no correlation between
cαβ11 and cα0β011 for α ≠ α0 in each case. From these
two operators, we obtain the NSI textures

D4T 0
1T 12; D5T 0

1T 13; ðB15Þ
respectively, where Di are independently arbitrary
diagonal matrices. Replacing the representation

of Q by any singlet 1, 10, or 100, we obtain the
Z2-invariant operators χððLERÞ3ðQURÞ3Þ3S and
χððLERÞ3ðQURÞ3Þ3A , which give the similar tex-
tures D6T 0

1T 12 and D7T 0
1T 13, respectively, with D6

and D7 being arbitrary diagonal matrices.

APPENDIX C: MATHEMATICAL
PROPERTIES OF T i

The textures T i satisfy the following interesting math-
ematical properties. They are helpful for our discussion
in Sec. IV.
(1) T i (for i ¼ 1, 2, 3, 4) form the following “closed”

algebras:

T2
i ¼ T1; T 1T i ¼ T i; T2T3 ¼ −iT 4;

T2T4 ¼ iT3; T3T4 ¼ −iT2: ðC1Þ

(2) Given two 3 × 3 coupling matrices or mass matrices
M1¼α01þ

P
4
i¼1αiT i and M2 ¼ β01þP

4
i¼1 βiT i,

their product M1M2 is a linear combination of 1
and T i,

M1M2 ¼ α0β01þ ðα0β1 þ α1β0 þ α1β1 þ α2β2 þ α3β3 þ α4β4ÞT1

þ ðα0β2 þ α2β0 þ α1β2 þ α2β1 þ iα4β3 − iα3β4ÞT 2

þ ðα0β3 þ α3β0 þ α1β3 þ α3β1 þ iα2β4 − iα4β2ÞT 3

þ ðα0β4 þ α4β0 þ α1β4 þ α4β1 þ iα3β2 − iα2β3ÞT 4: ðC2Þ

(3) If M1 is reversible, the inverse matrix M−1
1

M−1
1 ¼ α0

detA

�
detA
α20

1þ
�
α0 þ α1 −

detA
α20

�
T 1

− α2T 2 − α3T 3 − α4T 4

�
; ðC3Þ

where detM1¼α0ðα20þ2α0α1þα21−α22−α23−α24Þ is
also a linear combination of 1 and T i.

By setting some of αi or βi to zero, the following corollaries
are obtained:
(1) 1 and T1 form a closed algebra: ifM1, M2 are linear

combinations of 1 and T 1, their product and inverse
matrices (if reversible) are also linear combinations
of 1 and T 1.

(2) 1, T1, and T2 form a closed algebra: if M1, M2 are
linear combinations of 1, T1, and T2, their product
and inverse matrices (if reversible) are also linear
combinations of 1, T 1, and T2.

(3) 1, T1, and T3 form a closed algebra: if M1, M2 are
linear combinations of 1, T1, and T2, their product
and inverse matrices (if reversible) are also linear
combinations of 1, T 1, and T3.

APPENDIX D: OSCILLATION PROBABILITIES
WITH MATTER-EFFECT NSIS

To understand the impact of αmmn (in the following, we
simply use αmn) on neutrino oscillation probabilities, we
consider the probabilities with nonzero ϵmαβ (in the follow-
ing, we simply use ϵαβ). Therefore, we first study the
probability including the NSI matter effects in terms of ϵαβ,
and then, by using the relations between the two parameter
sets in Table III, we can extend our understanding of how
the flavor symmetry model realizes the oscillation proba-
bility through matter-effect NSIs.

Assuming

ffiffiffiffiffiffiffiffi
Δm2

21

Δm2
31

r
∼

ffiffiffiffiffiffiffiffiffijϵαβj
p

∼ s13 as the first-order per-

turbation terms ξ, we expand the disappearance oscilla-
tion probability Pðνμ → νμÞ and appearance oscillation
probability Pðνμ → νeÞ. These equations are given with
the leading-order coefficient for each ϵαβ to understand
how each element affects the probability at the leading
order:7

7Our results are consistent with those of Ref. [67].
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Pðνμ → νμÞ ¼ P0ðνμ → νμÞ þ δPNSIðνμ → νμÞ

≈ P0ðνμ → νμÞ − Aϵμτ cosϕμτ

�
sin3 2θ23

L
2E

sin 2Δ31Lþ 4 sin 2θ23 cos2 2θ23
1

Δm2
31

sin2Δ31L

�

− Aϵ̃ττc223s
2
23ðc223 − s223Þ

�
L
8E

sin 2Δ31L −
1

Δm2
31

sin2Δ31L

�

þ C1μ→e;eμjϵeμj þ C1μ→e;eτjϵeτj þ C2μ→e;eeϵ̃ee; ðD1Þ

Pðνμ → νeÞ ¼ P0ðνμ → νeÞ þ δPNSIðνμ → νeÞ

≈ P0ðνμ → νeÞ þ 8s13jϵeμjs23
Δm2

31

Δm2
31 − A

sinΔA
31L

×

�
s223

A
Δm2

31 − A
cos ðδþ ϕeμÞ sinΔA

31Lþ c223 sin
AL
4E

cos ðδþ ϕeμ − Δ31LÞ
�

þ 8s13jϵeτjc23s223
Δm2

31

Δm2
31 − A

sinΔA
31L

×
�

A
Δm2

31 − A
cos ðδþ ϕeτÞ sinΔA

31L − sin
AL
4E

cos ðδþ ϕeτ − Δ31LÞ
�

þ C2μ→e;μτjϵμτj þ C2μ→e;eeϵ̃ee þ C2μ→e;ττϵ̃ττ; ðD2Þ

where P0ðνα → νβÞ is the transition probability for να → νβ

without NSI matter effects, Δ31 ≡ Δm2
31

4E , and ΔA
31 ≡ Δm2

31
−A

4E .
Here, for the coefficient Corderchannel;element, the upper index
gives the order of this coefficient, and the lower one gives
the channel and the element.
In Eq. (D1), the coefficients of ϵμτ and ϵ̃ττ appear at

leading order, i.e., at the order C0μ→μ;element. However,
the coefficient of ϵ̃ττ is proportional to the factor
ðc223 − s223Þ, which is suppressed since θ23 ∼ 45°. The
coefficients of ϵ̃ee, ϵeμ, and ϵeτ, which are of second, first,
and first order, respectively, have less influence on
Pðνμ → νμÞ. Therefore, the impact of NSIs on the dis-
appearance channel is dominated by ϵμτ. On the other
hand, from Eq. (D2), it is obvious that the largest
contributions to the transition probability are from ϵeμ
and ϵeτ, with coefficients of the first order. In Table XIII, we
present the coefficients for αmn based on Eqs. (D1) and
(D2) and Table III.

TABLE XIII. The leading coefficient of each ϵαβ and αij, for
νμ → νμ and νμ → νe.RCxα→β;γδ (IC

x
α→β;γδ is the coefficient for the

real (imaginary) part of γδ as α → β, which is of the order x.

Channel νμ → νμ νμ → νe

ϵ̃ee C2μ→μ;ee C2μ→e;ee

ϵ̃ττ C0μ→μ;ττ C2μ→e;ττ

ϵeμ C1μ→μ;eμ C1μ→e;eμ

ϵeτ C1μ→μ;eτ C1μ→e;eτ

ϵμτ C0μ→μ;μτ C2μ→e;μτ

α12 C2μ→μ;ee C2μ→e;ee

α13 −
ffiffiffi
2

p
C0μ→μ;ττ

1
2
C2μ→e;ee −

ffiffiffi
2

p
C2μ→e;ττ

α21 1ffiffi
6

p C0μ→μ;μτ
1ffiffi
6

p RC1μ→e;eμ þ 1ffiffi
6

p RC1μ→e;eτ

α22 1ffiffi
3

p C0μ→μ;μτ
1ffiffiffiffi
12

p RC1μ→e;eμþ 1ffiffiffiffi
12

p RC1μ→e;eτ

α23 −1
2
RC1μ→μ;eμþ1

2
RC1μ→μ;eτ − 1

2
RC1μ→e;eμ þ 1

2
RC1μ→e;eτ

α31 − 1ffiffi
6

p IC1μ→μ;eμþ 1ffiffi
6

p IC1μ→μ;eτ − 1ffiffi
6

p IC1μ→e;eμþ 1ffiffi
6

p IC1μ→e;eτ

α32 1ffiffiffiffi
12

p IC1μ→μ;eμ− 1ffiffiffiffi
12

p IC1μ→μ;eτ
1ffiffiffiffi
12

p IC1μ→e;eμ− 1ffiffiffiffi
12

p IC1μ→e;eτ

α33 1
2
IC1μ→μ;eμ þ 1

2
IC1μ→μ;eτ

1
2
IC1μ→e;eμ þ 1

2
IC1μ→e;eτ
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