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We consider the effective field theory generated by a heavy mediator that connects Standard Model
particles to a dark sector, considering explicitly the flavor structure of the operators. In particular, we study
the model independent running and mixing between operators as well as their matching at the electroweak
scale. In addition to the explicit expression of the renormalization group equations, we show the numerical
solutions as well as some approximate analytical expressions that help us to understand these solutions. At
low energy, our results are particularly important in the case of light dark sectors communicating to the b
quark and can be immediately applied to flavored dark matter.
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I. INTRODUCTION

Over the last few years, dark sectors have started to play
an increasingly important role in physics beyond the
Standard Model (BSM). The reason is twofold. On one
hand, the null results from the LHC and other experiments
are pushing “traditional” BSM theories to more and more
tuned regions of their parameter space, motivating the
search for new unconventional signatures [1–3]. On the
other hand, dark sectors are implicitly present in many dark
matter (DM) models (especially in connection with light
mediators; see for instance Ref. [4]) and are starting to
appear in more recent solutions of the hierarchy problem
like twin Higgs [5], folded supersymmetry [6], and the
relaxation of the electroweak (EW) scale [7]. In addition,
many dark sectors predict the existence of long-lived
particles, for which a new extensive experimental program
is being developed (see for instance Ref. [8]).
Of course, given the plethora of possible dark sectors

with different symmetries and particles, a general analysis
is impossible, and some broad assumption must be made.
What we consider in this paper is a generic dark sector,
communicating with the Standard Model (SM) via some
unspecified mediator X of which the interactions are
allowed to be flavor off diagonal. If the mediator is
somewhat heavier than the typical energy scale of low

energy experiments (say a few giga-electronvolts), then the
mediator can be integrated out, generating effective contact
interactions of the type

LEFT ⊃ cJDJSM; ð1:1Þ

where JD and JSM are currents involving, respectively, dark
and SM fields only, c is an appropriate coefficient ensuring
the right dimensions, and we do not write possible Lorentz
indices. This generic framework resembles typical Hidden
Valley constructions [1,9] and can be obtained with a
variety of mediators [3]. Also, the nature of the dark current
depends crucially on the details of the dark sector, as it can
be composed by elementary or composite fields. Since we
will remain agnostic about the details of the dark sector, we
dub the effective field theory (EFT) defined in Eq. (1.1) by
“dark sector EFT”. Specific cases have already been
analyzed in the literature, as we are going to see.
In order to compare the Wilson coefficients in Eq. (1.1)

with experimental data, care must be taken with the fact that
renormalization group effects can (and generically will) be
important. The running and mixing of operators written in
the form of Eq. (1.1) have been studied in detail in the case
in which JSM is diagonal in flavor space and JD is a dark
matter current [10–20] and has been applied to the case of
DM with mass in the mega-electronvolt range in Ref. [21].
Some code has also been publicly released [22,23],
computing numerically the solution to the renormalization
group equations (RGEs). As a matter of fact, as long as we
do not consider dark particles in the loops, the results of
Refs. [15,23] can be applied to any dark sector coupling to
the SM via some flavor-blind heavy mediator, and not only
to the case of dark matter currents.
The purpose of this paper is to extend the analysis of the

running and mixing of the dark sector EFT operators
supposing the mediator to be heavy and flavorful. Such
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a mediator has already been considered in the framework of
flavored dark matter (see for instance Refs. [24–37]), but
the running of the EFT has never been considered before.
We keep our analysis as general as possible, without
committing to a specific dark sector or requiring dark
matter to be present. We restrict our analysis to the mixing
of effective operators written as in Eq. (1.1). Of course, this
is still not the complete renormalization of the dark sector
EFT. Once the dimension of the operators to be included in
the Lagrangian is fixed (i.e., the nature of the dark current is
specified), we also need to include operators constructed
out of SM fields only. In addition, loops of dark particles
will contribute to the renormalization of the complete EFT,
and the effect may be important. This has been recently
studied in the context of Dirac fermion DM EFT in
Ref. [38] and in the case of flavorful mediators could,
for instance, generate contributions to meson mixing
operators. The information is of course fundamental for
the comparison between data and theory but depends
strongly on the nature of the particles running in the loops.
As such, we decided to focus here only on the model
independent information that can be extracted from the
running and mixing of the dark sector EFT operators. We
will study elsewhere the effects of dark particles in
the loops.
The paper is organized as follows. In Sec. II, we build the

dark sector effective field theory, describing the operators
considered above and below the EW scale. In Sec. III, we
discuss the RGEs and show the matching needed in
evolving the Wilson coefficients from high to low energy.
Finally, Sec. IV is devoted to the numerical results and to
possible phenomenological applications. We give our
conclusions in Sec. V.

II. DARK SECTOR EFFECTIVE FIELD THEORY

We start in this section with the definition of our
framework. The effective Lagrangian contains the SM
Lagrangian, the kinetic term for the dark fields, and the
interactions between the dark sector and the SM particles.
As explained in the Introduction, we will work with
interactions which are products of a dark and of a SM
current,

Lint ⊃
ðCaÞij
Λn JaDJ

a;ðijÞ
SM þ H:c: ð2:1Þ

The index a runs over all possible currents, while ði; jÞ are
SM family indices. We do not write explicitly possible
Lorentz indices. The dark currents can have a variety of
forms, depending on the nature of the dark sector. For
instance, they can be constructed out of fundamental
fermions (like JμD ¼ χ̄γμχ or JD ¼ χ̄χ), out of fundamental

scalars (like JμD ¼ ϕ†∂↔ μϕ or JD ¼ ϕ†ϕ), or out of
composite objects (pions or baryons) if the dark sector is

strongly interacting at low energies [19,39,40]. Depending
on the dimension of the currents, the appropriate n must be
chosen. Since we do not want our conclusions to depend on
the nature of the dark sector, in this work, we will leave
unspecified the nature of the dark current, making only the
broad assumption that it is a complete gauge singlet. Our
conventions for the SM fields are presented in Table I and
in Appendix A.
Let us first consider the EFT above the electroweak

scale. In this case, we demand the SM currents JaSM to be
complete gauge singlets under SUð3Þc × SUð2ÞL × Uð1ÞY,
with particle contents and charges given in Table I. The
assumption can of course be relaxed; see for instance
Ref. [16]. The SM currents can be classified according to
their dimensions, while the coefficients ðCaÞij in Eq. (2.1)
can be classified based on their transformation properties
under the SM flavor group SUð3ÞqL × SUð3ÞuR ×
SUð3ÞdR × SUð3ÞlL × SUð3ÞeR (explicitly broken by the
Yukawa couplings). This is shown in Table II. At the level
of d ¼ 2 and d ¼ 5=2, we have the scalar Higgs, hyper-
charge, and neutrino portals, which are the only currents
that allow for renormalizable portals between the SM and
the dark sector. These currents have been extensively used
in the context of sub-giga-electron-volt dark matter (see for
instance Refs. [41–43]) and, more recently, for the

TABLE I. Charges and gauge representations of the SM fields
above the EW scale. The index i is a family index.

qiL uiR diR liL eiR H

SUð3Þc 3 3 3 1 1 1
SUð2ÞL 2 1 1 2 1 2
Uð1ÞY þ1=6 þ2=3 −1=3 −1=2 −1 þ1=2

TABLE II. List of d < 4 currents constructed out of SM fields
to be used in Eq. (2.1) only above the EW scale. We have
suppressed all flavor indices. In our analysis, we will focus on the
running and mixing of d ¼ 3 currents.

Dimensions Currents
Wilson

coefficient Flavor transformation

d ¼ 2 H†H CH portal Singlet
Bμν CY portal Singlet
B̃μν C̃Y portal Singlet

d ¼ 5=2 l̄LH̃ CN portal 3 of SUð3ÞlL
d ¼ 3 q̄LγμqL CqL ð3; 3̄Þ of SUð3ÞqL × SUð3ÞqL

ūRγμuR CuR ð3; 3̄Þ of SUð3ÞuR × SUð3ÞuR
d̄RγμdR CdR ð3; 3̄Þ of SUð3ÞdR × SUð3ÞdR
l̄Lγ

μlL ClL ð3; 3̄Þ of SUð3ÞlL × SUð3ÞlL

ēRγμeR CeR ð3; 3̄Þ of SUð3ÞeR × SUð3ÞeR
iH†D

↔

μH
CH Singlet

∂νBνμ CB Singlet
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generation of neutrino masses [44]. From the point of view
of running, none of these currents mixes with the others. As
long as the nature of the dark sector is not specified, the
only relevant effects would be the thresholds corrections
coming from wave function renormalization, that can be
easily computed using Appendix C. Since in this paper we
will focus on the case of heavy mediators (i.e., on the case
of nonrenormalizable interactions between the SM and the
dark sector), we will not consider these currents in the rest
of the paper. Moving on, nontrivial structures with both
lepton and quark flavors appear at the level of d ¼ 3, and
these are the currents on which we will focus from now on.
Of course, more currents with nontrivial flavor structure
appear with d ≥ 4, but since their effects are suppressed by
higher powers of Λ, we will not consider them in the
remainder of the paper.
It is interesting to count the number of parameters in the

dark sector EFT, focusing on the d ¼ 3 currents. For the
fermion bilinears, the Wilson coefficients shown in Table II
are 3 × 3 matrices in flavor space. Moreover, it should be
noted that the current ∂νBνμ is redundant, since it can be
eliminated using the equation of motion (EoM) of the
hypercharge field (see Appendix A). This leaves us with a
total of 46 independent currents to be probed above the
EW scale.
Moving to the EFT below the EW scale, we use Dirac

fermions to construct currents that are gauge singlets under
SUð3Þc × Uð1Þem. The possible currents up to dimension 3
are shown in Table III. The flavor symmetry is now
SUð2Þu × SUð3Þd × SUð3Þe × SUð3ÞνL , explicitly broken
by fermion masses, leaving a total of 53 independent
currents to be probed below the EW scale. Notice that
we do not introduce right-handed neutrinos in the low
energy EFT, and we leave unspecified the mechanism

behind neutrino masses. As we did above the EW scale, we
will focus in the following on the running and mixing of the
d ¼ 3 currents, again ignoring all possible renormalizable
portals.
Our setup will be the following. We will assume the

operators in Eq. (2.1) to be generated at some scale Λ,
to be roughly identified with the mass of some flavorful
mediator. We present in Appendix B some specific exam-
ples using models present in the literature; see Eq. (B2).
If Λ > ΛEW ≃mZ, we will use the d ¼ 3 SM currents
presented in Table II, while if Λ < ΛEW, we will use
the d ¼ 3 currents from Table III. In both cases, we
will leave the flavor structure of the Wilson coefficients
ðCaÞij completely generic. In the next section, we will
compute the running and mixing of such currents from
the scale Λ at which the operators are generated down
to E ≪ ΛEW.

III. RENORMALIZATION GROUP EQUATIONS
FOR THE DARK SECTOR EFT

We start by considering the EFT above the EW scale. To
be explicit, the Lagrangian we consider is

L ¼ 1

Λn JDμ½q̄LγμCqLqL þ ūRγμCuRuR þ d̄RγμCdRdR

þ l̄Lγ
μClLlL þ ēRγμCeReR þ CHiH†D

↔

μH�; ð3:1Þ

where all the Wilson coefficients except CH are matrices in
flavor space. To be conservative, we suppose that the same
dark current is coupled to all the SM terms, but it is easy to
extend the analysis to more general cases. Notice that we do
not include the current ∂νBνμ since it is redundant (see
Appendix A).
Since the dark sector is a gauge singlet of the SM

symmetry, only the SM fields and interactions are involved
in the computation of the RGEs. Here, we take into account
the wave function renormalization of the fermion and
Higgs fields (see Fig. 1), as well as the “pure” current
corrections shown in Fig. 2. The top diagrams in Fig. 2 are
corrections to the fermion currents due to gauge and
Yukawa interactions, while the bottom diagrams represent
the loop contributions to the Higgs current. Divergencies
induced by gauge interactions in the self-energy contribu-
tions and in the vertex corrections explicitly cancel one
against the other in the final result, leaving only corrections
proportional to the Yukawa matrices squared. However,
additional care must be taken since, as shown in Fig. 3,
radiative corrections generate the redundant current ∂νBνμ.
This contribution must be redefined away again using
the equation of motion after the theory has been renor-
malized. For each Wilson coefficient, this produces an
extra correction proportional to the hypercharge yψ . More
details are presented in Appendix C. The complete com-
putation gives

TABLE III. List of d < 4 currents constructed out of SM fields
to be used in Eq. (2.1) only below the EW scale. Fμν denotes the
photon field strength, while u, d, and e are Dirac fermions. We
have suppressed all flavor indices.

Dimensions Currents
Wilson

coefficient Flavor transformation

d ¼ 3=2 νL Cν dark 3 of SUð3ÞνL
d ¼ 2 Fμν CA portal Singlet

F̃μν C̃A portal Singlet

d ¼ 3 ūγμu CVu ð2;2̄Þ of SUð3Þu × SUð3Þu
d̄γμd CVd ð3;3̄Þ of SUð3Þd × SUð3Þd
ēγμe CVe ð3;3̄Þ of SUð3Þe × SUð3Þe
νLγ

μνL CVLν ð3;3̄Þ of SUð3ÞνL × SUð3ÞνL
ūγμγ5u CAu ð2; 2̄Þ of SUð3Þu × SUð3Þu
d̄γμγ5d CAd ð3; 3̄Þ of SUð3Þd × SUð3Þd
ēγμγ5e CAe ð3; 3̄Þ of SUð3Þe × SUð3Þe∂νFνμ Cγ Singlet
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ð4πÞ2 dCqL

d log μ
¼ 1

2
½CqLY

2
q þ Y2

qCqL � − ½YuCuRY
†
u þ YdCdRY

†
d − Y2

qCH� þ yqLT1;

ð4πÞ2 dCuR

d log μ
¼ ½CuRY

†
uYu þ Y†

uYuCuR � − 2½Y†
uCqLYu − Y†

uYuCH� þ yuRT1;

ð4πÞ2 dCdR

d log μ
¼ ½CdRY

†
dYd þ Y†

dYdCdR � − 2½Y†
dCqLYd − Y†

dYdCH� þ ydRT1;

ð4πÞ2 dClL

d log μ
¼ 1

2
½ClLYeY

†
e þ YeY

†
eClL � − ½YeCeRY

†
e − YeY

†
eCH� þ ylLT1;

ð4πÞ2 dCeR

d log μ
¼ ½CeRY

†
eYe þ Y†

eYeCeR � − 2½Y†
eClL

Ye − Y†
eYeCH� þ yeRT1;

ð4πÞ2 dCH

d log μ
¼ 2ð3tr½CqLŶ

2
q� − 3tr½YuCuRY

†
u� þ 3tr½YdCdRY

†
d� − tr½Y†

eClLYe� þ tr½YeCeRY
†
e�Þ

þ 2tr½3Y2
q þ Y†

eYe�CH þ yHT; ð3:2Þ

FIG. 1. Feynman diagrams contributing to the wave function renormalization of fermions ψ and of the Higgs doublet H.

FIG. 2. Feynman diagrams contributing to the current corrections for pure fermions ψ and Higgs currents.
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where Yψ are nondiagonal Yukawa matrices and we have
defined the useful quantities

Y2
q ≡ YuY

†
u þ YdY

†
d; Ŷ2

q ≡ YuY
†
u − YdY

†
d; ð3:3Þ

and

T ≡ 4

3
g02ð6yqL tr½CqL � þ 3yuR tr½CuR � þ 3ydR tr½CdR �

þ 2ylL tr½ClL � þ yeR tr½CeR � þ yHCHÞ: ð3:4Þ

Notice that all the equations in Eq. (3.2) contain a term
proportional to T generated in the redefinition of the
redundant operator. This term is a function of all diagonal
elements of the Wilson coefficients and implies that a
coupling between the dark current and a lepton (or quark)
current is generated even if not present at the scale Λ. This
fact has been used in recent years to put bounds coming
from the hadron or lepton collider on leptophilic and
leptophobic dark matter models [13–15,45]. We have
explicitly checked that our results match with those of
Ref. [14] once we restrict to flavor-diagonal currents. Let
us, however, remark that the contribution proportional to T
is absent in flavor-off-diagonal currents. In addition, we
expect the largest flavor violating effects to appear on the
RGEs involving the top-Yukawa coupling, i.e., those of the
Wilson coefficients Ci3

qL , C
3i
qL , C

i3
uR , or C

3i
uR (i ¼ 1, 2). In

the numerical solution of the RGEs (see Sec. IV), we will
consider the running of both the gauge and Yukawa
couplings at one loop as taken from Refs. [46,47].
Let us now turn to the RGEs below the EW scale, which

we roughly identify with the Z boson mass. At this scale,
we integrate out the heavy fields W, Z, H and the top
quark. The Lagrangian we consider is

L ¼ 1

Λn JDμ½ūγμCVu
uþ d̄γμCVd

dþ ēγμCVe
eþ ν̄Lγ

μCVLν
νL

þ ūγμγ5CAu
uþ d̄γμγ5CAd

dþ ēγμγ5CAe
e�; ð3:5Þ

where CVu
and CAu

are 2 × 2 matrices in the up-type quark
flavor space, while all the other matrices are 3 × 3 in flavor
space. Notice that we are not considering the current ∂νFνμ

since it can be redefined away using the photon equations
of motion. The procedure to obtain the RGEs is as before.
The corrections due to the wave function renormalization

are now due only to strong and electromagnetic inter-
actions, and again they cancel against the vertex corrections
in Fig. 4. What remains of the vertex corrections are the
Fermi contributions, with flavor-diagonal and -off-diagonal
contributions coming from neutral and charged current
interactions, respectively. Again, we need to take care of the
redundant current ∂νFνμ which is generated radiatively by
diagrams similar to those shown in Fig. 3 (with a photon in
the external leg instead of a B vector), eliminating it via the
EoM of the photon field. Again, more details are shown in
Appendix C. The RGEs are given by

ð4πÞ2 dCVu

d log μ
¼ gVu

F u þGFudVðM2
Vd

−M2
Ad
ÞV† þQuQ;

ð4πÞ2 dCVd

d log μ
¼ gVd

F d þGFduV†ðM2
Vu

−M2
Au
ÞV þQdQ;

ð4πÞ2 dCVe

d log μ
¼ gVe

F e þQeQ;

ð4πÞ2 dCVLν

d log μ
¼ gVν

F ν þGFνeðM2
Ve

−M2
Ae
Þ;

ð4πÞ2 dCAu

d log μ
¼ gAu

F u −GFudVðM2
Vd

−M2
Ad
ÞV†;

ð4πÞ2 dCAd

d log μ
¼ gAd

F d −GFduV†ðM2
Vu

−M2
Au
ÞV;

ð4πÞ2 dCAe

d log μ
¼ gAe

F e; ð3:6Þ

where V is the Cabibbo-Kobayashi-Maskawa matrix, and
we have used the definitions

M2
Vi

¼ 2
ffiffiffi
2

p
ðCVi

M2
i þM2

i CVi
− 2MiCVi

MiÞ;
M2

Ai
¼ 2

ffiffiffi
2

p
ðCAi

M2
i þM2

i CAi
þ 2MiCAi

MiÞ: ð3:7Þ

The matrixMi is the diagonal mass matrix for the fermions
of type i, and we have defined

Q ¼ 8

3
e2½3Qutr½CVu

� þ 3Qdtr½CVd
� þQetr½CVe

��1;
F i ¼ 16

ffiffiffi
2

p
½3gAu

GFiutr½M2
uCAu

�
þ 3gAd

GFidtr½M2
dCAd

� þ gAe
GFietr½M2

eCAe
��1: ð3:8Þ

FIG. 4. Feynman diagrams contributing to the current renorm-
alization below the EW scale.

FIG. 3. Feynman diagrams contributing to the redundant
current ∂νBνμ.
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The coefficients gVi
¼ T3

i − 2s2wQi and gAi
¼ −T3

i are the
vector and axial couplings (T3

i is the third component of
the isospin, Qi is the electric charge, and sw is the sine of
the weak angle), while the Fermi couplings GFff0 are
defined in Eqs. (A5) and (A6). It should be noted that,
below the EW scale, not only do the fermion masses run,
but we need also to take into account the running of GFff0 ,
and the running depends on the fermion type f and f0
involved, justifying in this way the fact that we do not write
a unique Fermi coupling. We use Ref. [48] for the running
of the masses and show in Appendix D more details on the
running of GFff0 .
Before closing this section, let us comment on how the

two theories match onto each other. More specifically,
when the scale Λ at which the dark sector EFT is generated
is above the EW scale, the operators of Eq. (3.1) run and
mix according to Eq. (3.2) down to ΛEW ≃mZ. At this
scale, the operators must be matched onto the Lagrangian
of Eq. (3.5) before continuing with the running of Eq. (3.6)
down to low energies. This procedure was presented in
detail in Ref. [14] for flavor-diagonal Wilson coefficients.
In our case, the only new feature is that once we cross the
EW threshold all the fermions must be rotated into the mass
basis. Explicitly, we write this transformation as

fL → LffL; fR → RffR; ð3:9Þ

where the matrices Lf and Rf diagonalize the Yukawa
matrices. The matching then results:

CVu
ðΛEWÞ ¼

1

2
ðL†

qCqLðΛEWÞLq þ R†
uCuRðΛEWÞRuÞ

þ gVu
CHðΛEWÞ1;

CVd
ðΛEWÞ ¼

1

2
ðL†

qCqLðΛEWÞLq þ R†
dCdRðΛEWÞRdÞ

þ gVd
CHðΛEWÞ1;

CVLν
ðΛEWÞ ¼

1

2
L†
lClLðΛEWÞLl þ gVν

CHðΛEWÞ1;

CVe
ðΛEWÞ ¼

1

2
ðL†

lClL
ðΛEWÞLl þ R†

eCeRðΛEWÞReÞ
þ gVe

CHðΛEWÞ1;

CAu
ðΛEWÞ ¼

1

2
ð−L†

qCqLðΛEWÞLq þ R†
uCuRðΛEWÞRuÞ

þ gAu
CHðΛEWÞ1;

CAd
ðΛEWÞ ¼

1

2
ð−L†

qCqLðΛEWÞLq þ R†
dCdRðΛEWÞRdÞ

þ gAd
CHðΛEWÞ1;

CAe
ðΛEWÞ ¼

1

2
ð−L†

lClLðΛEWÞLl þ R†
eCeRðΛEWÞReÞ

þ gAe
CHðΛEWÞ1: ð3:10Þ

Notice in particular that the term induced by CH affects
only the diagonal Wilson coefficients. In the following
section, we will solve numerically the RGEs and show the
numerical impact of turning on off-diagonal currents at the
scale Λ.

IV. NUMERICAL RESULTS AND
POSSIBLE APPLICATIONS

We turn in this section to the numerical solution of the
RGEs presented in Eqs. (3.2) and (3.6). As already
mentioned, in solving Eqs. (3.2) and (3.6), we not only
take into account the EW threshold if needed, but we also
consider the running of the gauge and Yukawa couplings
(for the theory above the EW scale) and the running of the
Fermi coupling and fermion masses (for the theory below
the EW scale). We show in Fig. 5 the value of the Wilson
coefficients at the EW scale as a function of Λ, considering
the “flavor-democratic” initial condition

ðCaÞijðΛÞ ¼ 1; for all a; i; and j: ð4:1Þ

As expected, the effect of the running is more important for
the currents constructed out of top quarks (with Wilson
coefficients C3i

qL , C
i3
qL , C

3i
uR , and Ci3

uR , with i ¼ 1, 2, 3) and
for CH, in which the top-Yukawa coupling enters. The
result can be easily understood by inspecting Eq. (3.2). In
the limit in which only the top-Yukawa coupling is turned
on, we have

dCi3
qL

d log μ
≃

y2t
32π2

Ci3
qL ;

dC3i
qL

d log μ
≃

y2t
32π2

C3i
qL ;

dC33
qL

d log μ
≃

y2t
16π2

ðCH þ C33
qL − C33

uRÞ;

dCi3
uR

d log μ
≃

y2t
16π2

Ci3
uR;

dC3i
uR

d log μ
≃

y2t
16π2

C3i
uR ;

dC33
uR

d log μ
≃

y2t
8π2

ðCH − C33
qL þ C33

uRÞ; ð4:2Þ

with i ¼ 1, 2 and all the other RGEs vanishing. The
solutions at the scale mt at which we integrate out the
top quark are easily found. For the off-diagonal Wilson
coefficients, they are

Ci3
qLðmtÞ ≃

�
mt

Λ

�
y2t =32π

2

Ci3
qLðΛÞ;

C3i
qLðmtÞ ≃

�
mt

Λ

�
y2t =32π

2

C3i
qLðΛÞ;

Ci3
uRðmtÞ ≃

�
mt

Λ

�
y2t =16π

2

Ci3
uRðΛÞ;

C3i
uRðmtÞ ≃

�
mt

Λ

�
y2t =16π

2

C3i
uRðΛÞ; ð4:3Þ
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where again i ¼ 1, 2, while for the diagonal Wilson
coefficients, they are

C33
qLðmtÞ ≃ C33

qLðΛÞ þ
y2t

16π2
½CHðΛÞ þ C33

qLðΛÞ − C33
uRðΛÞ�

× log
mt

Λ
;

C33
uRðmtÞ ≃ C33

uRðΛÞ þ
y2t
8π2

½CHðΛÞ − C33
qLðΛÞ þ C33

uRðΛÞ�

× log
mt

Λ
: ð4:4Þ

From these equations, we get various important infor-
mation: (i) The off-diagonal Wilson coefficients can have a
substantial running due to yt. (ii) The renormalization of the
flavor-off-diagonal Wilson coefficients is always multipli-
cative, in the sense that there are no important flavor
changing generated during the running to low energy.
(iii) While the running of the flavor-off-diagonal Wilson
coefficients is irreducible, the running of the flavor-
diagonal coefficients depends strongly on the correlations
between the initial conditions of different Wilson coeffi-
cients. For instance, we see from Eq. (4.4) that had we

considered flavor-democratic initial conditions without
generating the Higgs current (CHðΛÞ ¼ 0) then the diago-
nal Wilson coefficients would basically not run. This is not
true for the off-diagonal coefficients, which once turned on
will run independently from the initial conditions of other
coefficients. We stress that the analytical expressions of
Eqs. (4.3) and (4.4) reproduce accurately the full numerical
results.
Moving to the EFT below the EW scale, inspection of

Eq. (3.6) shows that the RGEs depend on the Fermi
coupling GFff0 and on the electric charge e2. Both con-
tributions are rather small, and from the practical point of
view, all the Wilson coefficients remain basically constant
in this energy range. We have confirmed numerically that
this is indeed the case. We conclude then that the relevant
running happens above mt, in the energy region in which
the top quark is still a dynamical degree of freedom. For
mediators with mass above the EW scale coupling to the
top quark, the effect of the running may be important and
must thus be taken into account in the comparison with
experiments. On the contrary, if the mediator is lighter than
the EW scale, or if it does not interact with the top quark,
the tree level predictions are usually a good approximation
for the extractions of phenomenological bounds.
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FIG. 5. Running of theWilson coefficients above theEWscale, taking as an initial condition ðCaÞijðΛÞ ¼ 1 for all thevalues ofa, i, and j.
In the bottom left panel, CdR ∼ ClL ∼ CeR applies to all the matrix elements, with no difference for those involving the third generation.
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We conclude this section with some phenomenological
remarks. Using Eq. (4.3), we see that the main effect of the
running will manifest at low energy in observables related
to the B mesons, i.e., involving the b̄γμðγ5Þd and b̄γμðγ5Þs
currents. More precisely, the vector and axial coefficients at
a scale μ ≪ mZ are given by

C3i
Vd
ðμÞ ≃ 1

2

��
mt

Λ

�
y2t =32π

2

Ci3
qLðΛÞ þ C3i

dR
ðΛÞ

�
;

C3i
Ad
ðμÞ ≃ 1

2

�
−
�
mt

Λ

�
y2t =32π

2

Ci3
qLðΛÞ þ C3i

dR
ðΛÞ

�
; ð4:5Þ

the same result is also valid by changing the order 3 ↔ i,
where i ¼ 1, 2. This is important when the dark sector is
light, in such a way that the decays b → sþ invisible and
b → dþ invisible are kinematically allowed. These proc-
esses were studied in the context of dark sector phenom-
enology in Ref. [49]. As shown in this reference, the
bounds on the Wilson coefficients depend crucially on the
nature of the dark particles appearing in the dark current.
Given this model dependence, we will not explore this
matter here. In addition, we remark that more flavor effects
would be obtained once dark particle loops are considered,
for instance generating contributions to the B mesons mass
mixing. As shown in Ref. [38] in the context of flavor-
diagonal DM EFT, these effects can be important, but since
they are model dependent, we defer their study to a
future work.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the running and mixing of
operators of a dark sector EFT, under the hypothesis that
the operators are generated by a heavy flavorful mediator.
We have carefully computed the running above and below
the EW scale and the matching due to the heavy SM
particles. Our main results are shown in Fig. 5 and in the
approximate analytic solutions of Eqs. (4.3) and (4.4).
The most important effects in the running are generated by
the top-Yukawa coupling and as such are present only
above the top-quark threshold. Once turned on at the
scale Λ, the contribution of the running on the flavor-
off-diagonal Wilson coefficients is irreducible, in the sense
that, unlike what happens for flavor-diagonal coefficients, it
does not depend on possible correlations between the
Wilson coefficients at the scaleΛ. From a phenomenological
perspective, our results imply that the most important effect

of the running and mixing is found at low energy in the
currents constructed out of the left-handed down-type quarks
b̄LγμdL and b̄LγμsL. If the dark sector is heavier than the B
mesons mass scale, then the main effects will be due to loops
of dark particles. If instead the dark sector is sufficiently light,
the decays b → sþ invisible and b → dþ invisible may be
kinematically allowed and can be used to put bounds on the
Wilson coefficients. Since all these processes depend on the
specific nature of the dark sector particles, we defer their
study to a forthcoming publication.
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APPENDIX A: STANDARD MODEL:
CONVENTIONS

We show in this Appendix a few more details on the SM
Lagrangian, as well as some useful definitions used
throughout the paper. According to the conventions shown
in Table I, the SM Lagrangian in the unbroken phase is
given by

L ¼ −
1

4
ðGμνÞ2 −

1

4
ðWa

μνÞ2 −
1

4
ðBμνÞ2

þ iψ̄Dψ þ jDμHj2 − VðHÞ
þ q̄LYdHdR þ q̄LYuH̃uR þ l̄LYeHeR þ H:c:; ðA1Þ

where as usual H̃ ¼ iσ2H�. We stress that we do not
commit to a fermion basis in which some of the Yukawa
matrices Yu, Yd, and Ye are diagonal. The equation of
motion of the hypercharge vector field is particularly
important, since it allows us to define away a redundant
current. It reads

∂νBμν ¼ g0JYμ
¼ g0ðyqLq̄LγμqLþyuRūRγμuRþ d̄RγμdRþylL l̄LγμlL

þyeR ēRγμeRþyHiH†D
⟷

μHÞ: ðA2Þ

FIG. 6. Feynman diagrams contributing to the running of the Fermi coupling below the EW scale.
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Once the EW symmetry is broken by the Higgs vacuum
expectation value

hHi ¼
�
0

v

�
v ≃ 174 GeV; ðA3Þ

and all the states get nonvanishing masses, we integrate out
the heavy fields. The SM Lagrangian in the broken phase
(i.e., below the EW scale) is

L¼−
1

4
ðGμνÞ2−

1

4
ðFμνÞ2þ ψ̄ðD−mψÞψþLFermi; ðA4Þ

whereFμν is the photon field strength,whileψ represents any
of the light Dirac fermions still present in the theory. We do
not assume the existence of right handed neutrinos in the low
energy spectrum, and we leave unspecified the mechanism
behind their mass generation. Once the Z andW bosons are
integrated out, we obtain two contributions for the four-
fermion Fermi Lagrangian. The neutral current one reads

LF ⊃ −
GFff0ffiffiffi

2
p gΓfgΓ0f0 ðf̄ΓμfÞðf0Γ0

μf0Þ; ðA5Þ

where Γ ¼ γμ or γμγ5 as defined below Eq. (3.8). Although
the notationGFff0 seems redundant, we keep explicit track of
the “fermion indices” because, as we will show in
Appendix D, different f and f0 correspond to different
runnings for the coupling.
Turning to the charged current, the relevant contributions

read

LF ⊃ −
GFud

4
ffiffiffi
2

p
X
i;j;k;l

VijV†klūiðγμ − γμγ5Þuld̄kðγμ − γμγ5Þdj;

ðA6Þ
where V denotes the Cabibbo-Kobayashi-Maskawa matrix.
The EoM of the photon field, used to eliminate the

redundant operator ∂μFνμ, is

∂μFνμ ¼ eJνem; ðA7Þ
with Jem the usual electromagnetic current.

APPENDIX B: EFT GENERATED
IN SPECIFIC MODELS

Let us now show how some of the flavor models
involving dark sectors present in the literature can be
mapped to our formalism. We start with the situation
considered in Refs. [35,50,51], which can be summarized
via the interactions

LA
int ¼ λijd̄iRχ

j
Lϕ; LB

int ¼ λijūiRχ
j
Lϕ; LC

int ¼ λijq̄iLχ
j
Rϕ:

ðB1Þ
The triplet of dark fermions χi is chosen to be a gauge
singlet, while the scalar mediator ϕ transforms under the
SM gauge group as the quark to which it couples. The same
kind of interactions has been considered in Ref. [3] in the
context of collider searches of Hidden Valley models.
Taking the mediator to be heavy, we obtain at low energy

LA
EFT ¼ λijλ

�
km

2m2
ϕ

ðχ̄kLγμχjLÞðd̄iRγμdmR Þ;

LB
EFT ¼ λijλ

�
km

2m2
ϕ

ðχ̄kLγμχjLÞðūiRγμumR Þ;

LC
EFT ¼ λijλ

�
km

2m2
ϕ

ðχ̄kRγμχjRÞðq̄iLγμqmL Þ: ðB2Þ

This shows that the combination of operators studied in this
paper can be easily obtained in specific models.

APPENDIX C: COMPUTATION OF THE
RENORMALIZATION GROUP EQUATION

In this Appendix, we will present more details on the
computation of the RGEs for the Wilson coefficients of the
d ¼ 3 currents appearing inTables II and III. The final results
have been shown in Sec. III, with numerical solutions given
in Sec. IV. We will always use dimensional regularization in
d ¼ 4 − 2ε dimensions and use the MS scheme.
Let us start by considering loop corrections above the

EW scale. The counterterm Lagrangian Lc:t: generated by
the wave function renormalization (see Fig. 1) is given by

Lc:t: ¼
�
g2Cð2Þ þ g02y2H

8π2ε
−
3trðY2

qÞ þ trðY†
eYeÞ

16π2ε

�
∂μH†∂μH − q̄L

�
g2sCð3Þ þ g2Cð2Þ þ g02y2qL

16π2ε
1þ Y2

q

32π2ε

�
i∂qL

− ūR

�
g2sCð3Þ þ g02y2uR

16π2ε
1þ Y†

uYu

16π2ε

�
i∂uR − d̄R

�
g2sCð3Þ þ g02y2dR

16π2ε
1þ Y†

dYd

16π2ε

�
i∂dR

− l̄L

�
g2Cð2Þ þ g02y2lL

16π2ε
1þ YeY

†
e

32π2ε

�
i∂lL − ēR

�
g02y2eR
16π2ε

1þ Y†
eYe

16π2ε

�
i∂eR; ðC1Þ

where Cð2Þ and Cð3Þ are, respectively, the SUð2ÞL and SUð3Þc Casimirs for the fundamental representations; yi denotes the
field hypercharge; and we have used Eq. (3.3) for the definition of Y2

q. The connection between renormalized and bare fields
is now straightforwardly found:
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H≃
�
1−

1

2

�
g2Cð2Þþg02y2H

8π2ε
−
3trðY2

qÞþ trðY†
eYeÞ

16π2ε

��
Hbare;

qL≃
�
1þ1

2

�
g2sCð3Þþg2Cð2Þþg02y2qL

16π2ε
1þ Y2

q

32π2ε

��
qL;bare;

uR≃
�
1þ1

2

�
g2sCð3Þþg02y2uR

16π2ε
1þ Y†

uYu

16π2ε

��
uR;bare;

dR≃
�
1þ1

2

�
g2sCð3Þþg02y2dR

16π2ε
1þ Y†

dYd

16π2ε

��
dR;bare;

lL≃
�
1þ1

2

�
g2Cð2Þþg02y2lL

16π2ε
1þ YeY

†
e

32π2ε

��
lL;bare;

eR≃
�
1þ1

2

�
g02y2eR
16π2ε

1þ Y†
eYe

16π2ε

��
eR;bare: ðC2Þ

Our results confirm the computation of Ref. [14]. Let
us now turn to the computation of the counterterms
due to currents corrections (see Fig. 2). For each
Wilson coefficient Ca, direct computation gives the coun-
terterms

δCqL ¼ −
g2sCð3Þ þ g2Cð3Þ þ g02y2qL

16π2ε
CqL

−
YuCuRY

†
u þ YdCdRY

†
d

32π2ε
þ Y2

q

32π2ε
CH;

δCuR ¼ −
g2sCð3Þ þ g02y2uR

16π2ε
CuR −

Y†
uCqLYu

16π2ε
þ Y†

uYu

16π2ε
CH;

δCdR ¼ −
g2sCð3Þ þ g02y2dR

16π2ε
CdR −

Y†
dCqLYd

16π2ε
þ Y†

dYd

16π2ε
CH;

δClL ¼ −
g2Cð2Þ þ g02y2lL

16π2ε
ClL −

Y†
eCeRYe

32π2ε
þ Y†

eYe

32π2ε
CH;

δCeR ¼ −
g02y2eR
16π2ε

CeR −
Y†
eClLYe

16π2ε
þ Y†

eYe

16π2ε
CH;

δCH ¼ þ g2Cð2Þ þ g02y2H
8π2ε

þ 3trðCqLŶ
2
qÞ

16π2ε

−
3ðtrðYuCuRY

†
uÞ − trðYdCdRY

†
dÞÞ

16π2ε

−
trðY†

eClLYeÞ − trðYeCeRY
†
eÞ

16π2ε
: ðC3Þ

Notice that, in addition to the counterterms of Eq. (C3),
also the redundant operator ∂νBνμ is generated via the
loops of Fig. 3, and a further counterterm δCB is needed.
We get

δCB ¼ −
2

3

g0

16π2ε
T; ðC4Þ

with T defined in Eq. (3.4). Once δCB is added to the
Lagrangian, we apply Eq. (A2) to define away the ∂νBνμ

current, obtaining that each of the counterterms in Eq. (C3)
gets a correction

δCa → δCa − ya
2

3

g02

16π2ε
T: ðC5Þ

We are now in the position of finally compute the RGEs of
the Wilson coefficients Cφ. Let us sketch the procedure.
Writing φ ≃ ð1þWφÞφbare for each field [with explicit
expressions given in Eq. (C2)], the bare Wilson coefficient
is given in terms of the renormalized one by

Cbare
φ ¼ μαεð1þWφÞðCφ þ δCφÞð1þWφÞ

≃ μαε
�
Cφ þ δCφ þ

CφWφ þWφCφ

2

�
: ðC6Þ

The factor μαε is inserted to ensure that all the renormalized
Wilson coefficients Cφ are dimensionless in d ¼ 4 − 2ε
dimensions. The coefficient α depends on the field
content of the dark current JD, but we will not need to
specify it as long as all the SM currents couple either
to the same dark current or to many dark currents of the
same dimensions. Imposing dCbare

φ =d log μ ¼ 0 and using
that, to leading order in the couplings, the RGEs have the
form

dCφ

d log μ
¼ −αεCφ þ…; ðC7Þ

we obtain the RGEs of Eq. (3.2). For the running of the
Yukawa and gauge couplings, we use the results in
Refs. [46,47].
Let us now move to the EFT below the EW scale.

The only contributions to the wave function renormaliza-
tion of fermions come from QED and QCD. The counter-
terms are

Lc:t: ¼ −
1

16π2ε

X
f

ðCfð3Þg2s þQ2
fe

2Þf̄i∂f; ðC8Þ

where Cfð3Þ is the SUð3Þc quadratic Casimir, if the fermion
has color, andQf is the fermion electric charge. Notice that
there is no flavor-off-diagonal contribution. Turning to
vertex corrections, we now have contribution from gauge
bosons and from four fermion interactions (see Fig. 4). The
vertex counterterms are
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δCVu
¼ 1

16π2ϵ

�
ðC2ð3Þg2s þQ2

ue2ÞCVu
−
gVu

F u

2
−
GFud

2
VðM2

Vd
−M2

Ad
ÞV†

�
;

δCVd
¼ 1

16π2ϵ

�
ðC2ð3Þg2s þQ2

de
2ÞCVd

−
gVd

F d

2
−
GFdu

2
V†ðM2

Vu
−M2

Au
ÞV

�
;

δCVν
¼ 1

16π2ϵ

�
−
gVν

F ν

2
−
GFνe

2
ðM2

Ve
−M2

Ae
Þ
�
;

δCVe
¼ 1

16π2ϵ

�
Q2

ee2CVe
−
gVe

F e

2

�
;

δCAu
¼ 1

16π2ϵ

�
ðC2ð3Þg2s þQ2

ue2ÞCAu
−
gAu

F u

2
þGFud

2
VðM2

Vd
−M2

Ad
ÞV†

�
;

δCAd
¼ 1

16π2ϵ

�
ðC2ð3Þg2s þQ2

de
2ÞCAd

−
gAd

F d

2
þGFdu

2
V†ðM2

Vu
−M2

Au
ÞV

�
;

δCAν
¼ 1

16π2ϵ

�
−
gAν

F ν

2
þ GFνe

2
ðM2

Ve
−M2

Ae
Þ
�
;

δCAe
¼ 1

16π2ϵ

�
Q2

ee2CAe
−
gAe

F e

2

�
; ðC9Þ

where we have used the definition of Eq. (3.8). As before,
the redundant current ∂νFνμ is radiatively generated, and
the corresponding counterterm is

δCγ ¼
e

12π2ε
ð3Qutr½CVu

� þ 3Qdtr½CVd
� þQetr½CVe

�Þ:
ðC10Þ

This effect can be incorporated in the other Wilson
coefficients via the shift

CVa
→ CVa

þQaQ: ðC11Þ

Repeating now the procedure sketched in Eqs. (C6) and
(C7), we obtain the RGEs presented in Eq. (3.6).

APPENDIX D: RUNNING
OF GF DUE TO QCD AND QED

Let us now discuss the running of the Fermi coupling
below the EW scale. In addition to the wave function
renormalization, we need to consider the diagrams shown
in Fig. 6. The results are independent on the flavor of
the external fermions. Some of the vertex corrections will
cancel against the wave function contributions (more
specifically, those vertex corrections in which the gluon

or photon connect particles in the same fermion line). The
gluon “crossed” contributions1 generate the operators

q̄ΓμTaqq0Γ0
μTaq0 ðD1Þ

with a double insertion of Gell-Mann matrices. These
operators do not enter in the running of our currents,
and we will therefore not consider them in the following.
Notice, however, that their effect is important when the
nature of the dark current is specified and dark fermions
loops can be considered, as in Refs. [17,38]. We are thus
left with the photon crossed loops, which are the only
radiative effects that we need to take into account. Their
effect is to produce the RGE

dGFff0

d log μ
¼ −2GFff0

QfQf0α

π
; ðD2Þ

which has been used in the numerical computations of
Sec. IV. Notice that the resulting RGE is independent of Γμ

and Γ0μ. Quantitatively, the relative variation in the value of
GFff0 is of the order of a few percent.

1By “crossed contributions”, we mean those loops in which the
photon or gluon connects particles in two different fermion lines.
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