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Vector bosons heavier than 10−22 eV can be viable dark matter candidates with distinctive experimental
signatures. Ultralight dark matter generally requires a nonthermal origin to achieve the observed density,
while still behaving like a pressureless fluid at late times. We show that such a production mechanism
naturally occurs for vectors whose mass originates from a dark Higgs. If the dark Higgs has a large field
value after inflation, the energy in the Higgs field can be efficiently transferred to vectors through
parametric resonance. Computing the resulting abundance and spectra requires careful treatment of the
transverse and longitudinal components, whose dynamics are governed by distinct equations of motion. We
study these in detail and find that the mass of the vector may be as low as 10−18 eV, while making up the
majority of the dark matter abundance. This opens up a wide mass range of vector dark matter as
cosmologically viable, and further motivates the experimental searches for such particles.
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I. INTRODUCTION

The existence of dark matter (DM) is one of the
motivations for physics beyond the Standard Model
(SM). Recently, vectors (Xμ) have gained significant atten-
tion as an intriguing DM candidate with unique experimen-
tal signatures [1–3]. Theoretically, light vectors arise as
gauge bosons of dark U(1)’s, a simple extension of the
SM and a common prediction of high-energy theories. The
origin of the vector mass is model dependent and can either
be a fundamental parameter in the full theory via the
Stueckelberg mechanism, or can be generated through its
coupling to an additional field which spontaneously breaks
the corresponding U(1) via the Higgs mechanism. In either
scenario the mass of the vector is stable under quantum
corrections, motivating the possibility of vectors with ultra-
light masses, mX ≪ MeV, limited only to having wave-
lengths small enough to form galaxies, mX ≳ 10−22 eV.
Experimentally, light relic vectors present different

opportunities depending on their coupling to the SM.
The overarching challenge in experimental prospects is
competing with the powerful limits from stellar cooling
[3,4] and fifth forces [5] while restricting considerations to
the (approximately) conserved currents of the SM

(otherwise one generically expects dominant constraints
from flavor-changing neutral currents [6,7]). Nevertheless
there exist many experimental proposals to search for
vector DM in unexplored parameter space. Such states
can be observed through their coupling to electrically
charged particles that could be searched for in resonant
cavities [8], LC circuits [9], dish antennas [10], absorption
in direct-detection experiments [11–13], and low-energy
threshold detectors [14–18]. If the vector couples to an
unscreened force such as B − L then its coupling to neutral
matter can be searched for in torsion balances and atom
interferometry [19], gravitational-wave detectors [19,20],
and pulsar binary systems [21]. With current and proposed
experiments, searches for vector DM can be undertaken
over almost the entire mass range 10−22 eV≲mX ≲MeV.
While ideas to detect vector DM are plentiful, the

theoretical prospects for producing ultralight vector DM
are much less explored. For light vectors there are three
classes of production which have been studied in the
literature: freeze-in [22], misalignment [3], and inflationary
fluctuations [23]. Freeze-in production is generically con-
strained by the bound on warm DM. Particles “frozen in”
through an interaction with the SM are produced with
energy/momentum ∼T, the temperature of the thermal bath.
Without additional dynamics the momentum of the relics
will redshift with the expansion of the Universe and hence
track the SMphoton temperature, limiting the producedDM
mass to be above a keV to be consistent with the observation
of small-scale structure.
Misalignment has long been a standard nonthermal

production mechanism for light bosons, first proposed

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 035036 (2019)

2470-0010=2019=99(3)=035036(14) 035036-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.035036&domain=pdf&date_stamp=2019-02-26
https://doi.org/10.1103/PhysRevD.99.035036
https://doi.org/10.1103/PhysRevD.99.035036
https://doi.org/10.1103/PhysRevD.99.035036
https://doi.org/10.1103/PhysRevD.99.035036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


for axions [24–26], and later considered for massive vectors
[2,3]. Here, a zero-momentum condensate of particles is
produced as a result of the coherent oscillations of the field
initially displaced from its minimum. For a generic scalar ϕ
the energy density in the field ρϕ ∼m2

ϕϕ
2 remains constant

when the Hubble scale is greater than its massH ≫ mϕ and
the field value is stuck. Crucially, this is not the case for a
massive vector X: the energy density in the vector field
continues to redshift as ρX ∼m2

XXμXμ ∝ a−2 when H ≫
mX due to the scale factor dependence in the Friedmann-
Robertson-Walker metric on the vector norm. Thus any
initial energy density in a massive vector field is exponen-
tially diluted during a period of inflation, and the minimal
misalignment production of vector DM fails. This problem
is avoided if an Oð1Þ nonminimal coupling to gravity is
added to make the vector conformally invariant and hence
impervious to the expansion of the Universe [3]. However
such a special coupling quantum-mechanically destabilizes
the mass of X, thus destroying one of the primary
motivations for considering vector DM.
Alternatively, vector DM can be produced by the

quantum fluctuations during inflation [23]. This is a very
interesting possibility, as such a production has no danger-
ous large-scale isocurvature perturbations and appears to be
unique to vectors. Here, the observed DM abundance is
saturated for mX ≃ 10−5 eVð1014 GeV=HinfÞ4, and thus
observational constraints on the Hubble scale during
inflation [27] limit the production to masses greater than
about 10−5 eV.
In this paper, we propose a new production mechanism

for vector DM that occurs naturally if it obtains mass
through a dark Higgs field. Generically, the production
relies on a scalar field being displaced far from its minimum
by the end of inflation. As the field rolls down its potential
and begins to oscillate, its coupling to a vector results in a
rapidly oscillating mass for the vector. This leads to
nonperturbative production of X particles through a para-
metric resonance (PR) instability (as is the case in theories
of reheating [28–31], though the dynamics we consider
take place solely during radiation domination). Crucially,
the rate of production is much greater than that of any
possible perturbative process. The produced particles then
have more time to redshift, significantly relaxing the
coldness constraint and allowing for the production of
ultralight DM. This is in analogy with earlier work [32] on
the PR production of axion DM via the dynamics of a
Peccei-Quinn symmetry-breaking field (for other work on
nonperturbative production of relics, see Refs. [33–36]). In
this paper we focus on the minimal case where the scalar
field is a dark Higgs. The nature of the resonance and
resulting abundance of vectors and dark Higgses is differ-
ent depending on the strengths of the gauge coupling e and
dark Higgs quartic coupling, λ. We examine both limits and
find that vector DM can be produced with masses as light as
mX ≳ 10−18 eV, consistent with all constraints. This opens

up most of the mass range for vector DM as cosmologically
viable, and further motivates the experimental searches for
such particles.
The paper is organized as follows. In Sec. II we outline

the model of interest and show the limitations of a
perturbative Higgs decay in producing light vector DM.
In Sec. III we review the relevant nonperturbative dynamics
of PR, specifically as it applies to vector production. In
Sec. IV we examine the PR production of ultralight vector
DM, and in Sec. V we discuss additional cosmological
consequences and constraints on the mechanism. Finally, in
Sec. VI we conclude and discuss future directions.

II. THE MODEL

We now present an outline of the model and detail the
dynamics of an oscillating scalar field in the potential. As
our starting point we consider a complex scalar field, φ, that
will give a mass to the vector:

L ¼ −
1

4
XμνXμν þ jDμφj2 − VðφÞ; ð1Þ

where Dμ ¼ ∂μ þ ieXμ, e is the dark gauge coupling
constant (we absorb the scalar charge into the definition
of e), and Xμν is the field-strength tensor. We consider the
simplest model of spontaneous symmetry breaking with a
potential parametrized as

VðφÞ ¼ λ2
�
jφj2 − v2

2

�
2

: ð2Þ

Expanding φ around the vacuum expectation value (VEV),
we obtain

L ⊃
1

2
e2v2

�
1þ ϕ

v

�
2

XμXμ − VðϕÞ; ð3Þ

where

VðϕÞ ¼ 1

4
λ2ϕ2ðϕþ 2vÞ2: ð4Þ

The vacuum masses of X and the dark Higgs boson are
mX ¼ ev and mϕ ¼ ffiffiffi

2
p

λv, respectively.1 Furthermore, we
refrain from making any assumptions about the magnitude
of the vector coupling to the SM, up to assuming the
coupling is not so large that it efficiently thermalizes
the two sectors (or is phenomenologically excluded in
other ways).

1Note that while the vector mass is radiatively stable, the scalar
mass is not and naturalness would suggest a cutoff of order
Λ≲ vminf1; mϕ=mXg. Ultimately we will be interested in VEVs
much larger than the weak scale, so fine-tuning in the dark Higgs
sector is not a serious constraint and we will not address it further.
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We assume ϕ starts out displaced from its minimum after
inflation with an initial field value, ϕ0. The classical
equation of motion for ϕ is

ϕ̈þ 3H _ϕþ λ2ðϕ3 þ 3vϕ2 þ 2v2ϕÞ ¼ 0; ð5Þ

which is valid as long as the backreaction due to any
created particles is negligible (these effects are crucial in
the termination of nonperturbative particle production
and will be addressed later). The field is stuck until H ∼
meffðϕ0Þ where meffðϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðϕÞp

is the effective (field-
dependent) mass, at which point ϕ begins oscillating about
the minimum. As long as ϕ0 ≪ Mpl (regardless of the
hierarchy between ϕ0 and v) the universe is radiation
dominated at the onset of oscillations which begin at,

Tosc ≃ 0.5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meffMpl

p
; ð6Þ

where Mpl ¼ 2.4 × 1018 GeV is the reduced Planck mass.
We now consider the two limits for the initial field value:

ϕ0 ≪ v and ϕ0 ≫ v. If ϕ0 ≪ v, oscillations start at Tosc
and the solution is the well-known harmonic oscillations,
ϕðtÞ ¼ Φ cos ðmϕtÞ. The amplitude of oscillations redshifts
with the scale factor a (we use the convention that a ¼ 1 at
the onset of oscillation) as ΦðtÞ ¼ ϕ0a−3=2, and the energy
density in coherent oscillations acts as nonrelativistic
matter ρϕ ∝ a−3.
Conversely, if the field value is large, ϕ0 ≫ v, then the

effective mass is meffðϕ0Þ ≃
ffiffiffi
3

p
λϕ0 with Tosc ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ0Mpl

p
.

Due to the conformal invariance of the quartic potential, it
is most convenient to switch to conformal coordinates.
Furthermore, it is convenient to absorb the oscillation time
into our definition suggesting the coordinate transformation
ϕ̄≡ aϕ=ϕ0 and dz≡ λϕ0dt=a. The equation of motion is
then simply

ϕ̄00 þ ϕ̄3 ¼ 0; ð7Þ

where we use primes to denote derivatives with respect to z.
The exact solution is an elliptic cosine function with elliptic
modulus of 1=2,

ϕ̄ðzÞ ¼ cnðzÞ: ð8Þ

This function is usually well approximated by the simple
cosine function, ϕ̄ ≃ cosð0.85zÞ, the first term in its
Lambert series expansion, but some features require keep-
ing higher-order terms and so we refrain from making this
approximation. Here, the (original) field amplitude instead
redshifts as ΦðtÞ ¼ ϕ0a−1 and the energy density in
coherent oscillations acts like radiation ρϕ ∝ a−4.

A. Perturbative decay

The dynamics of particle production depend critically on
the initial field value, and we postpone a careful treatment

to Sec. III. However, we generally expect that nonpertur-
bative effects are negligible if ϕ0 ≪ v and we briefly
review the physics in this limit. We first compute the
production of vector DM from the perturbative decay of the
dark Higgs; this will eventually highlight the effectiveness
of parametric resonance. Coherent oscillations of the ϕ
field result in a dark Higgs yield

Yϕ ¼ ρϕ
mϕs

≃
0.5

λ1=2

�
ϕ0

v

�
2
�

v
Mpl

�
3=2

; ð9Þ

where s is the entropy density. This population can decay
into X if it is kinematically allowed, i.e., mϕ > 2mX. Since
the comoving number density in the dark sector is con-
served, the dark Higgs condensate will fully convert into a
comoving number density of vectors YX ¼ 2Yϕ. The time
scale for this conversion is set by the decay rate Γϕ→XX,
which is dominated by the decay into longitudinal modes
of X:

Γϕ→XX ≃
m3

ϕ

32πv2
: ð10Þ

The underlying challenge with DM production via decays
is that the X particles are initially highly boosted with
momentumOðmϕÞ. In this case, the produced vectors begin
redshifting as nonrelativistic matter once the Universe cools
to a temperature

TNR ≃ 0.1mX

�
Mplλ

v

�
1=2

: ð11Þ

From here on TNR, and in general the term “temperature,”
refers to that of the SM thermal bath (this is distinct from a
possible dark sector temperature, which may or may not
even be in thermal equilibrium). As expected, TNR
increases with λ which corresponds to earlier decays.
Observations of cosmological large-scale structure require
that the DM be nonrelativistic by around a keV and so we
require TNR ≳ keV [37–39] (precise constraints range from
∼1–5 keV though they suffer from astrophysical uncer-
tainties). Based on Eqs. (9) and (11), we find that the vector
abundance equals the relic density of DM for masses

mX ≃ 10

�
T3
NRTeq

λ

�
1=4� v

ϕ0

�
1=2

; ð12Þ

where Teq ≃ 0.75 eV is roughly the temperature at matter-
radiation equality. Note that production of light vector DM
here favors large values of λ, which is ultimately limited by
perturbativity λ < 2π (this is in fact a stronger condition
than ϕ0 < Mpl). Saturating the coldness and perturbativity
constraints, we conclude that it is impossible to produce
vector DM with mass less than a keV using perturbative
decays of the scalar field.
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III. PARAMETRIC RESONANCE

If ϕ0 ≫ v, the production rate of vectors can be much
larger than the perturbative rate. Such a large initial
field value is a generic expectation unless the coupling
with an inflaton strongly fixes ϕ to the origin. In the
classical background of an oscillating ϕ field, the field X
feels a large, oscillating, mass. This may lead to a period
of nonperturbative, exponential production of vectors
through PR.2 Particle production by PR is a well-studied
phenomena, particularly in the context of reheating after
inflation (so-called preheating) [28–31]. However, vector
production by PR has not been studied nearly as exten-
sively as for scalars. PR production of gauge fields at the
end of inflation has been previously considered in
Refs. [40–42], e.g., to seed primordial magnetic fields
[43]. In addition, Refs. [41,42] also discussed the enhanced
production of longitudinal modes. In this section we review
the theory of PR for a vector, and show that the dynamics in
our case depend delicately on the hierarchy between
couplings e and λ and require a careful treatment of the
transverse and longitudinal modes. We present the differ-
ential equation which governs the production of longi-
tudinal modes that is distinct from the well-studied Mathieu
and Lamé equations (the typical differential equations
studied in the context of PR). The classes of solutions
are presented in an instability chart of the exponentially
growing momentum modes as a function of e=λ, and we
compare the PR production of longitudinal and transverse
modes in the different limits of interest. Ultimately we
show that, as a consequence of both initial conditions set by
inflation and a longitudinal mode enhancement in the
coupling, the longitudinal mode dominates production
for a wide range of couplings.

A. Parametric resonance for a Higgsed vector

Using the conventional diagð1;−a2;−a2;−a2Þ metric in
an expanding universe, we can write the kinetic and mass
terms of X explicitly in terms of its temporal and spatial
components:

1

4
XμνXμν ¼ 1

2

�
1

a2
j∂tXþ∇Xtj2 −

1

a4
j∇ ×Xj2

�
; ð13Þ

1

2
m̃2XμXμ ¼ 1

2
m̃2

�
X2
t −

1

a2
jXj2

�
; ð14Þ

where m̃≡mXð1þ ϕ=vÞ. Since Xt does not contain a
kinetic term, it is an auxiliary field and can explicitly be
integrated out using its equation of motion. Switching to
k space, we separate X into its longitudinal and transverse
components such that k ·X ¼ kXL and k ·XT ¼ 0. As a

result, the action for the vector field separates for the
transverse and longitudinal components S ¼ ST þ SL:

ST ¼
Z

dt
a3d3k
ð2πÞ3

1

2a2
ðj _XT j2 − ðk2=a2 þ m̃2ÞjXT j2Þ; ð15Þ

SL ¼
Z

dt
a3d3k
ð2πÞ3

1

2a2

�
m̃2a2

k2 þ m̃2a2
_X2
L − m̃2X2

L

�
: ð16Þ

Note that here and throughout we use k to denote comoving
momentum.
We now study the PR production of the transverse and

longitudinal modes. Exponentially growing modes natu-
rally occur in specific resonance bands, and it is conven-
tional to map out the regions of unstable momentum as a
function of the couplings. The dominantly produced modes
lie in the widest resonance band and generally have a large
exponential instability, resulting in a rapid conversion of
the energy density in the oscillating scalar field into these
modes. We present the instability charts for the transverse
and longitudinal modes in Fig. 1 and refer to it throughout:
this is obtained by numerically solving the relevant
equations of motions and identifying the choice of cou-
plings that result in exponentially growing solutions.

FIG. 1. Instability charts of transverse (red) and longitudinal
(blue) modes. The dashed lines represent different values of κ,
and resonance bands above κ ¼ e=λ correspond to relativistic
production. In the inset we show the e=λ ≪ 1 limit in which the
enhancement of longitudinal mode production over transverse
modes is seen explicitly.

2This is distinct from tachyonic resonance, which is an
exponential instability that occurs for modes with a negative
effective frequency-squared.
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1. Transverse modes

It is convenient to switch to dimensionless, conformally
invariant quantities: a time variable, dz≡ λϕ0dt=a as
introduced in Eq. (7), a momentum κ ≡ k=λϕ0, and a
conformal oscillating mass, μ≡ am̃=λϕ0 ¼ ðe=λÞcnðzÞ.
Doing so, the equation of motion for transverse modes
becomes

X00
T þ ðκ2 þ μ2ðzÞÞXT ¼ 0: ð17Þ

This equation is known as the Lamé equation and has been
extensively studied in the literature (see e.g., Ref. [44]).3

Solutions to this equation are exponentially growing for
certain momentum modes XT ∝ eμκz. The characteristic
exponents, μκ, are a nontrivial function of momentum as
well as the ratio of couplings. PR is often classified as either
broad or narrow, based on the width of resonance bands and
the size of the characteristic exponents. For the mode
equation (17), the resonance is broad if e ≫ λ and narrow if
λ ≫ e. We will be interested in both these limits, which
have previously been solved analytically.
In the case of λ ≫ e the first resonance band around

κ2 ≃ 1 dominates production while subsequent resonance
bands (at larger κ) become increasingly narrow. Such
narrow resonances are known to have suppressed produc-
tion with a small range of produced momenta and char-
acteristic exponents, Δκ2; μκ ∝ e2=λ2. Thus we conclude
that production of transverse modes is not efficient in this
regime. For e ≫ λ the resonance is instead broad and can
achieve much more efficient production. Inspection of
Fig. 1 shows that the structure of the resonance, in
particular the size of κ in the first resonance band, depends
critically on the value of e=λ. Interestingly, it is still the case
that for e ≫ λ there is an upper bound on the produced
momentum which can be estimated analytically [44].
A necessary condition for exponential instability in the
regime of broad PR is nonadiabatic change in the frequency
of fluctuations. The (dimensionless) frequency felt by the
transverse modes is ωðtÞ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ ðe=λÞ2cn2ðzÞ

p
. If one

defines an adiabatic parameter R≡ jω0j=ω2, then for most
of the oscillation period this is close to zero and the fre-
quency changes adiabatically. The only time R > 1 is when
the background field oscillates toward zero, cnðzÞ → 0 and
κ2 ≲ e=λ, which is an estimate of the upper bound on the
dominantly produced momenta. In fact this bound is
evident in Fig. 1, where the widest resonance band (red)
always lies below the line κ ¼ ffiffiffiffiffiffiffi

e=λ
p

. We thus find that
the typical physical momenta produced by PR here are
much less than the time-averaged mass of the vector, ∼eϕ0,
and vectors are produced nonrelativistically. We compute

the maximum characteristic exponent numerically for
e ≫ λ and find μκ ≃ 0.2, in agreement with the previous
literature [44].

2. Longitudinal mode

PR for the transverse modes reduces to equations that
have been solved extensively in the literature.We nowmove
to the longitudinal mode which, as we will show, dominates
the production of vectors in a wide range of parameters.
Starting from Eq. (16) and making the transformations to
conformal fields, we find the equation of motion:

X00
L þ 2κ2

κ2 þ μ2
μ0

μ
X0
L þ ðκ2 þ μ2ÞXL ¼ 0: ð18Þ

The dynamics governed by this differential equation have
not been studied in great detail in the literature. Here we
present a brief analysis, and leave an extensive study for
future work.
First we note that in the limit κ → 0, the equation of

motion (18) reduces to precisely that of the transverse
modes:

X00
L þ ðκ2 þ μ2ÞXL ≃ 0: ð19Þ

This is expected, since at low energies the longitudinalmode
can no longer be distinguished from the transverse modes
and should obey the same dynamics. We also see this
directly in Fig. 1, where the resonance bands of the two
modes roughly coincide (except for very particular values of
the couplings) in the limit of small momentum κ ≪ 1.
The high-energy limit is more challenging to analyze

since the physics is obscured by a divergence in the friction
term as the oscillating field passes through the origin.
While it is in principle possible to solve the equation as is, it
is simpler to introduce a field redefinition,

π ≡ μ

κ
XL: ð20Þ

Being a linear transformation, this does not mix the
different momentum modes and hence does not obscure
the structure of the resonance. The resulting equation of
motion is

π00−
2μμ0

κ2þμ2
π0 þ

�
−
μ00

μ
þ 2μ02

κ2þμ2
þ κ2þμ2

�
π¼ 0: ð21Þ

If we then take the high-energy limits, κ ≫ μ and μ ≪ 1,
we recover a familiar form:

π00 þ ðκ2 þ cn2ðzÞÞπ ≃ 0: ð22Þ

This is analogous to the equation of motion for transverse
modes (17), though crucially the amplitude of the oscil-
lations is enhanced by a factor λ2=e2. As a result, the PR

3As long as the scalar oscillations are well approximated by the
harmonic approximation, the solutions are the same as those of
the well-known Mathieu equation.
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dominantly produces longitudinal modes with κ2 ≃ 1,
which can also be seen directly in the inset of Fig. 1
where there is a wide instability band (blue) for the
longitudinal mode in the limit e=λ → 0. This result in
the high-energy limit can also be derived directly from the
action of the dark Higgs φ using the Goldstone boson
equivalence theorem. Expanding φ ¼ ðϕþ vþ iχÞ= ffiffiffi

2
p

and switching to conformal fields, we find the same
equation of motion for χ as found for the longitudinal
mode in the limit (22).
We are now in a position to complete the discussion of

PR for the longitudinal mode as a function of the couplings.
First we consider the limit of λ ≫ e (where we found that
the transverse modes are not efficiently produced). In this
case the longitudinal mode is produced strictly in the high-
energy regime κ ≫ μ, and the results follow the approxi-
mate form of the mode equation (22). Here we find that the
resonance is efficient for κ2 ≃ Δκ2 ≃ 1 and we again have a
large characteristic exponent μκ ≃ 0.1. We emphasize that,
in contrast to the transverse modes, the longitudinal mode
has a marginally narrow resonance allowing it to be
produced efficiently. In addition, the longitudinal modes
produced are highly boosted with relativistic momenta. We
now turn to the limit e ≫ λwhich is much more interesting.
Although the mode equations become identical in the limit
κ ≪ 1, PR production only occurs when the vector mass is
rapidly varying (i.e., when adiabaticity is violated). At this
point κ is of order the oscillating mass μ, and the
longitudinal mode equation (18) does not approximately
reduce to any well-known forms (due to the non-negligible
friction term). Indeed, as is evident from Fig. 1, there are
substantial differences between the resonance structures of
the longitudinal and transverse modes in this regime. While
the solutions for the longitudinal mode similarly suggest an
upper bound on the dominantly produced momenta, the
bound may be larger than that of the transverse modes
depending on the coupling. This is an intriguing feature that
opens up the possibility of producing relatively boosted
longitudinal modes, although we still expect that the
momenta in the first resonance bands satisfy κ2 < e=λ
such that produced modes are not relativistic. Finally, we
compute the typical characteristic exponent for longitudinal
mode production in this limit to be μκ ≃ 0.2.

3. ϕ fluctuations

In addition to vector production, an oscillating ϕ field
will inevitably also resonantly produce ϕ fluctuations with
nonzero momentum (denoted as δϕ to differentiate from the
zero-momentum condensate which we continue to denote
by ϕ) from the self-coupling, λ. We emphasize that these
excitations are in addition to the zero-mode condensate that
results from coherent oscillations and carry a particle
interpretation similar to the vector fluctuations. The mode
equation can be derived from Eq. (5) by restoring the
momentum term and expanding the field as ϕþ δϕ,

keeping linear-order terms in the fluctuations. The resulting
equation of motion is identical to that of the transverse
modes (17) but with the replacement e2 → 3λ2:

δϕ00 þ ðκ2 þ 3cnðzÞ2Þδϕ ¼ 0: ð23Þ

The PR is qualitatively similar to that of the longitudinal
mode in the λ ≫ e case (22). Fluctuations of ϕ are domi-
nantly produced at momentum κ2 ≃ 1 with a width Δκ2 ≃ 1
and (slightly smaller) characteristic exponent μκ ≃ 10−2.

4. Initial conditions

We have seen that due to parametric resonance, there is
an exponential amplification of fluctuations in the fields X
and ϕ for certain momentum modes. However, an impor-
tant effect we have yet to address is the initial conditions for
the fields. Assuming a period of inflation, we can estimate
the initial conditions for each field. Transverse components
of the vector are conformally invariant and do not expe-
rience the expansion suggesting that they should have an
initial field value given by the Bunch-Davies vacuumwith a
power spectrum, PTðkÞ ∼ k2. The initial conditions of the
longitudinal mode are more dramatic. These are created by
coupling to the metric during inflation and can far exceed
their transverse counterparts [23] with a power spectrum,
PLðkÞ ∼ ðHinfk=eϕ0Þ2 (this applies for both λ ≫ e and
e ≫ λ and assumes the vector mass during inflation is eϕ0).
This gives a ratio of the longitudinal to transverse mode
amplitudes at the end of inflation as,

XLðkÞ
XTðkÞ

≳Hinf

eϕ0

; ð24Þ

which is independent of k. Since we do not consider
parameter space such that the vector mass is above the scale
of inflation, the longitudinal mode will dominate the
transverse mode production as long as they can both be
produced efficiently. The scalar fluctuations during infla-
tion behave similarly to the longitudinal mode and will
have comparable initial conditions.

B. Final relic abundance and momenta

The exponential production from PR does not last
indefinitely. Thus far we have neglected the nonlinear
backreaction of these fluctuations on PR itself. There are
three kinds of backreactions:
(1) The vector and scalar fluctuations grow large enough

and give large mass contributions to both ϕ and X
that subsequently redshift as ∝ 1=a, and can lead to
other interesting cosmological effects that will be
discussed later. Here, we see that a changing mass
acts to shift the resonance bands and can thus ruin
the important Bose enhancement in final states that
leads to continued exponential production for grow-
ing modes.
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(2) Scattering of fluctuations with the zero-mode con-
densate as well as fluctuations shift the particle
momenta out of resonance bands.Again, this destroys
the Bose enhancement in produced fluctuations and
can also shut down exponential production.

(3) The scattering also depletes the zero-mode conden-
sate and terminates PR.

A fourth effect, due to the expansion, is not present in
this theory due to its conformal nature. In practice these
effects occur simultaneously and act to cease particle
production when the energy density of the fluctuations
becomes comparable to the original energy density in the
condensate. While these effects are highly nonlinear and
challenging to compute, if particle production lasts long
enough the condensate will completely convert into the
produced ϕ and X particles, regardless of the detailed
processes involved. We assume that the zero-momentum
field is completely depleted and does not make up any of
the DM today (we expect that this is a reasonable
approximation due to significant scattering with produced
fluctuations at the end of PR). In this sense, a full solution
to the equations of motion, including backreactions,
gives us the relative fraction in these two populations.
We can parametrize the yields after the conclusion of
PR production as

YX ¼ f
ρϕ;osc

EXsðToscÞ
; Yδϕ ¼ ð1 − fÞ ρϕ;osc

EδϕsðToscÞ
: ð25Þ

Here ρϕ;osc ¼ 1
4
λ2ϕ4

0, f is the relative fraction of the
condensate comoving energy density dumped into vectors,

and E2
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�;i þm2

i

q
are the comoving energies of the

particle species i (mi denotes the time-varying mass of the
particle). For simplicity, we assume that particles are
produced with a comoving momenta peaked at k�;i though
in practice there will be small corrections associated with
an Oð1Þ spread around this typical value.
Once PR stops being efficient the produced particles are

in a highly nonequilibrium state with peaked momenta.
These particles can still undergo collisions within the sector
scattering their momenta and changing their number
densities. This includes simple 2 → 2 elastic scattering
as well inelastic processes inducing cannibalization.
Tracking the dynamics rigorously throughout this “post-
scattering” phase requires a dedicated computation involv-
ing vectors and scalars on lattices and is beyond the scope
of this work. However, we can still qualitatively estimate
the behavior in each limit.
For λ ≫ e, the longitudinal mode and the fluctuations

only differ by their parity and hence have comparable
energy densities after decay (f ≃ 1=2) as well as momenta
k� ∼ λϕ0. In this limit, the symmetry between the longi-
tudinal mode and the fluctuations of ϕ allows us to treat
them as a single fluid regardless of the details of the post-
scattering phase. Furthermore, we do not expect these

processes to be active even if either species becomes
nonrelativistic. We thus expect that the vectors and scalars
should have comparable number densities and momenta at
late times:

YX; Yδϕ →
1

2

ρϕ;osc
λϕ0sðToscÞ

: ð26Þ

For e ≫ λ, the situation is more subtle. As shown,
vectors are primarily produced nonrelativistically from
PR (a detailed spectrum will depend on the coupling
e=λ), while fluctuations of ϕ are produced mildly relativ-
istically. At this point, elastic and inelastic processes are
efficient in driving the sector toward a state equating the
momenta and number densities of X and ϕ (f ≃ 1=2).
Effective scattering during this time relies on a Bose
enhancement of the final state which is spoiled at large
enough momenta. We estimate that such processes cannot
produce vectors with momenta larger than their mass eϕ0,
and as a result both species should eventually be up-
scattered to a comoving momenta as large as k� ∼ eϕ0. We
thus expect yields of X and ϕ at late times of order

YX; Yδϕ →
1

2

ρϕ;osc
eϕ0sðToscÞ

: ð27Þ

We have confirmed this expectation by employing a lattice
computation using LATTICEEASY [45] and approximating
the vector interaction by that of a scalar field with a quartic
coupling to ϕ.

IV. VECTOR DARK MATTER FROM
PARAMETRIC RESONANCE

The above results apply for any Higgsed vector in the
early Universe, and we now consider the implications of PR
for the production of ultralight vector DM. For the rest of
this section, we assume a large initial field value ϕ0 ≳ v. In
practice, PR production is not instantaneous but requires
sufficiently long exponential growth so we in fact have the
condition ϕ0=v≳ 10–100.4

There are four (a priori) independent parameters in the
model: fϕ0; v; mX;mϕg or alternatively fϕ0; v; e; λg. As we
have seen, the nature of PR depends on the relative
strengths of the couplings in a nontrivial way. This is also
true for the resulting constraints on safely obtaining the
correct relic abundance of vector DM. Thus we look at the
two simplifying limits separately: λ ≫ e and e ≫ λ. Here
we focus on the fundamental challenge of being consistent
with constraints on warm DM while producing the entire
DM abundance. Additional constraints and phenomeno-
logical consequences of the vector production are examined
in Sec. V, which we refer to in the results of Figs. 2 and 3.

4A stable PR still occurs even if ϕ0 ≲ v in the case λ ≫ e, but
this is a narrow resonance and highly inefficient.
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FIG. 2. Viable parameter space for parametric resonance production of vectors in the limit λ ≫ e. We fix the initial condensate
amplitude ϕ0 such that the dark sector saturates the DM relic abundance ΩX þ Ωϕ ≃ΩDM. Shown are constraints from coldness
(yellow), cosmic strings (red), isocurvature (purple), late-time dark Higgs decays (brown) and sufficiently long PR (blue) as described in
the text. Left: At every point in parameter space we fix mϕ ≃ 100mX . We do not incorporate any additional interactions, and the dark
Higgs makes up nearly all the DM, i.e., ΩX ≃ 10−2Ωϕ. Right: Vectors make up all of the DM, and the dark Higgs is eliminated at late
times. At every point in parameter space we fixmϕ ¼ 10 GeV and show the corresponding constraint from thermalization requirements
(green) as described in the Appendix.

FIG. 3. Viable parameter space for parametric resonance production of vectors in the limit e ≫ λ. We fix the initial condensate
amplitude ϕ0 such that the dark sector saturates the DM relic abundance ΩX þ Ωϕ ≃ΩDM. Shown are constraints from coldness
(yellow), cosmic strings (red), and sufficiently long PR (blue) as described in the text. Both plots have the vector making up nearly all the
DM. Left: At every point in parameter space we fixmX ≃ 10mX and thus Ωϕ ≃ 10−1ΩX . Right: At every point in parameter space we fix
mX ≃ 1000mϕ and thus Ωϕ ≃ 10−3ΩX .
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A. Case 1: λ ≫ e

We begin with the case where the gauge coupling is
small with respect to the quartic coupling (and hence also
mX ≪ mϕ). In Sec. III we estimated a yield for the X and ϕ
fluctuations to be roughly equal at late times:

YX ≃ Yδϕ ≃
0.01

λ1=2

�
ϕ0

Mpl

�
3=2

: ð28Þ

In the absence of any additional interactions these yields are
conserved until today. Once X and ϕ become nonrelativ-
istic, X constitutes a small fraction of the energy density of
the dark sector:

ΩX

ΩDM
≃
mX

mϕ
∼
e
λ
: ð29Þ

Furthermore, the typical comoving momenta of each
species is of order k� ∼ λϕ0. This is related to the physical
momenta by redshifting from the time of production.
Crucially, particles are produced from PR at very early
times near the start of oscillations. Due to the conformal
invariance, we can effectively treat the yields (35) as being
produced with a physical momenta λϕ0 at a temperature
Tosc even if the particles are dominantly created somewhat
later (PR results in rapid, though not instantaneous, particle
creation).
Given the relative energy densities between the scalar

and vector, it is most natural that the dark Higgs constitutes
nearly all of the DM today, with the vector being a
subdominant component. In order for this scenario to be
consistent with observations we require that the dark Higgs
be both nonrelativistic by around a keVand satisfy the relic
density condition. Requiring the dark Higgs yield to be the
right relic abundance fixes the required initial field value:

ϕ0

Mpl
≃ 10

�
λT2

eq

m2
ϕ

�
1=3

: ð30Þ

The temperature at which the Higgs becomes nonrelativ-
istic is given by

TNR ≃ v

�
λMpl

ϕ0

�
1=2

≃ 0.5

�
v2m2

ϕ

Teq

�1=3

: ð31Þ

If the fraction of vector DM is greater than a few percent, it
must also be sufficiently cold; otherwise, the relic vectors
will be a hot DM subcomponent which is ruled out by the
cosmic microwave background [39]. We show the viable
parameter space for a vector subcomponent of DM in Fig. 2
(left), fixing the fraction of vector DM to be 10−2 (with the
dark Higgs constituting the rest).
Even if vectors make up a small fraction of the DM

abundance, they may still be detectable. Nevertheless, it is

interesting to consider the possibility that vectors make up
all of the DM due to some dynamics which eliminated the
dark Higgs yield at later times. In particular, it is possible to
introduce additional couplings into the model that drasti-
cally alter the expected relic abundance of dark Higgses,
without affecting the abundance of vectors produced from
PR. [Although we might have naively suspected that the
large initial yield of ϕ particles could simply decay away to
vectors through the perturbative process (10), such a
population of vectors constitutes an Oð1Þ hot DM compo-
nent.] For now we will take it as a given that YX reproduces
the entire observed DM density. This fixes the initial field
value:

ϕ0

Mpl
≃ 10

�
λT2

eq

m2
X

�
1=3

: ð32Þ

The X population becomes nonrelativistic when the
Universe is at a temperature

TNR ≃mX

�
Mpl

λϕ0

�
1=2

≃ 0.5

�
m4

X

Teqλ
2

�
1=3

: ð33Þ

As before, we require TNR ≳ keV. Note that the initial field
amplitude has a maximum value consistent with the vector
DM abundance and coldness constraints:

ϕ0 ≃ 10Mpl

�
Teq

TNR

�
1=2 ≲ 2 × 1017 GeV: ð34Þ

This trivially satisfies the condition on oscillations during
radiation domination (ϕ0 < Mpl).
We now return to the elimination of the dark Higgs yield

in the above scenario. If we assume that the vector
constitutes all of the DM as per Eq. (32), then to keep
the dark Higgs from dominating the energy density of the
Universe at an intermediate time the yield should have been
destroyed by the temperature ∼Teqmϕ=mX. This is not a
constraint, but rather the condition such that the Universe
remains radiation-dominated until Teq, which had been
implicitly assumed above. If, on the other hand, the
Universe has gone through a period of dark Higgs domi-
nation that later gets dumped into the SM this could have
profound implications on small-scale structure [46–48] and
changes the predicted relic abundances. If we assume that
this matter-dominated era lasts until the dark Higgs reheats
the Universe to a temperature TR, the resulting entropy
production dilutes the yield of relic vectors YX ∼ TR=mϕ. A
concrete example of such a cosmology occurs if the dark
Higgs is able to thermalize with the SM. This generically
requires the dark Higgs to have a substantial coupling to the
SM, and as a result the allowed mass range of ϕ will be
subject to experimental constraints. The simplest interac-
tion of the dark Higgs with the SM is a Higgs-portal
coupling. As we show in the Appendix, this has severe
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constraints from star cooling and rare meson decays below
around 5 GeV. We show the viable parameter space for
vector DM production in Fig. 2 (right), assuming the large
dark Higgs yield is eliminated at late times before domi-
nating the energy density of the Universe. Here we fix the
dark Higgs mass to be mϕ ¼ 10 GeV and show the
requirements on dark Higgs thermalization through the
Higgs portal interaction, leaving a detailed examination of
the necessary conditions to the Appendix. We do not
explicitly show the parameter space for vector DM pro-
duction in the case of dark Higgs domination though we
have checked that the lower reach in mX is ultimately the
same as that in the case of no entropy production.

B. Case 2: e ≫ λ

We now turn to the limit where the gauge coupling is
much larger than the quartic coupling (and so mX ≫ mϕ).
Due to the effects of post-scattering, the comoving number
densities of ϕ and X at late times again become comparable
and are given by,

YX ≃ Yδϕ ≃
λ

e
0.01

λ1=2

�
ϕ0

Mpl

�
3=2

: ð35Þ

This difference in mass of ϕ and X leads to vectors
dominating the energy density at late times, and the dark
Higgs becomes a subdominant component with a fractional
abundance λ=e. In addition, vectors are produced nonrela-
tivistically with typical comoving momentum k�≲eϕ0,
while the dark Higgses are dominantly produced from vector
fluctuations with a similar spectrum and are thus highly
relativistic.
The observed DM abundance is reproduced for an initial

field amplitude of

ϕ0

Mpl
≃ 10

�
e2T2

eq

λm2
X

�
1=3

: ð36Þ

The temperature at which the vectors become nonrelativ-
istic is given by

TNR ≃ 2mX

�
Mplλ

ϕ0e2

�
1=2

≃ 0.5

�
m4

Xλ
2

Teqe4

�
1=3

: ð37Þ

Note that by TNR, the vector mass (initially dominated by
fluctuations of ϕ after PR) assumes the vacuum value.
Since the vector makes up most of the DM, we require the
coldness constraint TNR ≳ keV. On the other hand, if the
fraction of produced dark Higgses is roughly greater than
10−2, then this subdominant component must also be
sufficiently cold.
We show the viable parameter space for vector DM

production in Fig. 3 for e=λ ¼ 10 (left) and e=λ ¼ 103

(right), with the value of ϕ0 fixed at every point to achieve
the correct relic abundance. For e=λ ¼ 10 the dark Higgs is

a non-negligible subcomponent and in addition to the
vectors being sufficiently cold we also require that the
dark Higgs be nonrelativistic by a keV, while for e=λ ¼ 103

we only require that the vector population satisfies the
coldness constraint (37). The lowest possible vector masses
can be obtained by saturating e → λ where we find we can
produce cold DM for mX ≳ 10−18 eV (though saturating
this limit results in the vectors being accompanied by a non-
negligible dark Higgs abundance).

V. PHENOMENOLOGY

In this section, we summarize some distinctive features
of vector production through parametric resonance which
could be used to differentiate it from other nonthermal
cosmologies.

A. Dark Higgs

Perhaps the most prominent prediction of PR production
would be searching directly for the accompanying light
scalar. The detectability of the scalar depends on its model-
dependent coupling (if any) to the SM, and in general no
such coupling is required to produce vectors. However, if
λ ≫ e then the scalar is either a large fraction of the DM
abundance today, or the scalar is destroyed by some
additional mechanism (e.g., thermalization with the SM)
so that vectors make up all of the observed DM abundance.
If the scalar is a non-negligible relic today then it could be
searched for directly through experiments sensitive to light
scalars. Furthermore, if it dominates the DM density then it
could be observed as a (cosmologically slow) dark decay
into the vectors from anomalous changes of the equation of
state of the Universe [49]. The current consistency with the
ΛCDM picture allows us to set a bound on this decay rate
as given in Fig. 2.
Alternatively, if the dark Higgs is assumed to thermalize

with the SM then the minimum required coupling to
achieve thermalization sets a convenient target for exper-
imental searches. We study these specific requirements in
the context of a Higgs portal coupling in the Appendix.

B. Cosmic strings

As we have seen, PR produces large quantum fluctua-
tions in the X and ϕ fields. These fluctuations can lead to a
large positive effective mass for ϕ resulting in the
symmetry being temporarily restored once PR terminates
and a subsequent nonthermal phase transition once the
mass of ϕ becomes negative [50]. This has the intriguing
prediction of the formation of cosmic strings [51]. Cosmic
strings are one-dimensional topological defects, charac-
terized by a string tension μ ∼ v2. After formation, it is
expected that the string network quickly approaches a
scaling regime, i.e., the energy density in strings scales
with the energy density of the Universe but roughly
suppressed by the factor Gμ, where G ¼ 1=8πM2

pl is
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Newton’s constant. Such strings have several characteristic
predictions owing to their induced large energy gradients
in the Universe. Perhaps the most robust detection of
cosmic strings can be extracted from the cosmic micro-
wave background, whose gravitational interaction would
induce small temperature distortions leading to inhomo-
geneities in the temperature map [52]. Using the WMAP
data with a combination of cosmological observations such
strings have yet to be observed, resulting in the constraint
Gμ ≲ 10−7 [53].
An additional prediction of cosmic strings comes from

gravitational radiation emitted by the string oscillations.
The evolution of a scaling cosmic string network is
expected to contribute to the stochastic gravitational-wave
background [54] as well as induce gravitational-wave
bursts [55]. This is in contrast to global strings, which
predominantly radiate massless Goldstone bosons (e.g.,
axion strings). The gravitational-wave spectrum from a
cosmic string network can be computed, under basic
assumptions. The, thus far, null observation of a stochastic
gravitational-wave background by LIGO and pulsar-tim-
ing arrays constrain Gμ ≲ 10−11 [56–58], which roughly
translates to a bound on the VEV v ≲ 1014 GeV. Future
pulsar-timing array measurements are expected to have
improved sensitivity with the upcoming Square Kilometer
Array [59] and provide an opportunity to probe these
nonthermal phase transitions.

C. Isocurvature perturbations

Another prediction of this production mechanism is
due to the lightness of the dark Higgs, inducing iso-
curvature perturbations in the cosmic microwave back-
ground (CMB). During inflation, we presume that ϕ is
stuck with an initial field amplitude obeying λϕ0 ≲Hinf ,
and fluctuations, δϕ ∼Hinf=2π. During PR the energy
density of the ϕ condensate is transferred to the observed
DM abundance and introduces these isocurvature pertur-
bations into the DM spectrum. These perturbations can be
looked for in the CMB though they have yet to be seen
[27]. This can be interpreted as a bound on the Hubble
scale during inflation Hinf ≲ 3 × 10−5ϕ0, which in the
simplest picture suggests a bound λ≲ 3 × 10−5. This
implies a relevant constraint for λ ≫ e if the dark
Higgs is required to thermalize with the SM but turns
out to be negligible when we do not enforce this
requirement. We note that, in principle, this isocurvature
perturbation can be suppressed if the Hubble-induced
mass of ϕ is larger than Hinf .

VI. DISCUSSION

In this work we presented a new production mechanism
for vector DM in the early Universe through its (possible)
coupling to a dark Higgs. The mechanism relies on the
nonperturbative dynamics associated with parametric

resonance, thus allowing the produced vectors to be ultra-
light while still being consistent with the stringent con-
straints on warm DM.
Vector production from parametric resonance has quali-

tative differences from the well-studied theory of scalar
production. We studied the equations governing the PR
production of transverse and longitudinal modes and
presented an instability chart. For λ ≫ e the transverse
mode production is highly inefficient while the longitudinal
mode is rapidly produced (this can be understood as a
consequence of the Goldstone boson equivalence theorem).
Fluctuations of dark Higgses are also produced which
results in a Higgs-dominated dark sector. In order for
vectors to make up the entire DM abundance, additional
interactions can be considered to thermalize the dark Higgs
with the visible sector. We found that produced vectors can
be as light as 10−20 eV if they constitute 1% of the energy
density in DM (with the dark Higgs making up the rest). If,
on the other hand, we require the dark Higgs to thermalize
with the SM it is difficult to foresee a viable model without
making the dark Higgs heavier than around 10 GeV
(otherwise there are tight constraints on its coupling).
This restricts the produced vector DM to have a mass
above around 10−4 eV. In the case where e ≫ λ both the
transverse and longitudinal modes can be efficiently
produced, though as a consequence of initial conditions
set by inflation we still expect the longitudinal mode to
dominate for a wide range of parameters. As in the previous
case fluctuations of ϕ are rapidly produced resulting in
comparable number densities between vectors and the dark
Higgs, although due to the ratio of masses the DM energy
density today is dominated by vectors. Ultimately, the
coldness constraint restricts the viable vector DM mass to
be above 10−18 eV.
Our study of PR production of ultralight vectors was not

meant to be exhaustive, and we conclude by commenting
on directions we feel merit further attention. First, the focus
of this work was entirely on vectors which get their mass
from a dark Higgs. In principle, this could easily be
generalized to other types of scalars which obtain a large
field value. Second, in this work we did not attempt a
complete lattice simulation of the nonlinear effects. This
would be particularly important in the limit of e ≫ λ since
in this case it is possible that the coldness constraint is
significantly weakened if the vectors do not get boosted to
their maximum possible momenta, eϕ0. Furthermore, it is
important to note that a general feature of this framework is
the necessity for tiny couplings (for the mass range in the
e ≫ λ case, gauge couplings in the viable parameter space
go down to as low as ∼10−40). While such couplings are
technically natural, it would be interesting to see how
viable these are in a UV model. Last, in this work we
briefly explored the prominent phenomenological signa-
tures of this production mechanism though it may be
fruitful to consider these in more detail as well as others
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to differentiate PR production from other possible produc-
tion mechanisms.
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Note added.—During the preparation of this work, we
became aware of Refs. [60–62], which all discussed the
possible production of light vector DM from an oscillating
axion field via the tachyonic instability.

APPENDIX: DARK HIGGS THERMALIZATION

In this Appendix we further examine vector production
by PR for the case λ ≫ e when requiring that the vector
constitutes all of the DM today. In Sec. IV, we explored the
parameter space in this scenario assuming that the large
initial yield of the dark Higgs after PR thermalizes with the
SM. Here, we explicitly study the case of thermalization
through a Higgs-portal coupling,

L ⊃ y2jφj2jHj2; ðA1Þ

where H is the SM Higgs doublet. After electroweak
symmetry breaking, there is a mixing between the two
real scalars with an angle,

tan 2θ ≃ y2
2vvEW
m2

h −m2
ϕ

; ðA2Þ

where vEW ≃ 246 GeV. For simplicity, we will consider the
regime mϕ ≪ mh so that θ ∼ y2v=vEW. This interaction
must satisfy a number of conditions in order for the
cosmology to be viable:
(1) The thermalization occurs sufficiently rapidly.
(2) The dynamics of PR is largely unaffected.
(3) The coupling is not ruled out by experiments.

Our aim here is to show the existence of a viable parameter
region in dark Higgs mass and coupling for which all
conditions can be consistently satisfied.
We first address the requirements on thermalizing the

dark Higgs. The relevant processes differ if thermalization
occurs before or after the electroweak phase transitionwhich
depletes the SM Higgs. Above this scale the dominant
number-density-depleting process that brings the dark
Higgs into chemical equilibrium is through a Higgs absorp-
tion ϕH → H. The proper calculation of this rate requires
nonequilibrium field theory techniques. The thermalization
rate is roughly of order [63] ΓϕH→H ∼ y4v2=T. From this
we estimate the temperature of dark Higgs thermali-
zation T th ∼ ðy4v2MplÞ1=3. Requiring this thermalization

temperature to be above ∼100 GeV puts a constraint on
the mixing angle, θ ≳ 10−7. Below the electroweak scale, ϕ
will continue to interact with SM fermions in the thermal
bath. For instance, thermal ϕ particles can scatter off
fermions (e.g., quarks) in the plasma with a rate [63],
Γϕq→qg ∼ θ2y2fT, where yf is the largest fermion Yukawa
coupling still in the SMbath. For this to be above themass of
the fermion requires θ ≳ 10−8= ffiffiffiffiffiyfp . This ensures that ϕ has
a thermal abundance and thus dumps its energy into the SM
bath when T ≲mϕ. If, e.g.,mϕ ¼ 10 GeV, this process is in
thermal equilibrium with bottom quarks by the time the
temperature drops to T ∼mb as long as θ ≳ 10−7.
Next we consider the implications of the Higgs portal

coupling for the PR mechanism. As long as the coupling is
not fine-tuned θ < mϕ=mh, the SM Higgs mass correction
at the time of PR is less than the expected thermal mass.
Therefore, the Higgs portal coupling gives a mass correc-
tion δm2

ϕ ∼ y2T2
osc to the dark Higgs at the onset of

oscillations. If this is larger than the assumed effective
mass-squared m2

eff ∼ λ2ϕ2
0, the dark Higgs would have

oscillated earlier with a large frequency (set by the size
of y2), thus rendering the PR production of vector modes
narrow and relatively inefficient. Requiring this thermal
contribution to be sufficiently small δm2

ϕ ≲ λ2ϕ2
0 translates

into an upper bound on the mixing angle,

θ ≲ 30 ×

�
mϕ

vEW

��
ϕ0

Mpl

�

≃ 10−2
�

mϕ

GeV

��
ϕ0

10−1Mpl

�
: ðA3Þ

For Fig. 2 where we fixmϕ ≃ 10 GeV, this is the dominant
upper bound on the mixing angle.
A second possible effect of the Higgs portal coupling is

PR production of the SM Higgs. For thermalization we
generically require y ≫ λ which would suggest that PR
may be efficient in producing the SM Higgs; this is
ultimately not the case due to the large thermal mass of
the Higgs. We can verify this by computing the adiabatic
parameter R ¼ j _ωj=ω2 for the SM Higgs with a time-

dependent frequency ωðtÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þmHðTÞ2 þ 1

2
y2ϕðtÞ2

q
.

Since the thermal mass is strictly larger than the mass
contribution from the oscillating field at the time of PR
(y2ϕ2

0 ≪ T2
osc), the adiabatic parameter is always less than

unity. We conclude that there is no significant nonpertur-
bative production of the SM Higgs.
There are a number of phenomenological constraints on

a Higgs-portal scalar. These constraints depend on whether
the scalar decays visibly or is invisible (at least on detector
scales.) For a detailed review see, e.g., Ref. [64]. For low
masses mϕ ≲MeV, we that find stellar cooling constraints
[65] are in tension with the requirements of thermalization.
For intermediate masses, MeV≲mϕ ≲ 300 MeV con-
straints from supernova 1987A and rare kaon decays are
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powerful, but it may be possible to have a scalar in this
mass range with a sufficiently large θ consistent with
thermalization if it sits in the small gap between these
constraints. For masses GeV≲mϕ ≲ 5 GeV, rare B-meson
decays roughly constrain θ ≲ 10−3. Above this scale,
scalar production at LEP constrains θ ≲ 10−1 although this
is weaker than the condition (A3). Interestingly, if ϕ decays
visibly then lower values of θ in this mass range could
also be probed by future experiments designed to look for
long-lived particles [66–70].
Last one may wonder if the dark Higgs ever dominates

the energy density of the Universe. Dark Higgs domination

will take place if the temperature of thermalization is less
than ≲Teqðmϕ=mXÞ, or in terms of the mixing angle

θ ≲
�

T3
eq

v2EWMpl

�
1=2�mϕ

mX

�
3=2

;

≃ 5 × 10−6
�

mϕ

GeV

�
3=2

�
10−4 eV

mX

�
3=2

: ðA4Þ

We see that for mϕ ≃ 10 GeV and the relevant vector mass
range mX ≳ 10−4 in Fig. 2, this is never the case as long as
we satisfy the condition of thermalization.
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