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The Higgs potential appears to be fine-tuned, hence very sensitive to values of other scalar fields that
couple to the Higgs. We show that this feature can lead to a new epoch in the early Universe featuring
violent dynamics coupling the Higgs to a scalar modulus. The oscillating modulus drives tachyonic Higgs
particle production. We find a simple parametric understanding of when this process can lead to rapid
modulus fragmentation, resulting in gravitational wave production. A nontrivial equation of state arising
from the nonlinear dynamics also affects the time elapsed from inflation to the CMB, influencing fits of
inflationary models. Supersymmetric theories automatically contain useful ingredients for this picture.
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I. INTRODUCTION

The origin of the Higgs mass and the mechanism of
electroweak symmetry breaking (EWSB) are among the
biggest puzzles in fundamental physics. The Higgs mass
receives large quantum corrections unless there is new
physics to tame this sensitivity, e.g., supersymmetry
(SUSY), which predicts that the masses of the Higgs
and numerous other scalars lie near a common scale of
supersymmetry breaking. The Large Hadron Collider
(LHC) has not found the predicted plethora of new particles
near the Higgs mass. However, this does not rule out a
scenario such as SUSY. Our Universe may simply lie in the
region of parameter space where the Higgs boson is
accidentally much lighter than the other scalars. In this
article, we show that such a scenario can lead to dramatic
nonperturbative dynamics in the early Universe, generating
potentially observable cosmological signatures.
Within SUSY extensions of the SM, the parameters of

the SM are not truly constant but are affected by the values
of scalar fields called moduli. These fields have couplings
to the SM suppressed by a large scale (e.g., the Planck
scale), so they cannot be produced or detected at colliders.
Our vacuum is a minimum of the potential for the moduli
and the Higgs. In this context, the LHC results hint that this
minimum lies near a critical point in parameter space where
the Higgs is significantly lighter than the typical SUSY

scale, with the Higgs potential precariously balanced
between no EWSB and severe EWSB. Can we test this
scenario with cosmology?
In the present Universe, we cannot vary parameters to

explore the potential near such a critical point. However,
the early Universe might already have carried out such an
exploration. In the early Universe, moduli were generically
displaced from the minimum and evolving in time. We
show that the accidental lightness of the Higgs in the
present Universe, or, equivalently, the weakness of EWSB,
can potentially lead to nonperturbative, violent cosmologi-
cal dynamics of the moduli and SM fields. Such dynamics
can yield potentially observable signatures like a high
frequency ∼10 kHz stochastic gravitational background
and change the expansion history of the Universe.
Testing whether we live in a “meso-tuned” universe is a

key goal for a future very high energy hadron collider [1].
Our goal here is to explore the cosmological dynamics,
seeking signals that give a positive and direct test of fine-
tuning, separate from collider probes. We intend to open a
new angle on the possible connection between EWSB and
early universe cosmology.1

Our goal here is not to explain fine-tuning. Plausibly
there is a landscape of possible theories with varying
amounts of fine-tuning, and we find ourselves in a
moderately tuned vacuum. (A separate tuning is needed
to cancel the cosmological constant.) For our purposes it
does not matter whether this is due to random chance or
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1Related work includes studies of time-dependent SM param-
eters in the early Universe [2–7], a different possible inflationary
probe of fine-tuning [8], and whether parametric resonance can
solve the moduli problem [9] or not [10].
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anthropic selection; what matters for us are the cosmo-
logical implications of this tuning. Our work explicitly
demonstrates that instead of being merely an aesthetic
concept, fine-tuning has concrete physical consequences.

II. A SIMPLE MODEL

We seek a simplified model capturing the assumption
that a Higgs field h couples to a modulus ϕ (with
characteristic field range f) such that for typical values
of ϕ, the Higgs mass takes a natural value of order M
(e.g., the SUSY-breaking scale), but for particular values of
ϕ the Higgs mass may be much smaller. Such a potential
could have the form

1

2
m2

ϕðϕ − ϕ1Þ2 þM2
ϕ − ϕ0

f
h†hþ λðh†hÞ2 þ V0: ð1Þ

A priori we expect ϕ0 ∼ ϕ1 ∼ f. The value ϕ ¼ ϕ0 is
the point of marginal EWSB, whereas ϕ ¼ ϕ1 is the
point where V is minimized for h ¼ 0 (along the “ridge”
in the potential in Fig. 1). The global minimum of this
potential is at ϕm ¼ ðbϕ0 − ϕ1Þ=ðb − 1Þ and jhmj ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðϕ0 − ϕ1Þ=ð2λfð1 − bÞÞp
, where

b≡ M4

2λf2m2
ϕ

< 1: ð2Þ

The parameter b plays a critical role in the dynamics; b < 1
is necessary for the potential to be bounded from below.
There is no a priori reason why the global minimum of

the potential lies near the point of marginal EWSB. The
closer ϕm is to ϕ0, the greater our surprise. This means

fine tuning ⇔ Δ≡ ϕ0 − ϕm

f
≪ 1: ð3Þ

In terms of this fine-tuning parameter, the observed Higgs
mass around the global minimum is

m2
h ¼ 2M2Δ: ð4Þ

This is closely related to fine-tuning in the usual sense: If
Eq. (1) represents a tree-level potential, loop corrections,
including a ϕ tadpole, would shift the minimum away from
marginal EWSB and spoil the coincidence. However, we
take Eq. (1) to represent the quantum-corrected effective
potential, so we do not have to compute loop-induced shifts
in vacuum expectation values (VEVs).
We mostly have in mind fine-tuned supersymmetric

theories, where this toy simplified potential can arise
with M2 ∼m2

soft as explained in Appendix D 2. For con-
creteness, we focus on Δ ¼ 10−6 which corresponds to
M ∼ 102 TeV. We consider the hierarchy m2

h ≪ m2
ϕ≲

M2 ≪ f2. Self-interaction terms, which we have neglected
for simplicity, e.g., ðm2

ϕ=f
2Þϕ4 or 1

f2 ϕ
2∂μϕ∂μϕ, could

have important effects on the dynamics (such as oscillon
formation [11–15]).
For the aforementioned hierarchy of scales, the nonlinear

dynamics we are interested in requires that λ be much
smaller than the SM value (λ ∼ 0.1), but it does not
necessarily imply an inconsistency with the observed
electroweak properties (see Sec. V). Alternatively, we
argue that the relevant nonlinear dynamics is still present
with a different hierarchy and λ ∼ 0.1, although it becomes
extremely challenging to simulate numerically. We also
note that, for simplicity, our simulations substitute a real
scalar field for the complex h.

III. NONLINEAR DYNAMICS

In a typical untuned scenario, when mϕ ≳H in the early
universe, the modulus field starts oscillating coherently
along a valley of the potential, leading to an adiabatically
evolving, early matter-domination epoch.
In contrast, in a tuned universe, the modulus-Higgs

system can undergo explosive, nonperturbative field
dynamics leading to fragmentation of the fields on short
timescales (t ≪ H−1) and yield a nontrivial equation of
state for a number of e-folds of expansion following the
fragmentation.
For Δ ≪ 1, the effective Higgs mass term oscillates

between very large positive and negative values due to
the oscillation of ϕ. Such oscillations lead to nonadiabatic,
out-of-equilibrium production of the Higgs particles (see
Fig. 2). By considering tachyonic resonance [16], for
f ∼ ϕin ∼mpl, the efficiency of such particle production
is controlled by q≡M2=m2

ϕ. In particular, q ≫ 1 (as we
assume) should lead to a broad range of physical momenta
for the produced Higgs particles (see Fig. 3).
Efficient transfer of energy from the modulus to the

Higgs field is countered by the Higgs self-interaction λ.
When particle production is sufficiently efficient, the Higgs
field will be sufficiently populated in nonzero momentum
modes to backreact on the modulus, making it spatially

FIG. 1. The shape of the Higgs-moduli potential. The global
minimum of the potential is at (ϕ ¼ ϕm, h ≠ 0), whereas ϕ0 is the
point of symmetry breaking.
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inhomogeneous (fragmented), as illustrated in Fig. 4. We
describe the process in more detail below.

A. Does the modulus fragment?

The Higgs field must be significantly populated to
backreact and fragment the modulus. Large q favors
tachyonic resonance, whereas large λ limits the Higgs field
occupation numbers. The parameter b ¼ M4=2λf2m2

ϕ

[introduced in Eq. (2)] serves as a fragmentation efficiency
parameter since it incorporates both effects to determine
whether the modulus fragments. At the level of the
potential in Eq. (1), b controls the relative difference in

the potential energy density between the ridge and val-
leys: ΔV ¼ b × ð1=2Þm2

ϕðϕ − ϕ0Þ2.
From detailed numerical simulations (Appendix A), we

see no rapid fragmentation of the modulus field for b ≪ 1;
energetically, there is not much to be gained by falling into
the valleys. For b ∼O½1�, the modulus becomes completely
fragmented; i.e., the energy density in the zero mode of the
modulus is comparable to that in high-momentum modes.
We find that for the duration of our simulations after
fragmentation, ρh=ρϕ ∼ 1. That is, we are always left with
significant energy density in the spatially inhomogeneous
remnant modulus field (Fig. 2).
Figure 3 shows the power spectra of the two fields

PFðkÞ ∝ k3jFðkÞj2 (F ¼ h, ϕ) for understanding the dis-
tribution and time evolution of field perturbations at
different scales. Note that the power spectra have been
scaled by the amplitude of the oscillating modulus. Thus,
when the spectra are of order unity, the rms fluctuations in
the fields are becoming comparable to the background
modulus field, signaling fragmentation of the modulus.
Snapshots of the evolution of Higgs and modulus fields

are shown in Fig. 4. The modulus first begins its oscil-
lations from ϕin ¼ mpl, then passes through ϕ ¼ 0, causing
the Higgs potential to develop minima. After a few
oscillations, the fields start exploring these minima in a
spatially inhomogeneous manner, leading to the formation
of temporary domains. This is also the time when the
backreaction on the oscillating modulus field becomes
relevant. These domains quickly interact with each other
and the still oscillating modulus field leading to complex
spatiotemporal behavior of the fields. The domains anni-
hilate, and the modulus field fragments spatially. The
formation and dynamics of these domains turn out to be
the dominant source of the gravitational wave signal we
discuss in Sec. IVA (see Appendix B for more details). We
note that the existence of domain walls relies on there being

FIG. 2. The ratio of the spatially averaged energy density in
the Higgs and modulus fields as a function of time, from
our lattice simulations. This dynamics is representative of the
energy transfer between the modulus and Higgs fields when
b≡M4=2λf2m2

ϕ ∼O½1�. For this plot we have chosenΔ ¼ 10−6,
M2=m2

ϕ ¼ 102, M=f ¼ 10−13 and λ ∼ 10−24, which corresponds
to b ¼ 0.9. We have confirmed that changing the parameters (for
example, increasing λ by 6 orders of magnitude), while keeping
b ∼ 1 fixed, does not qualitatively change our results.

FIG. 3. The evolution of the normalized fields power spectra for the model with Δ ¼ 10−6, b ¼ 0.9, q ¼ 102, f ¼ mpl. The

normalized power spectrum of a field FðxÞ is PFðkÞ≡ ϕ−2
oscðd=d ln kÞF2ðxÞ, where ϕosc is the amplitude of the background modulus

oscillations. For this normalization, when PϕðkÞ ¼ Oð1Þ, the modulus becomes inhomogeneous. Initially, the tachyonic instability in
the Higgs is closely followed by excitations in the modulus (due to rescattering). Comoving modes k < mϕq1=2 grow exponentially. At
the third oscillation of the modulus, backreaction takes place. The spectra then settle down and power slowly propagates towards higher
comoving modes.
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a two-dimensional field space. If the field space is higher
dimensional, it is possible that higher-dimensional transient
defects like strings or textures will play a similar role.
The existence of transient h-domains (with accompany-

ing domain walls) in this class of models is novel. Within a
short period, Δt ∼ 10m−1

ϕ , the domains disappear com-
pletely, and the fields enter a long turbulent stage. Perhaps,
the shortness of the period in which the domains exist was
the reason they were not noticed in [16].

B. Equation of state

The expansion history of a FRW universe is controlled
by the equation-of-state parameter w:

w≡ hptoti=hρtoti; ð5Þ

where h� � �i indicates spatial averaging over H−1 scales
and temporal averaging over rapid oscillations in ptot.

FIG. 4. Snapshots of the values of the modulus (first row) and Higgs (second row) fields on an arbitrary two-dimensional slice through
the three-dimensional simulation box at four different times (the spatial coordinates are comoving). Around the time of backreaction,
t ≈ 23m−1

ϕ (second column), the Higgs field forms domains (“bubbles”) with h ¼ � ffiffiffiffiffiffiffiffiffiffiffi
2jϕjfp

=q. They disappear within Δt ∼ 10m−1, due
to collisions, as well as oscillations of the remnant ϕ condensate. The parameters we use are Δ ¼ 10−6, b ¼ 0.9, with q ¼ 102,
M ¼ 10−13mpl, f ¼ mpl.

FIG. 5. Left panel: Evolution of w for the Higgs-modulus system for different values of the fragmentation efficiency parameter
b≡M4=2λf2m2

ϕ with tuning Δ ¼ 10−6. For b ∼O½1�, 1=4≲ w≲ 1=3 is attained after fragmentation (orange curve). Smaller b yields
smaller late time w, with continued adiabatic evolution. In the untuned case (Δ ∼O½1�, not shown above) and b ≠ 1, we get w ≈ 0. Right
panel: For fixed b ¼ 0.9, varying q ¼ M2=m2

ϕ affects when 1=4≲ w≲ 1=3 is attained. For all curves, we have averaged energy
densities and pressures spatially over the simulation box and temporally over fast oscillations.
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For fixed b, the detailed dynamics of the fields and
timescale of fragmentation depend on the particular values
of q and λ. For example, for b ∼O½1�, as q increases, the
modulus fragments earlier (Fig. 5, right panel). However, w
shows a simpler behavior as a function of b in the tuned
case when Δ ≪ 1:

(i) For b ≈ 1, once fields fragment, we get 1=4≲ w≲
1=3 for the duration of our simulations (∼ few
e-folds).

(ii) For b≲ 1, we find a nontrivial (0 < w < 1=3),
adiabatically evolving w.

(iii) For b ≪ 1, w → 0. Again, we see some adiabatic
evolution of w.

To sum up, along with Δ ≪ 1 (tuning), we also need b≪1
for significant nonlinear dynamics, fragmentation and a
nontrivial (w ≠ 0) equation of state (Fig. 5).

C. Very long-term dynamics: Beyond simulations

We can only offer qualitative expectations for the long-
term evolution of this highly nonlinear system. Even with
complete fragmentation and an equation of state w ∼ 1=3
seen in our simulations, significant energy density remains
in the modulus field. We expect that after waiting long
enough, without additional physics the universe will again
become matter dominated.
Perturbative modulus decays occur on a timescale

Γ−1 ∼ ðmpl=mϕÞ2m−1
ϕ ≫ m−1

ϕ , much longer than the dura-
tion of the simulations (tsim ∼ few × 102m−1

ϕ ). Energy
could be drained more quickly from the modulus if the
Higgs decays to other light species, freeing up phase space
for further moduli conversion into the Higgs field.
Plausibly, this might significantly reduce the energy density
of the modulus compared to the decay products, though we
have not simulated such dynamics. Nevertheless, it is
difficult to see how matter domination can be avoided if
even a small fraction of the initial energy density of the
modulus survives in low-momentum modes. In general, we
can allow a long-time averaged, constant 0 < wmod < 1=3
to stand in for a range of possible behaviors [including the
possibility of a nontrivial (w ≠ 0, 1=3) equation of state
maintained via nonlinear mode-mode couplings [16]].

D. Without fine-tuning

So far we have focused on the fine-tuned case with
Δ ≪ 1. For Δ ∼O½1� and b≪1, the modulus and Higgs
fields can fall into the Higgs minima in a spatially
inhomogeneous manner. Nonlinear, spatially inhomo-
geneous field dynamics are thus possible even in theories
that are not fine-tuned. However, we find that the fields
end up in a state with an almost homogeneous modulus
oscillating along one of the Higgs valleys around the global
minimum. The initial Higgs production is typically not
robust enough to backreact and break up the condensate.
This behavior quickly yields a standard matter-dominated

phase with equation of state w ≈ 0. We have simulated
Δ ¼ 0.8, b ¼ 0.5 as well as Δ ¼ 4, b ¼ 0.9 to see the
behavior described above. We also found that for Δ ¼ 10−3

we see a transitionary behavior between the tuned and
untuned cases, with the equation of state evolving from
radiation dominated towards matter domination during the
duration of our simulations. These results confirm a general
expectation that Δ controls the duration to matter domi-
nation, with smaller Δ leading to a longer duration.
Note that if b ¼ 1 (or sufficiently close to 1), the

existence of runaway directions changes the behavior
qualitatively. In this case, we can end up with an equation
of state w ∼ 1=3 even when Δ≪ 1.

IV. POTENTIAL SIGNALS AND CONSEQUENCES

A. Stochastic gravitational waves

For b≪ 1, the fields in the modulus-Higgs system
fragment rapidly (for q ≫ 1), providing a source for the
production of gravitational radiation [18–21]. The charac-
teristic physical frequency of gravitational waves at the
time of their generation is fg ∼ β−1Hosc, with β ∼ q−1=2 and
Hosc ∼mϕ the Hubble parameter when the modulus starts
oscillating. Redshifting fg to today, we obtain (see
Appendix B for details)

f0 ∼
aosc
a0

β−1Hosc ∼ kHz × β−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ

10 TeV

r
; ð6Þ

where we assume the universe can be approximated as
radiation dominated shortly after ϕ begins oscillation. Note
that for β ≪ 1, these frequencies are beyond the reach of
current interferometric detectors (f0 ≲ kHz), though not
too far. Techniques for probing higher frequencies in the
future have been discussed [22–24].
The fraction of energy density in gravitational waves

today (per logarithmic interval in frequency around f0) can
be estimated as [25]

Ωgw;0ðf0Þ ∼Ωr;0δ
2
πβ

2; ð7Þ

where Ωr;0 is today’s fraction of energy density stored in
radiation and δπ is the fraction of the energy density in
anisotropic stresses when gravitational waves are produced.
From the scalar field simulations (or estimates from linear
instability calculations and energetic arguments), δπ ∼ 0.3
and β ∼ q−1=2 which yield Ωgw;0 ∼ 10−8 for q ¼ 102. This
result is consistent with our more detailed lattice simulations
which calculate the gravitational wave spectrum using
HLattice [26] (see Fig. 6). Note that detectable Ωgw;0ðf0 ∼
102 HzÞ≳ 10−8 for aLIGO at design sensitivity [27].
We can relax the assumption of a radiationlike equation

of state immediately after fragmentation and generalize
the above formulas. Assuming that (i) fragmentation
and gravitational wave production happen quickly after

COSMOLOGICAL DYNAMICS OF HIGGS POTENTIAL FINE … PHYS. REV. D 99, 035008 (2019)

035008-5



modulus domination and (ii) the appropriately averaged
equation of state w ¼ wmod for Nmod e-folds after frag-
mentation and before final radiation domination kicks in,
the above formulas become

f0 ∼ kHz × e−
Nmod

4
ð1−3wmodÞβ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ

10 TeV

r
;

Ωgw;0ðf0Þ ∼ e−Nmodð1−3wmodÞΩr;0δ
2
πβ

2: ð8Þ

Note that a more observationally accessible, lower fre-
quency signal using large values of Nmodð1 − 3wmodÞ
would lead to a significant suppression of Ωgw;0, making
detection challenging.
A more coarse-grained constraint on total integrated

gravitational wave energy density is provided by a meas-
urement of the number of BSM light degrees of freedom
present at the time of the CMB (ΔNeff ) through its impact
on the cosmic microwave background [28]. Assuming
gravitational waves are the only light degrees of freedom
beyond those in the Standard Model, current constraints
yield

R
d ln fΩgw;0ðfÞ≲ 10−6 [29], with an order of mag-

nitude or more improvement expected from future missions
[30]. Our estimated

R
d ln fΩgw;0ðfÞ ∼ 10−8 is within an

order of magnitude of this future threshold and could
potentially exceed it with either a wider scan of parameters
or inclusion of gauge fields [31]. We note that this
constraint does not rely on the peak frequency of the
gravitational waves, making larger mϕ acceptable.

B. Constraints from or on inflationary observables

Another possible consequence of the nonlinear dyna-
mics is to change the allowed e-folds during inflation.

The e-folds between the time the current comoving horizon
scale exited the horizon during inflation and the end of
inflation are related to the e-folds between the end of
inflation and today in a given expansion history [32]. The
expansion history also allows us to keep track of the
evolution of the energy density. Then the ns and r bounds
from CMB measurements constrain an inflationary model
together with its associated evolution afterwards.
Assuming that during inflationary reheating w does

not exceed 1=3, we can obtain a conservative lower bound
on mϕ,

m2
ϕ

m2
pl

≳ exp

�
−6ð1þ wmodÞ
1 − 3wmod

�
57 − Nk þ ln

�
rρk
ρend

�1
4

��

with r the tensor-to-scalar ratio, ρk (ρend) the energy density
when the mode exits the horizon (at the end of inflation),
andwmod the averagew between the timewhen the modulus
starts oscillating and before it fully decays to radiation. For
0 < wmod < 1=3, the bound can be considerably weaker
compared to when wmod ¼ 0. Details of the derivation and
implications of this bound can be found in Appendix C.

V. MORE REALISTIC MODELS

The simulation establishes that fragmentation requires
M4 ∼ λm2

ϕf
2. If we take λ to be its Standard Model value,

then M ∼
ffiffiffiffiffiffiffiffiffi
mϕf

p
, and we cannot take both M and mϕ

of order the fundamental SUSY-breaking scale. To make
b ∼ 1 compatible with the SM Higgs boson, one could
take (for instance) M ∼ 103 TeV and mϕ ∼ 1 keV, or M ∼
1011 GeV and mϕ ∼ 100 TeV. However, the large mass
hierarchy M=mϕ makes it very difficult to simulate the
nonlinear dynamics.
Closer to our simulations, we could take mϕ ≲M ∼

102 TeV but λ ∼ 10−24. Then the λ appearing in the
simulation must differ from the observed λ at the global
minimum. This can happen in the SUSY two-Higgs
doublet model, with its D-flat direction jhuj ≈ jhdj along
which the effective quartic coupling can be tiny. If, as the
modulus oscillates, theD-flat direction becomes tachyonic,
we could achieve b ∼O½1�. The modulus couplings must
be arranged so that the point of marginal EWSB lies near
the point at which the D-flat direction is accessible, which
requires some additional fine-tuning. Loop corrections
and higher-dimension operators can produce effective
quartic couplings λ ∼m2

soft=Λ2, compatible with b ∼ 1 if
the cutoff Λ ∼mpl. Along the flat direction other SM
particles become heavy, suppressing thermal effects.
More details are in Appendix D.

VI. CONCLUSIONS

If the physical constants of the SM are determined by the
VEVs of some scalar fields, in a tuned universe, even a

FIG. 6. Dashed orange curve with Nmod ¼ 0: The gravitational
waves (GWs) power spectrum today, generated by the nonlinear
dynamics at t ≈ 70m−1

ϕ (assuming Δ ¼ 10−6, b ¼ 0.9, q ¼ 102,
M=f ¼ 10−13). The GWs on intermediate frequencies are gen-
erated by the slow propagation of power towards smaller
comoving scales after backreaction; see Fig. 3. Two paler dashed
orange curves with Nmod > 0: Rescaled versions of the top one,
assuming wmod ¼ 0. Solid black curve: Planned sensitivity of the
fifth observational run of the aLIGO-AdVirgo Collaboration [17].
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small displacement of such a scalar field from its minimum
can dramatically alter electroweak physics, leading to
highly nontrivial dynamics in the early universe. We
demonstrate this simple idea in a modulus-Higgs system.
We find that in the simplest model [Eq. (1)], for b ¼
M4=ð2λf2m2

ϕÞ ∼O½1�, the fields fragment rapidly. This
fragmentation leads to (i) generation of gravitational waves
and (ii) a nontrivial equation of state 1=4≲ w≲ 1=3 for the
duration of the simulations. The nontrivial equation of state
can lead to a change in constraints on inflationary models,
or alternatively, it could change constraints on the moduli
mass. Assuming an equation of state w ≈ 1=3 is maintained
(for example, through the decay of the Higgs) up to eventual
matter domination at aeq, we can expect a stochastic
background of gravitational waves at high frequencies
f0 ≳ 10 kHz ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ=ð10 TeVÞp

, with Ωgw;0 ∼ 10−9–10−8.
This paper serves as the first step, and provides a

template for, exploring the cosmological dynamics of
electroweak fine-tuning. We leave more realistic model
building and numerical simulations (e.g., the two-Higgs
doublet model with a flat direction) to future work.
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APPENDIX A: FIELD DYNAMICS AND
LATTICE SIMULATIONS

1. Modulus-Higgs Potential

We study a modulus ϕ and a Higgs field h with the
potential:

Vðϕ; hÞ≡ 1

2
m2

ϕðϕ − ϕ1Þ2 þM2
ϕ − ϕ0

f
h†h

þ λðh†hÞ2 þ V0: ðA1Þ

As discussed in the main text, the field value ϕ1 denotes the
minimum of the potential in the ϕ direction when h ¼ 0,
whereas ϕ0 indicates the point of symmetry breaking. The
global minimum of the potential is located at

ϕm ¼ ϕ1 − bϕ0

1 − b
¼ ϕ0 − fΔ; ðA2Þ

jhmj2 ¼ M2
ϕ0 − ϕ1

2λfð1 − bÞ ¼ M2
Δ
2λ

; ðA3Þ

where Δ≡ ðϕ0 − ϕmÞ=f is the fine-tuning parameter
defined in Eq. (3) and b≡M4=2λm2

ϕf
2 is the fragmenta-

tion efficiency parameter defined in Eq. (2). Note that this
minimum satisfies ϕm < ϕ1, and it is an electroweak
symmetry-breaking minimum (assuming ϕ0 > ϕ1). At this
minimum the Higgs mass m2

h ¼ 2M2Δ. For the case
where the Higgs mass is light compared to its natural scale
M, we need Δ ≪ 1. For M ∼ 102 TeV, we take Δ ∼ 10−6.
The additive constant in the potential in Eq. (A1),

V0 ≡ b
2ð1 − bÞm

2
ϕðϕ0 − ϕ1Þ2 ¼

1

2
m2

ϕf
2 × bð1 − bÞΔ2;

ðA4Þ

is chosen so that at the global minimum Vðϕm; hmÞ ¼ 0.
As noted in the text, for ϕ ≤ ϕ1 we can evaluate the

potential energy difference between the ridge where h ¼ 0
and the electroweak-breaking valley, i.e., the minimum of
the potential at fixed ϕ. The result is

ΔV ¼ b ×
1

2
m2

ϕðϕ − ϕ0Þ2: ðA5Þ

In particular, for small b there is very little energy gained in
rolling down from the ridge to the valley, and dynamical
effects are suppressed.
As seen from some of the above expressions, the case

b ¼ 1 is to be handled with care. When b → 1 at fixed
ϕ0 − ϕ1, the global minimum runs away: ϕm → −∞,
jhmj → ∞. This behavior can be clarified by rewriting
the potential as a sum of a positive-definite term and a
quartic Higgs potential:

Vðϕ; hÞ ¼ 1

2
m2

ϕ

�
ϕ−ϕ1 þ

M2

m2
ϕf

h†h
�

2

þM2

f
ðϕ1 −ϕ0Þh†h

þ λð1− bÞðh†hÞ2 þV0: ðA6Þ

This form of the potential makes it clear that if ϕ1 ¼ ϕ0

and b ¼ 1, the second and third terms vanish and there
is a flat direction where V ¼ 0 whenever ϕ ≤ ϕ1,
jhj2 ¼ m2

ϕfðϕ1 − ϕÞ=M2. If b ¼ 1 and ϕ1 < ϕ0, or if
b > 1, the potential is not bounded below. Hence, we
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consider only the case b < 1 for which we have a well-
defined global minimum.
Without loss of generality, we can shift the field ϕ to set

ϕ1 ¼ 0. (Note that ϕ is uncharged, so ϕ ¼ 0 is not a special
point in field space.) For simplicity, in our numerical
simulations we treat ϕ and h as two real scalar fields.
The discussion above still applies after making the replace-
ment jhj2 → 1

2
h2. Hence, below we work with the potential

Vðϕ; hÞ≡ 1

2
m2

ϕϕ
2 þM2

ϕ − ϕ0

2f
h2 þ 1

4
λh4 þ V0: ðA7Þ

2. Equations of motion and initial conditions

We work in a flat Friedmann-Robertson-Walker (FRW)
universe with the metric

ds2 ¼ dt2 − a2ðtÞδijdxidxj: ðA8Þ

The dynamics of the modulus-Higgs system is deter-
mined by

ϕ̈þ 3H _ϕ −
∇2

a2
ϕþ ∂ϕVðϕ; hÞ ¼ 0;

ḧþ 3H _h −
∇2

a2
hþ ∂hVðϕ; hÞ ¼ 0; ðA9Þ

where the potential is given by (A7). The Hubble parameter
is determined via the Friedmann equation with H2 ¼
ð _a=aÞ2 ¼ hρtoti=3m2

pl where hρtoti is the spatially averaged,
total energy density of the fields.
We note that for most of this section and the subsequent

one on gravitational waves, we provide results for the
above toy model. Nevertheless, we point out features that
might be qualitatively different when considering the more
realistic potential with a higher-dimensional field space.
We assume that initially the modulus has a nonzero

vacuum expectation value, ϕin ∼ f ∼mpl (where the Higgs
has a positive mass) but that the Higgs does not, hin ¼ 0.2

The initial Hubble rate is (ignoring contributions from
vacuum fluctuations)

Hin ≈
ffiffiffiffiffiffiffi
V in

pffiffiffi
3

p
mpl

¼ mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bð1 − bÞΔ2

6

r
: ðA10Þ

Since the mass of the modulus is comparable to the Hubble
rate, we expect the modulus to start oscillating right away.
Along with the homogeneous fields, vacuum fluctua-

tions (δϕ and δh) are present in the fields. The mode
functions for the quantum fluctuations satisfy linearized

equations around a time-dependent classical background
determined by ϕðtÞ and aðtÞ. Such a linear description
typically suffices to capture the initial evolution of δϕ and
δh. If there are growing (i.e., unstable) modes, the linear
description eventually becomes inaccurate and the occu-
pation number of these fields becomes quite high. Hence, it
is plausible that the subsequent nonlinear evolution system
can be studied classically with lattice simulations.

3. Linear instabilities in the Higgs

The linearized equations of motion for δϕ and δh are

δϕ̈þ 3Hδ _ϕ −
∇2

a2
δϕþm2

ϕδϕ ¼ 0; ðA11Þ

δḧþ 3Hδ _h −
∇2

a2
δhþM2

f
ðϕðtÞ − ϕ0Þδh ¼ 0; ðA12Þ

implying that at the linear level the modulus fluctuations
evolve as those of a scalar field with a constant mass,
whereas the Higgs ones have a time-dependent mass which
can lead to instabilities. We are primarily interested in
Δ ≪ 1, with ϕ ∼ f; hence we ignore ϕ0 ¼ ð1 − bÞfΔ
compared to ϕ in the above equation for our instability
analysis.
The Fourier modes of the canonically normalized Higgs,

δhc ¼ a3=2δh, evolve according to

δḧck þ ω2ðk; tÞδhck ¼ 0; ðA13Þ

where

ω2ðk; tÞ ≈ k2

a2
þM2

f
ϕðtÞ − ð3H=2Þ2 − ð3=2Þ _H

≈
k2

a2
þM2

f
ϕin

�
ain
aðtÞ

�
3=2

cosðmϕtÞ: ðA14Þ

In the last line, we have used a standard approxi-
mation for a massive oscillating background scalar field,
namely a3=2ðtÞϕðtÞ ∝ cosðmϕtÞ and 3H2 ≈ −2 _H. For small
enough k

k
aðtÞ ¼ kphys < mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
ϕin

f

�
ain
aðtÞ

�
3=2

s
: ðA15Þ

This implies that ω2ðk; tÞ < 0 for nearly half of the ϕðtÞ
oscillation. Such comoving modes can then be unstable and
grow exponentially with time. In the context of preheating
this amplification is known as tachyonic resonance.
To study parametric resonance in the Higgs from a

periodic frequency change, one can resort to Floquet
theory. If we ignore expansion, i.e., put aðtÞ ¼ const.
and ϕðtÞ ¼ ϕin cosðmϕtÞ, then Eq. (A13) is just the

2A more complete investigation of general initial conditions,
especially in the negative Higgs mass regime, is left for future
work.
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equation of motion of a simple harmonic oscillator with
a periodically varying angular frequency. The Floquet
theorem then tells us that its solution takes the form

δhckðtÞ ¼ eμktPkþðtÞ þ e−μktPk−ðtÞ; ðA16Þ

where μk is called the Floquet exponent and Pk�ðtÞ are
periodic functions of time. If ℜðμkÞ ≠ 0 one of the two
terms increases exponentially with time. The numerically
obtained exponent is given in the left panel in Fig. 7 as a
function of the model parameters. The broad instability
bands are consistent with our naive expectations,
Eq. (A15). To explain the additional features, such as
narrow stability and instability bands, one has to consider
the evolution of δhckðtÞ in greater detail, e.g., take into
account the nonadiabatic change of ω2ðk; tÞ every time
ϕðtÞ ¼ 0 for small enough k and large initial amplitudes.
However, these small features are irrelevant after the

expansion of the universe is restored. In the right panel in
Fig. 7, we show that a given comoving mode can flow
across multiple broad instability bands. If jℜðμkÞj ≫ H, the
mode amplitude can grow significantly within less than an
e-fold of expansion.

4. Important parameters for the nonlinear dynamics

We have shown that the Higgs vacuum fluctuations can
be linearly unstable and grow exponentially with time. As
nonlinear terms from the potential in Eq. (A7) become
important, the exponential growth is expected to slow
down. To estimate whether the energy in the amplified
fluctuations is comparable to the background or not around
the time nonlinearities become significant, we return to the
backreaction efficiency parameter

b≡ M4

2λf2m2
ϕ

¼ 1

4

 
1
2
M2

f ϕh2

1
2
m2

ϕϕ
2

! 
1
2
M2

f ϕh2

1
4
λh4

!
≤ 1: ðA17Þ

As discussed above, b < 1 is required for V ≥ 0. We have
also ignored ϕ0 compared to ϕ for simplicity.
If b ≪ 1 and we assume that the energy in the ampli-

fied fluctuations is comparable to the background,
i.e., M2ϕh2=ð2fÞ ∼m2

ϕϕ
2=2, then M2ϕh2=ð2fÞ ≪ λh4=4.

The latter inequality implies that the quartic Higgs self-
interaction becomes important much earlier. Therefore,
the Higgs instability is shut down before the amplified
Higgs fluctuations become energetic enough to backreact
on the modulus background. We are left with a strongly
self-coupled Higgs, interacting relatively weakly with the
energetically dominant ϕðtÞ. The modulus is expected to
remain homogeneous for a very long time.
If b ≲ 1 and we again assume that the energy in the

amplified fluctuations is comparable to the background,
i.e., M2ϕh2=ð2fÞ ∼m2

ϕϕ
2=2, then M2ϕh2=ð2fÞ≲ λh4=4.

The latter inequality implies that the quartic Higgs self-
interaction becomes important around the time the
amplified Higgs fluctuations become energetic enough to
backreact on the modulus background. The ensuing non-
linear dynamics leads to the rapid fragmentation of ϕðtÞ.
As discussed earlier [see Eq. (A5)], another related way

of understanding the relevance of b is as follows. The
difference between the height of the ridge and the valleys
in the potential is directly proportional to this same para-
meter b. As a result, b ≪ 1 makes the potential energy
gained by falling into the valleys negligible. Hence, a small
b suppresses significant nonlinear dynamics from Higgs
production and backreaction, consistent with the discussion
above. In our simulations, we explore the dynamics of our
system for 0.001 ≤ b≲ 1.

FIG. 7. The instability chart featuring the real part of the Floquet exponent normalized by the modulus mass (left) and the Hubble rate
(right), characterizing the Higgs particle production rate. When ϕin ∼ f, Higgs particle production is expected for q > 1. In FRW space-
time kphys ¼ k=aðtÞ, implying that a given comoving mode flows towards the bottom left corner of the chart as the universe expands, as
indicated with the white lines in the second chart. Note that particle production is efficient if jℜðμkÞj=H ∼ qmpl=f ≫ 1.
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Another useful parameter that characterizes the nonlinear
dynamics is q≡M2=m2

ϕ, which controls the speed of
energy transfer from the modulus to the Higgs (see right
panel in Fig. 5). In our numerical investigations, we
considered different q in the range 25 ≤ q ≤ 104.
Note that for our simulations, we typically set f ∼mpl

and M ∼ 10−13f and q ¼ M2=m2
ϕ ∼ 102, and we increase

or decrease these values by an order of magnitude. With
these sets of parameters, b ∼ 1 is achieved by choosing a
very small λ ≪ 1 (typically λ ∼ 10−24). However, qualita-
tively similar dynamics are expected even for large λ (in
particular, for λ ∼ 0.1—the SM value at the global mini-
mum), as long as the other parameters are adjusted to still
yield b ∼ 1. To obtain b ∼ 1 with λ ∼ 0.1, we then need
M ∼

ffiffiffiffiffiffiffiffiffi
mϕf

p
. There are (at least) two possibilities to realize

it in supersymmetric theories: low-scale SUSY breaking
and very fine-tuned SUSY breaking, which we discuss
further in Appendix D.
Our reason for not choosing these “obvious” values

(λ ∼ 0.1) is that the timescale and length scale associated
with tachyonic particle production (∼M−1) are extremely
short compared to another natural timescale of the problem,
m−1

ϕ (the oscillation timescale of the modulus). This
disparity of scales creates a dynamical range problem for
our simulations and is beyond our ability to directly
simulate given our computational resources.3

5. Lattice simulations

We use the parallelized version of LatticeEasy [33] to
calculate the nonlinear evolution of the fields and the self-
consistent evolution of aðtÞ. The initial physical length of
the edge of the simulation box is Lin ¼ 0.5H−1

in − 2.5H−1
in ,

whereas we set ain ¼ 1, with aend ∼O½few e-folds�. Note
that a slightly super-horizon box was sometimes needed to
capture the tachyonic instability in h. The number of

comoving lattice points is N ¼ 5123, and our time steps
vary between dt ¼ 0.00125m−1

ϕ and 0.000625m−1
ϕ depend-

ing on the parameters chosen. The violation of the energy
conservation in the above simulations is always less
than O½10−4�.
At the start of the simulations, ϕ has a background value,

set to ϕin ¼ mpl. The initial background field velocity, _ϕin,
is equal to −3Hinϕin=2, in accordance with LatticeEasy
conventions. The initial Fourier modes of the fields and
field velocities (excluding the zero modes of ϕ and _ϕ)
are drawn from Gaussian probability distributions with
covariance matrices equal to the squared amplitudes of the
corresponding vacuum fluctuations. Initially, the energy
budget is dominated by the homogeneous ϕ; i.e., almost no
energy is stored in the gradients. The values of ϕin and _ϕin
imply that win ≈ −1=4 which is equivalent to starting the
simulation soon after the end of slow-roll inflation if ϕ was
the inflaton.

a. Simulation outputs

Snapshots of the evolution of Higgs and modulus fields
are shown in Fig. 4, along with the discussion of the
dynamics in the main text. We do not repeat this discussion
here. Along with the fields, we keep track of the spatially
averaged energy density

ρ ¼ ρϕ þ ρh þ ρint þ V0; ðA18Þ

where

ρϕ ¼ 1

2
_ϕ2 þ 1

2

�∇ϕ

a

�
2

þ 1

2
m2

ϕϕ
2;

ρh ¼
1

2
_h2 þ 1

2

�∇h
a

�
2

þ 1

4
λh4;

ρint ¼
1

2

M2

f
ðϕ − ϕ0Þh2; ðA19Þ

as well as the pressure

p ¼ 1

2
_ϕ2 þ 1

2
_h2 −

1

6

�∇ϕ

a

�
2

−
1

6

�∇h
a

�
2

−
1

2
m2

ϕϕ
2

−
1

2

M2

f
ðϕ − ϕ0Þh2 −

1

4
λh4 − V0: ðA20Þ

The equation of state is defined as w≡ hpi=hρi where the
angular brackets include a spatial average and, when there
are rapid oscillations, a temporal average as well. In Figs. 8
and 5, we show the results for the evolution of the energy
densities and the equation of state for a range of parameters.
Note that for the results in Fig. 8, we have chosen para-
meters so that the fragmentation efficiency b ¼ 0.9, but we
have allowed other parameters to vary. For the cases con-
sidered, the equation of state after fragmentation always

3For the largest value of λ used in our simulations (λ ¼ 10−18),
our numerical time step was dt ¼ 6.25 × 10−4m−1

ϕ and spatial
resolution was dx ¼ 1.2 × 10−3m−1

ϕ . Our lattice had a size N3 ¼
5123 and we evolved our fields for t ¼ 250m−1

ϕ . For such a
simulation, we required ∼104 CPU hours. The time step needed
to resolve the tachyonic resonance scales as dt ∝ M−1 ∝ λ−1=4.
The same is true for the spatial resolution dx. Hence, increasing λ
to 0.1 from 10−18 requires both reducing the time step and also
increasing the spatial resolution by ∼4 orders of magnitude. With
such small time steps, and high spatial resolution, simulating the
field dynamics for t ∼ few × 100m−1

ϕ on a length scale of fewm−1
ϕ

will be beyond what is computationally feasible for us. Changing
M=f or q ¼ M2=m2

ϕ (by an order of magnitude each) while
keeping b fixed did not qualitatively change our results. The
largest and smallest values of λ we ran in our simulations while
maintaining the same b ¼ 0.9were 10−18 and 10−24, respectively.
As expected, all these changes did not affect our main claim: We
get significant nonlinear dynamics, fragmentation, and a non-
trivial equation of state for b ∼ 1 and Δ ≪ 1.
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settles near 1=4≲ w≲ 1=3, and the amount of energy
density in the modulus and Higgs fields are comparable.

APPENDIX B: GRAVITATIONAL WAVES AND
LATTICE SIMULATIONS

1. Equations of motion

We calculate the gravitational waves generated by the
nonlinear field dynamics using

ḧTTij þ 3H _hTTij −
∇2

a2
hTTij ¼ 2

m2
pl

ΠTT
ij ðB1Þ

where hTTij is the spatial, transverse, traceless part of the
metric perturbations (gμν ¼ gFRWμν þ hμν), and ΠTT

ij is the
transverse-traceless part of the energy-momentum tensor of
the fields which sources the gravitational waves. This is a
“passive calculation” where the (small) backreaction of the
metric perturbations on the fields is ignored.

a. Characteristic scales

Let us consider a gravitational wave generated at a ¼ ag
in the early universe with a comoving wave number k. By
taking into account redshifting due to expansion and
conservation of entropy after thermalization, the frequency
today of this GW signal is

f0 ¼
1

2π

k
a0

¼ 1

2π

�
k

agHg

� ffiffiffiffiffiffiffiffiffiffiffiffi
HgH0

p �
ag
ath

�ð1−3wmodÞ=4

×

�
gth
g0

�
−1=12

Ω1=4
r;0 ; ðB2Þ

where Hg is the Hubble parameter of the universe at the
time of generation of the gravitational waves, gth and g0 are
the effective number of relativistic degrees of freedom at
the epoch of thermalization (ath) and today (a0), Ωr;0 is the
fractional energy density in relativistic species today, and
wmod is the mean equation of state between generation
and thermalization (after which we assume a standard
thermal history).
We can parametrize the characteristic wave number at

which the gravitational waves are generated:

k
agHg

≡ β−1 ∼ q1=2
mplffiffiffiffiffiffiffiffi
fϕg

p ; ðB3Þ

where the parameter β has been estimated from an analysis
of the linear instabilities in the field perturbations [see
Eq. (A15)], with ϕg being the amplitude of the modulus at
the time of GW production.
The fraction of energy density in gravitational waves per

logarithmic interval in wave number today is convention-
ally given as Ωgw;0 ¼ ρ−1c;0ðd ln ρgw;0=d ln kÞ. Since GWs
redshift as radiation, one can show that

Ωgw;0 ¼ Ωgw ×
�
ag
ath

�
1−3wmod

�
gth
g0

�
−1=3

Ωr;0; ðB4Þ

where Ωgw is the fractional energy density in gravitational
waves at the time of generation. Note that Ωgw can be
estimated using the characteristic wave number above and
assuming that a fraction δπ of the energy density is involved
in generating the gravitational waves (see for example [25],
with significant fragmentation, δπ ≲ 0.3.):

FIG. 8. The evolution of the equation of state, w, and the ratio of the mean Higgs and modulus densities, ρh=ρϕ. After backreaction, for
qmpl=f > 102, there is a short-lived oscillatory phase. Despite this curious behavior, w settles to a constant value around 0.3. We have
chosen parameters such that b ¼ 0.9, Δ ¼ 10−6 in all cases. The grey and orange curves are obtained by averaging over space, with
additional averaging over fast oscillations for the orange curves.
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Ωgw ¼ 1

ρg

d ln ρgw
d ln k

∼ β2δ2π; ðB5Þ

where ρg is the total density at the time of generation of the
gravitational waves. A more detailed discussion of such
scalings (with slightly different parametrization) can be
found in [34].
For gth=g0¼102, H0¼1.4×10−33 eV, Ωr;0¼6.4×10−5

[35], we can get an estimate of the characteristic frequency
and amplitude of the gravitational energy density:

f0 ∼ β−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ

10 TeV

r ffiffiffiffiffiffiffi
ϕg

mpl

s �
ag
ath

�ð1−3wmodÞ=4
× 1 kHz; ðB6Þ

Ωgw;0 ∼ β2δ2π

�
ag
ath

�ð1−3wmodÞ
× 10−5; ðB7Þ

where β−1 ∼ q1=2mpl=
ffiffiffiffiffiffiffiffi
fϕg

p
. For the simulation parameters

(Δ ¼ 10−6, q ¼ 102, b ¼ 0.9, f ¼ mpl) for Figs. 6 and 9,
we get β ∼ 0.1.

2. Lattice simulations and results

To calculate the GWs we use HLattice [26]. We calculate
them passively; i.e., we evolve the metric perturbations
without accounting for their feedback on the fields and
metric dynamics. We use the 6th-order symplectic integra-
tor for the self-consistent evolution of the fields and the
scale factor, the HLATTICE2 spatial-discretization scheme,
and keff (not kstd) for the TT projector.
Figures 6 and 9 are based on lattice simulations

with N ¼ 2563, LinHin ¼ 2.0 and dt ¼ Lin=ð16N1=3Þ≈
0.00120mϕ. The time step for the gravitational waves is
dtGW ¼ 4dt. At the end of the simulation a ≈ 12, which
corresponds to t ≈ 70m−1

ϕ (this is also the time when the
equation of state settles to a constant value, see orange
curve in Fig. 5).

The results of our simulations for gravitational waves are
given in Fig. 9 (right). We show the time evolution of the
gravitational wave spectra up to t ≈ 70m−1

ϕ . The initial
tachyonic instability in the Higgs generates GWs with a
well-defined cutoff, f0 ≲ q1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕmpl=ðf × 10 TeVÞp

×
kHz ≈ 10 kHz, corresponding to the comoving modes
k < mϕq1=2. After backreaction, the spectrum settles down
and GWs are slowly generated on intermediate frequencies,
as power propagates towards smaller comoving scales
(see Fig. 3).
In Fig. 6 in the main text, we scale the gravitational

wave spectrum at t ≈ 70m−1
ϕ assuming different subsequent

expansion histories characterized by (Nmod, wmod). For the
parameters q ¼ 102, b ¼ 0.9, f ¼ mpl, we found δπ ∼ 0.3
and β ∼ 0.1, showing a consistency between our estimates
in the previous subsection and the results of the numerical
simulations.
A more detailed understanding of the main source of

gravitational wave production is obtained by specifically
considering the domain walls formed in the Higgs-modulus
system as seen in Fig. 4. The GW power emitted by a single
“bubble” with quadrupole moment Q and radius R is
(see [36])

Pgw;g ∼G ⃛Q2 ∼ G

�
R5ρh;g
R3

�
2

; ðB8Þ

where the subscript g denotes quantities at the time of
generation of the GWs. We also have Pgw;g ∼ ρgw;gR2 from
which it follows that

ρgw;g
ρh;g

∼Gρh;gR2: ðB9Þ

At the time of domain formation tg ∼ 22m−1
ϕ , ρh;g ≲ ρϕ;g ≲

ρg (where ρg is the total energy density in the fields at
the time of generation of the GWs). From the simulations
R ∼ 10m−1

ϕ (see second column in Fig. 4), implying

Ωgw;g ∼
�
ρh;g
ρg

ρϕ;g
ρg

�
ϕ2
g

m2
pl

∼ 10−3: ðB10Þ

In the above estimate, we take the factor in the brackets to
be ∼10−1 and ϕg ∼ 10−1mpl consistent with simulations.
This explains the strength of the signal Ωgw;0 ∼Ωgw;g ×
Ωr;0 ∼ 10−8.
In our model with two real fields, the formation of the

transient domain walls is important for the generation
of GWs, giving an order of magnitude stronger signal
than the one from the subsequent long turbulent stage. The
time of formation of the domains and their length scale
properly accounts for the peak in the gravitational wave
spectrum. In a more realistic theory, with a complex Higgs
and moduli fields along with gauge fields, it is possible for

FIG. 9. The growth in the amplitude of the GW power spectrum
from the end of inflation to t ≈ 70m−1

ϕ (with b ¼ 0.9, q ¼ 102,
f ¼ mpl). The curves are output at time intervals Δt ¼ 6m−1

ϕ .
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higher-dimensional transient textures to play a qualitatively
similar role. We leave this investigation to future work.

APPENDIX C: INFLATIONARY CONSTRAINTS

The key point is that the e-folds between the time the
current comoving horizon scale exited the horizon during
inflation and the end of inflation are related to the e-folds
between the end of inflation and today in a given expansion
history. The expansion history also allows us to keep track
of the evolution of the energy density. Then the ns and r
bounds from CMB measurements constrain an inflationary
model together with its associated evolution afterwards.
This basic idea was proposed in Ref. [32].
The cosmological history that we consider includes

inflation, inflationary reheating characterized by a constant
wre in the equation of state, radiation domination, an early
matter domination phase starting when H ≈mϕ and the
modulus begins to oscillate around its minimum, and
radiation domination again after the perturbative decays
of the modulus. Differing from the discussions in
Refs. [37–39], we include a possible nontrivial equation
of state with a constant wmod ≠ 0 originating from non-
perturbative particle production after the modulus starts to
oscillate and before the full conversion of the modulus
energy into radiation. The constant wre could be taken as an
average from the end of inflation till radiation domination,
and it satisfies

ρrad
ρend

¼
�
aend
arad

�
3ð1þwreÞ

; ðC1Þ

where aend, are (ρrad, ρre) are the scale factors (energy
densities) at the end of inflation and at the end of infla-
tionary reheating, respectively. Similarly, wmod is the
average from modulus oscillation till its full decay, and
it satisfies

ρmod

ρdec
¼
�
adec
amod

�
3ð1þwmodÞ

; ðC2Þ

where amod; adec (ρmod; ρdec) are the scale factors (energy
densities) when the modulus starts to oscillate and when
full decays of the modulus happen (equivalently, when
radiation dominates again), respectively.
Our derivation closely follows Ref. [38], and we sum-

marize the key steps below. The comoving Hubble scale
k ¼ akHk that exits the horizon during inflation could be
written as

k ¼ akHk ¼
ak
aend

aend
are

are
amod

amod

adec
adecHk: ðC3Þ

In terms of e-folds, eNk ¼ aend
ak
, eNre ¼ are

aend
, eNRD ¼ amod

are
,

eNmod ¼ adec
amod

, we have

ln k ¼ −Nk − Nre − NRD − Nmod þ ln adec þ lnHk: ðC4Þ

Note that the e-folds between the modulus oscillation and
full energy conversion into radiation are given by

Nmod ¼
1

3ð1þ wmodÞ
ln
ρmod

ρdec
: ðC5Þ

In addition, adec could be rewritten in terms of the scale
factor, a0, today. Given the conserved comoving entropy,
it can be achieved by relating the energy density at the
end of the modulus epoch, ρdec, to the temperature today
through

ρdec ¼
π2

30
gdecT4

dec;
Tdec

T0

¼
�

g0;s
gdec;s

�
1=3 a0

adec
; ðC6Þ

where gdec;s and g0;s are the effective degrees of freedom for
entropy. Furthermore, NRD can be replaced by

ln ρmod ¼ ln
ρmod

ρre
þ ln

ρre
ρend

þ ln ρend ðC7Þ

¼ −4NRD − 3ð1þ wreÞNre þ ln ρend: ðC8Þ

Combining all the equations above, we have

1 − 3wmod

4
Nmod ¼ −Nk −

1 − 3wre

4
Nre

þ 1

4
ln

�
π2

30
gdec

�
g0;s
gdec;s

�
4=3
�
− ln k

þ lnHk −
1

4
ln ρend þ lnða0T0Þ: ðC9Þ

This equation relates the e-folds in the modulus epoch to
the e-folds in the inflation epoch. For slow-roll inflation,

H2
k ¼

π2

2
m2

plrAs ¼
ρk
3m2

pl

⇒ lnHk ¼
1

4
ln

�
π2rAs

6

�
þ 1

4
lnρk;

ðC10Þ

where r is the tensor-to-scalar ratio, As the amplitude of
scalar perturbation, and ρk is the energy density when the
mode exits the horizon. In addition, using

�
adec
amod

�3
2
ð1þwmodÞ ¼ 1þ 3

2
ð1þ wmodÞHðtmodÞðtdec − tmodÞ;

ðC11Þ

Nmod could be expressed in terms of the modulus mass,
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Nmod ≈
2

3ð1þ wmodÞ
ln

�
3

2
ð1þ wmodÞHðtmodÞτmod

�
;

¼ 2

3ð1þ wmodÞ
ln

�
3

2
ð1þ wmodÞ

m2
pl

c ×m2
ϕ

�
; ðC12Þ

where we approximated tdec − tmod by the perturbative
lifetime of the modulus τmod ¼ ðcm3

ϕ=m
2
plÞ−1 and

HðtmodÞ ≈mϕ. Putting Eqs. (C9), (C10), and (C12)
together, we have

1 − 3wmod

6ð1þ wmodÞ
ln

�
3

2
ð1þ wmodÞ

m2
pl

c ×m2
ϕ

�

¼ −Nk −
1 − 3wre

4
Nre þ

1

4
ln

�
π2

30
gdec

�
g0;s
gdec;s

�
4=3
�

− ln

�
k

a0T0

�
þ 1

4
ln

�
π2rAs

6

�
þ 1

4
ln

�
ρk
ρend

�
ðC13Þ

¼−Nk−
1−3wre

4
Nreþ57þ1

4
lnrþ1

4
ln

�
ρk
ρend

�
; ðC14Þ

where we use ln ð1010AsÞ ¼ 3.062 (central value of
Planck TTþ lowPþ lensing) at k ¼ 0.05 Mpc−1 [35],
T0 ¼ 2.725 K, g0;s ¼ 3.91 and gdec;s ¼ gdec ¼ 10.76.
Thus, we obtain a lower bound on mϕ,

m2
ϕ≳ 3ð1þwmodÞ

2c
m2

pl exp

�
−
6ð1þwmodÞ
1− 3wmod

×

�
−Nk−

1− 3wre

4
Nreþ 57þ 1

4
lnrþ 1

4
ln

�
ρk
ρend

���
:

ðC15Þ

Note that, generically, we expect 0 < wre < 1=3 and
ð1=4Þð1 − 3wreÞNre > 0, which leads to a conservative
bound on mϕ independent of the details of the inflation
reheating stage

m2
ϕ ≳ 3ð1þ wmodÞ

2c
m2

pl exp

�
−
6ð1þ wmodÞ
1 − 3wmod

�
−Nk þ 57

þ 1

4
ln rþ 1

4
ln

�
ρk
ρend

���
: ðC16Þ

The presence of a nonzero wmod could change the bound
on mϕ dramatically compared to the case with wmod ¼ 0.
Since the logarithmic terms in the exponent in Eqs. (C15)
and (C16) are usually tiny, a crude rule of thumb is that
when Nk < 57, the bound could be significantly weakened
with wmod > 0, while when Nk > 57.0, the bound is more
tightened with wmod < 0. The details of the bounds depend
on specific inflation models. Let us take a look at the model
with a polynomial potential

V inf ¼
1

2
m4−αϕα

inf ; ðC17Þ

where ϕinf is the inflaton and α > 0. In this case, Nk, r and
ρk=ρend can be written in terms of the spectral index ns and
the power α:

Nk ¼
αþ 2

2ð1 − nsÞ
; r ¼ 8αð1 − nsÞ

αþ 2
; ðC18Þ

ρk
ρend

¼ 2

3

�
2ðαþ 2Þ
αð1 − nsÞ

�
α=2

: ðC19Þ

In our evaluation below, we use ns ¼ 0.9677� 0.006
(Planck TTþ lowPþ lensing) [35]. We also fix c¼1=16π.

FIG. 10. The lower bound on mϕ as a function of ns (left) and r (right) with the inflation model in Eq. (C17) and α ¼ 1. The red solid
and green dotted lines correspond to wmod ¼ 0 and 0.1, respectively. In the left panel, the light blue shaded region corresponds to the
current 1σ bounds on ns from Planck TTþ lowPþ lensing. The narrower darker blue shaded region corresponds to the 1σ bounds of a
future CMB experiment of ns with sensitivity �2 × 10−3 [30], assuming the same central value as Planck. In the right panel, the blue
shaded region corresponds to the 1σ bounds of a future CMB experiment of r with sensitivity �5 × 10−4 [30], assuming a measured
central value of r being 0.085.
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For α ¼ 1, the lower bounds on mϕ as a function of ns or r
are illustrated in Fig. 10. In this case, the central value of ns
gives us Nk ≈ 46.4, r ≈ 0.086, ρk=ρend ≈ 9. This leads to a
conservative lower mass bound of the modulus, mϕ >
477 TeV when wmod ¼ 0, and a much weaker bound when
wmod increases, e.g., mϕ > 8 MeV when wmod ¼ 0.1. Yet
the potential strong mass bound on the modulus for
wmod ¼ 0 may not be solid given the current precision
of ns. If we allow for ns to vary in the 1σ range, for
instance, when ns takes the value at the lower 1σ bound,
ns ¼ 0.962, Nk ≈ 39.2, r ≈ 0.10, ρk=ρend ≈ 8.3. When
wmod ¼ 0, mϕ > 0.14 MeV, which is negligible. In the
future, if the precision of ns could be improved by a factor
of 2 to 3 with the CMB-S4 measurements [30], we will
have a better assessment of the compatibility of the
modulus scenario and different classes of inflation models.
A more optimistic scenario is that in the near future, we

will detect primordial gravitational waves and measure r.
The precision of the CMB-S4 measurement of r is pro-
jected to be significantly improved to 5 × 10−4. Assuming a
measured r ¼ 0.085 and CMB-S4’s sensitivity, we could
obtain a solid lower bound on mϕ: mϕ > 1000 TeV, when
w ¼ 0 as shown in the right panel of Fig. 10. When w is
increased to 0.1, the bound is considerably relaxed to be
well below the cosmological moduli bound.
Additional cosmological constraints on this scenario

could arise from isocurvature considerations [40].
Alternatively, the field ϕ could itself be the inflaton,
yielding additional constraints from the power spectrum
of perturbations [35].

APPENDIX D: ASPECTS OF THE MODEL

1. Approaches to b ≈ 1

We have argued that the modulus fragments for a
parameter choice

b ∼ 1 ⇒ λf2m2
ϕ ∼M4: ðD1Þ

As we review below in Appendix D 2, a standard scenario
with moduli-mediated supersymmetry breaking will have
both scalar mass parameters at the SUSY-breaking scale,
mϕ ∼M ∼m3=2, and the modulus couplings suppressed by
f ∼mpl. In that case, achieving b ∼ 1 requires a tiny quartic
coupling λ ∼ ðm3=2=mplÞ2. At first glance, this seems in
conflict with the Standard Model Higgs quartic λ ∼ 0.1.
However, there are at least three variations on this scenario
that we can consider:

(i) Low-scale SUSY breaking: M ∼ 102 to 103 TeV,
λ ∼ 0.1, f ∼mpl, mϕ ∼ 10 eV to 1 keV. Here the
modulus is light because the fundamental scale of
SUSY breaking is low, but the Higgs mass scale is
heavier due to stronger interactions with the SUSY-
breaking sector.

(ii) Very fine-tuned SUSY breaking: mϕ ∼ 102 to
103 TeV, λ ∼ 0.1, f ∼mpl, M ∼ 1011 to 1012 GeV.
Here we keep the modulus somewhat heavier than
the TeV scale, but imagine that the natural scale for
the Higgs VEV is orders of magnitude larger, closer
to the intermediate scale. The physics is the same as
the first case, except that the fundamental scale of
SUSY breaking is larger and the weak scale is more
fine-tuned (i.e., Δ is much larger).

(iii) Proximity to a D-flat direction: mϕ ≲M ∼ 102 to
103 TeV, f ∼mpl, λ ∼ 10−24. In this case, a tiny
effective quartic coupling is achieved along a
D-flat direction. The Standard Model Higgs VEV
does not lie along this direction, so the theory must
be arranged so that our vacuum lies near the D-flat
direction.

All three of these cases have interesting aspects, but none
of them is completely trivial from the model-building
viewpoint. In most of the remainder of this section, we
focus on the last case, with a small quartic coupling along a
D-flat direction. Our focus on this case is partly motivated
by the fact that our simulations are all performed at very
small λ, because the caseM ≫ mϕ is much more computa-
tionally expensive. Furthermore, because the Higgs field
acquires very large values along a D-flat direction, most
Standard Model particles will become very heavy, and it
may be a better approximation to neglect thermal effects in
this case. Still, we think that all three of these scenarios are
deserving of further exploration in the future.

2. Origin of moduli couplings

In this section we explain the origin of the M2ðϕ=fÞh†h
ansatz for the modulus coupling to the Higgs, as well as
some variations that can arise. We first start by supposing
that the modulus is a chiral superfield X ⊃ X þ FXθ

2, with
a supersymmetry-breaking VEV

hXi ¼ X0 þ FX;0θ
2; where X0 ∼mpl; FX;0 ∼m3=2mpl:

ðD2Þ
Generic chiral superfields will obtain soft SUSY-breaking
mass terms through couplings to X,Z

d4θ
ξXZ
m2

pl

X†XZ†Z ⊃ ξXZ
jFXj2
m2

pl

Z†Z; ðD3Þ

i.e., Z has a soft mass ∼m2
3=2. If X deviates from its vacuum

expectation value, then, in general, this mass term will also
fluctuate. For example, we might suppose that X has a
superpotential

W ¼
Z

d2θ

�
1

2
mXX2 þ 1

3!
gX

mX

mpl
X3 þ 1

4!
λX

mX

m2
pl

X4 þ…

�
;

ðD4Þ
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where gX, λX ∼Oð1Þ and factors of mX=mk−2
pl have been

extracted to ensure that mX acts as an overall spurion for
shift-symmetry breaking. That is to say, it ensures that if
X ∼mpl all terms in the potential are of comparable size.
Now, if X has a canonical Kähler potential

R
d4θX†X, then

we can solve for the θ2 component FX as

F†
X ¼

�
1−

ξXZ
m2

pl

Z†Zþ…

�

×

�
mXXþ 1

2
gXmX

X2

mpl
þ 1

3!
λXmX

X3

m2
pl

þ…

�
: ðD5Þ

From this we see that requiring that X is the dominant
source of SUSY breaking leads to m3=2 ∼mX. This then
parametrically guarantees that

FX ∼m3=2mplgðXÞ ðD6Þ
where gðXÞ is an order-one function of X=mpl. In particular,
the term (D3) contains a trilinear coupling:

2ξXZReðFX;0mXÞ
m2

pl

ReðXÞZ†Z: ðD7Þ

The prefactor here parametrically has sizem2
3=2=mpl. This is

the analogue of our toy model, with Z playing the role
of the Higgs boson, ReðXÞ playing the role of the modulus
ϕ, and a prefactor of order M2=f with f ∼mpl and
M ∼m3=2. In other words, a typical Planckian field
displacement of X from its minimum will lead to an
order-one variation in the soft mass of Z.
We can also read off from this discussion that the jFXj2

term in the Lagrangian contains pieces that behave like

ξ2XZjmXj2
m4

pl

jZj4jXj2ð1þOðX=mplÞ þ…Þ: ðD8Þ

In other words, we expect that moduli will inevitably
generate quartic couplings of our fields with parametric size

λZ ∼
m2

3=2

m2
pl

: ðD9Þ

Such F-term quartic couplings can also originate, as
mentioned in the main text, from additional Kähler poten-
tial terms like

R
d4θ X†X

Λ4 ðZ†ZÞ2. They will exist even, for
instance, along D-flat directions of fields with gauge
charges, as discussed in more detail below. The value of
the quartic will be sensitive to the modulus value, but the
parametric size will not.
In the context of the minimal supersymmetric standard

model (MSSM), moduli can affect Higgs soft masses by
replacing Z†Z with h†u;dhu;d, or they can affect holomorphic
(bμ-term) masses by coupling to huhd. If the modulus

primarily affects the bμ-term rather than the soft masses, the
dynamics can be rather different from our toy model, as a
tachyonic direction exists both for large positive bμ and for
large negative bμ, possibly disappearing in an intermediate
region as the modulus oscillates. It would be interesting to
simulate this scenario in future work.
Many theories of moduli have special points in field

space where the metric is singular and a tower of particles
becomes light, e.g., in string theory where many moduli
fields T have Kähler potentials of the form a logðT þ T†Þ.
Our field ϕ should be thought of as expanding around a
value of T ≫ 1, far from the singularity in moduli space at
T ¼ 0. The noncanonical Kähler term expanded around the
minimum will give rise to terms like 1

m2
pl
ϕ2∂μϕ∂μϕ, which

may influence the dynamics. We assume that the field
remains far from the singularity at T ¼ 0, so it is valid to
work in terms of the canonically normalized field ϕ.
Nonetheless, as mentioned in Sec. II, the omitted terms
could have important dynamical effects. It would be
interesting to include such terms in future simulations.
In general, working with moduli whose imaginary parts

have associated shift symmetries, which appear via the
combination T þ T†, does not qualitatively change the
discussion. In certain sequestered scenarios, couplings may
take a different form. For example, in the context of the
large-volume scenario, we expect that the SM matter fields
are sequestered from the overall volume modulus and the
leading modulus decay is from the coupling [41,42]Z

d4θ
T̃ þ T̃†ffiffiffi
3

p
mpl

huhd þ H:c: ⊃ −
1ffiffiffi
3

p
mpl

ð□TÞhuhd þ H:c:

ðD10Þ

Here T̃ is a modified chiral superfield missing its
F-component, which is related to the conformal compen-
sator in a superspace formulation of the theory [43]. In the
presence of an oscillating solution □T ∼m2T, this gen-
erates similar physics to a bμ term linearly proportional to
the modulus. After the modulus fragments, it could lead to
rather different dynamics due to the derivatives acting on
the modulus. Again, it could be interesting to simulate such
variations in the future.

3. The potential along a D-flat direction

Supersymmetric theories with renormalizable superpo-
tentials generically have a variety of flat directions [44,45].
The flat directions of the renormalizable, supersymmetric
MSSM, together with the leading nonrenormalizable
operators that lift them, have been catalogued in [46].
The existence of these flat directions is well known to
have potential effects on cosmology, most famously for
baryogenesis [47,48].
Recall that in the MSSM, the tree-level Higgs mass

matrix for the neutral modes h0u;d takes the form
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 jμj2 þm2
hu

−bμ
−bμ jμj2 þm2

hd

!
; ðD11Þ

so it will have a tachyonic eigenvalue if one of the soft
terms m2

hu;d
is sufficiently negative or if bμ is sufficiently

large (with either sign). We expect that in a sufficiently
general theory, all of these terms will depend on the value
of the modulus, so its oscillations can produce tachyons of
either type (soft mass-driven or bμ-driven). There is a
tachyonic SUSY-breaking mass along the supersymmetric
D-flat direction jhuj ¼ jhdj when

m2
hu
þm2

hd
þ 2jμj2 − 2jbμj < 0: ðD12Þ

This condition could arise dynamically as the modulus
oscillates in many models, for instance, those in which
the bμ-term is driven by the ϕ oscillation. The condition
may be especially easy to realize in models with an
approximate shift symmetry that ensures tan β ¼ 1 at tree
level [49–51], though this is not a necessary precondition.
One might expect this tachyonic direction to be lifted by
loop corrections; for example, there is a potential along the
D-flat direction from one-loop diagrams with tops or stops,

V1−loop ≈
3y4t
16π2

ðh†uhuÞ2
�
log

m2
t̃

m2
t
þ X2

t

m2
t̃

�
1 −

1

12

X2
t

m2
t̃

��
:

ðD13Þ
However, it is important to note that the masses mt̃ and mt
in this formula themselves depend on the value of the
Higgs field, e.g., m2

t̃ ≈ y2t jh0uj2 þ m̃2
Q3;ū3

. At large values
of the Higgs, EWSB contributions to the stop and top
masses dominate over SUSY-breaking contributions and

log
m2

t̃
m2

t
∼m2

soft=jhj2 ≪ 1. Effectively, far out along the flat

direction, supersymmetry is approximately restored in the
sector of particles with large interactions with the Higgs
boson. We can simply integrate them out, and the Higgs will
behave as an approximate modulus with large field range.
Similar results were discussed in [52] in a finite-temperature
context, where the presence of exponentially large values of
MSSM fields in the early universe was argued to solve the
monopole problem. (For a related discussion of zero-temper-
ature physics, see the “inverted hierarchy” [53].)
As is familiar from the Affleck-Dine mechanism,

what will actually prevent the Higgs fields from taking
arbitrarily large values along the flat direction are higher-
dimension operators.4 We can obtain quartic couplings

along the flat direction from Kähler operators, for
instance,

Z
d4θ

X†X
m4

pl

ðh†uhuÞ2 →
jFX;0j2
m4

pl

ðh†uhuÞ2: ðD14Þ

This gives an effective quartic

λ ∼
m2

3=2

m2
pl

; ðD15Þ

which is precisely what is needed to give a fragmentation
efficiency b ∼ 1, assuming mϕ;M ∼m3=2 and f ∼mpl.
At first glance it appears that superpotential terms

can prevent such large field values. For example, a super-
potential Z

d2θðμhuhd þ
1

M�
ðhuhdÞ2Þ ðD16Þ

gives rise to quartic terms such as

μ†

M�
ðh†uhuÞðhuhdÞ þ H:c:; ðD17Þ

which would stop the Higgs along the flat direction at
values of order ðμM�Þ1=2. If we take M� ∼mpl, these are
small field values, and we would never achieve a suffi-
ciently large fragmentation efficiency. However, any reali-
zation of the MSSM should contain a solution to the μ
problem, explaining why the coefficient of

R
d2θhuhd is

much smaller than the Planck scale. We expect that such a
solution will generically imply that higher order super-
potential terms like

R
d2θðhuhdÞ2 also have parametrically

small coefficients related to the same spurion μ=mpl.
Provided that 1=M� ≲ μ=m2

pl, we obtain a sufficiently small
quartic.
Since this spurion argument is rather abstract, let us

consider a more explicit example of the expected size of the
Higgs quartic coupling in the context of a particular
solution of the μ problem. The Giudice-Masiero mecha-
nism [54] invokes a Kähler term

R
d4θð cμmpl

X†huhd þ H:c:Þ
which, if the F-component of X obtains a VEV, becomes an
effective superpotential μ-term with size of order soft
SUSY-breaking parameters. For this mechanism to work,
it is necessary that the true μ-term

R
d2θμhuhd be highly

suppressed or altogether absent from the superpotential.
Although one can invoke the supersymmetric nonrenorm-
alization theorem to excuse this assumption as technically
natural, a better approach is to invoke a symmetry explan-
ation (approximate or exact, discrete or continuous). For
example, concrete completions of the Giudice-Masiero
mechanism invoking discrete, anomaly-free R-symmetries
exist [55,56]. As a simple example, the Z4 R-symmetry

4In some cases, radiative effects will cause the tachyonic
eigenvalue along the D-flat direction to run positive at values of
the Higgs field well below the cutoff. It is then important to
compute a renormalization-group-improved effective potential.
J.F. and M.R. thank Prateek Agrawal for useful conversations on
this point, which we hope to explore in more detail elsewhere.
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under which the superpotential has charge 2, the matter
fields q, ū, d̄, l, ē have charge 1 and the Higgs fields hu;d
have charge 0 suffices to forbid a μ-term and enforce matter
parity for proton stability. Notice that this symmetry forbids
not only the μ-term itself but also higher-dimension
operators such as

R
d2θ 1

Λ ðhuhdÞ2 that could affect the
Higgs quartic coupling. In the context of this Z4 symmetry,
we will encounter terms like

Z
d4θ

cμ;2
m3

pl

X†ðhuhdÞ2 →
Z

d2θ
cμ;2F

†
X;0

m3
pl

ðhuhdÞ2; ðD18Þ

an effective superpotential quartic term with coefficient
∼ μ

m2
pl
. In other words, if the role of Giudice-Masiero is to

suppress the μ term relative to the Planck scale by a small
spurion μ=mpl, the discrete symmetry approach ensures that
the quartic Higgs superpotential term is suppressed by the
same small spurion.

4. Proximity to a D-flat direction

We have argued that the effective quartic coupling for
the Higgs boson can be very small when the tachyonic
direction of the potential is aligned with the D-flat
direction. However, to fit low-energy Standard Model
physics, we would like to have an effective quartic λ ≈
0.1 for the light Higgs mode at the global minimum. One
can then ask if it is plausible that the oscillation of a
modulus in the early universe is able to probe the D-flat
direction for a long period of time. Achieving this requires
an extra condition: Not only do we need the global
minimum of the potential to be near the point of marginal
EWSB (the condition for our vacuum to be fine-tuned), we
also need the global minimum to be near the point in field
space at which theD-flat direction becomes tachyonic. The
proximity of three special points in field space amounts to
an extra fine-tuning, beyond the usual one. On the other
hand, if our vacuum has tan β near 1, the amount of
additional fine-tuning may be small.

As an example of how modulus couplings might probe
the flat direction, consider a scenario where as a function of
the modulus ϕ the three Higgs potential parameters M2

Hd
≡

jμj2 þm2
Hd
,M2

Hu
≡ jμj2þm2

Hu
, and bμ have the dependence

M2
Hu;d

≡ ðαu;dϕ=mpl þ βu;dÞM2
S; bμ ≡ ðϕ=mplÞM2

S;

ðD19Þ

whereMS is a measure of SUSY breaking and αu;d, βu;d are
dimensionless parameters. If αuαd > 1, then at ϕ ≫ 0,
there is no tachyon and the symmetry is unbroken. On the
other hand, if αu;d > 0, then at ϕ ≪ 0, there is a tachyon
along the D-flat direction and the Higgs can acquire large
values. Thus, qualitatively the picture of unbroken electro-
weak symmetry on one side and badly broken electroweak
symmetry on the other is similar to the toy model we have
simulated. As argued in the preceding subsection, the
effective quartic coupling can be very small at ϕ ≪ 0.
The theory deviates more from our toy model in the

region in between unbroken electroweak symmetry and
electroweak symmetry broken badly along the flat direc-
tion. The point of marginal electroweak breaking is when
ϕ2=m2

pl ¼ ðαuϕ=mpl þ βuÞðαdϕ=mpl þ βdÞ, whereas the
condition for a tachyon to point along the D-flat direction
is jϕj=mpl >

1
2
½ðαu þ αdÞϕ=mpl þ ðβu þ βdÞ�. If αu ≈ αd

and βu ≈ βd then these are approximately the same con-
dition, and tuning the point of marginal electroweak
breaking to lie near the global minimum will ensure that
the evolving modulus provides access to the flat direction at
a nearby point in field space. However, in the Standard
Model, where the up-type Higgs couples to the top quark
much more strongly than the down-type Higgs couples to
the bottom quark, radiative corrections would tend to spoil
such a relationship. Hence, proximity to a D-flat direction
is likely to require some additional fine-tuning beyond the
tuning of the Higgs boson mass itself. A full study of loop
corrections in such a scenario, and how much fine-tuning is
required, is beyond the scope of this work.
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