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The coupling between scalar and vector fields has a long and interesting history. Axions are one key
possibility to solve the strong CP problem, and axionlike particles could be one solution to the dark
matter puzzle. Extensive experimental and observational efforts are actively looking for “axionic”
imprints. Given the nature of the coupling, and the universality of free fall, nontrivial important effects
are expected in regions where gravity is strong. Rotating black holes (immersed, or not in magnetic
fields) are a prime example of such regions. Here, we show the following: (i) A background
electromagnetic field induces an axionic instability in flat space, for electric fields above a certain
threshold value. Conversely, a homogeneous harmonic axion field induces an instability in the Maxwell
sector. When carried over to curved spacetime, this phenomenon translates into generic instabilities of
charged black holes. We describe the instability and its likely final state, new black hole solutions. (ii) In
the presence of charge, black hole uniqueness results are lost. We find solutions that are small
deformations of the Kerr-Newman geometry and hairy stationary solutions without angular momentum
but which are “dragged” by the axion. Axion fields must exist around spinning black holes if these are
immersed in external magnetic fields. The axion profile can be obtained perturbatively from the
electrovacuum solution derived by Wald. (iii) Ultralight axions trigger superradiant instabilities of
spinning black holes and form an axionic cloud in the exterior geometry. The superradiant growth can be
interrupted or suppressed through couplings such as E · B (typical axionic coupling) but also more
generic terms such as direct couplings to the invariant E2 − B2. These couplings lead to periodic bursts
of light, which occur throughout the history of energy extraction from the black hole. We provide
numerical and simple analytical estimates for the rates of these processes. (iv) Finally, we discuss how
plasma effects can affect the evolution of superradiant instabilities.

DOI: 10.1103/PhysRevD.99.035006

I. INTRODUCTION

Peccei and Quinn first introduced the axion, a pseudo-
Goldstone scalar field, in order to solve the strong CP
problem [1]. More recently it was shown that a plenitude of
ultralight axionlike bosons might arise from moduli com-
pactification in string theory. In this “axiverse” scenario,
a landscape of light axionlike fields can populate a mass
range down to the Hubble scale mH ∼ 10−33 eV, with
possible implications at astrophysical and cosmological

scales [2]. In particular, axions and axionlike particles
are also strong candidates for both cold and noncold dark
matter [3–6].
The photon-axion mixing in the presence of an external

magnetic or electric field can be used to impose strong
constraints on axionlike particles due to intergalactic
magnetic fields (see, e.g., Ref. [7] for a review) or can
lead to a detectable signature in the spectra of high-energy
gamma ray sources [8]. In addition, even in the absence
of electromagnetic (EM) fields, superradiant instabilities
can be triggered, through which the axion grows and
“condensates” around massive, spinning black holes (BHs)
[9–14]. The instability extracts rotational energy away
from the spinning BH and deposits it into an axion
cloud with a high occupation number [14]. Eventually,
gravitational-wave (GW) emission dominates over the
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superradiant growth, leading to a secular spin-down and
decay of the cloud. Such systems are a promising source
of GWs that can be detected with current and future
detectors [15–22].
In an astrophysically relevant situation, BHs are often

surrounded by a plasma in an accretion disk, which
generates its own EM field. In addition, galactic magnetic
fields and background EM radiation is present. The
presence of magnetic fields in regions where gravity is
strong may give rise to new phenomena, for example, the
triggering of instabilities or the induction of nontrivial BH
hair. In the context of axions or axionlike particles, such
scenarios have hardly been considered. One of the purposes
of this work is to understand possible new BH configu-
rations in the context of axionic physics.
It has also been argued recently that the coupling of

superradiant axion clouds with photons can lead to bursts of
radiation which in the quantum version resemble laserlike
emission [23,24]. Thus, the evolution of superradiant insta-
bilities would produce a periodic emission of light. These
arguments are order of magnitude, highly approximate, and
partially inconsistent, but have very recently been put on a
firmer ground through the full numerical solution of the
relevant equations [25]. More generally, the study of axion
electrodynamics in curved spacetime has been the topic of
some but few studies, with some results in the Schwarzschild
background in the context of pulsar magnetospheres [26]
and polarization of EM waves passing through the scalar
clouds around BHs [27]. The other purpose of this work is to
explore thoroughly the possible instabilities associated with
axionic or other scalar-type couplings to the Maxwell sector
occurring in some dark matter models.
In summary, we find that the presence of electric

charge or rotation leads to the appearance of new BH
solutions with nontrivial axion hair. Axionic of scalar-type
couplings to the Maxwell sector are also found to trigger
strong instabilities that affect specially superradiant clouds
around BHs.
We adopt geometric units (G ¼ c ¼ 1) throughout, and a

“mostly plus” signature.

II. SETUP

There are many possible and viable DM candidates [28].
We will focus our attention on what are perhaps the best
motivated extensions of the Standard Model and of general
relativity, which include a massive (and real) scalar Ψ with
possible axionic couplings to a vector (through the cou-
pling constant ka) and scalar couplings to the Maxwell
invariant through a coupling constant ks,

L ¼ R
k
−
1

4
FμνFμν −

1

2
gμν∂μΨ∂νΨ −

μ2S
2
ΨΨ

−
ka
2
Ψ�FμνFμν −

ðksΨÞp
4

FμνFμν; ð1Þ

with p ¼ 1, 2 being popular choices [29,30]. Thus, depend-
ing on the parity transformation of the (pseudo)scalar,
coupling to the Maxwell sector is realized through E · B
(pseudoscalar) or E2 −B2 (scalar) invariant. We will study
these couplings separately. Other couplings, such as
∇μΨ∇νΨFμν and ∇μΨ∇νΨAμAν, are possible, but we will
not consider these here. The mass of the scalar Ψ is given
by mS ¼ μSℏ, Fμν ≡∇μAν −∇νAμ is the Maxwell tensor,
and �Fμν≡ 1

2
ϵμνρσFρσ is its dual. We use the definition

ϵμνρσ ≡ 1ffiffiffiffi−gp Eμνρσ where Eμνρσ is the totally antisymmetric

Levi-Cività symbol with E0123 ¼ 1. The quantities ka, ks
are constants. We get the following equations of motion for
the theory above:

ð∇μ∇μ − μ2SÞΨ ¼ ka
2

�FμνFμνþ pkps Ψp−1

4
FμνFμν; ð2aÞ

∇νð1þ kps ΨpÞFμν ¼ −2ka�Fμν∇νΨ; ð2bÞ

1

k

�
Rμν −

1

2
gμνR

�

¼ 1

2
ð1þ kps ΨpÞFμ

ρFνρ −
1

8
gμνð1þ kpsΨpÞFρσFρσ

þ 1

2
∇μΨ∇νΨ −

1

4
gμνð∇ρΨ∇ρΨþ μ2SΨΨÞ

−
ka
4
Ψgμν�FρσFρσ: ð2cÞ

If Ψ is the QCD axion,

ffiffiffi
ℏ

p

ka
∼ 1015

�
10−5 eV

μS

�
GeV: ð3Þ

The inverse energy parameter ks is tightly constrained
for p ¼ 1 but much less so for p ≥ 2 [29]. Astrophysical
BHs can probe scalar fields with masses in the range
∼½10−20; 10−11� eV [21], but larger scalar field masses can
in principle also be probed by hypothetical subsolar mass
primordial BHs. Depending on the formation scenario, the
QCD axion with masses in the range ∼½10−12; 10−2� eV is a
strong dark matter candidate (see, e.g., [31]). Current
experiments are especially sensitive to this mass range
but most of the relevant parameter space is not yet ruled out
(see, e.g., Fig. 1 in [32]). For masses below ≲10−10 eV and
arbitrary coupling constants the parameter space remains
largely unconstrained. This range is especially interesting
for stringy ultralight axions which could also explain part
or all of the dark matter for axions with masses down to
∼10−23 eV [5]. Here, we consider arbitrary coupling
constants to keep the discussion as general as possible.
For all practical purposes, the right-hand side (RHS) of

Eq. (2c) can be set to zero when the axionic coupling
constant and the BH charge are small: In natural units, the
strength of a magnetic field around a source of massM can
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be measured defining the characteristic magnetic field
BM ¼ 1=M associated with a spacetime curvature of the
same order of the horizon curvature. In physical units this is
given by BM ∼ 2.4 × 1019ðM⊙=MÞ Gauss. We will use this
approximation when looking for new BH solutions and also
when performing dynamical simulations of superradiant
clouds. Although our results are only valid when B=BM ≲ 1
(when backreaction on the metric is small), this limit
includes the most interesting region of the parameter space.
Indeed, for astrophysical BHs, a reference value for the
largest magnetic field that can be supported in an accretion
disk is given by B ∼ 4 × 108ðM=M⊙Þ−1=2 Gauss [33] so
that the approximation B ≪ BM is well justified. We also
neglect the backreaction of the scalar field onto the
geometry, an approximation that is justified both perturba-
tively and numerically [17,21].

III. FLAT-SPACE INSTABILITIES

The theory above shows interesting aspects even in flat
space. In fact, most of the strong-field effects that we will
deal with could have been guessed from a flat-space
analysis. We find that nonvanishing background EM or
axion fields both may trigger instabilities, but the nature
and details of such instability depends on which back-
ground field one discusses: a static background electric
field gives rise to instabilities of flat space. However, to
have a similar effect for background axions, one needs a
time-varying axion (or scalar).

A. Homogeneous background EM field

We start by exploring EM and scalar or axion fluctua-
tions, determined by Eqs. (2a) and (2b), in the background
of a homogeneous EM field.

1. Axionic couplings

Let us turn off the scalar coupling ks for now. A
vanishing scalar field and constant background electric
(in standard Cartesian coordinates) E ¼ ð0; 0; EzÞ and
magnetic field B ¼ ð0; By; 0Þ solves the equations of
motion. Let us perturb this background solution by
allowing a small but nonvanishing field Ψ ∼ ϵηe−iðωt−pixiÞ
and fluctuations in the vector field,

Aμ ¼ ð−zEz; 0; 0; ByxÞ þ ϵe−iðωt−pixiÞXμ; ð4Þ

where Xμ, μ ¼ 0;…; 3 are constants and ϵ is a small
bookkeeping parameter. The Klein-Gordon equation yields

2ikapyðX0By − X1EzÞ þ 2ikaX2ðpxEz þ ωByÞ
þ ηðp2 þ μ2S − ω2Þ ¼ 0; ð5Þ

where p2 ≡ pipi. Maxwell’s equations can be used to
obtain X0, X1, X2,

X0 ¼ −
2ikaByηpypz þ X3ωðp2 − ω2Þ

pzðp2 − ω2Þ ; ð6Þ

X1 ¼ −
2ikaEzηpypz − X3pxðp2 − ω2Þ

pzðp2 − ω2Þ ; ð7Þ

X2 ¼
2ikaEzηpxpz þ X3pyðp2 − ω2Þ

pzðp2 − ω2Þ : ð8Þ

Finally, substituting back in (5) one finds the dispersion
relation

ðp2 − ω2Þðp2 þ μ2S − ω2Þ þ 4k2aB2
yðp2y − ω2Þ

− 8k2aByEzpxω − 4k2aE2
zðp2x þ p2yÞ ¼ 0: ð9Þ

This equation can be solved for ω, with the result that an
instability appears at a threshold value of the electric field.
For example, for By ¼ 0; pz ¼ 0 one gets the dispersion
relation

2ω2 ¼ 2p2 þ μ2S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4S þ 16k2aE2

zp2
q

: ð10Þ

Thus, for E > Ecrit an instability (i.e., negativeω2, such that
ω has a positive imaginary component and the fluctuations
diverge exponentially in time) appears, with

Ecrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2S

p
2ka

: ð11Þ

The instability requires a nonhomogeneous fluctuation
in the axion, something that will prove important in the
discussion of BH instabilities. These results are in agree-
ment with recent studies on axionlike phenomena in
magnetic materials [34] and predict acritical electric field
scaling as the inverse of the coupling constant ka.

2. Scalar couplings

Let us now focus on the scalar coupling only; i.e., we set
ka ¼ 0, ks ≠ 0. We take the same ansatz for the scalar field
and vector potential given by Eq. (4).
For the scalar coupling with p ¼ 1, a background EM

field also requires a background scalar. If By ¼ Ez, a
background scalar can be avoided and we find (turning
off ka) that the Klein-Gordon and Maxwell equations yield
the dispersion relation

ω2 ¼ p2 − ksEzðωþ pxÞ: ð12Þ

Thus, instabilities can indeed be triggered by background
EM fields.
For p ¼ 2 we find

k2s ðB2
y − E2

zÞ þ p2 þ μ2S − ω2 ¼ 0; ð13Þ
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X0 ¼ −
X3ω

pz
; X1 ¼

X3px
pz

; X2 ¼
X3py
pz

: ð14Þ

The dispersion relation for the scalar indicates that insta-
bilities exist generically. Note that only k2s enters the
dispersion relation, and its sign is not fixed a priori.
Depending on the sign of k2s there are indeed instabilities
triggered by either the electric or the magnetic sector.

B. Homogeneous background axion field

The same analysis as above immediately shows that a
constant background axion or scalar Ψ (and vanishing
background EM field) triggers no instability. We thus turn
to time-dependent background scalars. From the structure
of the Klein-Gordon equation, the configurations of interest
(dark halos, boson stars, superradiant clouds, etc.) are
indeed time dependent. The time dependence is harmonic
and, in the nonrelativistic approximation, set by the boson
mass, Ψ ∼ e�iμSt [14,35,36].

1. The instability: Numerical results

Consider therefore a uniform, coherent oscillating back-
ground axion state described by (this analysis closely
parallels the discussion in Ref. [24])

Ψ ¼ 1

2
ðΨ0e−iμSt þΨ�

0e
iμStÞ; ð15Þ

where Ψ0 (which we consider to be purely real,
ImfΨ0g ¼ 0) determines the amplitude of the axion’s
oscillations, and complex conjugation is denoted with
a *. Maxwell equations (we set ks ¼ 0 here)

∇νFμν ¼ −2ka�Fμν∇νΨ ð16Þ

can be analyzed using the following ansatz:

Aμðx; tÞ ¼
X
p

αμeiðp·x−ωtÞ; ð17Þ

where ω ¼ jpj≡ p and ðαμ; α�μÞ ¼ ðαμðp; tÞ;α�μðp; tÞÞ.
When the coupling ka ¼ 0, the solutions of Maxwell
equations are a sum of plane waves, and αμ is time
independent. There is no instability in such cases. It is
the coupling to the axion or scalar that causes a possible
time dependence for αμ. We note that there is Uð1Þ
symmetry gauge redundancy. To fix such a gauge degree
of freedom, we impose the Lorenz gauge condition

∂μAμ ¼ 0: ð18Þ

Under this gauge condition, Maxwell equations are (latin
letters stand for spatial indices)

α̈i − 2iω _αi − μSkaϵiklpkαlðΨ0e−iμSt − Ψ�
0e

iμStÞ ¼ 0;

where dots stand for derivatives with respect to time and
ϵijk is the totally antisymmetric Levi-Cività symbol with
ϵxyz ¼ 1. Let us denote the basis orthogonal to p by eð1Þ
and eð2Þ. Then, the transverse components αð1Þðt;pÞ and
αð2Þðt;pÞ obey the following system:

α̈ð1Þ − 2iω _αð1Þ − μSkapαð2ÞðΨ0e−iμSt −Ψ�
0e

iμStÞ ¼ 0;

α̈ð2Þ − 2iω _αð2Þ − μSkapαð1ÞðΨ0e−iμSt −Ψ�
0e

iμStÞ ¼ 0: ð19Þ

Figure 1 shows the time evolution of the strength jαð1Þj of
the vector potential for the following initial data:

αðIÞðt ¼ 0Þ ¼ ϵ; _αðIÞðt ¼ 0Þ ¼ 0 ðI ¼ 1; 2Þ: ð20Þ

We consider both small and moderate coupling kaΨ0. For
small couplings, our numerical results show that there is an
instability, αðIÞ ∼ eλt, whose rate peaks at ω ∼ μS=2, and for
which (see Fig. 2)

λ ∼
1

2
μSkaΨ0: ð21Þ

These results are compatible with previous predictions [24]
and are not qualitatively affected by the initial conditions.
On the other hand, for strong couplings, other (unstable)
modes may also be excited.

2. Connection to the Mathieu equation

Let us go back to Eq. (19) and introduce the ansatz

yi ¼ e−iωtαi: ð22Þ

FIG. 1. Time evolution of jα1ðp; tÞj rescaled by its initial value,
for kapΨ0 ¼ 0.5μS (upper panel) and kapΨ0 ¼ 0.01μS (lower
panel) and for selected frequencies. Notice that the p ¼ μS=2 is
generically excited and dominates the evolution at low couplings.
Similar results hold for α2.
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Now, we project the equations to a circular e�, instead
of a linear polarization basis, with ip × e� ¼ pe� and
y ¼ yωe�.
With a trivial time translation and rescaling to a

dimensionless time coordinate T ¼ μSt, the wave function
yω obeys the equation1

∂2
Tyω þ

�
ω2

μ2S
− 2Ψ0ka

p
μS

cosT

�
yω ¼ 0: ð23Þ

In other words, we find that our problem is completely
reduced to the well-known Mathieu equation. Thus, the
complexity of having to deal with coupled (albeit ordinary)
equations in the Lorenz gauge is no longer present.
The Mathieu equation predicts instabilities whenever
ω2=μ2S ¼ n2=4; n ∈ N, and Ψ0kap ≠ 0 [37] or in terms of
the relation between wave number and axion frequency,

ω� ¼ fμS=2; μS; 3μS=2;…g; ð24Þ

in agreement with the previous numerical results (see plot)
for small values of the coupling. The Fourier-transformed
vector potentials with wave numbers in the sequence (24)
will dominate the other ones. One expects (based on the
properties of Mathieu functions) that the first few of these
modes will dominate and that—for small couplings—
such instabilities will be significantly pronounced [38].
Perturbative investigations of unstable solutions demon-
strate that the dominant rate of the instability is given by
λ�=μS ¼ jΨ0kaðω�=μSÞj (see Appendix B for derivation
and extension to higher orders), which for our problem
reduces to Eq. (21), in accordance with previous work
[24,39,40] and our numerical results. We thus recover in a

considerably different way the same scaling for the insta-
bility rates of the coupled axion-EM system. In summary, a
homogenous background of axions is an unstable configu-
ration with a growth rate that scales linearly with the axion
strength, for small couplings. We will find below in Sec. VI
that this instability has a curved spacetime analog, even
when the axion field is strongly inhomogeneous, and has the
form of a condensate around spinning BHs.

C. Homogeneous background scalars

Let us apply the above analysis to the scalar coupling
case. Maxwell equations with scalar coupling are

∇μð1þ kps ΨpÞFμν ¼ 0: ð25Þ

1. Numerical results for the instability

We take again the ansatz (15) and (17) in the Lorenz
gauge, Eq. (18), to render the final equations sufficiently
simple.
For p ¼ 1, we find

0 ¼ ð1þ ksΨ0e−iμSt=2þ ksΨ�
0e

iμSt=2Þð−α̈i þ i2ω _αiÞ
− iksμSðΨ0e−iμSt=2 −Ψ�

0e
iμSt=2Þð− _αi þ iωαi þ ipiαtÞ:

In order to extract the transverse mode, we introduce the
projection operator Pij ¼ δij −

pipj
p2 . Then, the evolution

equation for the transverse mode is

ð1 − ksjΨ0j cosðμSt − θÞÞð−α̈ðIÞ þ i2ω _αðIÞÞ
þ ksμSjΨ0j sinðμSt − θÞð− _αðIÞ þ iωαðIÞÞ ¼ 0; ð26Þ

where αi ¼ Pijαj and θ is the phase of Ψ0. The time
evolution of the vector potential αðIÞ is shown in Fig. 3 for
the initial data (20). We find results similar to those of
the axionic case: a homogeneous background scalar field
and a vanishing EM field that is an unstable configuration.
An instability is triggered whereby the vector grows
exponentially, and ω ¼ 0.5μS seems to be—visibly at
small couplings—the mode driving the state when p ¼ 1.
The growth rates for the dominant ω ¼ μS=2 mode are

shown in Fig. 4 for different coupling strengths. Our results
are consistent with

λ ∼ 0.25ksμsΨ0; ð27Þ

for sufficiently small couplings.
We can apply the same analysis to the p ¼ 2 case.

We find

0 ¼ ð−α̈ðIÞ þ i2ω _αðIÞÞ × ð1þ k2sΨ2
0 cos

2ðμSt − θÞÞ
− 2k2sΨ2

0 cosðμSt − θÞ sinðμSt − θÞð− _αðIÞ þ iωαðIÞÞ:

FIG. 2. Relation between the growth rate λ=μS and coupling
kaΨ0 for the ω ¼ 0.5μS mode. Red dots are numerical values, and
the dashed green line is the prediction from a small-coupling
expansion, described in Appendix B 2 a, which extends the lower
order prediction in the main text.

1We should note that Eq. (23) can be obtained directly from a
circular polarization ansatz in the Coulomb, instead of the Lorenz
gauge. This is shown in Appendix A 1.
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The solutions of this equation are depicted in Fig. 3, again
for the initial data (20). The dominant mode is now ω ¼ μS,
and for this mode the growth rates are

λ ∼
1

4
k2sΨ2

0μS: ð28Þ

2. Analytical results

For p ¼ 1 and small couplings ks, the substitution
α ¼ eiωtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ksΨ0 cos μSt
p yω allows us to rewrite Eq. (26) as

∂2
Tyω þ

�
ω2=μ2S −

ks
2
Ψ0 cosT

�
yω ¼ 0; ð29Þ

where again T ¼ μSt and we kept only the leading-order
term in the coupling. Thus, we recover again Mathieu’s
equation. In this regime, we then easily get that the
dominant mode is2

ω ¼ μS=2; ð30Þ

and a growth rate λ ¼ 0.25ksμSΨ0, in very good agreement
with the numerics.
For p ¼ 2 and small couplings, α ¼ eiωtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þk2s ð1þΨ2
0
cos 2μStÞ

p yω

allows us to rewrite the relevant equation as

∂2
Tyω þ

�
ω2=ð4μ2SÞ −

k2sΨ2
0

4
cosT

�
yω ¼ 0;

where now T ¼ 2μSt. The same analysis therefore gives us
the small-coupling dominant mode

ω ¼ μS; ð31Þ

and the rate λ ¼ Ψ2
0k

2
sμS=4, in good agreement with the

numerical results.

FIG. 3. Time evolution of the vector field. Left: Scalars with p ¼ 1 and coupling strengths kapΨ0 ¼ 0.005μS (upper panel) and
kapΨ0 ¼ 0.1μS (lower panel) for selected frequencies. The dominant mode continues to be that with frequency ω ¼ 0.5μS, as for axionic
couplings. Right: Scalars with p ¼ 2 and couplings kapΨ0 ¼ 0.005μS (upper panel) and kapΨ0 ¼ 0.2μS (lower panel). Notice how the
dominant mode now has frequency ω ¼ μS.

FIG. 4. The relation between the growth rate and the coupling constant for p ¼ 1 (left panel) and p ¼ 2 (right panel). Red dots are full
numerical values, and the dashed green line is our perturbative description of the rate, described in Appendix B 2 b.

2These results are also derived in the Coulomb gauge in
Appendix A 2, and we compute perturbatively the rate estimates
in Appendix B.
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IV. INSTABILITY OF
REISSNER-NORDSTRÖM BHs

A. Perturbative framework

It is easy to see that Reissner-Nordström (RN) BHs are a
solution to the field equations (2) when the scalar field
vanishes and p ≥ 2.3 We now wish to show that, as
expected from the flat-space analysis of the previous
section, this equilibrium solution of the field equations is
unstable at large enough electric fields. We provide details
in the axionic case. The scalar coupling follows through in
the same way, and we discuss the results below.
We consider the vector field Aμ and massive scalar field

Ψ propagating in a static, charged BH background and
coupled through the axionic coupling defined in the
Lagrangian (1). The BH background is described by the
metric

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð32Þ

where fðrÞ ¼ 1–2M=rþQ2=r2, with M and Q the BH
mass and charge, respectively, and the vector field satisfies
Aμdxμ ¼ Q=rdt. This spacetime has an event horizon

and a Cauchy horizon located at r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ2

p
,

respectively.
We now linearize the field equations (2) around this

background and expand the perturbation functions in a
complete basis of spherical harmonics. In particular, we
linearize the metric as

gμν ¼ gð0Þμν þ hμν ð33Þ

and decompose the metric perturbations hμν in the Regge-
Wheeler gauge,

hμν ¼

0
BBBBB@

Hl
0Y

lm Hl
1Y

lm hl0S
lm
θ hl0S

lm
φ

Hl
1Y

lm Hl
2Y

lm hl1S
lm
θ hl1S

lm
φ

hl0S
lm
θ hl1S

lm
θ r2KlYlm 0

hl0S
lm
φ hl1S

lm
φ 0 r2Klsin2θYlm

1
CCCCCA;

ð34Þ

where Ylm ¼ Ylmðθ;φÞ are the ordinary scalar spherical
harmonics, ðSlmθ ; Slmφ Þ≡ ðYlm

;φ = sin θ;− sin θYlm
;θ Þ are the

axial vector harmonics, and Hl
0;1;2, h

l
0;1, K

l are functions
of ðt; rÞ. Here a sum over the harmonic indices l and m is
implicit.

The EM potential can be linearized in a similar way as

δAμðt; r; θ;φÞ ¼

2
64

0

0

ulð4ÞS
lm
b

3
75þ

2
664
ulð1ÞY

lm

ulð2ÞY
lm

ulð3ÞY
lm
b

3
775; ð35Þ

where b ¼ ðθ;φÞ, Ylm
b ¼ ðYlm

;θ ; Y
lm
;φ Þ are the polar vector

harmonics, Slmb ≡ ðYlm
;φ = sin θ;− sin θYlm

;θ Þ are again the
axial vector harmonics, and ulð1;2;3;4Þ are functions of

ðt; rÞ and where again a sum over the harmonic indices l
and m is implicit.
Finally, the scalar field is expanded as

Ψðt; r; θ;φÞ ¼ ψ lðt; rÞ
r

Ylm: ð36Þ

In the following we omit the indices l and m, because in a
spherical background different l and m modes completely
decouple.
This system can be studied in Fourier space by perform-

ing the decomposition

δX̃ðt; rÞ ¼
Z

dωδXðω; rÞe−iωt; ð37Þ

where δX̃ðt; rÞ denotes schematically any perturbation
function. The perturbation variables δX can be classified
as “polar” or “axial” depending on their behavior under
parity transformations. In a spherically symmetric back-
ground polar and axial perturbations always decouple.
The background electric charge induces a coupling

between gravitational and EM (grav-EM) perturbations,
while due to the pseudoscalar nature of the axionic
coupling, the scalar field only couples to the axial sector
of the EM perturbations. Thus, only the axial sector is
affected by the presence of the scalar field, while the polar
sector is fully described by the usual grav-EM perturbations
of the RN metric, which have been widely studied in the
literature (see, e.g., Ref. [41]).
Let us focus then on the axial sector. We define the

Regge-Wheeler function through h1 ¼ rψRWfðrÞ−1 and
h0 ¼ ifðrÞðrψRWÞ0=ω and perform the linear transforma-
tions (from ψRW, u4 to Z�)

u4 ¼ −
Zþ þ Z−

lðlþ 1Þ ; ð38Þ

ψRW ¼ −iω
ð3M − λÞZþ þ ð3M þ λÞZ−

ðl − 1Þlðlþ 1Þðlþ 2ÞQ ; ð39Þ

with λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 4Q2ðl − 1Þðlþ 2Þ

p
. After some algebra

we find that axial perturbations can be described by a

3For p ¼ 1, RN is not a solution of the field equations, since
the term FμνFμν ≠ 0 sources the scalar field equation (2a). This
case is analogous to the more familiar Einstein-Maxwell-dilaton
theories. We provide a perturbative solution in the next section.
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system of tree coupled ordinary differential equations,
given by

d2ψ
dr2�

þ ðω2 − VψÞψ þ SψZþ þ SψZ− ¼ 0; ð40Þ

d2Zþ
dr2�

þ ðω2 − VþÞZþ þ Sþψ ¼ 0; ð41Þ

d2Z−

dr2�
þ ðω2 − V−ÞZ− þ S−ψ ¼ 0; ð42Þ

where the “tortoise” coordinate r� is defined through the
relation dr=dr� ¼ fðrÞ and

Vψ ¼ fðrÞ
�
μ2S þ

lðlþ 1Þ
r2

þ f0ðrÞ
r

�
;

Sψ ¼ fðrÞ 2kaQ
r3

;

V� ¼ fðrÞ
�
lðlþ 1Þ

r2
−
3M
r3

þ 4Q2

r4
� λ

r3

�
;

S� ¼ �fðrÞ lðlþ 1ÞkaQð3M � λÞ
λr3

: ð43Þ

For spherically symmetric perturbations, l ¼ 0, the scalar
field decouples from the EM and gravitational perturba-
tions, and one can conclude that the RN geometry is stable
against radial perturbations. The same conclusion can be
drawn when ka ¼ 0 or Q ¼ 0.
On the other hand, for l ≥ 1, in analogy to the flat space

analysis of the previous section,4 one expects the existence
of unstable modes above some critical value for the axion
coupling constant ka. To find these modes we look for
purely decaying modes at infinity5:

fψ ; Zþ; Z−g → 0; as r� → ∞; ð44Þ

while at the horizon, r ¼ rþ, we impose regular boundary
conditions, i.e., purely ingoing waves described by

fψ ; Zþ; Z−g → fψ0; Zþ0; Z−0ge−iωr� ; as r� → −∞;

ð45Þ

where ψ0 and Z�0 are constants. Since the system (40)–(42)
is linear, one can fix the value of, e.g., ψ at the horizon
and the problem becomes a three-dimensional eigenvalue

problem for ω and Z�ðr ¼ rþÞ. We solved this system by
using a three-parameter shooting method: we shoot on the
parameters ω and Z�ðr ¼ rþÞ and integrate the field
equations starting from r ¼ rþ until the boundary conditions
at infinity (44) are satisfied.

B. Results

1. Axionic couplings

Using the method outlined above, we find that the systems
admit purely imaginary modes, ω ¼ iωI, for which ωI
becomes positive above a critical value for ka. Given the
ansatz (37) this therefore means that these modes grow
exponentially in time and the system is unstable. An
analogous instability was, in fact, shown to occur for
asymptotically anti–de Sitter (AdS) RN BHs in Ref. [42].
For a given l, Q, and μS there exist an infinite family of
solutions characterized by the number of nodes and kcrita .
This tower of solutions signals the existence of new families
of BH solutions, which we will discuss shortly. For the
fundamental mode, i.e., the mode with no nodes, the results
are summarized in Fig. 5 wherewe plotωI as a function of ka
for different values of Q, μS, and l.
We note that this instability is present even for massless

scalars (MμS ¼ 0) as shown in Fig. 5. We also remark that
it sets in for smaller couplings ka as we increase the BH
charge and, hence, electric field. Figure 5 furthermore
indicates that the instability timescale does not depend
monotonically on the multipole number l for sufficiently
large coupling constants ka. For example, if the coupling is
ka ≥ 50, Q ¼ 0.1M, and MμS ¼ 0, the l ¼ 2 mode is the
dominant one; i.e., it is the mode that grows faster.
For small BH charges Q ≪ M and small mass couplings

MμS ≲ 0.1, we find that the critical value above which the

0 5 10 15 20 25 30 35 40 45 50 55 60
ka

-0.10

-0.05

0
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0.20

0.25

0.30

M
 ω

 I

l=1, μSM=0, Q=0.1M

l=2, μSM=0, Q=0.1M

l=3, μSM=0, Q=0.1M

l=1, μSM=0.2, Q=0.1M

l=1, μSM=0, Q=0.15M

FIG. 5. Inverse of the instability timescale, MωI , as a function
of ka forMμS ¼ 0,Q ¼ 0.1M, and different multipole numbers l.
For comparison we also show the growth rate of the multipole
l ¼ 1 for MμS ¼ 0, Q ¼ 0.15M and MμS ¼ 0.2, Q ¼ 0.1M. For
l ≥ 1, Q ≪ M, and MμS ≲ 0.1, the system becomes unstable
above the critical value ðkaQ=MÞcritical ≳ 1.45þ lþ ðMμSÞ3=2.

4As mentioned in the context of Eq. (9), the flat-space axionic
instability around a background electric field requires nonhomo-
geneous axion fluctuations. Thus, the instability only sets in for
nonsymmetric modes and should not come as a surprise.

5This system also allows for more generic boundary conditions
describing quasibound states. For completeness we also discuss
these modes in Appendix C.
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system becomes unstable for the nodeless modes is
approximately given by

kcrita ∼
Mð1.45þ lþ ðMμSÞ3=2Þ

Q
: ð46Þ

The dependence of the threshold value of ka on the BH
chargeQ (or in other words, on the electric field close to the
horizon) is in agreement with the results from the flat-space
analysis (11). Near this critical value we find

MωI ∼ 0.2Q=Mðka − kcrita Þ: ð47Þ

2. Scalar couplings

The results for scalar couplings arise from a similar
analysis. Focusing on the p ¼ 2 case and on the spherically
symmetric modes, we can decompose the scalar field as in
(36) to reduce the analysis to a single ordinary differential
equation (ODE),

f2ψ 00 þ ff0ψ 0 þ ðω2 − VÞψ ¼ 0; ð48Þ

V ¼ f

�
2Mr − ð2þ k2s ÞQ2

r4
þ μ2S

�
: ð49Þ

For concreteness we show only the case with μS ¼ 0,
although similar conclusions can be reached for generic
values of μS. We find that there is a critical value of ks
beyond which an instability arises in a RN geometry. At
this precise value of the coupling constant, kcrits , a new
solution of the field equations is possible. In fact, we find
that, for fixedM,Q there is an infinite set of constants ks for
which a zero mode appears. This tower of solutions signals
the existence of new families of BH solutions, analogous to
the ones discussed in Refs. [43,44], which we will discuss
at the full nonlinear level shortly. We focus our attention on
the smallest value of the coupling constant for which a zero

mode exists and for which the scalar has no nodes. For
p ¼ 2, our results are summarized in Fig. 6.
The threshold value is well described by kcrits ¼ 2.4=Q

for a small charge. This dependence on the charge (or,
conversely, on the electric field) is the same as the one
predicted from a flat-space analysis, Eq. (13). We should
also stress that the scalar Ψ decays as 1=r at a large
distance; thus these BH solutions have a primary scalar hair
and scalar charge, as we confirm in the next section when
constructing these solutions at the full nonlinear level.

V. NEW BLACK HOLE SOLUTIONS

A. New BH solutions for axionic couplings

1. End state of the RN instability

We showed that RN BHs are quite generically unstable
when the EM field is coupled to a scalar field. The
existence of a zero mode with frequency ω ¼ 0 at the
threshold of these instabilities suggests the existence of
new BH solutions, branching off from the RN solution for
values of the coupling parameter at this threshold. As we
discuss now, solutions with nontrivial scalar fields indeed
exist for the couplings considered here.
As shown in the previous section, for the axionic

coupling the instability only exists for nonspherically
symmetric axial perturbations; therefore due to the back-
reaction of these perturbations on the metric the end state
of this instability will most likely be an axisymmetric and
stationary BH spacetime.
These solutions can then be obtained by solving a system

of elliptic partial differential equations, which can only be
solved numerically. We leave the construction of the full
solutions for future work but we note that in asymptically
AdS spacetimes an analogous instability and possible end-
state solutions were constructed in Refs. [42,45–47].
To gain insight into these solutions, we instead construct

them perturbatively by making use of the fact that at
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FIG. 6. Threshold coupling parameter as a function of BH charge, beyond which an instability sets in (left). This also represents the
value of the coupling at which a new solution branches off. For values of the coupling parameters ks above the solid black line, RN BHs
are unstable, with instability rates shown in the rightmost panel for k2s ¼ 200 and MμS ¼ 0.
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ka ¼ kcrita there should exist another stationary solution
besides RN. Linearizing the field equations (2) and focus-
ing on time-independent perturbations, we find that, for
l ≥ 2, we must have h1 ¼ 0, while h0, ψ , and u4 are given
by the system of equations

d2ψ
dr2�

− fðrÞ
�
μ2S þ

lðlþ 1Þ
r2

þ f0ðrÞ
r

�
ψ

− fðrÞ 2lðlþ 1ÞkaQ
r3

u4 ¼ 0; ð50aÞ

d2u4
dr2�

− fðrÞ lðlþ 1Þ
r2

u4 − fðrÞ 2kaQ
r3

ψ

− fðrÞQ
r2
h00 þ fðrÞ 2Q

r3
h0 ¼ 0; ð50bÞ

h000 ¼
2

r2
h0 þ

ðl − 1Þðlþ 2Þ
r2fðrÞ h0 þ

4Q
r2

u04; ð50cÞ

where a prime denotes differentiation with respect to r.
For l ¼ 1 this can be simplified to

d2ψ
dr2�

− fðrÞ
�
μ2S þ

2

r2
þ f0ðrÞ

r

�
ψ − fðrÞ 4kaQ

r3
u4 ¼ 0;

ð51aÞ
d2u4
dr2�

− fðrÞ
�
2

r2
þ 4Q2

r4

�
u4 − fðrÞ 2kaQ

r3
ψ ¼ 0; ð51bÞ

h00 ¼
2

r
h0 þ

4Q
r2

u4: ð51cÞ

We solved these equations by imposing regular boundary
conditions at the horizon and at infinity and using the
shooting method outlined above. As expected, regular
solutions only exist for nonzero BH electric charge and
for ka ¼ kcrita . Specific solutions are shown in Fig. 7.
At spatial infinity the scalar field decays as Ψ ∝ 1=rlþ1,

the vector field component decays as u4 ∝ 1=rl, while the
metric component decays as h0 ∝ 1=rl for l ≥ 2 and h0 ∝
1=r2 for l ¼ 1. Therefore these solutions have the peculiar
property that frame-dragging effects are present even
though their Arnowitt-Deser-Misner angular momentum
vanishes. The nonzero frame dragging is instead due to the
backreaction of the magnetic field induced by the axion on
the metric.
As a final remark, we should note that when obtaining

Eqs. (51) for l ¼ 1 we have integrated out the solution that
decays as h0 ∝ 1=r and u4 ∝ 1=r at spatial infinity. This
additional solution, which exists for any ka, can instead be
obtained from the system (50) with l ¼ 1. For ka ¼ 0, this
solution is none other than the Kerr-Newman solution
expanded up to first order in the BH spin, while for ka ≠ 0
this corresponds to a modified Kerr-Newman geometry as
we discuss below.

2. Axions around rotating charged BHs

When the BH is spinning, one expects that the scalar
acquires a nontrivial profile for any value of ka, since
�FμνFμν ≠ 0 for nonspherically symmetric spacetimes. In
fact, it is easy to check that �FμνFμν ¼ 0 when Fμν ¼ 0 or
when the spacetime is spherically symmetric. Thus, the
Kerr geometry together with Fμν ¼ Ψ ¼ 0 is a full non-
linear solution of the theory above. In addition, for ka ¼ 0,
Kerr-Newman is also a solution. It is thus natural to look for
rotating, charged BHs as perturbations of the Kerr-Newman
geometry.
At first order in ka,

6 we find that the only nontrivial
correction appears at the level of the scalar, and to first
order in rotation is described by (for μS ¼ 0 and ks ¼ 0)7

Ψ ¼ kaaηðrÞ cos θ; ð52Þ

ðr2 − 2MrþQ2Þη00 þ 2ðr −MÞη0 − 2η ¼ −
Q2

r3
: ð53Þ

Regular solutions exist for any nonzero value of the charge
and can be found analytically after requiring regularity at
the horizon and spatial infinity,

5 10 15
r/M

0

0.02

0.04

h 0

l=1, μSM=0, Q=0.1M

l=2, μSM=0, Q=0.1M

l=3, μSM=0, Q=0.1M

-0.80

-0.40

0

u 4

0.40

0.80

ψ

FIG. 7. Stationary hairy BH solutions in the presence of axionic
couplings ka, obtained by linearizing around the RN solution for
Q ¼ 0.1M and MμS ¼ 0. Here we plot the fundamental modes
(solutions with no nodes), and we label these solutions by kcrita
and l, with kcrita given approximately by Eq. (46).

6We note that when expanding in ka with a background EM
field, one is effectively considering expansions of the form kahAi,
where hAi is a characteristic, dimensionless, and Lorentz-invari-
ant measure of the EM field strength (e.g., hAi ¼ Q2=M2 for a
charged BH). In other words, strong EM fields can compensate
for a “small” value of ka and produce observable consequences.
A similar approach was recently considered in the context of
pulsar magnetospheres [26].

7This equation can be obtained from the system (50) with
l ¼ 1 by considering the expansion parameter to be proportional
to the dimensionless BH spin a=M.
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8In this subsection we work in Boyer-Lindquist coordinates
(Appendix D) and suppress the BL subscript.

η ¼ 1

2

�
2

rþ
−
1

r
−
log

h
ðr−r−Þ2

r2

i
ðrþ þ r− − 2rÞ
2rþr−

�
; ð54Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. These solutions decay as

1=r2 at infinity and up to second order in the BH charge are
given by η ¼ Q2=ð8Mr2Þ þOðQ4Þ.
To summarize, when rotation is turned on, one expects

two distinct families of solutions with axion hair. One
family of solutions exists for any value of ka and that—to
first order in the BH spin and in the axion coupling—is
given by Eq. (52) with radial profile (54); a second family is
the rotating generalization of the solution discussed above,
which we expect to branch off the solution (52) at ka ∼ kcrita
for small rotation.

3. An extended Wald solution

Aside from charged solutions, one should expect non-
trivial axion configurations around nonspherically sym-
metric BHs with nonzero magnetic fields, since for
this case one also has �FμνFμν ≠ 0. In fact, it has been
shown by Wald [48] that, neglecting backreaction, Kerr
BHs immersed in a homogeneous magnetic field B aligned
with the BH axis of symmetry allows for an exact analytical
solution of Maxwell’s equations,

Aμ ¼
1

2
Bðmμ þ 2akμÞ; ð55Þ

where kμ ¼ ð1; 0; 0; 0Þ and mμ ¼ ð0; 0; 0; 1Þ are the two
Killing vectors that the Kerr metric admits. This field would
lead to the BH accreting surrounding charge in the
accretion disk and the interstellar medium. Therefore
BHs would acquire a charge in those environments and
be described by a Kerr-Newman spacetime, with a total
vector potential given by [48]

Ãμ ¼
1

2
Bðmμ þ 2akμÞ −

1

2
qkμ; ð56Þ

where q ¼ Q=M and Q is the accumulated BH charge. At
equilibrium, the BH charge-to-mass ratio is given by
q ¼ 2Ba. We can therefore analyze two different cases:
(i) the BH is uncharged, and there is a net flow of charge
from the surrounding medium; (ii) the BH is charged, but
there is no net flow of charge from the surrounding
medium. Recent estimates for supermassive BH in the
Galactic center suggest that rotationally induced charge
is stable with respect to the discharging processes
from the surroundings of an astrophysical plasma [49].
Let us then focus on the second (equilibrium) case and
estimate the importance of the induced charge on the
background geometry. Using the limit for a maximal
astrophysically realistic magnetic field from Sec. II,
we find q ≤ 10−11a=M; i.e., the geometry is still well
described by the Kerr metric.
Hence, we here consider a Kerr spacetime with the vector

potential of the form8

AWald
μ ¼ 1

2
Bgμνmν ¼ B sin2 θ

2Σ
ð−2aMr; 0; 0;F Þ; ð57Þ

where F is a metric function given in Eq. (D2) and we refer
the reader to Appendix E for details of the Wald solution.
Let us now consider, instead of Maxwell’s equations,

the generalized axionic equations (2). For ka ¼ 0, Wald’s
solution is a solution to the problem, together with a
vanishing scalar field. Thus, we are interested in a first-
order (in kaB2M2) production of axions, as a consequence
of the EM background. The dominant term describing the
axionic field is the equation

ð∇μ∇μ − μ2SÞΨ ¼ 1

2
kagαμgβν

�Fð0Þ
μνF

ð0Þ
αβ ; ð58Þ

where Fð0Þ
μν denotes the Maxwell tensor corresponding to

Wald’s solution. Using Eq. (57) we find, to fifth order in the
spin ã ¼ a=M,

gαμgβν�Fð0Þ
μνF

ð0Þ
αβ ¼ −

12aB2M cos θsin2θ
r2

þ 4a3B2M cos θsin2θð2r −M þ cosð2θÞðM þ 5rÞÞ
r5

−
2a5B2Mcos3θsin2θð−10M þ rþ cos 2θð10M þ 21rÞÞ

r7
: ð59Þ

One can now expand the left-hand side of Eq. (58) order
by order in the spin, with Ψ ¼ Φ1ãþΦ2ã2 þ � � �. To first
order in rotation (and for μS ¼ 0) one gets

∂
∂θ

�
sin θ

∂Φ1

∂θ
�
þ sin θ

∂
∂r

�
ðr2 − 2Mrþ a2Þ ∂Φ1

∂r
�

¼ −6kaB2M2 cos θ sin3 θ ð60Þ

and similar equations for higher order terms, each of which
can be solved with an expansion in spherical harmonics.
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Finally, to first order in kaM2B2 and fifth order in the spin
for massless “axions” we find

Ψ ¼ kaB2M

�
cos θ

�
3a
2
þ a3

2r2

�
− cos3θ

�
a
2
þ a3

r2
þ a5

2r4

�

þ cos5θ

�
a3

2r2
þ a5

r4

�
− cos7θ

a5

2r4

�
: ð61Þ

This field will in turn contribute to the background EM
field, via Eq. (2), but as a second order (in ka) effect.
Let us now briefly comment on the scenario in which

conditions for the superradiant instability are met (see
Appendix F) and the conditions for the EM field instability
(discussed in Sec. VI) are not satisfied. Then, Ψð0Þ can be
found by the expansion in α2g ¼ ðMμSÞ2 [50]. The con-
tribution of the magnetic field will appear, to first order in
ka, at the fine-structure level (in αg), since the dominant
contribution of the driving term in Eq. (58) is aM=r2 ∼ ãα4g.
Even though it is a subdominant effect, it could potentially
be important for the consistent calculation of the level
mixing in binary systems [50], for large magnetic fields,
and/or for an axion-photon coupling constant.

B. New BH solutions for scalar couplings

1. End state of the RN instability

As already shown for the axionic couplings, the insta-
bility of the RN geometry discussed in Sec. IV suggests the
existence of new BH solutions, branching off from the RN
solution.9 We now construct those solutions for the scalar
coupling described by the action (1) with ka ¼ 0 but ks ≠ 0.
Similar solutions were recently constructed for theories

with a coupling of the form e−αΨ
2

FμνFμν [43], with α a
coupling constant. In particular, in Ref. [43] it was shown
that the scalarized BH solutions are stable against spheri-
cally symmetric perturbations, and strong evidence was
found that the solutions are the end state of the instability
by performing fully nonlinear evolutions of the instability.
In fact, when α ≪ 1 and ks ≪ 1, the coupling of Ref. [43]
is equivalent to the quadratic coupling that we study here;
hence all the conclusions should carry through. Here we
only consider spherically symmetric spacetime, and sol-
utions for which the scalar field is nodeless. Solutions
with nodes, and nonspherically symmetric (but static)
solutions—which correspond to unstable polar modes with
l > 0—have also been constructed in Ref. [43].
The scalar field is given by Ψ≡ ψðrÞ while the most

general spherically symmetric metric can be written as

ds2 ¼ −e−2δðrÞNðrÞdt2 þ dr2

NðrÞ þ r2dΩ2; ð62Þ

where NðrÞ ¼ 1–2mðrÞ=r. The vector field is given by
Aμdxμ ¼ VðrÞdt. After substitution in the field equa-
tions (2), we get (for generic values of p and μS)

ðe−δr2Nψ 0Þ0 þ pr2

2
eδkps ψp−1V 02 − e−δr2μ2Sψ ¼ 0; ð63Þ

m0 −
r2

2
½Nψ 02 þ e2δV 02ð1þ kps ψpÞ þ μ2Sψ

2� ¼ 0; ð64Þ

δ0 þ rψ 02 ¼ 0; ð65Þ

V 0 ¼ Q
r2
e−δ

1

1þ kps ψp : ð66Þ

By imposing the existence and regularity of the solution
across an event horizon at r ¼ rH, in addition to regularity
at infinity these equations can be solved using a standard
shooting method. We refer the reader to Ref. [43] for more
details. Our results for p ¼ 2 and μS ¼ 0 are summarized
in Figs. 8 and 9. Similar solutions can be constructed for
p > 2 and μS ≠ 0.
The left panel of Fig. 8 shows the dimensionless

horizon area aH ¼ AH=ð16πM2Þ, with AH ¼ 4πr2H, of
the scalarized solutions as a function of the BH’s
charge-to-mass ratio Q=M. The right panel shows part
of the domain of existence of the scalarized solutions.
As can be seen, for a given ks, scalarized solutions only
exist above a critical Q=M. The value at which these
solutions branch off the RN geometry agrees with the
onset of the RN instability shown in Fig. 6. In agreement
with Ref. [43] we find that solutions can be overcharged
Q > M and for a given ks exist up to a maximum value
of Q=M at which the numerics indicate that the horizon
area vanishes.
In addition to the BH electric charge Q and the mass M,

these solutions have a scalar charge Qs. This can be seen in
Fig. 9 where we show a specific scalarized solution. The
scalar field can be supported only if Q ≠ 0; i.e., Qs → 0
when Q → 0, in agreement with the expectation that a
Schwarzschild BH is a stable solution of the field equa-
tions. Importantly, these results show that, for part of the
parameter space, RN and scalarized solutions coexist with
the same global charges.

2. Charged BH solutions for p = 1

For p ¼ 1 RN is not a solution of the field equations (2).
Charged BHs in this theory necessarily carry scalar hair for
any value of ks since a nonvanishing FμνFμν will source the
scalar field equation (2a). This case is analogous to the
more familiar Einstein-Maxwell-dilaton theories. In fact,
Einstein-Maxwell-dilaton theories have a coupling of the

9We note that the fact that the theory we consider has hairy BH
solutions was already pointed out in Ref. [51], although they were
not explicitly constructed. In Ref. [51] only BHs with magnetic
charge were constructed.
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form e−2αΨFμνFμν, with α as a coupling constant, and so are
equivalent to the Lagrangian (1) with p ¼ 1, ka ¼ 0, and
μS ¼ 0 when α ≪ 1 and ks ≪ 1. For Einstein-Maxwell-
dilaton theory, closed exact analytical BH solutions have
been found [52]. For our specific coupling we were unable
to find exact analytical solutions. However, since RN is a
solution for ks ¼ 0, perturbative solutions around RN can
be found in an expansion in ks. For spherically symmetric
solutions, to first order in ks and generic BH electric charge
Q corrections to the RN solution appear only at the level
of the scalar field and are given by solving the ODE (for
μS ¼ 0 and ka ¼ 0):

Ψ ¼ ksψðrÞ; ð67Þ

ðr2 − 2MrþQ2Þψ 00 þ 2ðr −MÞψ 0 ¼ −
Q2

2r2
: ð68Þ

Imposing regularity at the horizon and vanishing scalar
field at infinity the solution is given by

Ψ ¼ −
ks
2
log

�
1 −

r−
r

�
; ð69Þ

where r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. One may easily find the first

corrections to the metric and vector potential by expanding
the solution aroundQ ¼ 0. In particular, up to second order
in ks and fourth order Q the vector potential is given by

Aμdxμ ¼
�
Q
r
− k2s

Q3

8Mr2

�
dt; ð70Þ

while the metric components are given by

mðrÞ ¼ M −
Q2

2r
− k2sQ4

r − 3M
32M2r2

; ð71Þ

δðrÞ ¼ k2s
Q4

32M2r2
: ð72Þ

We note that the scalar field decays as 1=r at large distances
and therefore these solutions carry scalar charge Qs given
by Qs ¼ ksQ2=ð4MÞ.
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FIG. 9. Scalarized BH for Q=M ¼ 0.8 and ks ¼ 2.8. The scalar
and vector fields decay as 1=r at spatial infinity; therefore, this
solution carries both a scalar and an electric charge.
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FIG. 8. Left panel: Dimensionless horizon area aH ¼ AH=ð16πM2Þ, with AH the horizon area, of the nodeless scalarized BHs, for
different values of ks as a function of the BH’s charge-to-mass ratio Q=M. For a given ks solutions only exist above a critical Q=M that
can be read off from Fig. 6. Numerics indicate that the scalarized solutions only exist up to maximum Q=M where the horizon area
vanishes. Right panel: Domain of existence of the nodeless scalarized BHs. RN BHs exist for any ks as long as Q=M ≤ 1, but are
unstable above the solid blue line. Above that line scalarized BHs exist up to the dashed red line which marks the approximate value of
Q=M where the horizon area of the nodeless scalarized BHs tends to zero.
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VI. BURSTS OF LIGHT FROM SCALAR CLOUDS

Axion and axionlike light particles—even with negli-
gible initial abundance—trigger superradiant instabilities
around massive, spinning BHs [9–14]. The instability
extracts rotational energy away from the spinning BH
and deposits it into a cloud of scalars, with a spatial extent
∼1=ðMμ2SÞ [14]. Over long timescales, when the mass of
the cloud is sufficiently large, GW emission becomes
important and leads to a secular spin-down of the cloud
(and BH) and a consequent cloud decay. Such systems are a
promising source of GWs, both as resolvable and as a
stochastic background, that can be detected with current
and future detectors [15–22].
Our current understanding of the evolution of super-

radiant instabilities and accompanying GW emission
neglects the coupling to matter, expected to be very weak.
Arguments based on flat-space calculations similar to those
worked out in Sec. III suggest that when the axion strength
exceeds a critical value (or in other words when the cloud
extracts too much energy) an instability is triggered that
might give rise to large amounts of EM radiation being
emitted from BH systems [23]. Recently, these conjectures
were shown to be true by some of us, through the evolution
of Maxwell’s field equations coupled to an axion field in a
Kerr background. In particular, it was shown that for critical
values of the coupling kaΨ0, EM fields are spontaneously
excited in such environments, even at a classical level [25].
These instabilities can indeed be completely understood in
the context of classical field theory, owing to the bosonic
nature of axions and photons, which allows buildup of
macroscopic numbers of particles.
Here, we will extend the results of Ref. [25] to scalar

couplings and provide some analytical understanding of
the mechanism. We refer the reader to Appendix G for the
numerical formulation and initial data construction. Wewill
always focus on a background axion or scalar field which is
the product of the evolution of superradiant instabilities
around spinning BHs. The growth of the scalar or axion due
to superradiance is extremely slow to perform in a full
nonlinear evolution; but see Refs. [13,53,54]. Thus, our
setup is that of an axion fully grown by superradiance
to some value, at which point we start monitoring the
coupled system of Maxwell-Klein-Gordon equations, in a
fixed background geometry10 following the approach of
Ref. [57]. The initial data for the vector consist of a small

azimuthal electric field of the form (see Appendix G 3 for
further details)

Eφ ¼ E0e−ðr−r0Þ
2=w2

; axions; ð73Þ

and

Eφ ¼ E0

1þ kps Ψp e
−ðr−r0Þ2=w2ΘðθÞ; scalars: ð74Þ

The Θ profile is shown in Appendix G 3 and is used for
completeness, since all our results are initial-data indepen-
dent at the qualitative level.

A. Flat space analysis

Our main purpose is to show that EM instabilities may
arise when axions or scalars exist, and they couple strongly
to the Maxwell field. We will do this by order of complex-
ity. Here, we artificially use a Minkowski background and
we fix the scalar field to have the profile appropriate for
clouds around BHs [17],

Ψ ¼ A0rMμ2S exp

�
−
1

2
rMμ2S

�
cos ðϕ − ωtÞ sin θ: ð75Þ

Here, A0 is the amplitude of the field. For further details we
refer the reader to Appendix F, as well as Refs. [17] and
[25]. The purpose is to show that an instability exists even
in this setup, but now with a critical threshold. In other
words, the results worked out in Sec. III in a Minkowski
background generalize, except that the nonhomogeneous
nature of the scalar or axion results in a critical coupling
below which no instability is triggered. These results were
reported for axions in our recent article [25].
We solved the (Maxwell) evolution equation of the EM

field with a fixed scalar field for p ¼ 1, 2 and mass
couplings μSM ¼ 0.1, 0.2, 0.3, where M is the BH mass
that supports the solution (75). Our results are summarized
in Figs. 10 and 11, and are consistent with the results we
obtained for axion couplings recently [25].
The novel feature with respect to the homogeneous

background scalar of Sec. III B is the existence of a critical
coupling ksA0 below which no instability occurs. This is
apparent in Fig. 10 for both p ¼ 1 and p ¼ 2 (we stress that
the results for axionic couplings can be found in Ref. [25]).
The critical value is estimated below with simple analytical
arguments. If the coupling ksA0 is smaller than the thresh-
old, the EM field dissipates away. This feature is induced
by finite-size effects of the scalar cloud, as we argue below.
At large enough couplings, all initial conditions lead

eventually to an instability (and exponential growth of the
EM field), and examples are shown in the bottom panels of
Fig. 10. The growth rate depends very weakly on the initial
data and on the coordinate at which the EM field is
extracted. A closer inspection of instability rates allows

10In Ref. [25] superradiantlike growth was also monitored
using a modification of the Klein-Gordon equation. The modi-
fication mimics and gives rise to superradiance, and was used in
Zel’dovich’s pioneering work on rotational superradiance
[14,55,56]. This study showed that the physical results did not
change with respect to frozen-superradiance evolutions. How-
ever, while the results of Ref. [25] are compelling and lead to
periodic bursts of EM radiation, an alternative scenario is still not
ruled out: that if the superradiant-growth timescale is extremely
large, the signal is less burstlike than observed in Ref. [25].
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us to estimate the critical coupling value. The rates are
shown in Fig. 11 for different couplings, which also
strongly indicate the existence of a critical threshold.

B. Kerr BHs

We have just discussed the exponential growth of an EM
field around a “frozen” axionic or scalar cloud in a flat
space background. These results suggest that when the
effective coupling is larger than a threshold value, the EM
field may grow exponentially—fed by the axionic cloud,
which itself grew through superradiance and extracted its
energy from the spinning BHs. Here, we confirm this
scenario with a fully numerical simulation around Kerr BHs
(the geometry is kept fixed, but the coupled Maxwell-scalar
system is evolved, following the approach of [57]). We
refer the reader to Appendix D for notation on the Kerr
metric representations, and we summarize the formulation
and initial data in Appendix G.

We solved the evolution equations for MμS ¼ 0.2, a ¼
0.5M (we also studied higher spins, and the results are
qualitatively the same), and the results are summarized in
Fig. 12 for scalar couplings with p ¼ 1 and p ¼ 2. As
expected from the previous flat-space analysis, for small
enough couplings any small EM disturbance dissipates
away, and the profile of the axionic or scalar cloud is
basically undisturbed. On the other hand, when the cou-
pling is larger than a threshold, the EM field grows
exponentially. As shown in Fig. 12, for large couplings
an instability is indeed triggered. Because the instability
acts to produce k ∼ μS=2 vector fluctuations (for p ¼ 1), at
the nonlinear level these backreact on the scalar field,
producing transient clumps of scalar field on these scales.
This translates into an increase of the scalar, when observed
sufficiently close to the BH, as seen in the upper panels of
Fig. 12. On long timescales, the instability extracts energy
from the scalar cloud and eventually lowers the effective

FIG. 11. Growth rates Mλ as a function of the coupling parameters for p ¼ 1 (left) and p ¼ 2 (right) for a Minkowski background.
Crosses stand for numerically extracted rates, and dashed lines are our analytical estimates, which to first order in the coupling are
described by Eqs. (81) and (82) (a full description of the perturbative framework can be found in Appendix B 2 b). Our results are
consistent with the existence of a critical coupling below which no instability is triggered and well described by our analytical estimates
in the small coupling regime.

FIG. 10. Time evolution of the Maxwell scalar FF0 (see Appendix G 4 for the definition of notation) measured at r ¼ 20M for
extended initial-data profiles [Eq. (G29) in Appendix G 3], for p ¼ 1, 2 (left and right panels, respectively). The spacetime is flat and the
scalar is not evolved. The initial data correspond to a Gaussian EM field with width w, Gaussian-centered radius r0 and amplitude of
ðw; r0; E0Þ ¼ ð5M; 40M; 0.001Þ. In both panels the mass coupling is μSM ¼ 0.2.
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coupling to subthreshold values, leading to a now stable
cloud. On even longer timescales, superradiance will grow
the scalar to superthreshold values and the cycle begins
again, as demonstrated in the axion scenario in Ref. [25]
(see footnote). Similar effects have been found for scalar
condensates with a self-interacting potential, but in the
absence of couplings to the EM sector [58,59].
We would like to highlight a potential issue with the

scalar couplings in general, and that clearly shows up when
p ¼ 1. When the effective coupling ksΨ is of order unity,
the kinetic term [left-hand side of Eq. (2)] for the vector
field can vanish and the system becomes strongly coupled.
The evolution in such a case is ill defined. In particular, we
find, for example, that we cannot evolve E2 (see the
definition in the caption of Fig. 12) in Fig. 12 past t ¼
520M for this reason. It is possible that the dynamics of the
gravity sector (neglected in this work) cure such anomalies,
for example, by producing BHs close to the threshold.
Another possibility is that coupling to fermions will ensure
that Schwinger-type creation works to prevent the EM field
from ever approaching such large values. The calculation of
the time evolution near the strong coupling is beyond the
purpose of our paper.

C. A simple analytic description of the results

Compared to the flat space analysis from Sec. III B, the
(localized) axion “cloud” configuration introduces one
more timescale in the problem, that of the time d needed
for photons to leave the axion configuration, where d is a
measure of the configuration size. Thus, there is another
rate in the problem,

λγ ∼
1

d
: ð76Þ

If λγ > λ�, with λ� being the estimate of the EM field
instability rate for the homogeneous condensate, photons
leave the configuration before the instability ensues and
the effective rate of the instability is zero. In the other
extreme, we can approximate the rate of the dominant
instability by [40,60]

λ ≈ λ�hΨi − λγ; ð77Þ

where hΨi is some estimate of the average value of the
axion field, to be implemented in the expression obtained
for the homogeneous case [see Eq. (21)]:

λ�hΨi ≈
1

2
kahΨiμS: ð78Þ

Although the rate estimates were derived in flat space,
the system under consideration is mostly in a weak field
regime and we expect that they will provide a good
description even in the context of instabilities around
Kerr BHs.
Let us therefore consider the dominant mode in the

gravitational atom (75), frozen and embedded in
Minkowski spacetime, and estimate the instability rate.
For the measure of d we use the full-width-at-half-maxi-
mum (FWHM) of the function (75)

d ≈
4.893
Mμ2S

: ð79Þ

FIG. 12. Time evolution of the dipolar component of the scalar field, Ψ1 (top panel, extracted at r ¼ 20M; see Appendix G 4 for
notation), of the monopolar component of the Maxwell invariant FF0 (middle panel, extracted at r ¼ 20M), and ðTtrÞ0 (bottom panel,
extracted at r ¼ 100M) for p ¼ 1 (left panels) and p ¼ 2 (right panels). The mass of the scalar is μSM ¼ 0.2, the coupling ksA0 ¼ 0.5,
k2sA2

0 ¼ 1.0 (p ¼ 1, 2 respectively), and the spin parameter is a ¼ 0.5M. The initial data are either of the extended (E) or localized (L)
type as defined in Eqs. (G26), (G27), (G28), and (G30), and are described by a Gaussian centered at r0 ¼ 40M and an amplitude of
E0 ¼ 10−3. For E1, L1 the Gaussian width is 5M, and for E2, L2 it is 20M.
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For the estimate of the field value we take the radial mean
of the field on the FWHM and maximal contribution from
the harmonic part of the function

hΨi ≈ ð1=dÞ
Z
FWHM

jΨðrÞjdr ≈ 0.592A0: ð80Þ

These estimates are in very good agreement with the results
from the article [25] as can be seen in Fig. 13. In addition, a
cutoff coupling below which no instability arises shows up
naturally, explaining all the previous numerical results. In
summary, a very simple and elegant analytic formula
explains most of the results that we observe numerically.
The results above were worked out for the axionic

coupling, but the underlying physics and mechanism
remains the same for scalar-type couplings. Accordingly,
we expect that the rate of the dominant instability is given
by Eq. (77). Using Eq. (27), we find

λ�hΨip¼1 ≈
1

4
kshΨiμS ð81Þ

for p ¼ 1. Similarly, using Eq. (28) we find for p ¼ 2,

λ�hΨip¼2 ≈
1

4
ðkshΨiÞ2μS: ð82Þ

These estimates are shown together with numerical data in
Fig. 11. Notice how such a simple estimate agrees very well
with the full numerical evolution in the small coupling
regime where the perturbative approximation is valid.

D. A note on plasma effects

Thus far, the system was assumed to evolve in a vacuum
environment, when in reality the universe is filled with
matter. We will approximate all this matter by plasma. The

influence of plasma on axion-photon conversion has been
discussed for superradiant axions [23,24], but also in other
contexts [40,61]. EM wave propagation through plasma is
described by the modified dispersion relation [62]

p2 ¼ ω2 −
ω2
plasmaω

ωþ iν
; ð83Þ

where ν is the collision frequency and

ωplasma ¼
4πe2ne
me

ð84Þ

is the plasma frequency; me, e, and ne are the mass, the
charge, and the concentration of the free electrons, respec-
tively. Conceptually, it is helpful to consider two limiting
cases—collisional (ω ≪ ν; appropriate in the context of
plasma in the accretion disks) and collisionless (ω ≫ ν;
in the context of the interstellar matter or a thin accre-
tion disk).

1. Collisionless plasma

EM waves in this limit have a modified dispersion
relation that is equivalent to providing a photon with a
mass μV ¼ ωplasma. For high μV ≥ ð1=2ÞμS, decay proc-
esses become kinematically forbidden.11 For interstellar
matter [61]

ωplasma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ne
0.03 cm−3

r
ð6.4 × 10−12 eVÞ; ð85Þ

the plasma frequency is below the range of the QCD axion
mass and some of the ultralight axions [see comments
around Eq. (F7)]. Hence, one can expect EM instability not
to be quenched on the primordial and lower range of the
stellar BHs mass spectrum.
We have numerically modeled this scenario as a scalar-

Proca system. The time domain study is summarized in
Fig. 14 and confirms this picture: when the (effective) mass
of the vector field is larger than the axion mass, the burst is
suppressed. We have checked that this suppression effect
occurs in all our initial data and also for axionic couplings.
We will now provide some analytical control over these

results by concisely reproducing some of the results of
Ref. [24] and also expanding them to the scalar coupling
case. Consider the dimensionless Mathieu equation that
describes parametric resonances of the EM field in the
background of the homogeneous axion/scalar condensate
(Secs. III B and III C) in the form

FIG. 13. Instability rates for axionic couplings, in the presence
of a background axion described by the cloud (75), for a
Minkowski background. The analytical estimates for the insta-
bility rate λ for axionic couplings, as given to first order
by Eq. (80) (dashed lines, full expansion is described in
Appendix B 2 a), are compared with the numerical results of
Ref. [25] (crosses). We find good agreement between our analytic
estimates and numerical data for small mass (MμS ∼ 0.1) or small
axion couplings.

11The decay process is a → γ þ γ (for a Lagrangian with a
ΨF2 term), so if the photon has an (effective) mass μV, in order
for the decay to be energetically favorable, we should have
μS ≥ 2μV.
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∂2
Tyþ ðϒþ 2ϵ cosTÞy ¼ 0; ð86Þ

where y is defined in Eq. (22) for axions and in Sec. III C 2
for scalar couplings. Here, ϒ ¼ ðp2 þ μ2VÞ=μ2S for axions
and p ¼ 1 scalars, and ϒ ¼ ðp2 þ μ2VÞ=ð2μSÞ2 for p ¼ 2

scalars. Also, ϵ ¼ −Ψ0kaðp=μSÞ; ð1=2ÞðksΨ0=2Þp for axi-
ons and scalars, respectively. As we showed already, the
dominant instabilities occur for ϒ ¼ 1=4. It is well known
that the critical stability curves on the ϒ − ϵ (Ince-Strutt)
diagram are given by [37]

ϒ ¼ 1

4
þ ϵþOðϵ2Þ: ð87Þ

Inserting the appropriate ϒ and ϵ, we can find the values of
the parameters for which (87), a quadratic equation in p,
has real solutions. First, consider the axion case where
ϵ ¼ ϵðpÞ. We find the critical plasma frequency

ωcrit
plasma ¼

1

2
μS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΨ0kaÞ2

q
; axions ð88Þ

in agreement with Ref. [24]. For scalar couplings we find

ωcrit
plasma ¼ μS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ ksΨ0

r
; p ¼ 1; ð89Þ

¼ μS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
ðksΨ0Þ2

r
; p ¼ 2: ð90Þ

Our results are in qualitative agreement with this predic-
tion. One can also straightforwardly find corrections to the
instability rate, induced by the effective mass. For example,
in the axion case12

λa ¼
1

2
Ψ0kaμS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

�
ωplasma

μS

�
2

s
þOðk2aÞ: ð91Þ

The preceding analysis neglects the time dependence of
the plasma distribution; in particular it also neglects the
backreaction by the cloud on the plasma. Although the full
problem is outside the scope of this work, we note that the
arguments of Ref. [40] suggest that nonharmonic time
dependence would not jeopardize parametric resonances as
long as the scalar mass is much smaller than the plasma
frequency. However, the time-periodic background of real
scalars can drive matter resonantly in peculiar configura-
tions oscillating with the (multiple of) scalar mass [36,63].
This behavior would manifest itself as an additional
harmonic term in the Mathieu equation, similar to the ones
in Appendix B, and is expected to modify but not eliminate
the instability. The driving of plasma by the cloud could
also deplete the plasma from the central regions [63],
leading to a smaller effective photon mass and therefore to a
more efficient instability.

2. Collisional plasma

Using estimates from Ref. [24] we find

ν ∼
�

M
10 M⊙

�
−5
8

10−6 eV ð92Þ

for the collision frequency and

ωplasma ∼
�

M
10 M⊙

�1
2

10−3 eV ð93Þ

for the plasma frequency in the inner rims of the accretion
disk around BHs. For BHs larger than M ∼ 10−3 M⊙,
ωplasma > 10−5 eV and the axion decay is forbidden in all
of the parameter range interesting in a BH-superradiance
context.
However, one should also consider the geometry of the

problem. Accretion disks are planar structures (when thin),
immersed in a “spheroidal” scalar cloud. The EM field
enhancement can originate in the space external to the
accretion disk (there is a limitation from interstellar matter
there, discussed in the previous subsection). Such waves
can lead to Ohmic heating of the disk or disperse it through
the radiation pressure. The quantitative analysis of this

FIG. 14. Time evolution of the massive scalar—massive vector
field system around a Kerr BH with p ¼ 2 and coupling
k2sA2

0 ¼ 1.0—in which the initial data are in an extended profile
with ðr0; w; E0Þ ¼ ð40M; 5M; 0.001Þ. Here the scalar mass is
μSM ¼ 0.2 and the scalar cloud is evolving around a Kerr BH
with a ¼ 0.5M. The notation for the y axis is explained in
Appendix G 4.

12Note that for the most part of the parameter space, plasma
corrections will be smaller than the ka corrections, discussed in
Appendix B.
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would probably depend on the geometry of the initial
fluctuations. We should also note that the estimates of the
peak luminosity from Ref. [23] (which are even lower than
the ones estimated numerically in Ref. [25]; see below)
indicate that the radiation pressure (if EM instability
ensues) would blow away the surrounding plasma.

3. e+ e− plasma

Besides astrophysical plasma large electric fields can
lead to Schwinger eþe− pair production. It was argued,
at the order-of-magnitude level, that such plasma can
indeed be created and reach large enough densities (and
consequently critical ωplasma) to block EM bursts [23].
Subsequently, eþe− annihilations would drive the plasma
density down and restart the process again.
An adequate treatment of this phenomenon is beyond the

scope of this work, but here we show that our numerical
estimates are consistent with such high EM fields. We work
with estimates from Ref. [25] for the axion coupling,
μSM ¼ 0.2 and kaA0 ≈ 0.3–0.4, where the peak luminosity
was given by

dE
dt

¼ 5.0 × 10−6
�
MS

M

�
c5

G
; ð94Þ

with MS representing the cloud mass (for the relation
between A0, M, and MS see Ref. [17]). The Maxwell
invariant is

FμνFμν ∼
1

V
dE
dt

tp; ð95Þ

where V ∼ hri3 ∼ 125r3c (rc is the first Bohr radius; see
Appendix F) is the cloud volume and tp ∼ 500M [25] is
the time when the luminosity plateau develops. Taking
jBj ∼ jEj, one finds

jEj ∼ 10Ec

�
M
M⊙

�
−1

ffiffiffiffiffiffiffi
MS

M

r
; ð96Þ

where Ec ¼ 1.3 × 1018 V=m is the critical Schwinger field.

VII. DISCUSSION

Extensions of the standard model of particle physics
where a (ultralight) scalar or pseudoscalar Ψ couples to
photons, are very “natural” to consider. These include terms
of the formΨ�FμνFμν orΨpFμνFμν, with p an integer. Such
terms have been considered widely in the literature in the
context of dark matter physics and cosmology, and, in fact,
axionic-type couplings are elegant resolutions of the strong
CP problem. Our purpose here was to discuss what appears
to be an important gap in our understanding: effects of
axionic or scalar couplings in strong-gravity situations.
We have shown that such couplings lead to instabilities

of homogeneous configurations and, in fact, seem to lead to

violations of BH uniqueness results in general relativity
(GR) (see Ref. [64] for a discussion on these results and
observational tests). In particular, for large enough cou-
plings, charged RN BHs are unstable and spontaneously
acquire a nontrivial scalar profile. In fact, unlike in Yang-
Mills theory (where colored BHs are unstable), it is
plausible that the hairy solutions that we discussed at a
perturbative level are stable (given that GR solutions are
unstable, and a time evolution will in principle drive them
to a hairy one). Thus, there are two possible solutions for a
fixed set of physical parameters, despite the instability of
one such solution.
Ultralight scalars or axions generically lead to super-

radiant instabilities of spinning BHs: on relatively short
timescales the scalar field extracts a sizable amount of the
BH rotational energy and deposits it in a nonaxisymmetric
“condensate” [14]. Since the scalar field is time dependent,
this massive condensate emits gravitational waves, a
mechanism that can be used to place impressive constraints
on the scalar mass [21,65,66]. In the presence of axionic or
scalar-type couplings, a new channel onto which the system
can radiate exists. Thus, one might rightfully worry that the
superradiant instability responsible for the growth of the
condensate might be quenched. What we showed, here
and in a previous article [25], is that indeed such couplings
will—if large enough and in the absence of plasma—give
rise to periodic bursts of low-frequency EM radiation (but
see footnote). These bursts deplete the condensate of a
fraction of the scalar until superradiance becomes effective
again. Thus, they effectively limit the maximum amount of
energy that superradiance can extract before the EM burst.
Our numerical results are supported by simple analytical
estimates that cover in a concise and simple way all the
phenomena we study, from flat to curved spacetime.
In practice, the interstellar plasma can influence the

realization of the bursts. For collisionless plasma (inter-
stellar medium and thin accretion disks), we find that the
plasma would not affect significantly the existence of bursts
for axions or scalars more massive than μS ∼ 10−12 eV.
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APPENDIX A: FLAT-SPACE INSTABILITIES
IN THE COULOMB GAUGE

1. Axion coupling

The results in Sec. III B 2 arise also in a simpler version
of the relevant equations, if one changes to Coulomb gauge.
In the Coulomb gauge ð∇A ¼ 0Þ, the space component of
Maxwell’s equations reduces to ∇2A − ∂2

tA −∇ð∂tA0Þ ¼
−j [62]. Using the Helmholtz theorem we can decompose
j ¼ jl þ jt, with ∇ × jl ¼ 0 (longitudinal component) and
∇jt ¼ 0 (transverse component). Finally, the time compo-
nent of Maxwell’s equations gives ∂2

tA −∇2A ¼ jt. Notice
that the effective current sourced by nonrelativistic axions
(where j∇Ψj ≪ j∂tΨj) is irrotational. From Eq. (2) in the
Coulomb gauge,

∂2
tA − ∇2Aþ 2ka∂tΨ∇ × A ¼ 0: ðA1Þ

The momentum space representation of the previous
equation shows that the fluctuations of the Fourier-trans-
formed vector potential Ap are described by

∂2
tAp þ p2Ap þ ikap ×

Z
d3p0

ð2πÞ3 ∂tΨp−p0Ap0 ¼ 0: ðA2Þ

Consider the homogeneous axion field Ψ¼Ψ0cosðμStÞ.
As shown in Ref. [40], in a circular polarization represen-

tation Ap ¼ P
λypξ

ðλÞ
p þ c:c: the vectors ξðλÞp decouple and

we are left with Eq. (23), after the variable change
μSt ¼ T þ π=2. We thus recover in one go Mathieu’s
equation for this problem.

2. Scalar coupling

For a nonrelativistic scalar field, Maxwell’s equations
in the Coulomb gauge and a Minkowski background
reduce to

∂μFμν ¼ −gpðtÞF0ν; ðA3Þ

where

gpðtÞ ¼
pksðksΨÞp−1∂tΨ

1þ ðksΨÞp
; ðA4Þ

and the RHS of Eq. (A3) is a well-defined13 current jν.
The general comments on the Coulomb gauge from the

previous section also apply to this case. Equation (A3)
reduces to

∂2
tAþ gpðtÞ∂tA − ∇2A ¼ 0: ðA5Þ

Note that here jt ¼ gpðtÞ∂tA and jl ¼ −gpðtÞ∇A0. Fourier
transforming this equation we obtain

∂2
tAp þ p2Ap þ

Z
d3p0

ð2πÞ3 g
ðpÞ
p−p0 ðtÞ∂tAp0 ¼ 0; ðA6Þ

with gðpÞp ðtÞ being the Fourier transform of gpðtÞ.
If we consider an homogeneous scalar field Ψ ¼

Ψ0 cos ðμStÞ and decouple the polarization vectors, with

Ap ¼ P
λ ypξ

ðλÞ
p þ c:c:, the previous equation reduces to

∂2
t yp þ p2yp þ gpðtÞ∂typ ¼ 0: ðA7Þ

The form of this equation is similar to the Ince equation
[67], and we can use a change of variables of the form

yp ¼ exp

�
−
1

2

Z
t

0

gpðt0Þdt0
�
fp ðA8Þ

to obtain an equation14 of the Hill type

∂2
t fp þ ðp2 þWpðtÞÞfp ¼ 0; ðA9Þ

where we defined

WpðtÞ ¼ −
1

2
∂tgp −

1

4
g2p: ðA10Þ

We see that WpðtÞ, i.e., the harmonic term that drives
the instability scales to leading order as kps . To the lowest
order in ks this equation reduces to the Mathieu equation
for both p ¼ 1,

W1ðtÞ ¼
1

2
μ2SksΨ0 cos ðμStÞ; ðA11Þ

13This is the case in general, when the RHS of Eq. (A3)
is proportional to ð∂μΨÞFμν.

14Note that (i) gpð0Þ ¼ 0; (ii) the conversion factor between fp
and yp is harmonic and cannot change the conclusions regarding
stability.
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and the p ¼ 2 case,

W2ðtÞ ¼ μ2SðksΨ0Þ2 cos ð2μStÞ: ðA12Þ

APPENDIX B: TIMESCALES FOR THE
INSTABILITIES OF THE FLAT-SPACE
HOMOGENEOUS CONFIGURATIONS

1. First order results

Here we derive the instability timescales, using a
perturbative expansion in a small coupling parameter
ϵðka; ks;Ψ0Þ, to be defined latter. We expect that for specific
values of ω, given by Eqs. (24), (30), and (31), regular
perturbation theory breaks down. However, one can start
from the regular perturbation theory; see how instabilities
build up and use multiscale [37] or dynamical renormal-
ization group (DRG) [68] methods to regularize the
problem. We will here use the latter approach. As insta-
bilities from a homogeneous axion field in flat space are
exactly described by the Mathieu equation and for scalar
couplings approximately, to leading order in ks, we will
here derive the first-order result for the leading instability
rate of the Mathieu equation.
We will consider the Mathieu equation in the form of

Eq. (86), with μV ¼ 0. Instabilities arise when ϒ ¼ n2=4;
n ∈ N. We here focus on the dominant instability

ffiffiffiffi
ϒ

p ¼
1=2 and denote the subscript of the function that governs
dominant time dependence of the vector potential with

ffiffiffiffi
ϒ

p
.

At zeroth order in ϵ, the solution is given by yð0Þ1=2 ¼
Aeið1=2ÞT þ c:c: The differential equation for the first order
correction is

∂2
Ty

ð1Þ
1=2 þ

�1
2

�
2
yð1Þ1=2 ¼ −ðA�eið1=2ÞT þ Aeið3=2ÞTÞ þ c:c:;

ðB1Þ

and the full solution is given by

y1=2 ¼
�
A −

1

2
A�ϵ

�
eið1=2ÞT þ ϵ

�
iA�eið1=2ÞTðT − T0Þ

þ 1

2
Aeið3=2ÞT

�
þ c:c:; ðB2Þ

where T0 is some arbitrary time where we imposed initial
conditions. Higher-order terms will build up secular terms
of the form ðT − T0Þm, where m is the order of the
expansion, in the limit m → ∞ giving exponential growth.
However, this behavior invalidates our perturbative
expansion.
The DRG approach is based on the insight that the

invalidation of the regular perturbation theory is a conse-
quence of the big interval between T0 and T [68,69]. In
order to remedy this problem, we declare the parameters of

the solution in Eq. (B2) as “bare” and rewrite them as the
renormalized ones:

AðT0Þ¼ZðT0;τÞAðτÞ; ZðT0;τÞ¼1þ
X∞
n¼1

anϵn: ðB3Þ

Next, we expand T − T0 ¼ T − τ þ τ − T0 and choose a1
(“counterterm”) in such a way to cancel secular terms
∝ ðτ − T0Þ. The renormalized solution has the form

y1=2 ¼
�
AðτÞ − 1

2
A�ðτÞϵ

�
eið1=2ÞT

þ ϵ

�
iA�ðτÞeið1=2ÞTðT − τÞ þ 1

2
AðτÞeið3=2ÞT

�
þ c:c:;

ðB4Þ
with a1AðτÞ ¼ −iA�ðτÞðτ − T0Þ. Arbitrariness of τ leads to
the RG equation

∂Aðt0Þ
∂τ ¼ 0: ðB5Þ

Working consistently at the ϵ1 order and decomposing
AðτÞ ¼ XðτÞ þ iYðτÞ, we find

∂2X
∂τ2 − ϵ2XðτÞ ¼ 0; ðB6Þ

i.e.,

XðτÞ ¼ e�ϵτ; ðB7Þ

with ∂τX ¼ ϵY. Finally, we choose τ ¼ T as the “obser-
vational” time and conclude that the instability rate, to first
order in ϵ is λ ¼ ϵ, for the (dimensionless) Mathieu
equation. Substituting appropriate ϵ and rescaling back
to the physical time [see definitions of

ffiffiffiffi
ϒ

p
and ϵ below

Eq. (86)], we obtain the estimates consistent with the
numerical results in Eqs. (21), (27), and (28).

2. Higher order results

a. Axion coupling

Instabilities for the homogeneous configurations with
the axion couplings are exactly described by the Mathieu
equation. Hence, we will here obtain the solution of the
Mathieu equation to the second order, using DRG. The
differential equation for the second order contribution is of
the form

∂2
Ty

ð2Þ
1=2 þ

�
1

2

�
2

yð2Þ1=2 ¼ −ð2 cosTÞyð1Þ1=2: ðB8Þ

The DRG procedure is analogous to the first order case. We
will consider only leading order harmonics with T=2 as
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they will give a dominant contribution to the instability.
Note that the term of the form ðT − τÞðτ − T0Þ will self-
consistently cancel the sign of the renormalizability of the
differential equation [69]. The second-order coefficient in
Eq. (B3) is

a2AðτÞ ¼ −iAðτÞðτ − t0Þ −
AðτÞ
2

ðτ − t0Þ2: ðB9Þ

From the RG equation (B5) we obtain λðR;2Þa ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
.

As we should trust this solution to the order of Oðϵ3Þ,
we perform Padé resummation of the results [37]. As the

perturbative result λðR;2Þa is an even function, we used
the first nontrivial approximant (2,1), and the final rate
estimate is

λa ¼
μϵ

1þ 1
2
ϵ2
; ðB10Þ

with appropriate ϵ defined below Eq. (86). This result gives
a very good description of the numerical data in both
Secs. III B and VI, as shown in Figs. 2 and 13.

b. Scalar coupling

Aswill become clear later, wewill first consider thep ¼ 2
case. The equation for the second order correction15 is

∂2
TY

ð2Þ
1=2 þ

�
1

2

�
2

Yð2Þ
1=2 ¼ −ð2 cosTÞYð1Þ

1=2

−W2ðT; k4sÞYð0Þ
1=2 þOðk6sÞ; ðB11Þ

where W2ðT; k4sÞ is the Taylor expansion coefficient
of the function in Eq. (A10) at the order of k4s .

Performing DRG as in Appendix B 2 a we obtain λðR;2Þp¼2 ¼
2ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − 3ϵÞð1 − 5ϵÞp
. After (1,1) Padé resummation we

have

λp¼2 ¼
2μϵ

ð4ϵþ 1Þ ; ðB12Þ

[ϵ is defined below Eq. (86)] as shown in Figs. 4 and 11.
For the p ¼ 1 case, the second order correction is

governed by the equation

∂2
TJ

ð2Þ
1=2 þ

�1
2

�
2
Jð2Þ1=2 ¼ −ð2 cosTÞJð1Þ1=2

−W1ðT; k2sÞJð0Þ1=2 þOðk3sÞ: ðB13Þ

For the rate estimate we obtain the same results as for the
axion case. This result is clearly not a good description as
the numerical results indicate (Fig. 4) that the function
λp¼1ðϵÞ is divergent. Therefore, we go to the third-order
contribution

∂2
TJ

ð3Þ
1=2 þ

�
1

2

�
2

Jð3Þ1=2 ¼ −ð2 cosTÞJð2Þ1=2

−W1ðT; k2sÞJð1Þ1=2 −W1ðT; k3sÞJð0Þ1=2

þOðk4sÞ: ðB14Þ

The renormalized rate is λðR;3Þp¼1 ¼
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð17=2Þϵ2 þ ð16=3Þϵ3 þ ð2225=144Þϵ4

p
. After Padé

resummation at the order (1,2) we obtain

λp¼1 ¼
μϵ

1 − 17
4
ϵ2
; ðB15Þ

[see beneath Eq. (86) for the ϵ definition] as shown in
Figs. 4 and 11.

APPENDIX C: AXIONS IN A RN BACKGROUND:
LONG-LIVED CONFIGURATIONS

Besides the unstable modes discussed in the main text,
massive fields around BHs can also form long-lived quasi-
bound states (see, e.g., Ref. [14] and references therein).
Here, we discuss the effect that the axionic coupling has on
these modes. In particular, due to this coupling, we expect
that the long-lived scalar cloud will in turn trigger the
excitation of a long-lived signal of EM waves.
We consider the system of Eqs. (40)–(42) and focus on

the l ¼ 1 case for simplicity. For this case, the field
equation for Z− (42) completely decouples, and to compute
the modes of the system one can set Z− ¼ 0. At the horizon
we impose the usual regular boundary conditions (45). On
the other hand, one can check that asymptotically the most
general solution behaves as

ψ ∼ Ae−kSrr−
Mðμ2

S
−2ω2Þ
kS þ BekSrr

Mðμ2
S
−2ω2Þ
kS

þ C
2Qka
μ2Sr

3
eiωrr2iMω þD

2Qka
μ2Sr

3
e−iωrr−2iMω;

Zþ ∼ Ceiωrr2iMω þDe−iωrr−2iMω

− A
4Qka
μ2Sr

3
e−kSrr−

Mðμ2
S
−2ω2Þ
kS − B

4Qka
μ2Sr

3
ekSrr

Mðμ2
S
−2ω2Þ
kS ;

ðC1Þ

where kS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2S − ω2

p
. If ℜðωÞ < μS, one can then find

regular modes by imposing B ¼ D ¼ 0. These modes are
spatially localized states that slowly leak EM radiation to
infinity due to the axionic coupling. On the other hand,
if ℜðωÞ > μS, the condition A ¼ C ¼ 0 yields purely

15We use the Y1=2 label for the higher order p ¼ 2 corrections
with Yð1Þ

1=2 ≡ yð1Þ1=2 and Yð0Þ
1=2 ≡ yð0Þ1=2. For p ¼ 1 we use J1=2 mutatis

mutandis.
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outgoing waves at infinity and allowd us to compute the
quasinormal modes of the system [70].
To find the quasibound state modes we employ two

complementary methods. We used a direct extension of the
two-parameter shooting method explained in the main text:
fixing the scalar field at the horizon, we shoot for ω and the
value of the vector at the horizon (45), such that the
quasibound-state boundary conditions are met. We also
used a direct integration method that allows us to reduce the
problem to a one-parameter shooting method [66,71–73],
that we here describe. This method allows one to compute
modes of systems with an arbitrary number of coupled
equations but for concreteness let us consider the system of
coupled equations (40) and (41) for l ¼ 1 with an ingoing
wave boundary condition at the horizon (45).
By imposing this boundary condition we obtain a family

of solutions at infinity characterized by two parameters,
corresponding to the two-dimensional vector of the coef-
ficients fψ0; Zþ0g. The quasibound-state spectrum can be
computed by choosing a suitable orthogonal basis for the
space of initial coefficients fψ0; Zþ0g. To do so we perform
two integrations from the horizon to infinity and construct
the 2 × 2 matrix

SmðωÞ ¼
�
Bð1Þ Bð2Þ

Dð1Þ Dð2Þ

�
; ðC2Þ

where B and D are obtained from the boundary conditions
at infinity (C1) and the superscripts denote a particular
vector of the chosen basis, for example, Bð1Þ corresponds to
fψ0; Zþ0g ¼ f1; 0g and Bð2Þ corresponds to fψ0; Zþ0g ¼
f0; 1g. The eigenfrequency ω ¼ ωR þ iωI will then cor-
respond to the solutions of

det jSmðω0Þj ¼ 0; ðC3Þ

which in practice corresponds to minimizing det Sm in the
complex plane.
The eigenfrequencies for MμS ¼ 0.4 as a function of ka

are shown in Fig. 15. A generic conclusion of our analysis
is that the coupling does not significantly affect the
quasibound states; however, the timescale, 1=ωI , over
which these states decay slightly increases the larger the
coupling ka.

APPENDIX D: KERR SPACETIME—
COORDINATES AND NOTATION

1. Boyer-Lindquist coordinates

Kerr spacetime in Boyer-Lindquist coordinates
ðtBL; r; θ;φBLÞ is given by [74]

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2BL −

4Mra sin2 θ
Σ

dtBLdφBL

þ Σ
Δ
dr2 þ Σdθ2 þ F

Σ
sin2 θdφ2

BL; ðD1Þ

where

Δ ¼ r2 þ a2 − 2Mr ¼ ðr − rþÞðr − r−Þ; ðD2aÞ

Σ ¼ r2 þ a2 cos2 θ; ðD2bÞ

F ¼ ðr2 þ a2Þ2 − Δa2 sin2 θ; ðD2cÞ

and a ¼ J=M, while J and M are the BH’s angular
momentum and mass, respectively. It is also useful to
define the dimensionless rotational parameter ã ¼ a=M
and note that 0 < ã < 1 (a consequence of the cosmic
censorship conjecture).
The Kerr spacetime admits two horizons

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ðD3Þ

and the angular velocity of the outer one is

Ωþ ¼ a
2Mrþ

: ðD4Þ

2. Kerr-Schild coordinates

For numerical purposes it is often more useful to use
Kerr-Schild coordinates. The two coordinates systems are
related via [75]

dtKS ¼ dtBL þ
2Mr
Δ

dr; dφKS ¼ dφBL þ
a
Δ
dr: ðD5Þ
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FIG. 15. Quasibound state fundamental eigenfrequencies, ω ¼
ωR þ iωI , for l ¼ 1, MμS ¼ 0.4, and different Q, as a function
of ka.
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In these “spherical”-type Kerr-Schild coordinates the line
element is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2KS −

4Mrasin2θ
Σ

dtKSdφKS

þ 4Mr
Σ

dtKSdrþ
�
1þ 2Mr

Σ

�
dr2 þ Σdθ2

− 2asin2θ

�
1þ 2Mr

Σ

�
drdφKS þ

F
Σ
sin2θdφ2

KS:

ðD6Þ

APPENDIX E: WALD’S SOLUTION

Here we summarize the solution to the Einstein-Maxwell
theory derived by Wald [48] that represents a rotating
BH encompassed by an originally uniform magnetic field.
The EM field F in the background of a Kerr BH is written
as [48]

F ¼ F10ω
1 ∧ ω0 þ F13ω

1 ∧ ω3

þ F20ω
2 ∧ ω0 þ F23ω

2 ∧ ω3; ðE1Þ

where the orthonormal tetrad is

ω0 ¼
ffiffiffiffi
Δ
Σ

r
ðdtBL − a sin2 θdφBLÞ; ðE2aÞ

ω1 ¼
ffiffiffiffi
Σ
Δ

r
dr; ðE2bÞ

ω2 ¼
ffiffiffi
Σ

p
dθ; ðE2cÞ

ω3 ¼ sin θffiffiffi
Σ

p ððr2 þ a2ÞdφBL − adtBLÞ; ðE2dÞ

and

F10 ¼ B0

�
arsin2θ

Σ
−
aMð1þ cos2θÞðr2 − a2cos2θÞ

Σ2

�
;

ðE3aÞ

F13 ¼ B0

r sin θ
ffiffiffiffi
Δ

p

Σ
; ðE3bÞ

F20 ¼ B0

a sin θ cos θ
ffiffiffiffi
Δ

p

Σ
; ðE3cÞ

F23 ¼ B0

cos θ
Σ

�
r2 þ a2 −

2Mra2ð1þ cos2θÞ
Σ

�
: ðE3dÞ

In BL coordinates the Maxwell tensor is given by16

F ¼ FtrdtBL ∧ drþ FtθdtBL ∧ dθ

þ Frφdr ∧ dφBL þ Fθφdθ ∧ dφBL; ðE4Þ

with components

Ftr ¼ F13

a sin θffiffiffiffi
Δ

p − F10; ðE5aÞ

Ftθ ¼ F23a sin θ − F20

ffiffiffiffi
Δ

p
; ðE5bÞ

Frφ ¼ F13

ða2 þ r2Þ sin θffiffiffiffi
Δ

p − F10a sin2 θ; ðE5cÞ

Fθφ ¼ F23ða2 þ r2Þ sin θ − F20a sin2 θ
ffiffiffiffi
Δ

p
: ðE5dÞ

The corresponding four-vector potential is given by

Aμ ¼
B0

2Σ
ð2aMrð1þ cos2 θÞ; 0; 0; sin2 θðF − 4a2MrÞÞ:

ðE6Þ

The explicit expressions for the electric and magnetic fields
are rather involved, but they asymptote to

lim
r→∞

Ei ¼ ð0; 0; 0Þ; lim
r→∞

Bi ¼ B0ðcos θ; 0; 0Þ; ðE7Þ

at spatial infinity. In the limit of a nonrotating BH back-
ground the fields reduce to

Ei ¼ ð0; 0; 0Þ; Bi ¼ αB0

�
cos θ;−

sin θ
r

; 0

�
; ðE8Þ

where α is the lapse function. The invariants of the EM field
are

FμνFμν ¼ 2ð−F2
10 þ F2

13 − F2
20 þ F2

23Þ; ðE9aÞ
�FμνFμν ¼ 4ðF13F20 − F10F23Þ: ðE9bÞ

The latter vanishes in the limit of zero spin.

APPENDIX F: GRAVITATIONAL ATOM

Superradiant instability around Kerr BHs happens as
long as the superradiant condition is satisfied [14],

ω

m
< Ωþ; ðF1Þ

16Note that we suppress subscripts BL to deflate the notation
and simply remind the reader that we refer to ðtBL; r; θ;φBLÞ.
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where ω is a bosonic wave frequency and m is a spherical
harmonic “quantum” number. Since the field can “leak”
through the horizon, solutions of the Klein-Gordon equa-
tion are quasibound and the field frequency is a complex
number.
In the weak-field regime (scenario dubbed as a gravi-

tational atom) velocities and densities are small, as the
cloud spreads over a large volume around the BH [17].
The particle dispersion relation is (for now we omit the
imaginary part) ω2 ¼ μ2 þ p2 and in the weak-field regime
we expect ω ∼ μ, so that, up to the second order in wave
number p,

ω ¼ μþ p2

2μ
þOðk4Þ: ðF2Þ

The dimensionless expansion parameter here is the group
velocity of the field v ¼ p=μ. In order to understand
long-range behavior, note that the field is trapped by
BH gravity ðp2 < 0Þ, so that we expect exponential tail
Ψ ∼ eipr ∼ e−jpjr.
The length scale associated with the particle momentum

is de Broglie wavelength λD ¼ 2π=jkj, and in the near-
horizon limit the important scale is the gravitational radius
rg ¼ 2M. We will use the virial theorem17 ð2T ∼ VÞ to
understand dependence of the typical size of the cloud rc on
μ and M:

jp2j
μ

∼
Mμ

rc
: ðF3Þ

The de Broglie wavelength of the wave on radius rc
depends on the number of modes excited as nλD ¼ 2rcπ.
We find

rc ∼
n2

μαg
; ðF4Þ

where αg is the fine structure constant

αg ¼
rg
λc

; ðF5Þ

and λc ¼ 1=μ is the (reduced) Compton wavelength. Finally,
we see that the behavior of the real part of the spectrum is the
same as for the hydrogen atom, mutatis mutandis:

ω ¼ μ

�
1 −

α2g
2n2

�
: ðF6Þ

This equation describes leading-order behavior of the
real part of the frequency. For higher-order corrections
see Ref. [50].

Imaginary part (decay width) was analytically calculated
in the weak-field limit in Ref. [9], and it implies that
the dominant growth mode is j211i, where the field is
described by Eq. (75). In this state the density peak is
located at hri ¼ 5rc.
Relevant values of axion mass are given between [50]

αðminÞ
g

0.07

�
M

10 M⊙

�
−1

<
μ

10−12 eV
<

αðmaxÞ
g

0.07

�
M

10 M⊙

�
−1
;

ðF7Þ

with

αðminÞ
g ¼ 0.006

�
M

10 M⊙

�1
9

; ðF8Þ

and αðmaxÞ
g depending on ã. For example, αðmaxÞ

g ¼ 0.42 for

ã ¼ 0.7 and αðmaxÞ
g ¼ 0.19 for ã ¼ 0.8 (see Ref. [11]).

Physically, the lower limit arises from the condition
that the significant growth of the cloud occurs during
the age of the Universe, while the upper limit is numerically
estimated from the growth rate function. For primordial
BHs [23],M=M⊙ ∈ ð10−10;10−4Þ, we find μ=ð10−12 eVÞ ∈
ð103; 1012Þ, while for stellar [M=M⊙ ∈ ð100; 102Þ]
and supermassive [M=M⊙ ∈ ð106; 1010Þ] BHs we
find μ=ð10−12 eVÞ ∈ ð10−2; 102Þ and μ=ð10−12 eVÞ ∈
ð10−9; 10−5Þ, respectively. The primordial BH-axion mixed
dark matter scenario was considered in Ref. [23].

APPENDIX G: FORMULATION
AS CAUCHY PROBLEM

In this Appendix, we summarize the Cauchy problem for
our system, which we use in Sec. VI.

1. 3 + 1 decomposition

The equations of motion of this system are given by
Eq. (2). In this work, we ignore the dynamics of gravity,
and solve the Klein-Goldon equation (2a), and Maxwell’s
equations coupled to a scalar field according to Eq. (2b).
In order to calculate the time evolution of this system,
we apply the 3þ 1 decomposition to these equations with
Lorenz gauge. In this decomposition, the metric function is
written as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ðG1Þ

where α is a lapse function, βi is a shift vector, and γij is a
spatial metric.
The vector potential Aμ is written as

Aμ ¼ Aμ þ nμAϕ; ðG2Þ
17Here we expect that the leading order behavior of the weak-

field gravitational potential is ∝ 1=r.
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where Aϕ ¼ −nμAμ and Ai ¼ γμi Aμ. By substituting these
expressions in the field equations, we get the following
evolution equations for this system:

∂tΨ ¼ −αΠþ LβΨ; ðG3Þ

∂tΠ ¼ α

�
−D2Ψþ μ2sΨþ KΠ − 2kaEiBi

þ 1

2
pkps Ψp−1ðB2 − E2Þ

�
−DiαDiΨþ LβΠ; ðG4Þ

∂tAi ¼ −αðEi þDiAϕÞ − AϕDiαþ LβAi; ðG5Þ

∂tEi ¼ LβEi þ αKEi − αDjðDjAi −DiAjÞ
− ðDiAj −DjAiÞDjα

þ α

�
kps pΨp−1

1þ kpsΨp ðΠEi − ϵijkDjΨBkÞ

þ 2ka
1þ kpsΨp ðBiΠþ ϵijkEkDjΨÞ

�

þ α

�
1

1þ kpsΨp D
iZ þ μ2V

1þ kps ΨpA
i

�
; ðG6Þ

∂tZ ¼ αðDiðð1þ kps ΨpÞEiÞ þ μ2VAϕ þ 2kaBiDiΨÞ
− καZ þ LβZ; ðG7Þ

where Π is the momentum conjugate of the scalar field,
Ei and Bi are the electric field and the magnetic field,
defined as

Ei ¼ γiμFμνnν;

Bi ¼ γiμ
�Fμνnν ¼ −ϵiklDkAl; ðG8Þ

Ai is a spatial component of the vector field; Di is a
covariant derivative with respect to γij; K is the trace of
extrinsic curvature; Z is an auxiliary field, which is
introduced to stabilize the constraint damping mode;
ϵijk ¼ − 1ffiffi

γ
p Eijk; and Eijk is the totally antisymmetric

Levi-Cività symbol with Exyz ¼ 1. The above equations
of motion include both the axion and the scalar coupling
(note that they are implemented mutually exclusively)
as well as a massive photon (set at μV ¼ 0, except in
Sec. VI D). We also get the following constraint equations:

Diðð1þ ksΦpÞEiÞ þ μ2VAϕ þ 2kaBiDiΦ ¼ 0: ðG9Þ

Our numerical time-evolution code is based on this
formalism, expressed in Kerr-Schild–type coordinates
discussed below.

2. Background spacetime

For the background spacetime, we use Kerr-Schild
coordinates (see Appendix D 2). But, in order to avoid
the coordinate singularity, we use Cartesian-type coordi-
nates, which are defined by the following coordinate
transformations:

x ¼ r cosφKS sin θ − a sinφKS sin θ; ðG10Þ

y ¼ r sinφKS sin θ þ a cosφKS sin θ; ðG11Þ

z ¼ r cos θ: ðG12Þ

In these coordinates, the metric can be written as

ds2 ¼ ðημν þ 2HlμlνÞdxμdxν; ðG13Þ

where H and lμ are defined as

H ¼ r3M
r4 þ a2z2

; ðG14Þ

lμ ¼
�
1;
rxþ ay
r2 þ a2

;
−axþ ry
r2 þ a2

;
z
r

�
: ðG15Þ

One can then obtain the lapse function, the shift vector, the
spatial metric, and the extrinsic curvature:

α ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p ; ðG16Þ

βi ¼ 2Hli; ðG17Þ

γij ¼ δij þ 2Hlilj; ðG18Þ

Kij ¼
∂iðHljÞ þ ∂jðHliÞ þ 2Hlk�∂kðHliljÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2H
p : ðG19Þ

3. Initial data

In order to construct the initial data, one must solve the
constraint equations (G9). For the scalar field, we use a
simple axion cloud profile as initial data:

Ψðt; r; θ;ϕÞ ¼ A0rMμ2e−rMμ2=2 cosðϕ − ωRtÞ sin θ;
ðG20Þ

where A0 is the amplitude of the cloud and ωR ≃ μ is a
bounded-state frequency.
For axionic couplings, the constraint equation is given by

DiEi þ 2kaBiDiΨ ¼ 0: ðG21Þ

The initial data that we use are given by
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Er ¼ Eθ ¼ Ai ¼ 0; ðG22Þ

Eφ ¼ E0ðr; θÞ; ðG23Þ

where E0ðr; θÞ is an arbitrary function of r and θ. One can
show that this profile satisfies the constraint equations. For
E0ðr; θÞ we use a Gaussian profile,18

E0ðr; θÞ ¼ E0e−ð
r−r0
w Þ2 ; ðG24Þ

where E0, r0, and w are the amplitude, the peak radius, and
the width of the initial electric field.
For scalar couplings, the constraint equation is the

following:

Diðð1þ kps ΨpÞEiÞ ¼ 0: ðG25Þ

As the initial profile, we use the following solution of the
constraint equations:

Er ¼ Eθ ¼ Ai ¼ 0; ðG26Þ

Eφ ¼ Fðr; θÞ
1þ kps Ψp ; ðG27Þ

where Fðr; θÞ is an arbitrary function of r and θ. In this
work, we use

Fðr; θÞ ¼ E0e−ð
r−r0
w Þ2ΘðθÞ; ðG28Þ

where E0, r0, and w are constants, which characterize the
strength, the radius, and the width of the Gaussian profile of
the electric field. Θ characterizes the θ dependence of the
profile. In our study, we use two different profiles for
Fðr; θÞ. The first is a simple constant value,

ΘðθÞ ¼ 1; ðG29Þ

which we call “extended profile” since it is direction
independent. The second profile we use is

ΘðθÞ ¼
	
sin44θ for 0 < θ < π

4

0 for π
4
< θ < π:

ðG30Þ

We term this a “localized profile” since it is sharply peaked
along some directions only.

4. Analysis tools

To gain information about the time development, the
physical quantities extracted from the numerical simulation
are the multipolar components of the physical quantitiesΨi,
FFi ¼ ðFμνFμνÞi, and ðTEM

tr Þi with

Z0ðt; rÞ ≔
Z

dΩZðt; r; θ;ϕÞY00ðθ;ϕÞ; ðG31Þ

Z1ðt; rÞ ≔
Z

dΩZðt; r; θ;ϕÞYRðθ;ϕÞ; ðG32Þ

where YR ¼ 1
2
ðY1;1 þ Y1;−1Þ.

5. Numerical code

We developed a numerical code that solves the time
evolution problem for the scalar and EM fields under the
above formulation. Our numerical code is written in
C++; we adopt a fourth order time-integration Runge-
Kutta method and a fourth order discretization for the
spatial direction. To calculate long term simulation, we
use fixed mesh refinement. The grid structure is layered
around BHs. Furthermore, to avoid the physical singu-
larity inside the horizon, the metric in the horizon is
replaced with a smooth regular function. The numerical
domain of our simulation is −600M ≤ x ≤ 600M,
−600M ≤ y ≤ 600M, and −600M ≤ z ≤ 600M. The
refinement level is typically 4, and the ratio of resolution
between adjacent refinement levels is 2. To avoid high
frequency modes that comes from the boundary between
adjacent refinement regions, a Kreiss-Oliger artificial
dissipation is added.
As a test simulation, we calculate the time evolution

of extended initial data whose ðr0; w; E0Þ ¼ ð40M; 5M;
0.001Þ, with p ¼ 1 scalar coupling, and a ¼ 0.5M. The
time evolution of the norm of the constraint is depicted in
Fig. 16. This evolution shows second-order convergence,
simply because we used a second-order-accurate integra-
tion scheme to compute the norm.

FIG. 16. Time evolution of the norm of constraint. This shows
second-order convergence, because of the integration scheme
used to compute the norm.

18In Ref. [25] it was shown that the results between the
“localized” and the “extended” profiles (to be defined soon) do
not change at a qualitative level for axion couplings.
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