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The ghost-gluon scattering kernel is a special correlation function that is intimately connected with two
fundamental vertices of the gauge sector of QCD: the ghost-gluon vertex, which may be obtained from it
through suitable contraction, and the three-gluon vertex, whose Slavnov-Taylor identity contains that
kernel as one of its main ingredients. In this work we present a detailed nonperturbative study of the five
form factors comprising it, using as the starting point the “one-loop dressed” approximation of the
dynamical equations governing their evolution. The analysis is carried out for arbitrary Euclidean momenta
and makes extensive use of the gluon propagator and the ghost dressing function, whose infrared behavior
has been firmly established from a multitude of continuum studies and large-volume lattice simulations. In
addition, special Ansätze are employed for the vertices entering in the relevant equations, and their impact
on the results is scrutinized in detail. Quite interestingly, the veracity of the approximations employed may
be quantitatively tested by appealing to an exact relation, which fixes the value of a special combination
of the form factors under construction. The results obtained furnish the two form factors of the ghost-
gluon vertex for arbitrary momenta and, more importantly, pave the way toward the nonperturbative
generalization of the Ball-Chiu construction for the longitudinal part of the three-gluon vertex.
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I. INTRODUCTION

The nonperturbative behavior of fundamental Green’s
functions of QCD, such as propagators and vertices, has
received considerable attention in recent years [1–79] and
is believed to be essential for acquiring a deeper under-
standing of the strong interactions. In this particular
quest, the combined efforts between various continuum
approaches [1,6,7,9,27,46] and large-volume lattice simu-
lations [51–61] have furnished a firm control on the
infrared structure of the two-point sector of the theory
(gluon, ghost, and quark propagators).
The case of the three-point functions (vertices) repre-

sents currently a major challenge, because, while their
knowledge is considered to be crucial for both theory
and phenomenology, their first-principle determination by
means of conventional approaches is technically rather
involved. In particular, such vertices possess, in general,
rich tensorial structures, and their form factors contain
three independent momenta. In order to determine the
momentum dependence of vertex form factors, one may

perform lattice simulations [62–70] or resort to continuum
methods such as Schwinger-Dyson equations (SDEs)
[13,30,32,33,49,71,72,74–76] or the functional renormali-
zation group [77–79]. Within these latter formalisms, the
dynamical equations governing the momentum evolution
of the vertices are derived and solved, under a variety of
simplifying assumptions that reduce the inherent complex-
ity of these calculations.
In a series of recent works [25,31,39,41,80,81], the

aforementioned approaches have been complemented by
an alternative procedure, which exploits the Slavnov-Taylor
identities (STIs) satisfied by a given vertex, and constitutes
a modern version of the so-called “gauge technique”
[82–85]. The main upshot of this method is to determine
the nontransverse part of the vertex,1 in terms of the
quantities that enter in the STIs, such as two-point functions
and the so-called “ghost scattering kernels.” These kernels
correspond to the Fourier transforms of composite oper-
ators, where a ghost field and a quark or a gluon are defined
at the same spacetime point. In the case of the quark-gluon
vertex considered in the recent literature, the quantity in
question is the “ghost-quark” kernel; its form factors have
been reconstructed from the corresponding SDE in [31,41],
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1This part is usually referred to as “longitudinal” or “gauge” or
“STI saturating.”
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and certain special kinematic configurations have been
computed in [25,80].
In the present work we turn our attention to the

ghost-gluon kernel, to be denoted by Habc
νμ ðq; p; rÞ ¼

−gfabcHνμðq; p; rÞ. The main objective is to compute from
an appropriate SDE (see Fig. 1) the five form factors
comprising this quantity, to be denoted by Aiðq; p; rÞ
(i ¼ 1;…; 5), for arbitrary Euclidean values of the
momenta.
The interest in Hνμ and its form factors is mainly related

with the two fundamental Yang-Mills vertices shown in
Fig. 2 [86]. First, as was shown in the classic work of Ball
and Chiu (BC) [87], the “longitudinal” part of the three-
gluon vertex, Γαμνðq; r; pÞ, may be fully reconstructed
from the set of STIs that it satisfies [see Eq. (2.5)].
The ingredients entering in the BC “solution” are the
gluon propagator, the ghost dressing function, and three
of the form factors of Hνμðq; p; rÞ. Thus, in order to
obtain reliable information on the infrared behavior of
Γαμνðq; r; pÞ by means of this method, the nonperturbative
structure of the ghost-gluon kernel must be firmly estab-
lished. Second, by virtue of an exact relation [see Eq. (2.4)],
the ghost-gluon vertex, Γμðq; p; rÞ, which constitutes an
important ingredient for a variety of SDE studies, is com-
pletely determined from the contraction of Hνμðq; p; rÞ by
qν. Thus, knowledge of the Aiðq; p; rÞ furnishes both form
factors of Γμðq; p; rÞ [88].
The methodology used for the computation of the

Aiðq; p; rÞ may be described as follows. The diagrammatic
definition of Hνμðq; p; rÞ shown in Fig. 1 involves the
connected kernel AμAρc̄c (grey ellipse), whose skeleton
expansion will be approximated by the “one-loop dressed”
diagrams, depicted in Fig. 3; the basic quantities entering at
this level are the gluon and ghost propagators, and the fully
dressed vertices Γαμνðq; r; pÞ and Γμ. The individual form
factors of Hνμ may then be isolated from the resulting
equations by means of an appropriate set of projection
operators. In the final numerical treatment we use the
results of large-volume lattice simulations as input for the
propagators, while for the vertices we resort to certain
simplified Ansätze.
We next list the main highlights of our analysis: (i) we

determine the form factors Ai for general values of
the Euclidean momenta, presenting the results in three-
dimensional (3D) plots, where q2 and p2 will be varied, for

fixed values of the angle θ between them; (ii) the non-
perturbative results obtained for Ai are compared with their
one-loop counterparts in three special kinematic limits;
(iii) with the help of a constraint imposed by the STI [see
Eqs. (2.13) and (2.14)], we quantify the accuracy and
veracity of our truncation scheme; (iv) as a direct appli-
cation, the various Ai are fed into the Euclidean version of
Eq. (2.8), giving rise to both form factors of the ghost-gluon
vertex, for arbitrary momenta.
The article is organized as follows. In Sec. II we

introduce the notation and set up the relevant theoretical
framework. In Sec. III, we discuss the truncation scheme
employed, and we define the set of projectors necessary
for the derivation of the dynamical equations governing
the form factors Ai. In Sec. IV we present the inputs and the
additional approximations necessary for the numerical cal-
culation of the Ai. Then, in Sec. V we present the numerical
solution of the Ai for general Euclidean momenta and
compare them with the one-loop results for some special
kinematic limits. Next, in Sec. VI we discuss how the
constraint imposed by the STI may help us optimize the
quality of the inputs used for the computation of the Ai. In
Sec. VII we construct the two form factors of the ghost-
gluon vertex, carry out a comparison with the results of
various approaches in the literature, and study their impact
on the SDE of the ghost propagator. In Sec. VIII we present
our discussion and conclusions. Finally, in Appendixes A
and B we present the one-loop results for the Ai in some
special kinematic limits, for both “massive” and massless
gluons, and certain lengthy expressions appearing in the
derivation of the Ai.

II. THEORETICAL BACKGROUND

In this section we introduce the basic concepts and
ingredients necessary for the study of Hνμ and elucidate on
its connection with the ghost-gluon and three-gluon ver-
tices. In addition, we introduce a particular relation, which
is a direct consequence of the STI that Hνμ satisfies [87,89]
and provides a nontrivial constraint on a combination of its
form factors. We emphasize that throughout this article we
work in the Landau gauge, where the gluon propagator
Δab

μνðqÞ ¼ δabΔμνðqÞ assumes the completely transverse
form,

ΔμνðqÞ ¼ −iΔðqÞPμνðqÞ; PμνðqÞ ¼ gμν −
qμqν

q2
: ð2:1Þ

In the case of a gluon propagator that saturates to a
nonvanishing value in the deep infrared, it is natural to
set (Euclidean space) [90,91]2

FIG. 1. The diagrammatic representation of the ghost-gluon
scattering kernel. The tree-level contribution is given by gμν.

2Contrary to the case of the quark propagator, this decom-
position is not mathematically unique; however, the relevant
dynamical equations severely restrict the possible structures [92].
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Δ−1ðqÞ ¼ q2JðqÞ þm2ðqÞ; ð2:2Þ

where q2JðqÞ denotes the “kinetic term” of the gluon
propagator and m2ðqÞ is the dynamical gluon mass
[7,43,91,93].
The ghost-gluon scattering kernel Habc

νμ ðq; p; rÞ ¼
−gfabcHνμðq; p; rÞ is diagrammatically depicted in Fig. 1.
The most general tensorial decomposition ofHνμðq; p; rÞ is
given by [87,94]

Hνμðq; p; rÞ ¼ A1gμν þ A2qμqν þ A3rμrν

þ A4qμrν þ A5rμqν; ð2:3Þ

where the momentum dependence, Ai ≡ Aiðq; p; rÞ, has
been suppressed for compactness. Notice that, at tree level,

Hð0Þ
νμ ðq; p; rÞ ¼ gνμ, so that the form factors assume the

values Að0Þ
1 ¼ 1 and Að0Þ

i ¼ 0, for i ¼ 2;…; 5.
As mentioned in the Introduction, our interest in the

dynamics of Hνμ stems mainly from its connection to two
of the most fundamental Yang-Mills vertices [86], namely
the ghost-gluon vertex, Γabc

μ ðq; p; rÞ ¼ −gfabcΓμðq; r; pÞ,
and the three-gluonvertex,Γabc

αμνðq;r;pÞ¼gfabcΓαμνðq;r;pÞ,
where g denotes the gauge coupling, and qþ rþ p ¼ 0;
both vertices are shown diagrammatically in Fig. 2.
In particular, Hνμ and the aforementioned vertices are

related by the following STIs:

qνHνμðq; p; rÞ ¼ Γμðq; p; rÞ ð2:4Þ

and

rμΓαμνðq; r; pÞ ¼ FðrÞ½Δ−1ðqÞPμ
αðqÞHμνðq; r; pÞ

− Δ−1ðpÞPμ
νðpÞHμαðp; r; qÞ�; ð2:5Þ

where FðqÞ stands for the ghost dressing function, which is
obtained from the ghost propagator, DabðqÞ ¼ δabDðqÞ,
through

DðqÞ ¼ iFðqÞ
q2

: ð2:6Þ

Evidently, the contraction of Γαμνðq; r; pÞ with respect to
qα or pν leads to cyclic permutations of the STI in Eq. (2.5).

Employing the standard tensorial decomposition of
Γμðq; p; rÞ,

Γμðq; p; rÞ ¼ qμB1ðq; p; rÞ þ rμB2ðq; p; rÞ; ð2:7Þ

where, at tree level, Bð0Þ
1 ¼ 1 and Bð0Þ

2 ¼ 0, it is straightfor-
ward to establish from the STI of Eq. (2.4) that [88]

B1 ¼ A1 þ q2A2 þ ðq · rÞA4;

B2 ¼ ðq · rÞA3 þ q2A5: ð2:8Þ

Thus, knowledge of the form factors of Hνμ determines
fully the corresponding form factors of the ghost-gluon
vertex Γμðq; p; rÞ.
On the other hand, the extraction of information on the

structure of Γαμνðq; r; pÞ from Eq. (2.5) (and its permuta-
tions) is significantly more involved, both conceptually and
operationally. Note in particular that, in the framework
composed by the union between the pinch technique and
the background field method (PT-BFM) [21], the form of
Γαμνðq; r; pÞ is intimately connected with the mechanism
that is responsible for the infrared finiteness of the gluon
propagator, and especially the form employed in Eq. (2.2).
Specifically, the full vertex is composed by two character-
istic pieces [90,91]

Γαμνðq; r; pÞ ¼ Γαμνðq; r; pÞ þ Vαμνðq; r; pÞ; ð2:9Þ

where the term Vαμνðq; r; pÞ is very special, in the sense
that it contains “longitudinally coupled” massless poles,
i.e., has the general form

Vαμνðq; r; pÞ ¼
�
qα
q2

�
Aμνðq; r; pÞ þ

�
rμ
r2

�
Bανðq; r; pÞ

þ
�
pν

p2

�
Cαμðq; r; pÞ; ð2:10Þ

which trigger the Schwinger mechanism and the sub-
sequent emergence of a gluonic mass scale [95]. Note
that, by virtue of Eq. (2.10), Vαμνðq; r; pÞ satisfies the
important projection property Pαα0 ðqÞPμμ0 ðrÞPνν0 ðpÞ×
Vαμνðq; r; pÞ ¼ 0.
As has been explained in detail in the literature men-

tioned above, the decompositions of Δ−1 and Γ put forth in
Eqs. (2.2) and (2.9), respectively, prompt a particular
realization of Eq. (2.5). Specifically, the initial STI is
decomposed into two partial STIs, one for Γαμνðq; r; pÞ and
one for Vαμνðq; r; pÞ, namely (Minkowski space)3

FIG. 2. Diagrammatic representations of the ghost-gluon (left)
and three-gluon (right) vertices, and the adopted convention for
their momenta dependence.

3In Minkowski space, Δ−1ðqÞ ¼ q2JðqÞ −m2ðqÞ; to recover
Eq. (2.2), set q2 → −q2E and use the transformation conventions
of Eq. (5.1); finally, drop the subscript “E.”
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rμΓαμνðq; r; pÞ ¼ FðrÞ½q2JðqÞPμ
αðqÞHμνðq; r; pÞ

− p2JðpÞPμ
νðpÞHμαðp; r; qÞ�; ð2:11Þ

rμVαμνðq; r; pÞ ¼ FðrÞ½m2ðpÞPμ
νðpÞHμαðp; r; qÞ

−m2ðqÞPμ
αðqÞHμνðq; r; pÞ�: ð2:12Þ

The correspondence Γ ↔ q2JðqÞ and V ↔ m2ðqÞ leading
to Eqs. (2.11) and (2.12) is natural, in the sense that the term
V that triggers the generation of the mass saturates, at the
same time, the “mass-dependent” part of the STI in Eq. (2.5);
however, a comment on its uniqueness is in order (see also
footnote 1). In particular, one may envisage the possibility of
defining J0ðqÞ ¼ JðqÞ þ fðqÞ andm02ðqÞ ¼ m2ðqÞ þ hðqÞ,
such that Δ−1ðqÞ ¼ q2JðqÞ þm2ðqÞ ¼ q2J0ðqÞ þm02ðqÞ,
which forces the constraint hðqÞ ¼ −q2fðqÞ. The form of
fðqÞ, in turn, will be severely constrained by the nonlinear
SDEs satisfied by JðqÞ and m2ðqÞ, in conjunction with
additional requirements such as the positive-definiteness and
monotonicity of the final m2ðqÞ. However, in the absence of
a concrete proof stating that fðqÞ ¼ 0, the correspondence
employed above should be understood as a physically
motivated Ansatz.
It turns out that the STI of Eq. (2.12) and its permuta-

tions, together with the aforementioned projection property,

determine completely the form of Vαμνðq; r; pÞ, which has
been worked out in [96].
Γαμνðq; r; pÞ contains the bulk of the nonperturbative

corrections not related to the poles and is precisely the
part that survives when the “transversely projected”
vertex Pαα0 ðqÞPμμ0 ðrÞPνν0 ðpÞΓαμνðq; r; pÞ is considered.
The STI in Eq. (2.11), together with its two cyclic
permutations, permits the reconstruction of its longi-
tudinal form factors, through the application of the
procedure described in [87]. In practice, the com-
plete construction of the BC solution depends not only
on the infrared behavior of J and F, discussed in
Sec. IV, but also on the details of A1, A3, and A4,
which are largely unexplored and are the focal point of
the present study.
Quite interestingly, the BC construction for the longi-

tudinal part of Γαμν hinges on the validity of a special
relation among A1, A3, and A4, which in the original work
of [87] was shown to hold at the one-loop level (in the
Feynman gauge). Subsequently, this relation was derived
from the fundamental STI that Hνμ satisfies when con-
tracted by the momentum of the incoming gluon [89], and
is therefore exact both perturbatively to all orders as well as
nonperturbatively. The relation in question may be
expressed in terms of the ratio

Rðq2; p2; r2Þ ≔ FðrÞ½A1ðq; r; pÞ þ p2A3ðq; r; pÞ þ ðq · pÞA4ðq; r; pÞ�
FðpÞ½A1ðq; p; rÞ þ r2A3ðq; p; rÞ þ ðq · rÞA4ðq; p; rÞ�

; ð2:13Þ

and states simply that, by virtue of the aforementioned STI,
one must have4

Rðq2; p2; r2Þ ¼ 1; ð2:14Þ

for any value of q, r, and p.
As we will see in Secs. IV and VI, the constraint of

Eq. (2.14) is particularly useful for optimizing the form of
the ingredients entering into the computation of the Ai, and
for quantifying the veracity of the truncations and approx-
imations employed.

III. GHOST-GLUON KERNEL AT THE ONE-LOOP
DRESSED LEVEL

In this section we derive the expressions for the form
factors Ai within the one-loop dressed approximation. In
particular, the four point ghost-gluon scattering amplitude,
entering in the diagrammatic definition of Hνμðq; p; rÞ in
Fig. 1, is approximated by its lowest order contributions,

including the one-gluon and one-ghost exchange terms,
which are subsequently “dressed” as shown in Fig. 3.
Note that the terms kept in the above truncation

correspond to the one-particle reducible part of the con-
nected kernel AμAρc̄c (grey ellipse), while the omitted
terms comprise the one-particle irreducible two-ghost–
two-gluon Green’s function, whose lowest-order diagram-
matic representation may be found in Fig. 6 of [99].5 As
was shown in a recent study [100], the inclusion of this
subset of corrections into the SDE analysis for Γμ provides
a small contribution of the order of 2%. Therefore, given
that Γμ and Hνμ are intimately connected by Eq. (2.4),
it is reasonable to expect that the truncation implemented
in this work will capture faithfully the main bulk of the
result.
Thus, the approximate version of the SDE that we

employ reads

Hνμðq; p; rÞ ¼ gνμ þ ðd1Þνμ þ ðd2Þνμ; ð3:1Þ

4An approximate version of this identity was first derived in
[97] and further analyzed in [98].

5We emphasize that all graphs of that figure are one-loop
dressed; therefore, if inserted into the fundamental diagram (first
one in Fig. 3), they would give rise to two-loop dressed
contributions for Hνμðq; p; rÞ.
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with

ðd1Þνμ ¼
1

2
CAg2pρ

Z
l
Δρ

νðlÞDðlþ pÞDðl − qÞ

× Γμðq − l;lþ p; rÞB1ð−l − p; p;lÞ;

ðd2Þνμ ¼
1

2
CAg2pρ

Z
l
Δβ

νðlÞΔαρðlþ rÞDðl − qÞ

× Γμαβðr;−l − r;lÞB1ðq − l; p;lþ rÞ; ð3:2Þ

where CA is the eigenvalue of the Casimir operator in the
adjoint representation, and we have defined the integration
measure

Z
l
≡
Z

d4l
ð2πÞ4 : ð3:3Þ

Note that in arriving at Eq. (3.2) we have exploited the
full transversality of the gluon propagator in the Landau
gauge in order to eliminate the B2 form factors of two of the
ghost-gluon vertices.
It is obvious from Eq. (3.2) that in the soft ghost limit,

i.e., p → 0, the one-loop dressed corrections vanish, i.e.,
Hνμðq; p; rÞ ¼ gνμ. This result is valid to all orders, inde-
pendently of the truncation scheme adopted [see, e.g.,
Eqs. (6.24) and (6.25) of [96] ], being a plain manifestation
of Taylor’s theorem [101].
The renormalization of Eq. (3.1) proceeds through the

replacements [71]

ΔRðq2Þ ¼ Z−1
A Δðq2Þ;

FRðq2Þ ¼ Z−1
c Fðq2Þ;

Γμ
Rðq; p; rÞ ¼ Z1Γμðq; p; rÞ;

Γμαβ
R ðq; r; pÞ ¼ Z3Γμαβðq; r; pÞ;

gR ¼ Z−1
g g ¼ Z−1

1 Z1=2
A Zcg ¼ Z−1

3 Z3=2
A g; ð3:4Þ

where ZA, Zc, Z1, Z3, and Zg are the corresponding
renormalization constants. Within the momentum subtrac-
tion (MOM) scheme that we employ, propagators assume
their tree-level values at the subtraction point μ, while an

analogous condition is imposed on the vertices, usually
implemented at a common value of all their momenta
(“symmetric” point).
A well-known consequence of Eq. (2.4) is that Hνμ

renormalizes as Γμ, namely Hνμ
R ¼ Z1Hνμ. The (multipli-

cative) renormalization of Eq. (3.1) proceeds in the stan-
dard way, by replacing the unrenormalized quantities by
renormalized ones, using the relations given in Eq. (3.4).
Then, it is straightforward to show that the integrands of
ðd1Þνμ and ðd2Þνμ can be written exclusively in terms of the
standard renormalization-group invariant quantities formed
by gΓμΔ1=2D and gΓνσαΔ3=2; therefore both terms maintain
their original form after renormalization. Thus, the renor-
malized version of Eq. (3.1) reads

Hνμ
R ðq; p; rÞ ¼ Z1½gνμ þ ðd1ÞνμR þ ðd2ÞνμR �; ð3:5Þ

where the Z1 originates from the renormalization of the
Hνμðq; p; rÞ on the left-hand side. The subscript R will
subsequently be suppressed to avoid notation clutter.
In what follows we will set Z1 ¼ 1. This particular

choice is exact in the case of the soft ghost limit, being
strictly enforced by the validity of Taylor’s theorem [101].
For any other MOM-related prescription, Z1 deviates only
slightly (a few percent) from unity, for the subtraction point
μ ¼ 4.3 GeV that we employ. For example, as we have
explicitly confirmed from our results, in the case where
the MOM prescription is imposed at the symmetric point
(p2 ¼ r2 ¼ q2 ¼ μ2), instead of the exact A1ðμÞ ¼ 1 we
have A1ðμÞ ¼ 1.03.
The relation between Hνμ and Γμ, given by Eq. (2.4),

prompts a final adjustment, which permits us to preserve
the ghost–antighost symmetry at the level of the approxi-
mate SDE that we consider.6 Specifically, the form factor
B1ðq; p; rÞ of the ghost-gluon vertex is symmetric under
the exchange of the ghost and antighost momenta, p and q,
respectively. However, the truncated SDE of Fig. 3 does not
respect this special symmetry, because the vertex where the
ghost leg is entering is dressed while that of the antighost is

FIG. 3. One-loop dressed approximation of the SDE governing the ghost-gluon scattering kernel.

6This special symmetry of the ghost-gluon vertex is valid only
in the Landau gauge [12].
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bare. A simple expedient for restoring this property is to
“average” the SDEs dressed on either leg [32,33,102],
which amounts to substituting into Eq. (3.2)

B1ð−l − p; p;lÞ → V1ðl; q; p; rÞ

¼ 1

2
½B1ð−l − p; p;lÞ þ B1ðq;l − q;−lÞ�;

B1ðq − l; p;lþ rÞ → V2ðl; q; p; rÞ

¼ 1

2
½B1ðq − l; p;lþ rÞ þ B1ðq;l − q;−lÞ�: ð3:6Þ

In general, the individual Ai may be projected out from
Hνμðq; p; rÞ by means of a set of suitable projectors,
T μν

i ðq; rÞ. In particular,

Aiðq; p; rÞ ¼
T μν

i ðq; rÞHνμðq; p; rÞ
2h2ðq; rÞ ; ð3:7Þ

where

T μν
1 ðq; rÞ ¼ hðq; rÞ½hðq; rÞgμν þ hμνðq; rÞ�;

T μν
2 ðq; rÞ ¼ −hðq; rÞr2gμν − 2hðq; rÞrμrν − 3r2hμνðq; rÞ;

T μν
3 ðq; rÞ ¼ T μν

2 ðr; qÞ;
T μν

4 ðq; rÞ ¼ hðq; rÞðr · qÞgμν þ 2hðq; rÞqμrν
þ 3ðr · qÞhμνðq; rÞ;

T μν
5 ðq; rÞ ¼ T μν

4 ðr; qÞ; ð3:8Þ

and

hðq; rÞ ¼ q2r2 − ðq · rÞ2;
hμνðq; rÞ ¼ ðq · rÞ½qμrν þ qνrμ� − r2qμqν − q2rμrν: ð3:9Þ

Clearly, since in the present work Hνμðq; p; rÞ is approxi-
mated by Eq. (3.1), the corresponding form factors will be
obtained through

Aiðq; p; rÞ ¼
T μν

i ðq; rÞ½gνμ þ ðd1Þνμ þ ðd2Þνμ�
2h2ðq; rÞ : ð3:10Þ

The implementation of the above projections may be
carried out using an algebraic manipulation program, such
as the Mathematica PACKAGE-X [103,104]; the rather
lengthy expressions produced from these projections are
presented in Appendix B.

IV. INPUTS AND APPROXIMATIONS

For the evaluation of Eq. (3.2) we need the following
ingredients: (i) the gluon propagator ΔðqÞ and its “kinetic”
term JðqÞ; (ii) the ghost dressing function FðqÞ; (iii) the
three-gluon vertex, entering in ðd2Þνμ; (iv) the ghost-gluon
vertex, entering in both ðd1Þνμ and ðd2Þνμ; and (v) the value

of the strong coupling αs ≡ g2=4π at the renormalization
scale μ. The corresponding input quantities will be denoted
by ΔinðqÞ, JinðqÞ, FinðqÞ, Γin

μαβ, and Bin
1 ðQÞ, respectively. It

is important to comment already at this point on a
characteristic feature shared by inputs (i)–(iv), which is
implemented in order for the resulting Ai to satisfy
Eq. (2.14) as accurately as possible. In particular, in the
deep ultraviolet all aforementioned quantities will be forced
to tend to their tree-level values; i.e., their one-loop
perturbative corrections (logarithms and/or constants) will
be suppressed. This, in turn, will guarantee that, for large
values of the momenta, the emerging Ai will correctly
capture their one-loop perturbative behavior (see also
discussion in Sec. VI). In what follows we briefly review
how the above input quantities are obtained.
(i) and (ii): As was done in a series of previous works

[25,41,90], for ΔinðqÞ and FinðqÞ we employ fits to the
numerical solutions of the corresponding SDEs, which are
in excellent agreement with the quenched SU(3) lattice data
of [54], subject to the particular ultraviolet adjustments
mentioned above. Below we consider the individual cases
(i) and (ii) separately.
(i): The fit for ΔinðqÞ (in Euclidean space) is given

by [95]

Δ−1
in ðqÞ ¼ q2JinðqÞ þm2ðqÞ; ð4:1Þ

where the kinetic term has the form

JinðqÞ ¼ 1þ CAαs
4π

�
τ1

q2 þ τ2

�

×

�
2 ln

�
q2 þ ρlm2ðqÞ

μ2

�
þ 1

6
ln

�
q2

μ2

��
; ð4:2Þ

while the effective gluon mass m2ðqÞ obeys a power-law
running7 [93],

m2ðqÞ ¼ m2
0

1þ q2=ρ2m
; ð4:3Þ

with the adjustable parameters given by τ1 ¼ 12.68,
τ2 ¼ 1.05 GeV2, m2

0 ¼ 0.15 GeV2, ρ2m ¼ 1.18 GeV2, and
ρl ¼ 102.3. In the left panel of Fig. 4 we show the lattice
data for ΔðqÞ (circles) [54], together with the correspond-
ing fit (blue continuous curve) given by the combination of
Eqs. (4.1)–(4.3).

7The solutions for m2ðqÞ found in [93] deviate slightly from
the exact power law running, in compliance with the operator
product expansion (see also [105]). In particular, m2ðqÞ ¼ m2

0=
½1þ ðq2=ρ2mÞ1þγ �, with γ ranging between 0.1 and 0.3, depending
on a number of subtle assumptions and approximations. Here we
use for simplicity the case γ ¼ 0; the dependence of our results on
variations of γ (within the aforementioned range of values) is
negligible.
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On the right panel of Fig. 4 we present the JinðqÞ of
Eq. (4.2); the reason for displaying it in isolation is that it
constitutes the main ingredient in the approximation
implemented for the three-gluon vertex in item (iii) [see
Eqs. (4.5) and (4.6)]. Notice that the JinðqÞ contains both
massive and massless logarithms, which are crucial for
triggering three characteristic features, namely its suppres-
sion with respect to its tree-level value [Jð0ÞðqÞ ¼ 1] for a
wide range of physically relevant momenta, the reversal of
its sign (zero crossing), and its logarithmic divergence at
the origin [34,68]. These features, in turn, will be inherited
by the components of the three-gluon vertex constructed in
(iii). Even though JinðqÞ contains these logarithms, for
large q2 it tends to 1, in compliance with the requirement
discussed above, due to the inclusion of the function
τ1=ðq2 þ τ2Þ; note that this function becomes 1 in the
“bona-fide” fit for JðqÞ, which is also displayed in Fig. 4,
for direct comparison.
(ii): The fit for FinðqÞ is shown in the left panel of Fig. 5

(blue continuous line), together with the corresponding
lattice data; its functional form is given by

FinðqÞ ¼ 1þ σ1
q2 þ σ2

; ð4:4Þ

with σ1 ¼ 0.70 GeV2 and σ2 ¼ 0.39 GeV2. Again, in the
limit of large q2, the above expression recovers the tree-
level result, i.e., FinðqÞ ¼ 1. In that same plot, the red
dashed line corresponds to the fit of FðqÞ introduced in
Eq. (6.1), which corresponds to the typical solution of the
SDE for FðqÞ [71], and, as such, contains the appropriate
perturbative logarithms. Evidently, the difference between
the two fits becomes relevant in the deep ultraviolet, where
the FðqÞ of Eq. (6.1) deviates gradually from unity,
eventually approaching zero at a logarithmic rate.
(iii) and (iv): The fully dressed vertex Γμαβ and Γμ enter

in Eq. (3.2) that controls Hνμ, but, at the same time, the
determination of their longitudinal parts from Eqs. (2.11)
and (2.8) requires the knowledge of Hνμ, converting the

problem into an extended system of coupled equations.8

However, given the complexity of such an endeavor, we
will employ instead a set of approximations for these two
vertices. We next analyze (iii) and (iv) separately.
(iii): Let us first consider the three-gluon vertex, entering

in ðd2Þνμ, and set t ¼ −ðlþ rÞ. Our way of approximating
Γμαβðr; t;lÞ is the following. First, we consider the STIs
exemplified by Eq. (2.11), and “abelianize” them by
turning off the ghost sector, i.e., setting FðrÞ ¼ 1 and
Hνμ ¼ gνμ. The resulting identities may then be “solved”
following the BC procedure [87], thus furnishing the
abelianized longitudinal form factors, Xi (i ¼ 1…10,
which contain combinations of the function JðqÞ
only. Then, the “input” Γμαβðr; t;lÞ, to be denoted by
Γin
μαβðr; t;lÞ, is chosen to contain only the three tensorial

structures that comprise the tree-level vertex, multiplied by
the corresponding form factors, which are related to each
other by the Bose symmetry. In particular,

Γin
μαβðr; t;lÞ ¼ ðr − tÞβgμαXin

1 ðr; t;lÞ
þ ðt − lÞμgαβXin

1 ðt;l; rÞ
þ ðl − rÞαgβμXin

1 ðl; r; tÞ; ð4:5Þ
with

Xin
1 ðr; t;lÞ ¼

1

2
½JinðrÞ þ JinðtÞ�: ð4:6Þ

Notice that at tree level Xin
1 ¼ 1, and Eq. (4.5) reduces

indeed to

Γð0Þ
μαβðr; t;lÞ ¼ ðr − tÞβgμα þ ðt − lÞμgαβ þ ðl − rÞαgβμ:

ð4:7Þ

FIG. 4. The fits forΔinðqÞ (left panel) and JinðqÞ (right panel) given by Eqs. (4.1) and (4.2), respectively (blue continuous curves). The
fits for ΔðqÞ and JðqÞ follow the same functional dependence but with τ1=ðq2 þ τ2Þ → 1. The lattice data are from Ref. [54].

8It should be clear that a fully self-consistent treatment would
also require information on the transverse parts of the vertices,
which are a priori inaccessible to a gauge-technique based
approach.
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Thus, the Γin
μαβ of Eq. (4.5) will be used as a “seed” for

obtaining the one-loop dressed approximation for Hνμ.
Note that, in addition to the remaining seven longitudinal
form factors that have not been included in Γin

μαβ for
simplicity, the uncertainties associated with the omission
of all transverse structures must also be kept in mind.
(iv): Turning to the ghost-gluon vertex, as mentioned

right after Eq. (3.3), two out of the three vertices have been
naturally replaced by their B1 components, and only the
Γμðq − l;lþ p; rÞ in ðd1Þνμ contains both B1 and B2. In
what follows we will set (by hand) B2 ¼ 0 for this vertex
and retain only B1; thus, at this point, all ghost-gluon
vertices appearing in the problem have been replaced by
their B1 form factor.
The approximation used for B1ðq; p; rÞ is obtained as

follows. We start by carrying out the first iteration of
Eq. (3.2), using for B1 its tree-level value. This furnishes
the first approximation for the Aiðq; p; rÞ, which, by means
of the first relation in Eq. (2.8), yields the next approxi-
mation for B1ðq; p; rÞ. At this point we isolate from
B1ðq; p; rÞ the “slice” that corresponds to the “totally
symmetric” configuration

q2 ¼ p2 ¼ r2 ¼ Q2; q · p ¼ q · r ¼ p · r ¼ −
1

2
Q2;

ð4:8Þ
shown in the right panel of Fig. 5 (red dashed line). Then, to
get Bin

1 ðQÞ we adjust the “tail” of the curve, such that it
reaches the tree-level value 1 for large Q; the resulting
functional form may be fitted by

Bin
1 ðQÞ ¼ 1þ τ1Q2

ð1þ τ2Q2Þλ ; ð4:9Þ

where the parameters τ1 ¼ 2.21 GeV−2, τ2 ¼ 2.50 GeV−2,
and λ ¼ 1.68. Past this point, the iterative procedure

described above is discontinued, and the Bin
1 ðQÞ of

Eq. (4.9) is fixed as the final input in Eq. (3.2).
After the above simplification, Eq. (3.6) becomes

V1ðl; q; p; rÞ ¼ Bin
1 ðlÞ;

V2ðl; q; p; rÞ ¼
1

2
½Bin

1 ðlþ rÞ þ Bin
1 ðlÞ�: ð4:10Þ

(v): Finally, for most of the analysis, the strong charge
will assume the value αs ¼ 0.22 at the subtraction point
μ ¼ 4.3 GeV, where all Green’s functions are renormal-
ized. The determination of this particular value is rather
convoluted, involving the combination of four-loop per-
turbative results, nonperturbative information included in
the vacuum condensate of dimension two, and the extrac-
tion of ΛQCD from lattice results of the ghost-gluon vertex
in the Taylor kinematics [106]. Given the theoretical
uncertainties associated with some of the aforementioned
ingredients, we consider the value αs ¼ 0.22 rather
approximate; in fact, as we will see in Sec. VII, the final
analysis seems to favor slightly higher values of the charge,
of the order of αs ¼ 0.25. Note that the difference between
using αs ¼ 0.22 or αs ¼ 0.25 is practically imperceptible at
the level of the 3D plots presented in the next section;
however, it becomes visible when particular “slices” are
isolated (see left panel of Fig. 16).

V. RESULTS FOR THE FORM FACTORS
OF THE GHOST-GLUON KERNEL

In this section we present the results for the five form
factors Ai. We will first present 3D plots in general
Euclidean kinematics, and then we take a closer look at
three special kinematic limits.

A. 3D plots

First, we use the standard conversion rules to pass
Eq. (3.2) and its ingredients from Minkowski to

FIG. 5. Left panel: Fits for FðqÞ without ultraviolet logarithms (blue continuous line), corresponding to Eq. (4.4), and with ultraviolet
logarithms (red dashed line), given by Eq. (6.1), compared to the lattice data from [54]. Right panel: The form factor Bin

1 ðQÞ given by
Eq. (4.9) (blue continuous line), and its counterpart B1ðQÞ with the one-loop correction (red dashed line).
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Euclidean space [41]. In particular, ðq2; p2; q · pÞ →
−ðq2E; p2

E; qE · pEÞ, and

Δðq2Þ ⟶
q2→−q2E − ΔEðq2EÞ; Dðq2Þ ⟶

q2→−q2E −DEðq2EÞ;
Biðq; p; rÞ → BiðqE; pE; rEÞ;
Ajðq; p; rÞ → AjðqE; pE; rEÞ; ð5:1Þ

for i ¼ 1, 2, j ¼ 1;…; 5.
In addition, the measure defined in Eq. (3.3) becomes

Z
l
¼ i

Z
lE

; ð5:2Þ

which in spherical coordinates is given by

Z
lE

¼ 1

32π4

Z
Λ2
UV

Λ2
IR

dl2
El

2
E

Z
π

0

dϕ1sin2ϕ1

×
Z

π

0

dϕ2 sinϕ2

Z
2π

0

dϕ3: ð5:3Þ

Note that, for numerical purposes, we have introduced in
the radial integration an infrared and ultraviolet cutoffs Λ2

IR
and Λ2

UV, respectively; their numerical values will fix the
overall size of our numerical grid, namely [5×10−5GeV2,
5 × 103 GeV2].
A standard choice for the orientation of the Euclidean

four-momenta q and p and the integration momentum l is
(from now on we suppress the subscript “E”)

q ¼ jqjð1; 0; 0; 0Þ;
p ¼ jpjðcos θ; sin θ; 0; 0Þ;
l ¼ jljðcosϕ1; sinϕ1 cosϕ2; sinϕ1 sinϕ2 cosϕ3;

sinϕ1 sinϕ2 sinϕ3Þ: ð5:4Þ

Evidently, q2 ¼ jqj2, p2 ¼ jpj2, and q · p ¼ jqjjpj cos θ.
In what follows we will express all relevant form

factors as functions of q2, p2, and the angle θ, namely
Aiðq; p; rÞ → Aiðq2; p2; θÞ. Note also that since the quan-
tities entering in the integrals do not depend on the angle
ϕ3, the last integral in (5.3) furnishes simply a factor of 2π.
The evaluation of the ghost-gluon scattering kernel given

by Eqs. (3.1) and (3.2) amounts to a three-dimensional
integration for each combination of external momenta and
angles, namely ðq2; p2; θÞ, and for each of the five Ai.
These integrations were performed numerically with the
adaptative algorithm of Ref. [107], employing an 11th
degree polynomial rule. The results were computed with
the external squared momenta distributed logarithmically
on a grid with 80 points, in the range [5 × 10−5 GeV2,
5 × 103 GeV2], whereas for the angle θ the grid was
composed of 19 uniformly distributed points within ½0; π�.

In Figs. 6 and 7, we present a typical set of results for the
form factors Ai, for θ ¼ 0 and θ ¼ π.
It is important to notice that all form factors exhibit

the following common features: (i) in the infrared, they
display considerable departures from their tree-level
values; (ii) in the ultraviolet they approach the cor-
responding one-loop answers, given in Appendix A9;
(iii) in general, they display a mild dependence on the
angle θ.
Moreover, we find that A1 is finite in the infrared,

whereas A2, A3, A4, and A5 diverge logarithmically. The
origin of these divergences may be traced back to two
different sources: (i) the massless of the ghost propagators
appearing as ðd1Þνμ of Fig. 3, or (ii) the “unprotected”
logarithms contained in the JinðqÞ that enter in the Ansatz
of Γin

μαβ given in Eq. (4.5), thus altering the behavior of the
graph ðd2Þνμ.
In the next subsection, we will carefully scrutinize the

circumstances leading to the aforementioned infrared
logarithmic divergences, for each one of the four form
factors.

B. Special kinematics limits

In this subsection we first extract from the general 3D
solutions for the Ai reported above three special kinematic
configurations, corresponding to particular 2D slices.
Then, we compare them with (i) the corresponding per-
turbative expressions computed at one loop; (ii) the one-
loop massive results, obtained by using “naive” massive
gluon propagators inside the one-loop diagrams (see
Appendix A); and (iii) the results found when the three-
gluon vertex appearing in ðd2Þμν is kept at its tree-level
value, i.e., setting Xin

1 ðr; t;lÞ ¼ 1. As we will see, the
comparisons (ii) and (iii) are fundamental for identifying
the origin of the infrared logarithmic divergences displayed
by the four Ai. Specifically, by means of the one-loop
massive calculation one can establish analytically whether
ðd1Þμν and ðd2Þμν are individually convergent or divergent,
depending on the nature of the propagators comprising
them. As for (iii), the use of Γð0Þ instead of Γin helps us
identify the dressing of the latter as the only reason for the
infrared divergences encountered in ðd2Þμν.
Thus, through this entire subsection, we display four

curves in all panels. The curves correspond to the full case
(2D slices) [using Γin] (blue continuous line), the one-loop
result (purple dotted line), the one-loop massive with m2 ¼
0.15 GeV2 (green dash-dotted line), and the case where the

9This particular property is expected, given that the input
functions have been adjusted precisely to that purpose, as
discussed in the previous section. Note, however, that possible
deviations from this prescribed behavior may be produced, due to
artifacts of the numerical treatment (see discussion in the third
paragraph of the soft gluon limit in Sec. V B).
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FIG. 6. The form factors of the ghost-gluon scattering kernel A1ðq2; p2; θÞ (first row), A2ðq2; p2; θÞ (second row), and A3ðq2; p2; θÞ
(third row) for θ ¼ 0, θ ¼ π, and αs ¼ 0.22.
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Γð0Þ
μαβ of Eq. (4.7) is used as the input in ðd2Þμν (red dashed

line). We adopt the same color convention in all panels.
Before proceeding, let us emphasize that, in order to

expedite the one-loop calculations, we have imple-
mented the corresponding kinematic limits directly at
the level of Hνμ, i.e., before projecting out the corre-
sponding form factors. As a result, and depending on
the details of the limit considered, certain tensorial
structures, together with the accompanying form factors,
are completely eliminated from the decomposition of
Hνμ given in Eq. (2.3). Of course, the form factors that
are eliminated are nonvanishing, as may easily be
verified from the appropriate slices of the corresponding
3D plots.

(i) The soft gluon limit, which means that r ¼ 0; then, the
momenta q and p have the same magnitude, jpj ¼ jqj, and
are antiparallel, i.e., θ ¼ π. Our results are expressed in
terms of the momentum q.
When this kinematic limit is implemented as described

above, the only tensorial structures that survive are those
associated with A1 and A2 [see Eq. (2.3)]. These two form
factors are shown in Fig. 8. A1ðq;−q; 0Þ (left panel)
displays only a mild deviation from its tree-level value
in the entire range of momenta. The maximum deviation is
of the order of 5%, and is located around q ≈ 1 GeV. It is
interesting to observe that the one-loop massive and the

nonperturbative calculation with Γð0Þ
μαβ also display the peak

around the same region of momenta, although there is a

FIG. 7. The form factors of the ghost-gluon scattering kernel A4ðq2; p2; θÞ (top row) and A5ðq2; p2; θÞ (bottom row) for θ ¼ 0, θ ¼ π,
and αs ¼ 0.22.
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clear quantitative difference in their heights. Notice
that A1 is infrared finite, and for all curves we have
A1ð0; 0; 0Þ ¼ 1. This particular value is recovered again
for high values of q, as expected from the one-loop
calculation of Eq. (A5); one may clearly observe how all
curves approach each other and practically coincide
around q ≈ 10 GeV.
It is important to mention that, in the above analysis, the

limit θ ¼ π is rather subtle. This happens because the
projectors of the Ai introduce a sin4 θ in their denominator
[see Eq. (3.10)], whose cancellation requires the proper
Taylor expansion of the numerator around sin θ ≈ 0. If
instead of expanding one were to use a configuration whose
angle was slightly different from π, the resulting curve
would fail to approach the one-loop result, running instead
“parallel” to it.
On the right panel of Fig. 8 we show the dimensionless

combination q2A2ðq;−q; 0Þ, which in the ultraviolet tends
toward the constant value predicted by the one-loop result
given by Eq. (A5). Once again, the maximum deviation
from its tree-level value is located around q ≈ 1 GeV, and

the nonperturbative calculation with Γð0Þ
μαβ captures rather

well the position of this minimum, although its depth is
bigger. In order to make apparent the infrared logarithmic
divergence, in the inset we show the dimensionful
A2ðq;−q; 0Þ alone, using a logarithmic scale. Notice that
the one-loop massive analytical result [see Eq. (A7)] and

the nonperturbative calculation with Γð0Þ
μαβ also display the

same type of divergence in the infrared. In addition,
observe that the use of Γin

μαβ slows down the rate of the
negative infrared divergence of A2. It is interesting to
mention that the infrared divergence of A2 is due to the
presence of the two massless ghost propagators in the

diagrams (d1) of Fig. 3. In Table I we summarize how each
diagram behaves in the infrared separately for the cases
presented in the plot, except for the pure perturbative one-
loop calculation.
(ii) The soft antighost limit, in which q ¼ 0 and the

momenta jpj ¼ jrj; evidently, jqjjpj cos θ ¼ 0, and any
dependence on the angle θ is washed out.
In this limit, we may recover information only about A1

and A3, which depend on a unique momentum, namely r. In
Fig. 9, we can see that both form factors, A1ð0;−r; rÞ and
A3ð0;−r; rÞ, display a sizable deviation from their tree-
level expressions around the region r ≈ 1.0–1.5 GeV.
Moreover, in the ultraviolet they are approaching the
one-loop results of Eq. (A9). A1 is again infrared finite,
while A3 is logarithmically divergent, as shown in the inset.
Note that the one-loop massive result [see Eq. (A11)] and

FIG. 8. (Soft gluon kinematics) Left: Comparison between the A1ðq;−q; 0Þ computed using Γin
μαβ (blue continuous line) and the one

obtained when Γð0Þ
μαβ is used instead (red dashed line). The massless (purple dotted line) and the massive (green dash-dotted line) one-

loop perturbative results are given by Eqs. (A5) and (A6), respectively. Right: Same comparison for the dimensionless combination
q2A2ðq;−q; 0Þ. In the inset we show the corresponding logarithmic infrared divergence of A2ðq;−q; 0Þ, using a logarithmic scale for q2.
Note that the purple dotted curve shows a much steeper (linear) divergence.

TABLE I. The summary of the infrared limits of the individual
contributions of the diagrams (d1) and (d2) appearing in Fig. 3.
The limits are for (i) the one-loop massive results [see Eqs. (A7),
(A11), and (A16)]; (ii) the nonperturbative result obtained when

Γð0Þ
μαβ is used as input in the diagram (d2); and (iii) the non-

perturbative result obtained with Γin
μαβ. The letter “F” stands for

“finite” and the acronym “LD” for “logarithmically divergent.”

Form factors

One-loop massive Γð0Þ
μαβ

Γin
μαβ

(d1) (d2) (d1) (d2) (d1) (d2) Total

A1 F F F F F F F
A2 LD F LD F LD F LD
A3 LD F LD F LD LD LD
A4 F F F F F LD LD
A5 LD F LD F LD F LD
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the nonperturbative calculation with Γð0Þ
μαβ display the same

qualitative behavior; of course, the precise rates of each
divergence are different. As can be seen in Table I, the
infrared divergence found in A3 is due to both the massless
ghost entering in the diagram (d1) and the unprotected
logarithm present in the Γin

μαβ of graph (d2).
(iii) The totally symmetric limit, defined in Eq. (4.8).
In Fig. 10 we show the behavior of the AiðQÞ in this

configuration; note that in this configuration all form
factors are accessible.
We clearly see that the Ai obtained with either vertex

display a sizable deviation from their tree-level value in the
region of Q ≈ 1–2 GeV, while for large values of Q they
recover the ultraviolet behavior expected from one-loop
perturbation theory, given by Eqs. (A12). Interestingly
enough, except for Q2A5ðQÞ, the use of Γin

μαβ yields Ai

that are more suppressed.
Moreover, one can notice that A4 and A5, whose forms

were not presented for the previous configurations, also
display a logarithmic divergence in the infrared (see the
insets of Fig. 10). In the case of A4, the divergence is
exclusively associated with the unprotected logarithm pre-
sent in the Γin

μαβ used in (d2), while the diagram responsible
for the logarithm divergence of A5 is (d1) (see Table I).
Notice that, except for A4ðQÞ, both the analytic one-loop
massive results and the nonperturbative calculation with

Γð0Þ
μαβ reproduce the general pattern found when one uses

Γin
μαβ. More specifically, these cases capture whether the

divergence is positive or negative and the finiteness of A1.
In the case of A4, the impact of Γin

μαβ is rather pronounced,
and it causes a negative logarithmic divergence.
Table I provides an overview of our main findings,

specifying the different origins of the infrared logarithmic
divergences found in the form factors A2, A3, A4, and A5 in
the three cases analyzed.

VI. THE CONSTRAINT FROM THE STI

The next item of our analysis is dedicated to the STI-
derived constraint of Eq. (2.14). The way this particular
constraint becomes relevant for our considerations is
twofold. First, a considerable degree of hindsight gained
from this equation has already been used in Sec. IV, in order
to optimize the ultraviolet features of the input functions.
Second, as we will see below, the amount by which the
calculated value forR deviates from unity favors the use of
dressed rather than bare vertices in the graphs ðd1Þνμ
and ðd2Þνμ.
With respect to the first point, note that the relation of

Eq. (2.14), being a direct consequence of the Becchi-Rouet-
Stora-Tyutin symmetry, is satisfied exactly at any fixed
order calculation in perturbation theory. However, in
general, our truncation procedure does not reduce itself
to a fixed order perturbative result, for any limit of the
kinematic parameters. This happens because certain of the
(higher order) terms, generated after the integration of all
ingredients, ought to cancel/combine with contributions
stemming from two- and higher-loop dressed diagrams of
Hνμ, which, evidently, have been omitted from the outset.
The resulting mismatches, in turn, affect unequally the
different kinematic configurations entering in R, thus
distorting the subtle balance that enforces Eq. (2.14).
A concrete manifestation of the underlying imbalances

occurs when one uses input propagators and vertices
containing perturbative information (e.g., are of the general
form 1þ cαs logq2=μ2Þ. Since one may not intervene in
the actual numerical evaluation and discard “by hand”
terms of Oðα2sÞ and higher, the final answer contains a
certain amount of unbalanced contributions. The clearest
manifestation of this effect occurs when evaluating R for
asymptotically large momenta: contrary to what one might
expect, the “tails” of R deviate markedly from unity; in
fact, the deviation increases as the momenta grow.

FIG. 9. (Soft antighost) Left: Comparison of the A1ð0;−r; rÞ computed using Γin
μαβ (blue continuous line) and Γ

ð0Þ
μαβ (red dashed line) in

the soft antighost kinematics. The massless (purple dotted line) and the massive (green dash-dotted line) one-loop perturbative results are
given by Eqs. (A9) and (A10), respectively. Right: Same comparison for the dimensionless combination r2A3ð0;−r; rÞ. In the inset we
show the corresponding logarithmic infrared divergence of the A3ð0;−r; rÞ and the linear divergence of the massless one-loop case.
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The use of input functions that tend to their tree-level
values ameliorates the situation substantially, because, in
this way, the Ai computed display at least their correct one-
loop behavior. This improvement, in turn, must be com-
bined with a judicious choice for the FðpÞ and FðrÞ
appearing explicitly in R [see Eq. (2.13)]; in particular,
the function used must display asymptotically the loga-
rithmic behavior dictated by one-loop perturbation theory.
Specifically, we use the standard fit [31]

F−1ðqÞ ¼ 1þ 9CAαs
48π

½1þD exp ð−ρ4q2Þ�

× ln

�
q2 þ ρ3M2ðqÞ

μ2

�
; ð6:1Þ

where

FIG. 10. (Totally symmetric) The dimensionless combinations of the form factors AiðQÞ in the totally symmetric configuration. The

AiðQÞ are computed using Γin
μαβ given by Eq. (4.5) (blue continuous line) and Γ

ð0Þ
μαβ of Eq. (4.7) (red dashed line). The one-loop results are

given in Eqs. (A12) (purple dotted line) while the infrared limits of the one-loop massive case are expressed by Eq. (A16). In the inset we
show the corresponding logarithmic divergences of the AiðQÞ and the linear divergence of the massless one-loop result.
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M2ðqÞ ¼ m2
1

1þ q2=ρ22
; ð6:2Þ

with m2
1 ¼ 0.16 GeV2, ρ22 ¼ 0.69 GeV2, ρ3 ¼ 0.89,

ρ4 ¼ 0.12 GeV−2, D ¼ 2.36, and μ ¼ 4.3 GeV.
Then, after these adjustments, the tails ofR display only

a minuscule deviation from unity, which decreases slowly
as the momenta increase.
We next turn to the second point and consider what the

STI constraint suggests regarding the vertices used in the
calculation.
Clearly, for any kinematic configuration where jpj ¼ jrj,

the numerator and the denominator of Eq. (2.13) become
equal, and Eq. (2.14) is trivially satisfied. In particular, this
is precisely what happens in the “soft antighost” and totally
symmetric limits presented in the previous subsection.
Let us then consider two different kinematic limits, for

which Eq. (2.14) is not trivially fulfilled. Specifically, we
compute R for two particular kinematic configurations,
shown in Fig. 11: (i) on the left panel we present R when
p2 ¼ q2 ¼ Q2 and r2 ¼ 3Q2, or, equivalently, θ ¼ π=3;
we denote the corresponding quantity by RðQ2; Q2; 3Q2Þ
[alternatively, RðQ2; Q2; π=3Þ]; (ii) on the right panel, we
present the case q2 ¼ Q2, p2 ¼ 3Q2, and r2 ¼ 4Q2, which
corresponds to θ ¼ π=2; we denote the result by
RðQ2; 3Q2; 4Q2Þ. As a reference, in Fig. 11 we plot the
ideal result Rðq2; p2; r2Þ ¼ 1 (black dotted line), corre-
sponding to the STI constraint of Eq. (2.14).
Notice that in both cases we evaluateRðq2; p2; r2Þ using

two different approximations: (a) the Ai are computed using
tree-level expressions for the full vertices appearing in the
diagrammatic representation of Hνμ (red dashed curves),
and (b) the Ai are computed with all vertices dressed [see
Eq. (3.2)], using the Ansätze discussed in Sec. III (blue
continuous curves).

In the left panel, one clearly observes that the maximum
deviation from unity occurs for q in the range 1.0–1.5 GeV,
being around 9% when tree-level vertices are used, and
dropping below 5% when all vertices are dressed. Then, in
the perturbative region, for values of q ≥ 5 GeV the
deviations in both cases are smaller than 2%.
In the kinematic configuration presented in the right

panel, we notice that the deviations are milder. Specifically,
the maximum deviation appears in the momentum range
0.8–1.1 GeV and is less than 3% when bare vertices are
used, dropping to less than 1% for dressed vertices. In the
ultraviolet the deviation from unity is of the order of 0.1%.
The difference between the ideal and computed values

of R may be quantified by means of a χ2 test. The test
was implemented using the 80 points of our logarithmic
grid, defined in the entire range of momenta, i.e.,
[5 × 10−5 GeV2, 5 × 103 GeV2]. Note that the logarithmi-
cally spaced grid furnishes more weight to the nonpertur-
bative region because it has a higher concentration of points
in the infrared.
For the case of the bare vertices we obtain χ2 ¼ 0.057

(left panel) and χ2 ¼ 0.004 (right panel), whereas for the
dressed case one has χ2 ¼ 0.021 (left panel) and χ2 ¼
0.001 (right panel); evidently, these results favor the
truncation scheme where all vertices are dressed.
Alternatively, one may also use as an indicator of the

similarity of the two curves the integral over the absolute
value of the difference of them. More specifically, we have
evaluated the following integral:

Iab ¼
Z

ΛUV

ΛIR

jRðQ2; aQ2; bQ2Þ − 1jdQ; ð6:3Þ

where the values of a and b are fixed by the choice of
momenta in each configuration; for the two examples
considered in Fig. 11 we have (a ¼ 1, b ¼ 3) and
(a ¼ 3, b ¼ 4), respectively. For the case of the bare

FIG. 11. The ratio Rðq2; p2; r2Þ, defined in Eq. (2.13), evaluated in two different kinematic limits: (i) p2 ¼ q2 ¼ Q2 and r2 ¼ 3Q2

(left panel) and (ii) q2 ¼ Q2, p2 ¼ 3Q2, and r2 ¼ 4Q2 (right panel). The blue continuous curve represents the case where the Ai are
computed using all vertices dressed, whereas the red dashed one is obtained when we employ bare vertices. The black dotted line
represents the exact value Rðq2; p2; r2Þ ¼ 1, imposed by the STI.

NONPERTURBATIVE STRUCTURE OF THE GHOST-GLUON KERNEL PHYS. REV. D 99, 034026 (2019)

034026-15



vertices we find I13 ¼ 0.32 and I34 ¼ 0.076, whereas for
the dressed case one has I13 ¼ 0.29 and I34 ¼ 0.068.
Evidently, this second indicator displays a slight preference
for the truncation scheme where all vertices are dressed, but
is considerably less compelling compared to the χ2 case.

VII. RESULTS FOR THE
GHOST-GLUON VERTEX

As a direct application of the results obtained for the Ai
in the previous section, we now turn our attention to the

determination of the form factors of the ghost-gluon vertex,
for arbitrary Euclidean momenta. To that end, we use the
exact expressions given by Eq. (2.8), which was derived
from Eq. (2.4) [88].
In Figs. 12 and 13 we show, respectively, the form factors

B1 and B2 as functions of q2, p2, and θ. In order to
appreciate their angular dependence, we present two
representative cases: θ ¼ 0 and θ ¼ π. As we can see,
the angular dependence of B1 is relatively weak, whereas
B2 is clearly more sensitive to changes in θ. Note also that
both form factors approach their one-loop perturbative

FIG. 12. Form factor B1ðq2; p2; θÞ of the ghost-gluon vertex, for θ ¼ 0 (left panel) and θ ¼ π (right panel).

FIG. 13. Form factor B2ðq2; p2; θÞ of the ghost-gluon vertex, for θ ¼ 0 (left panel) and θ ¼ π (right panel).
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behavior10 whenever one of the ghost (p) or antighost (q)
momenta becomes large.
In addition, for p2 ¼ q2 ¼ 0 they revert to their tree-

level values, due to the fact that the one-loop dressed
contributions to Hνμ vanish at the origin. Moreover, we
may visually verify that B1ðq2; p2; θÞ is symmetric under
the exchange q2 ↔ p2, for any θ, as required by the ghost–
antighost symmetry.
It is clear that B1 and B2 will depend through the Ai on

our choice for Γμαβ. In order to study this effect, we employ
the results presented in Sec. V B, where the Ai were

computed using as input for Γμαβ either the Γð0Þ
μαβ of

Eq. (4.7) or the Γin
μαβ of Eq. (4.5). In Fig. 14 we show

the results of this study for B1ðQÞ and B2ðQÞ in the totally
symmetric configuration. Clearly, when the three-gluon
vertex is dressed, the results for B1 and B2 are systemati-
cally suppressed. Notice that the relative difference is more
pronounced in the intermediate region of momenta, given
that in the deep infrared we must have B1ð0; 0; 0Þ ¼ 1 and
B2ð0; 0; 0Þ ¼ 0, while in the ultraviolet B1 and B2 should
recover the expected perturbative behavior. In particular,
around the region of 0.9–1.1 GeV, the deviations of B1 and
B2 from their tree-level values are approximately 2–2.5
times larger when Γð0Þ

μαβ is used.
Next, in Fig. 15, we compare our results for B1 in the soft

gluon configuration with those obtained in earlier works
[48–50]; this configuration is the most widely explored in
the literature, being the only one simulated on lattice for

SU(3) [63,64]. The green dash-dotted curve represents the
results for B1ðq;−q; 0Þ, obtained from the approach devel-
oped in [48], based on the infrared completion of expres-
sions derived using operator product expansion techniques.
In the case of [49], B1 was determined in general kin-
ematics, using a system of coupled SDEs, while in [50] the
B1 was determined exclusively in the soft gluon configu-
ration. It is interesting to notice that all analytical studies
display the characteristic peak and converge to unity at the
origin. Moreover, all of them are in qualitative agreement
with the lattice data (note, however, that the error bars are
quite sizable).
Finally, in Fig. 16, we illustrate the impact that the full

structure of B1ðq2; p2; θÞ has on the SDE of the ghost
dressing function. To that end, we explore two scenarios:
(i) we couple the entire momenta dependence of B1 to the
SDE for FðqÞ, carrying out the additional angular integra-
tion [see Eq. (2.14) of [71] ], and (ii) we fix its momentum

FIG. 14. B1ðQÞ (left panel) and B2ðQÞ (right panel) in the totally symmetric configuration obtained when the Ai entering in Eq. (2.8)
are computed using the three-gluon vertex dressed given by Eq. (4.5) (blue continuous line) or at tree level given by Eq. (4.7) (red dashed
line). The one-loop results for B1ðQÞ and B2ðQÞ (purple dotted line) may be directly obtained combining Eqs. (2.8) and (A12).

FIG. 15. Our numerical result for B1ðq;−q; 0Þ (blue continuous
line) compared with the results of [48] (green dash-dotted line),
[49] (red dashed line), and [50] (magenta dotted line). The lattice
data (circles) are from [63,64].

10Notice that the one-loop behavior for B1 in the soft ghost,
soft gluon, and totally symmetric configurations deviates slightly
from 1, being 1.07, 1.04, and 1.06, respectively. The correspond-
ing relative errors between our nonperturbative computation and
the expected one-loop behavior are smaller than 1% for momenta
higher than 8 GeV, in the three kinematic configurations
mentioned—see e.g., Fig. 14.
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dependence to the soft ghost configuration [47,71]. We
observe that with mild adjustments to the value of αs, both
scenarios reproduce the standard lattice results of [54]
rather accurately; in particular, while for case (i) αs ¼ 0.25,
for (ii) we obtain αs ¼ 0.24.
The reason for this small difference in the values of αs

can easily be understood. As mentioned in Sec. V B, in the
region of momenta of about 2 to 3 times the QCD mass
scale, the soft ghost configuration maximizes the deviation
from the tree-level value. Therefore, when we approximate
the entire momentum dependence of Γμ just by this
configuration (instead of integrating over all of them),
we slightly overestimate the contribution of the ghost-gluon
vertex to the ghost SDE.
It is also interesting to notice that, although the impact of

changing the value of αs is rather mild at the level of
B1ðq; 0;−qÞ, it is rather pronounced when FðqÞ is com-
puted, as clearly seen in Fig. 16. More specifically, the
relative difference between the B1ðq; 0;−qÞ computed with
αs ¼ 0.25 and that computed with αs ¼ 0.22 is less than
3% around the region of the peaks. Instead, in the case of
FðqÞ, the relative difference between the corresponding
curves increases to 30% in the deep infrared; this, in turn,
may be traced back to the known high sensitivity of the
ghost SDE on the value of αs.

VIII. CONCLUSIONS

We have presented a detailed nonperturbative study of
the form factors, Ai, comprising the ghost-gluon kernel,
Hνμ, using the one-loop dressed approximation of its
dynamical equation, for general Euclidean momenta. The
results obtained have been presented in 3D plots, and
certain slices, corresponding to special kinematic limits,
have been singled out and inspected in detail. The Ai
obtained have been subsequently used for the determina-
tion of the two form factors, B1 and B2, of the ghost-gluon
vertex.

The ingredients entering in the calculations are the gluon
and ghost propagators, and the vertices Γαμν and Γμ. Given
that the Hνμ itself is intimately connected to both these
vertices, a strictly self-consistent treatment would require
one to couple the dynamical equation governing Hνμ to the
equations relating it to both Γαμν and Γμ, and proceed to the
solution of the entire coupled system. Instead, we have
treated the problem at hand by employing simplified
versions of these vertices, whose use in recent studies
[93,108] yielded satisfactory results. Moreover, as has been
explained in detail, there exists a subtle interplay between
the truncation of the equations employed, the ultraviolet
behavior of the ingredients used for their evaluation, and
the accuracy with which the resulting Ai satisfy the STI
constraint of Eq. (2.14). Note in particular that while our
input expressions for the two-point functions are in
excellent agreement with the lattice data of [54] for infrared
and intermediate momenta, their ultraviolet tails have been
adjusted to their tree-level values.
We have paid particular attention to the impact that the

structure of Γαμν may have on the results. All our findings
indicate that the use of a dressed Γαμν, corresponding to the
so-called “minimal BC solution,” Γin

μαβ, induces an appre-
ciable suppression with respect to the results obtained by

merely resorting to Γð0Þ
αμν. This happens because the form

factor Xin
1 is itself suppressed in the infrared, due to the

form of the functions JðqÞ that enter its definition [see
Eq. (4.6)]. This special feature of the three-gluon vertex, in
turn, appears to be favored by the STI-derived constraint, in
the sense that the results obtained with Γin

μαβ are consid-
erably closer to unity (see Fig. 11).
The information obtained on the structure of the ghost-

gluon kernel opens the way toward the systematic non-
perturbative construction of the 10 form factors comprising
the longitudinal part of the three-gluon vertex, using the
BC construction [87] as a starting point. The detailed

FIG. 16. The B1ðq; 0;−qÞ computed using three different values of αs (left panel). The FðqÞ obtained by substituting into the ghost
SDE: (a) the full B1ðq; p; rÞwith αs ¼ 0.25 (blue continuous line), (b) the full B1ðq; p; rÞwith αs ¼ 0.22 (purple dotted line), and (c) the
soft gluon limit B1ðq; 0;−qÞ with αs ¼ 0.24 (red dashed line). The lattice data are from [54,55] (right panel).
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knowledge of these form factors, in turn, may have
considerable impact on the study of the dynamical for-
mation of gluon dominated bound states, such as glueballs
and hybrids (see, e.g., [109], and references therein). We
hope to be able to present results on this topic in the near
future.
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APPENDIX A: ONE-LOOP RESULTS FOR
SPECIAL KINEMATIC CONFIGURATIONS

In this Appendix we present the one-loop results for the
various Ai in the three special kinematic configurations
considered in Sec. V B [94,110]. In addition, for two
kinematic limits, we also show the corresponding results
for the one-loop massive case, where the gluon propagator
is endowed with a hard mass m.
The one-loop calculations are performed analytically;

the starting expressions may be obtained from the ðd1Þνμ
and ðd2Þνμ of Eq. (3.2) by replacing the dressed quantities
by their tree-level counterparts, i.e., DðqÞ ¼ i=q2, V1 ¼
V2 ¼ 1, and JðqÞ ¼ 1. In the case of the gluon propagator,
the corresponding tree-level expressions used are either
ΔðqÞ ¼ 1=q2 (for the “conventional” one-loop calculation)
or Δ−1ðqÞ¼q2−m2 (for the one-loop massive calculation).
In addition, we employ dimensional regularization, in

which case the measure of Eq. (3.2) assumes the form

Z
l
→

μϵ

ð2πÞd
Z

ddl; ðA1Þ

where d ¼ 4 − ϵ, and μ is the ’t Hooft mass scale.
Implementing the substitutions mentioned above, we

obtain for the conventional one-loop case

ðd1Þð1Þνμ ¼ ig2CA

2

Z
l

ðl − qÞμ
l2ðlþ pÞ2ðl − qÞ2

�
pν − lν

ðp · lÞ
l2

�
;

ðd2Þð1Þνμ ¼ ig2CA

2

Z
l

Γð0Þ
μσα

l2ðlþ rÞ2ðl − qÞ2
�
gσν −

lσlν

l2

��
pα −

p · ðlþ rÞðlþ rÞα
ðlþ rÞ2

�
; ðA2Þ

while for the one-loop massive case one has

ðd1Þð1MÞ
νμ ¼ ig2CA

2

Z
l

ðl − qÞμ
ðl2 −m2Þðlþ pÞ2ðl − qÞ2

�
pν − lν

ðp · lÞ
l2

�
;

ðd2Þð1MÞ
νμ ¼ ig2CA

2

Z
l

Γð0Þ
μσα

ðl2 −m2Þ½ðlþ rÞ2 −m2�ðl − qÞ2
�
gσν −

lσlν

l2

��
pα −

p · ðlþ rÞðlþ rÞα
ðlþ rÞ2

�
; ðA3Þ

where Γð0Þ
μσα ¼ ð2rþ lÞαgμσ − ð2lþ rÞμgασ þ ðl − rÞσgμα.

For numerical purposes, the mass appearing in the one-
loop massive calculation will be fixed m2 ¼ 0.15 GeV2.
This value coincides with the dynamical gluon mass at zero
momentum, namely the value of Δ−1ð0Þ, for μ ¼ 4.3 GeV
[see Eqs. (4.1) and (4.3)].
Below we summarize the results (in Euclidean space)

obtained after introducing the Feynman parametrization
and using PACKAGE-X [103,104].
(1) Soft gluon limit: To derive this configuration, we set

r → 0 directly into Eqs. (2.3) and (A2). It is
straightforward to see that in this limit the tensorial

structure of Hð1Þ
νμ ðq; 0Þ given by (2.3) reduces to

Hð1Þ
νμ ðq;−q; 0Þ ¼ Að1Þ

1 ðq;−q; 0Þgμν
þ Að1Þ

2 ðq;−q; 0Þqμqν; ðA4Þ

and the form factors become
(a) One loop:

Að1Þ
1 ðq;−q;0Þ ¼ 1; Að1Þ

2 ðq;−q;0Þ ¼ −
3CAαs
16πq2

:

ðA5Þ

Then, the one-loop result for Bð1Þ
1 ðq;−q; 0Þ may

be directly obtained using Eq. (2.8).
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(b) One-loop massive:

Að1MÞ
1 ðq;−q; 0Þ ¼ 1 −

CAαs
192πm4q4

�
ð10m8 þ 8m6q2Þ ln

�
m2

m2 þ q2

�
þ 10m6q2

þ3m4q4 þ 2m2q6 þ ð4m2q6 − 2q8Þ ln
�

q2

m2 þ q2

��
;

Að1MÞ
2 ðq;−q; 0Þ ¼ −

CAαs
96πm4q6

�
20m6q2 þ 15m4q4 þ q6ð4q2 −m2Þ ln

�
q2

m2

�

þð20m8 þ 25m6q2 −m2q6 þ 4q8Þ ln
�

m2

m2 þ q2

�
þ 4m2q6

�
: ðA6Þ

Evidently, in the limitm → 0, one recovers the one-loop results given by Eq. (A5). Moreover, in the infrared limit
q → 0, Eq. (A6) reduces to

lim
q2→0

Að1MÞ
1 ðq;−q; 0Þ ¼ 1;

lim
q2→0

Að1MÞ
2 ðq;−q; 0Þ ¼ CAαs

576πm2

�
6 ln

�
q2

m2

�
− 59

�
: ðA7Þ

Therefore, in the massive one-loop analysis, one finds that Að1MÞ
1 is infrared finite, whereas Að1MÞ

2 displays a
logarithmic divergence.

(2) Soft antighost limit: This limit is obtained by setting q ¼ 0. The one-loop expression for Hð1Þ
νμ becomes

Hð1Þ
νμ ð0;−r; rÞ ¼ Að1Þ

1 ð0;−r; rÞgμν þ Að1Þ
3 ð0;−r; rÞrμrν; ðA8Þ

with the two form factors given by
(a) One loop:

Að1Þ
1 ð0;−r; rÞ ¼ 1þ 11CAαs

32π
; Að1Þ

3 ð0;−r; rÞ ¼ 11CAαs
32πr2

: ðA9Þ

(b) One-loop massive:

Að1MÞ
1 ð0;−r; rÞ ¼ 1 −

CAαs
192πm6r4

�
2m8r2 − 23m6r4 þ r6ð2m4 − 6m2r2 þ r4Þ ln

�
r2

m2

�

þ ðr9 − 6m2r7 − 40m4r5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ r2

p
ln

�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2r2 þ r4

p
þ r2Þ

2m2
þ 1

�

þ2ðm2 þ r2Þ2ðm6 − 13m4r2 − 7m2r4 þ r6Þ ln
�

m2

m2 þ r2

��
;

Að1MÞ
3 ð0;−r; rÞ ¼ −

CAαs
192πm6r6

�
8m8r2 − 20m6r4 þ 6m4r6 þ r6ð8m4 þ r4Þ ln

�
r2

m2

�

þ ðr9 − 6m2r7 − 40m4r5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ r2

p
ln

�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2r2 þ r4

p
þ r2Þ

2m2
þ 1

�

þ2ðm2 þ r2Þ2ð4m6 − 16m4r2 − 4m2r4 þ r6Þ ln
�

m2

m2 þ r2

��
: ðA10Þ
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Note that, when we take the limit of m → 0 in
the above expressions, we recover the one-loop
result given in Eq. (A9). Moreover, in the limit
q → 0, the form factors of Eq. (A10) reduce to

lim
r2→0

Að1MÞ
1 ð0;−r; rÞ ¼ 1;

lim
r2→0

Að1MÞ
3 ð0;−r; rÞ ¼ −

CAαs
288πm2

×

�
12 ln

�
r2

m2

�
− 31

�
;

ðA11Þ

where we confirm that Að1MÞ
1 is infrared finite,

while Að1MÞ
3 is logarithmically divergent.

(3) Symmetric configuration: This kinematic limit is
defined in (4.8); in this case all form factors survive,
and are given by
(a) One loop:

Að1Þ
1 ðQÞ ¼ 1þ CAαs

96π
½9þ I�;

Að1Þ
2 ðQÞ ¼ −

CAαs
48πQ2

½4þ I�;

Að1Þ
3 ðQÞ ¼ CAαs

96πQ2
½4þ 9I�;

Að1Þ
4 ðQÞ ¼ CAαs

48πQ2
½1þ 2I�;

Að1Þ
5 ðQÞ ¼ CAαs

48πQ2
½−2þ I�; ðA12Þ

where I is a constant [110] defined as

I ¼ 1

3

�
ψ1

�
1

3

�
− ψ1

�
2

3

��
¼ 2.343 91; ðA13Þ

with ψ1ðzÞ being the “trigamma function,” ex-
pressed in terms of the standard ΓðzÞ function as

ψ1ðzÞ ¼
d2

dz2
ln½ΓðzÞ�; ðA14Þ

and it has the following special values:

ψ1

�
1

3

�
¼ 10.0956; ψ1

�
2

3

�
¼ 3.063 88:

ðA15Þ

(b) One-loop massive:
The resulting expressions for the one-loop

massive case are rather lengthy and will not be
reported here. However, their infrared limits as
q → 0 are given by

lim
Q2→0

Að1MÞ
1 ðQÞ¼1;

lim
Q2→0

Að1MÞ
2 ðQÞ¼ CAαs

576πm2

�
6ln

�
Q2

m2

�
−65

�
;

lim
Q2→0

Að1MÞ
3 ðQÞ¼−

CAαs
144πm2

�
6ln

�
Q2

m2

�
−23þ3I

�
;

lim
Q2→0

Að1MÞ
4 ðQÞ¼ CAαs

48πm2
;

lim
Q2→0

Að1MÞ
5 ðQÞ¼−

CAαs
192πm2

�
6ln

�
Q2

m2

�
−1þ4I

�
:

ðA16Þ
Therefore, for the one-loop massive case, one

finds that Að1MÞ
1 and Að1MÞ

4 are infrared finite,

while Að1MÞ
2 , Að1MÞ

3 , and Að1MÞ
5 are logarithmically

divergent.

APPENDIX B: EXPLICIT EXPRESSIONS
FOR THE Ai

We write the Ai as the sum of their tree-level value and
the contributions from ðd1Þνμ and ðd2Þνμ, so that Ai ¼
Að0Þ
i þ Aðd1Þ

i þ Aðd2Þ
i , where Að0Þ

1 ¼ 1 and Að0Þ
i ¼ 0 for

i ¼ 2, 3, 4, 5.
We then introduce new kinematic variables s ¼ q − l,

t ¼ −l − p, u ¼ −p − q, and v ¼ −lþ pþ q, the inner
products a1 ¼ l · p, a2 ¼ l · q, and a3 ¼ p · q, together
with the combinations

T1 ¼ hpq þ 3ðp2 þ a3Þ2; T2 ¼ hpq þ 3ðq2 þ a3Þ2;
T3 ¼ −p2q2 þ p4 − 2a3ðq2 þ a3Þ; T4 ¼ −p2q2 þ q4 − 2a3ðp2 þ a3Þ;
T5 ¼ p2a22 þ q2a21 − 2a1a2a3: ðB1Þ

Moreover, as a shorthand expedient, we will denote the arguments of several functions as a super/subscript, i.e., fðx; y; zÞ ¼
fxyz or fðx; y; zÞ ¼ fxyz.
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Then, the action of the projectors (3.8) on diagram ðd1Þνμ gives

Aðd1Þ
1 ¼ ig2CA

4

Z
l
Kðd1Þ

�
a1½hpql2 − T5�

hpql2

�
;

Aðd1Þ
2 ¼ −

ig2CA

4

Z
l

Kðd1Þ

h2pql2
fhpql2½a1ð4a3 þ p2 þ 3q2Þ − 2a2ða3 þ p2Þ þ 2hpq�

− a1½a22hpq − 2a2ðp2ð3a1a3 þ 2a1q2 þ hpqÞ þ a3ð4a1a3 þ 3a1q2 þ hpqÞÞ
þa1ðq2ð6a1a3 þ a1p2 þ 3a1q2 þ 2hpqÞ þ 2a3ða1a3 þ hpqÞÞ þ 3a22ða3 þ p2Þ2�g;

Aðd1Þ
3 ¼ ig2CA

4

Z
l

Kðd1Þ

h2pql2
f3a31q4 þ a1q2½a2ða2p2 − 6a1a3Þ − 3hpql2�þ2a2a3ða1a2a3 þ hpql2Þg;

Aðd1Þ
4 ¼ −

ig2CA

4

Z
l

Kðd1Þ

h2pql2
fhpql2½3a1ða3 þ q2Þ − 2a2ða3 þ p2Þ þ 2hpq�

þ a1½−a1q2ð3a1a3 þ 3a1q2 − 6a2a3 þ 2hpqÞ þ 2a2a3ð2a1a3 − a2a3 þ hpqÞ−a2p2ðq2ða2 − 2a1Þ þ 3a2a3Þ�g;

Aðd1Þ
5 ¼ ig2CA

4

Z
l

Kðd1Þ

h2pql2
fa1½a2ða2 − 2a1Þð3a23 þ hpqÞ þ 3a1q2ða1a3 þ a1q2 − 2a2a3Þ

þ 3a22a3p
2� − hpql2½a3ða1 − 2a2Þ þ 3a1q2�g; ðB2Þ

where

Kðd1Þ ¼ Δðl2ÞFðt2ÞFðs2ÞB1ðs;−t; uÞV1ðl; q; p; rÞ
s2t2

: ðB3Þ

Turning to diagram ðd2Þνμ, all Aðd2Þ
i may be cast in the common form

Aðd2Þ
i ¼ ig2CA

2

Z
l

KluvSluvi þKuvlSuvli þKvluSvlui

h2pql2
; ðB4Þ

where

Kxyz ¼
Δðl2ÞΔðv2ÞFðs2ÞV2ðl; q; p; rÞX1

xyz

s2v2
: ðB5Þ

Then, the Si are given by

Sluv1 ¼ −hpqfa1½ða3 þ q2ÞðT5 þ hpql2Þ − a2ðl2ð2a3ða3 þ p2Þ þ hpqÞ þ T5Þ�
þ a21½a3l2ða3 þ q2Þ − T5� þ ða3 þ p2Þ½−a2T5 þ a2l2ða2p2 − hpqÞ þ hpql4�g;

Suvl1 ¼ −hpqða1 þ a2Þð−a1 þ a3 þ p2Þ½hpql2 − T5�;
Svlu1 ¼ −hpqfT5½a21 þ a1ða2 − a3 − q2Þ þ a2ða3 þ p2Þ� þ a1hpql4

− l2½a21ðhpq − 2a2a3Þ þ a1q2ða21 − hpqÞ þ a1hpqða2 − a3Þ þ a2p2ða1a2 þ hpqÞ þ a2a3hpq�g;
Sluv2 ¼ −a41T2 þ a31½3a2ð2a3ða3 þ p2Þ þ p2q2 − q4Þ þ ða3 þ q2Þð3ða3 þ q2Þ2 þ hpqÞ�

− a21½3a22T3 þ a2ðq2ð20a23 þ 17a3p2 þ p4Þ þ 2a23ð5a3 þ 4p2Þ þ q4ð9a3 þ 7p2ÞÞ
− l2ð3a3ð3q2ða3 þ p2Þ þ a3p2 þ q4Þ þ 2hpqðp2 þ 2q2ÞÞ� þ ðl2 − a2Þða3 þ p2Þ½a22T1

− hpql2ð2a3 þ p2 þ q2Þ� − a1½a32T1 þ hpql2ða3 þ q2Þð2a3 þ p2 þ q2Þ
− a22ðp2ð20a23 þ 17a3q2 þ q4Þ þ 2a23ð5a3 þ 4q2Þ þ p4ð9a3 þ 7q2ÞÞ
þ a2l2ðp2ð15a23 þ 8a3q2 − q4Þ þ a23ð10a3 þ 7q2Þ þ 3p4ð2a3 þ q2ÞÞ�;
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Suvl2 ¼ a21½3a22T3 þ a2ð6a3p4 þ p2ð15a23 þ 9a3q2 − hpqÞ þ hpqð5q2 − 2a3Þ − 3a3q2ða3 þ q2ÞÞ
− hpqðl2ð4a3 þ p2 þ 3q2Þ þ 2ða3 þ q2Þðpþ qÞ2Þ� þ a31½q4ð3a2 − 3a3 þ p2Þ
− q2ð3p2ða2 þ a3Þ þ 10a23 þ p4Þ − 2a3ðp2ð3a2 þ a3Þ þ 3a3ða2 þ a3ÞÞ� þ a41T2

þ a1½a32T1 þ a22ðp2ð14a23 þ 5a3q2 þ 4q4Þ þ 2a23ð5a3 þ q2Þ − p4ð3a3 þ 5q2Þ − 3p6Þ
þ a2hpqðl2ð−2a3 þ p2 − 3q2Þ þ 2ðp2 − q2Þðpþ qÞ2Þ þ hpql2ða3 þ p2Þðpþ qÞ2�
þ a2ða3 þ p2Þ½ðpþ qÞ2ðhpql2 þ 2a2hpq − 3a22p

2Þ þ 2a2hpqðl2 − a2Þ�; ðB6Þ

Svlu2 ¼ a41T2 þ a31½3a2T4 − ða3 þ q2Þð3ða3 þ q2Þ2 þ hpqÞ� þ a21a2½3a2T3 þ 2a23ð5a3 þ 4p2Þ
þ q4ð9a3 þ 7p2Þ� þ l2½a1ða2hpqð−2a3 þ 3p2 − 5q2Þ þ 3hpqða3 þ q2Þðpþ qÞ2 − a22T1Þ
þ a21ðp2ð6a2a3 þ 4a2q2 − hpqÞ þ q2ð6a2a3 − 5hpqÞ þ 2a3ð4a2a3 − 3hpqÞÞ − a31T2

þ a2hpqða3 þ p2Þð4a2 − 3ðpþ qÞ2Þ� þ a1a22½a2T1 − 2a23ð5a3 þ 4q2Þ − p4ð9a3 þ 7q2Þ�
þ a1a2½20a23ða1q2 − a2p2Þ þ 17a3p2q2ða1 − a2Þ þ p2q2ðp2a1 − q2a2Þ�
þ hpql4½a1ð4a3 þ p2 þ 3q2Þ − 2a2ða3 þ p2Þ� þ a32T1ða3 þ p2Þ;

Sluv3 ¼ 3a31q
6 − 2a22a

2
3½a21 þ a1a2 − a1a3 þ a2a3 þ a2p2 − l2ða3 þ p2Þ�

− a1q4½3a1ða21 þ a1a2 − a1a3 þ 3a2a3Þ þ l2ð−3a1a3 − 3a1p2 þ hpqÞ − a22p
2�

− q2½−l2ðhpqða21 þ a1ða2 − a3Þ þ a2a3Þ þ a2p2ð−6a1a3 þ a2a3 þ a2p2 þ hpqÞ
− 6a1a2a23Þ þ hpql4ða3 þ p2Þ þ a2ða2p2ða21 þ a1a2 − 7a1a3 þ a2a3 þ a2p2Þ
þ a1ða23ð9a1 − 8a2Þ − 6a1a3ða1 þ a2Þ þ 3a1hpqÞÞ�;

Suvl3 ¼ ða1 þ a2Þ½2a2ða23ða1a3 þ hpqÞ þ q2ða3ða1ða3 − 3a1Þ þ hpqÞ þ 2a1p2ða3 þ q2ÞÞÞ
− a1q2ðq2ða1ð−3a1 þ 3a3 þ p2Þ þ 2hpqÞ þ 2a3ða1a3 þ hpqÞÞ
þ a22ðða1 − p2Þð3a23 þ hpqÞ − 3a33 − 5a3hpqÞ� þ 2h2pql4 þ l2½q2ða1a23ð5a1 þ 3a2Þ
þ a3hpqð3a1 þ a2Þ þ 2h2pqÞ þ 2a3ð−a2a23ð2a1 þ a2Þ þ h2pq þ a3hpqða1 þ a2ÞÞ
þ p2ðq2ð2a2a3ð2a1 þ a2Þ þ hpqða1 − 3a2Þ − a1q2ð5a1 þ 3a2ÞÞ − 2a2a3hpqÞ�;

Svlu3 ¼ −3a31q6 þ q2½a2p2ða21ða2 þ a3Þ þ a1ða22 − 6a2a3 − hpqÞ þ a22a3 þ a22p
2Þ

þ a1a3ða21ða3 − 6a2Þ þ a1ð−6a22 þ 7a2a3 þ hpqÞ − 2a2ð4a2a3 þ hpqÞÞ�
þ a2a3½a3ða21ð2a2 − a3Þ þ a1ð2a22 − 3a2a3 − hpqÞ þ a2ð2a2a3 þ hpqÞÞ
þ a2p2ð2a2a3 þ hpqÞ� þ l2½−a3ða1a3ða2ð2a2 þ a3Þ þ hpqÞ þ ð2a2a3 þ hpqÞ2Þ
þ q2ð3a1q2ðhpq − a21Þ þ p2ða1ða2ða3 − a2Þ þ hpqÞ − a1q2ð2a1 þ 5a2Þ þ a2ð4a2a3 þ hpqÞÞ
þ 3a3hpqða1 − a2Þ þ a1a3ð2a1ð3a2 þ a3Þ þ 5a2a3Þ − h2pqÞ� þ a1q4½−p2ða1 − a2Þ2
þ a1ð−3a3ða1 − 3a2Þ þ 3a1ða1 þ a2Þ þ hpqÞ� − hpql4ð−3a1q2 þ 2a2a3 þ hpqÞ; ðB7Þ

Sluv4 ¼ −½a21 þ a1ða2 − a3 − q2Þ þ a2ða3 þ p2Þ�½a22ð3a3ða3 þ p2Þ þ hpqÞ
− 2a1a2ð3a3ða3 þ q2Þ þ hpqÞ þ 3a21q

2ða3 þ q2Þ� − hpql4ða3 þ p2Þða3 þ q2Þ
− l2½a1ða3 þ q2Þðq2ð−3a1a3 − 4a1p2 þ hpqÞ þ a3ða1a3 þ hpqÞÞ
þ a2ð−p2ðq2ð−7a1a3 þ a1q2 þ hpqÞ þ a3ðhpq − 4a1a3ÞÞ
þ a3ðq2ð7a1a3 − hpqÞ þ a3ð5a1a3 − hpqÞÞ þ 2a1p4q2Þ
− a22ða3 þ p2Þð3a3ða3 þ p2Þ þ hpqÞ�;

NONPERTURBATIVE STRUCTURE OF THE GHOST-GLUON KERNEL PHYS. REV. D 99, 034026 (2019)

034026-23



Suvl4 ¼ 2h2pql4 þ ða1 þ a2Þ½a1q2ða3ð3a21 − 7a1a3 − 4hpqÞ þ p2ð−3a1a3 þ a1q2 − 2hpqÞ
þ q2ð3a1ða1 − a3Þ − 2hpqÞÞ þ a22ð2a1a23 þ a1p2ð3a3 þ q2Þ − hpqð2a3 þ p2Þ
− 3a3p2ð2a3 þ p2 þ q2ÞÞ þ 2a2ða3ð2a3ð−a21 þ 2a1a3 þ hpqÞ þ p2ð2a1a3 þ hpqÞÞ
þ q2ða1ðða3 þ p2Þ2 − a1ð3a3 þ p2ÞÞ þ a3hpqÞ þ 2a1p2q4Þ�
þ l2½q2ð−5a21hpq þ 3a1a3ða2a3 þ hpqÞ þ hpqða2a3 þ 2hpqÞÞ − 3a1a2a33

þ a3hpqð−3a21 þ 7a1a3 þ a2ð2a2 þ 3a3ÞÞ − 2a2p4ðhpq − a1q2Þ þ 4a3h2pq

− p2ðq2ð−3a1a2a3 þ 3a1a2q2 þ a1hpq þ 3a2hpqÞ þ a1a3ð2a2a3 − 3hpqÞ
þ hpqð3a2a3 − 2hpqÞÞ�;

Svlu4 ¼ ½a21 þ a1ða2 − a3 − q2Þ þ a2ða3 þ p2Þ�½3a21q2ða3 þ q2Þ − 2a1a2ð3a3ða3 þ q2Þ þ hpqÞ
þ a22ð3a3ða3 þ p2Þ þ hpqÞ� − l2½a21ðq2ð3hpq − 2a2ð3a3 þ p2ÞÞ þ a3ð3hpq − 4a2a3ÞÞ
þ a1ða22ð3a3ða3 þ p2Þ þ hpqÞ þ a2ð3a3 − 2p2 þ 5q2Þhpq − 3hpqða3 þ q2Þ2Þ
þ 3a31q

2ða3 þ q2Þ þ a2hpqða3 þ p2Þð3ða3 þ q2Þ − 4a2Þ�
− hpql4½2a2ða3 þ p2Þ − 3a1ða3 þ q2Þ�;

Sluv5 ¼ −½a21 þ a1ða2 − a3 − q2Þ þ a2ða3 þ p2Þ�½−2a1a2ð3a3ða3 þ q2Þ þ hpqÞ
þ 3a21q

2ða3 þ q2Þ þ a22ð3a3ða3 þ p2Þ þ hpqÞ� − hpql4ða3 þ p2Þða3 þ q2Þ
− l2½a2ð−p2ðq2ð−7a1a3 þ a1q2 þ hpqÞ þ a3ðhpq − 4a1a3ÞÞ þ 2a1p4q2

þ a3ðq2ð7a1a3 − hpqÞ þ a3ð5a1a3 − hpqÞÞÞ − a22ða3 þ p2Þð3a3ða3 þ p2Þ þ hpqÞ
þ a1ða3 þ q2Þðq2ð−3a1a3 − 4a1p2 þ hpqÞ þ a3ða1a3 þ hpqÞÞ�; ðB8Þ

Suvl5 ¼ ða1 þ a2Þf3a31q2ða3 þ q2Þ − a21ð2a2 þ a3 þ q2Þ½2a23 þ q2ð3a3 þ p2Þ�
þ a1½a22ð3a3ða3 þ p2Þ þ hpqÞ þ 2a2ða3 þ q2Þð3a3ða3 þ p2Þ þ 2hpqÞ
þ ða3 þ q2Þð−3l2hpq − 2hpqða3 þ q2ÞÞ� − ða3 þ p2Þ½l2ða3ð2a2a3 − hpqÞ
− q2ð2a2p2 þ hpqÞÞ þ a2ð2hpqða2 − a3 − q2Þ þ 3a2p2ða3 þ q2ÞÞ�g;

Svlu5 ¼ −a31½q2ð3q2ð−a2 þ 2a3 þ q2Þ þ 3a3ða2 þ a3Þ þ 2a2p2 þ hpqÞ þ a3ð4a2a3 þ hpqÞ�
− a21½−a2ð4a33 þ p2ð5a3q2 þ hpq þ 4q4Þ þ a3q2ð14a3 þ 9q2ÞÞ − hpqða3 þ q2Þ2
þ a22ð3a3ða3 − p2 þ 2q2Þ þ hpqÞ� − l2½a3ð2a2a3ð−2a21 þ a1ða2 þ a3Þ þ 2a2a3Þ
þ a2p2ð3a1a2 − a1a3 þ 3hpqÞ þ a3hpqða1 þ 7a2ÞÞ þ a1q4ð3a21 þ p2ð4a1 þ 5a2Þ − 3hpqÞ
þ h2pqðpþ qÞ2 − q2ðp2ð2a21a2 − a1a2ða2 þ p2Þ þ 4a1hpq þ a2hpqÞ þ a1a23ð4a1 þ 5a2Þ
þ a3ð−3a31 þ 6a21a2 þ 2a2p2ða1 þ 2a2Þ þ 6a1hpq − 3a2hpqÞÞ� þ 3a41q

2ða3 þ q2Þ
− a1a2½a2p2ð8a23 þ 11a3q2 þ q4 þ p2q2Þ þ a2a23ð7a3 þ 8q2Þ − a22ð3a3ða3 þ p2Þ þ hpqÞ
þ 2hpqða3 þ p2Þða3 þ q2Þ� þ hpql4½a3ða1 − 2a2 þ a3Þ þ q2ð3a1 − p2Þ�
þ a22ða3 þ p2Þ½a2ð3a3ða3 þ p2Þ þ hpqÞ þ hpqða3 þ p2Þ�: ðB9Þ

Finally, it is understood that, for the numerical evaluation of the above expressions, all relevant quantities are to be
replaced by their “input” expressions, namely ΔinðqÞ, Xin

1 ðr; t;lÞ, FinðqÞ, and Bin
1 ðQÞ, introduced in Sec. IV.
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