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Within the context of an extended Nambu–Jona-Lasinio model, we analyze the role of the axial-vector
a1ð1260Þ and a1ð1640Þmesons in the decay τ → ντρ

0π−. The contributions of pseudoscalar π and πð1300Þ
states are also considered. The form factors for the decay amplitude are determined in terms of the masses
and widths of these states. To describe the radial excited states πð1300Þ and a1ð1640Þ we introduce two
additional parameters which can be estimated theoretically, or fixed from experiment. The decay rate and
ρπ mass spectrum are calculated.
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I. INTRODUCTION

Semihadronic decay modes of the tau lepton remain to
present date a topic of interest to theoreticians as well as
experimentalists [1]. One mode of particular interest is the
decay τ → ντπ

þπ−π−. This decay is governed by the axial-
vector hadronic current jAμ and gives a unique possibility to
scrutinize our understanding of chiral dynamics in the energy
range of 1–2 GeV, where perturbative QCD methods are
not applicable. There are several resonances at these energies
with quantum numbers JPC ¼ 0−þ; 0þþ; 1þþ; 2þþ. The
nature of some of these states is not yet well understood.
The specific mode τ → ντρ

0π− → ντπ
þπ−π−, which is

the main subject of our present investigation, is most
suitable to study the role of 0−þ and 1þþ states in the
hadronization process. Besides the pion, these are
πð1300Þ, a1ð1260Þ, and a1ð1640Þ resonances. In the
Nambu–Jona-Lasinio (NJL) model a1ð1260Þ is consid-
ered to be a member of the basic axial-vector nonet, i.e.,
a1ð1260Þ is a pure qq̄ state, with a1ð1640Þ being its
first radial excitation. The pseudoscalar πð1300Þ is the
first radial excitation of the pion. One of our goals
here is to clarify the role of these resonances in the
τ → ντρ

0π− decay.
In fact, the considered qq̄ picture agrees with the leading

order of the 1=Nc expansion (at large Nc, where Nc is the
number of colors, mesons are pure qq̄ states, rather than, for
instance, qqq̄ q̄ [2,3]). Of course, a more detailed descrip-
tion of these states would require implementation of mixing

scenarios, in which the qq̄ components mix with the
four-quark components. This step requires to take into
account the next to leading order 1=Nc corrections and will
not be considered here. Let us also notice that for the
a1ð1260Þ axial-vector meson, there is no established
understanding whether it is a quark-antiquark state or
dynamically generated hadronic molecule [4–6]. Thus, it
is useful to study how far one can go with the qq̄ picture
of a1ð1260Þ.
Another goal of this work is to attract the attention of

experimentalists to the important information contained in
the specific mode τ → ντρ

0π− → ντπ
þπ−π−, which is

shown to be sensitive only to the a1ð1260Þ and
a1ð1640Þ contributions. The experimental data on the
spectral function (see Fig. 3) would clarify the specific
role of the a1ð1640Þ state. It is quite difficult to study the
a1ð1260Þ − a1ð1640Þ interference through the fit of the 3π
invariant mass spectra of the τ → ντπ

þπ−π− mode, because
the corresponding amplitude has too many parameters to fit
[7]. The major subprocess of the channel τ → ντρ

0π− →
ντπ

þπ−π− is the τ → ντρ
0π− decay. The amplitude of this

three-particle decay has much less number of parameters.
The relevant approximation to this question is the 1=Nc

expansion which provides the solid theoretical grounds for
the description of the qq̄ resonance states. In accord with
this idea, all qq̄ meson states (including qq̄-resonances) are
stable, free, and noninteracting at Nc ¼ ∞. It is from the
point of view of the 1=Nc expansion the theoretical idea
about an on shell ρð770Þ state makes the sense, and the
τ → ντρ

0π− decay amplitude, at leading order, can be
described by the tree Feynman diagrams.
The τ → ντρ

0π− → ντπ
þπ−π− mode contains the all

necessary information about the τ → ντρ
0π− decay, that

relates our study to the experiment. For instance, the
sequential decay formula [8] which is correct in the narrow
width approximation
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Γðτ → ντρ
0π− → ντπ

þπ−π−Þ
¼ Γðτ → ντρ

0π−ÞBrðρ0 → πþπ−Þ ð1Þ

and the fact that the ρ0 decays into πþπ− to hundred percent
yield Γðτ → ντρ

0π−Þ ¼ Γðτ → ντρ
0π− → ντπ

þπ−π−Þ.
Since the latter value can be extracted from the data on
τ → ντπ

þπ−π−, the theoretical estimate of Γðτ → ντρ
0π−Þ

has a definite sense {e.g., recently Ref. [9], the theoretical
result for Γðη0 → ργÞ has been used to quantify
Γðη0 → ργ → πþπ−γÞ}. It is necessary to notice that a
similar situation occurs for the τ → ντρ

0K− decay, where
the sequential decay mode τ → ντρ

0K− → ντπ
þπ−K− has

already been measured {the PDG quoted value is BrðΓðτ →
ντρ

0K− → ντπ
þπ−K−ÞÞ ¼ ð1.4� 0.5Þ × 10−3 [10]}. The

measurement of the BrðΓðτ → ντρ
0π− → ντπ

þπ−π−ÞÞ will
not only fill the gap in the existing data, but, as it is shown
in this work, will clarify the role of the a1ð1640Þ resonance
in the underlying chiral dynamics.
In the NJL model, there is a nonlocal extension which

deals with the excited states of the 0−þ; 0þþ; 1−− and 1þþ
ground state nonets [11,12]. The nonlocal four-quark
interactions lead to the nonlocal effective meson
Lagrangian which describes the physics of these excited
states. Nonetheless, here we will apply a more modest
description, which should ideally arise from Refs. [11,12]
in the large Nc limit, namely we suppose that excited states
at leading 1=Nc order can be described by the local
Lagrangian, like, for instance, in the extended linear sigma
model approach [13]. In this case the propagators of excited
states have the same form as the ground state propagators,
but with different couplings to the weak axial-vector
current. Such a simplified treatment of exited states is
not new. Notably, it is exactly how the contribution to the
τ → ντπππ amplitude from the vector ρð1450Þ resonance
exchange has been estimated in Ref. [14].
One of the first theoretical studies of the role of the

a1ð1260Þ axial-vector state in the τ → ντρ
0π− decay is

presented in Ref. [15], where the current algebra sum rules
have been used to clarify whether experimental data are
compatible with a contribution of the a1ð1260Þ resonance
to the τ → ντρ

0π− decay mode. This decay has been also
considered in Ref. [16], where the a1ð1260Þ dominance has
been revealed. There is no doubt, nowadays, about the
dominant role of a1ð1260Þ in this process. However, we
still need to understand the nature and parameters of the
a1ð1260Þ resonance. Besides that, the role of its radial
excited state a1ð1640Þmust be clarified. The measurements
of the branching ratio and ρ0π− mass spectrum can provide
insight into the issue.
In this paper we calculate the τ → ντρ

0π− decay ampli-
tude in the framework of NJL model with SUð2Þ × SUð2Þ
chiral symmetry. The first attempt to use the NJL approach
to study this decay was made in Ref. [17], where the
finite terms in the derivative expansion of quark loops

corresponding to vertices a1ρπ and ρππ have been taken
into account. Though the analysis in Ref. [17] allows us to
reproduce the experimental value of the τ → ντρ

0π− decay
width (mainly due to the contribution of finite terms) the
procedure of extracting these finite terms, used in Ref. [17],
is not compatible with the chiral symmetry restrictions
imposed on such contributions by the chiral invariant
Schwinger-DeWitt expansion at large distances (the con-
sistent Schwinger-DeWitt approach requires also to take
into account the finite terms of self-energy diagrams which
will redefine the coupling constants of the theory, what has
not been done there). As opposed to this, we do not
consider here the contributions of the problematic finite
terms, but show instead that the decay can be described by
the standard effective meson Lagrangian [18–20] provided
the first radial excitations πð1300Þ and a1ð1640Þ are taken
into account.
The material of the paper is presented in the following

way. In Sec. II we describe the relevant meson vertices of
the effective Lagrangian, obtain the amplitude of the τ →
ντρ

0π− decay, and discuss the partial conservation of the
axial-vector current (PCAC). This important relation
should be fulfilled in the chiral approach. In Sec. III the
radial excited states are considered. We show that the
inclusion of these states can be done without contradiction
with the PCAC condition. In Sec. IV we introduce the
momentum dependent widths of the resonances and cal-
culate the differential decay width of the process. In Sec. V
the results of our numerical calculations are presented in
Tables I and II and Fig. 3. We conclude with Sec. VI.

II. LAGRANGIAN AND AMPLITUDE

Our starting point is the effective meson Lagrangian
obtained on the basis of the NJL model with the global
Uð2ÞR ×Uð2ÞL chiral symmetric four-quark interactions
which also possesses the gauge SUð2ÞL ×Uð1ÞR symmetry
of the electroweak interactions. For convenience, we refer
to the paper [21] which contains all necessary details
related with the obtention of such effective Lagrangian.
The appropriate weak hadronic part of the Lagrangian

density is

L ¼ −GFVudlμ

�
m2

ρ

gρ
aþ1μ þ fπ∂μπ

þ
�
þ H:c:; ð2Þ

where GF is the Fermi constant, Vud ≃ cos θc is an element
of the Cabibbo-Kobayashi-Maskawa matrix, θc ¼ 13° is
the Cabibbo angle, lμ ¼ ν̄τγ

μð1 − γ5Þτ is the weak charged
lepton current,mρ is the mass of the ρð770Þmeson, gρ is the
coupling which arises due to a redefinition of the spin-1
fields, fπ ¼ 92 MeV is the pion decay constant.
Notice that the Lagrangian density (2) has the standard

form of the axial-vector dominance, i.e., it does not have a
contact term ∼ρ0πþ. In the covariant formulation [21] the
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corresponding part of the hadronic weak axial-vector
current jAμ is proportional to πþðρ0μ − ∂νρ

0
μν=m2

ρÞ. This
factor is zero on the mass shell of the ρ-meson. This does
not mean that the matrix element hρπjjAμ j0i has no contact
part. Hereafter, in Eq. (7), it is clear that it does (see the first
term ∼gμν). This term is effectively originated by the
a1-exchange contribution hρπja1iha1jjAμ j0i. Thus the fact
that the on shell ρð770Þ cancels the direct term ∝ ρπ in jAμ is
a part of the fundamental mechanism which is responsible
for the PCAC relation in the model.
The hadronic weak axial-vector current jAμ in formula (2)

can be also obtained in the standard noncovariant approach
[22] by using the variational method of Gell-Mann and
Lévy [23,24]. However, it requires some work, because the
direct application of this technique leads only to the pion
exchange. To arrive at the axial-vector dominance one
should use the Lagrangian equations for the axial-vector
field, and after that neglect the total derivatives of the
antisymmetric tensors. Another way to obtain the
Lagrangian density (2) is described in Ref. [25].
Thus we need only two additional vertices to find the

amplitude of the τ → ντρ
0π− decay. This is the a1ρπ vertex

La1ρπ ¼
i
4
Zfπg2ρtr

�
aμ½ρμ; π�

þ 1

m2
a1

ðρμν½aμ; ∂νπ� þ aμν½ρμ; ∂νπ�Þ
�
; ð3Þ

where ρμν ¼ ∂μρν − ∂νρμ, Z ¼ ð1 − 6m2=m2
a1Þ−1, m is the

mass of the constituent quark; ma1 ¼
ffiffiffiffi
Z

p
mρ is the mass of

the a1ð1260Þ meson; it is assumed that all fields are
contracted with Pauli matrices, for instance, π ¼ πiτi,
and trace is calculated over products of tau-matrices.
Notice that the Lagrangian density (3) obtained in the
covariant approach [21] coincides with the result of the
standard noncovariant approach [22].
The second vertex that we need, in the covariant

approach, is given by the Lagrangian density

Lρππ ¼
−igρ
4m2

ρ

�
Z þ 1

Z

�
trf∂μρν½∂μπ; ∂νπ�g: ð4Þ

On the mass shell of the ρ-meson it yields

Lρ-mass
ρππ ¼ igρ

8

�
Z þ 1

Z

�
trfρμ½∂μπ; π�g: ð5Þ

Now we have all necessary ingredients to find the
amplitude A of the τðQÞ → ντðQ0Þ þ ρ0ðpÞ þ π−ðqÞ decay,
where Q;Q0; p and q are the 4-momenta of the particles.
The corresponding Feynman diagrams are shown in Figs. 1
and 2.

In this way we have

A ¼ −iGFVudgρfπν̄τðQ0Þγμð1 − γ5ÞτðQÞFμ; ð6Þ

where the pure hadronic part is given by the 4-vector

Fμ¼
�
gμνþm2

ρ

gμν−
kμkν
m2

a1

m2
a1 −k2

þ
�
1þ 1

Z

�
kμkν

m2
π−k2

�
ϵ�νðpÞ: ð7Þ

Here ϵνðpÞ is a polarization vector of the ρ-meson, and
k ¼ qþ p. The invariant subsidiary condition on the
components of the vector state is assumed pνϵνðpÞ ¼ 0.
Notice that

kμFμ ¼
�
1þ m2

ρ

m2
a1

þ Z þ 1

Z
k2

m2
π − k2

�
kνϵ�νðpÞ

¼ Z þ 1

Z
m2

π

m2
π − k2

kνϵ�νðpÞ; ð8Þ

i.e., kμFμ ¼ hπρj∂μjAμ j0i is dominated by the pion pole in
accord with PCAC.
We further stress the presence of a contact contribution in

Eq. (7). The first term with gμν results from the diagram of
Fig. 1. Its appearance is partly due to the first term of the
Lagrangian density (3).
The most general Lorentz-covariant form of Fμ is

Fμ ¼ ϵ�μðpÞF0 þ ðpþ qÞμðϵ�qÞF− þ ðp − qÞμðϵ�qÞFþ:

ð9Þ

In particular, the NJL model yields

FIG. 1. The Feynman diagram describing the contribution of
the mode τ− → ντa−1 → ντρ

0π− to the decay amplitude (6).

FIG. 2. The Feynman diagram describing the contribution of
the mode τ− → ντπ

− → ντρ
0π− to the decay amplitude (6).
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F0 ¼ 1þ m2
ρ

m2
a1 − k2

; Fþ ¼ 0;

F− ¼ 1þ gA
m2

π − k2
−

gA
m2

a1 − k2
; ð10Þ

where gA ¼ 1=Z. Thus, the NJL approach is quite restric-
tive: the form factor Fþ does not contribute at leading order
in 1=Nc and derivative expansions. All form factors are the
functions of only one variable k2.

III. RADIALLY EXCITED STATES AND PCAC

The region between 1.2–1.8 GeV of the ρ0π− spectrum
is still poorly described by the standard NJL model. One
can improve our description of the τ → ντρ

0π− decay
amplitude by including the contributions of the radially
excited states of the pion and the a1ð1260Þ meson, i.e., the
π0 ¼ πð1300Þ and a01 ¼ a1ð1640Þ resonances. Following
Ref. [14] we perform the substitutions in the pion and
a1ð1260Þ propagators:

1

m2
π − k2

→
1

1þ βπ0

�
1

m2
π − k2

þ βπ0

m2
π0 − k2

�
;

1

m2
a1 − k2

→
1

1þ βa0
1

�
1

m2
a1 − k2

þ βa0
1

m2
a0
1
− k2

�
: ð11Þ

Notice that the limit β → 0 corresponds to the case without
excitations; other limits mπ0 → mπ and ma0

1
→ ma1 lead to

the same result. The substitutions are written in terms of
physical states, therefore, the coupling β is the only
parameter which absorbs contributions arising due to the
redefinition of the primary meson fields [this includes the
diagonalization of π − π0 and a1 − a01 quadratic forms
and the pseudoscalar-axial-vector mixing effects]. As a
result, the factor 1=ð1þ βÞ rescales the contribution of the
ground state.
Doing these replacements, we must ensure that

substitutions (11) do not destroy the PCAC condition.
For that, together with Eq. (11), one should modify the
contact term

gμν → ð1þ δÞgμν; ð12Þ

where δ is the constant approximating the higher-mass 1þþ
contribution to F0 in such a way that the PCAC condition is
fulfilled.
Indeed, in this case the modified hadronic part of the

amplitude A → A0, Fμ → F0
μ has the form

F0
μ ¼ ϵ�νðpÞ½ð1þ δÞgμν

þ m2
ρ

1þ βa0
1

�gμν − kμkν
m2

a1

m2
a1 − k2

þ βa0
1

gμν −
kμkν
m2

a0
1

m2
a0
1
− k2

�

þ 1þ gA
1þ βπ0

kμkν

�
1

m2
π − k2

þ βπ0

m2
π0 − k2

��
: ð13Þ

The divergence of the hadronic current kμF0
μ should vanish

in the chiral limit mπ → 0. This requirement is fulfilled
only if δ is uniquely fixed as

δ ¼ gAβa0
1

1þ βa0
1

�
1 −

m2
a1

m2
a0
1

�
: ð14Þ

As a result we obtain that

kμF0
μ ¼

1þgA
1þβπ0

�
m2

π

m2
π −k2

þ βπ0m2
π0

m2
π0 −k2

�
ðϵ�kÞ: ð15Þ

This is a modified PCAC relation, which, in particular, tells
us that in the chiral limit βπ0 ¼ fπ0=fπ → 0, where fπ and
fπ0 are the weak decay constants of the π and π0 mesons.
Thus, the consideration above shows that to lowest order

in 1=Nc our procedure introduces only four additional
parameters: the two masses of πð1300Þ and a1ð1640Þ
resonances and two mixing parameters βπ0 and βa0

1
which

should be fixed theoretically or from experimental data.

IV. DECAY WIDTH

Let us proceed now with calculations of the decay rate.
For that we need the appropriate spin-averaged matrix
element squared

jA0j2¼ð2GFVudgρfπÞ2½2ðQF0ÞðQ0F0Þ−ðF0F0ÞðQQ0Þ�:
ð16Þ

Here we averaged over initial τ-lepton states. It is easiest to
perform the calculation in the invariant form before
specializing to the rest frame of tau. The invariant
Mandelstam variables are s ¼ ðQ −Q0Þ2 ¼ k2, t ¼
ðQ − qÞ2, and u ¼ ðQ − pÞ2. It gives

jA0j2¼G2
F

2
V2
udð1−gAÞfjF0

−j2m2
τðm2

τ − sÞλðs;m2
ρ;m2

πÞ
þ4jF0

0j2½t2þ tðs−m2
π −m2

ρÞþm2
ρðm2

τ −2sþm2
πÞ�

þ2ReðF0
0F

0�
−Þ½ðm2

τ − sÞððs−m2
πÞ2−λðs;m2

ρ;m2
πÞÞ

þm2
τð2tðsþm2

ρ−m2
πÞ−m2

ρðm2
ρþ4m2

τÞÞ
þm2

ρsð2ðsþm2
πÞ−m2

ρÞ�g; ð17Þ
where the NJL model relation ð1 − gAÞm2

ρ ¼ g2ρf2π has been
used, and the Källén function λðx; y; zÞ is defined as
follows λðx; y; zÞ ¼ ðx − y − zÞ2 − 4yz.
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In the physical range ðmρ þmπÞ ≤
ffiffiffi
s

p
≤ mτ the form

factors in Eq. (13) contain zero-width a1, a01 and π0

propagator poles, which lead to divergent phase-space
integrals in the calculation of the τ → ντρ

0π− decay width.
In order to regularize the integrals one should include the
finite widths of these resonances through the typical Breit-
Wigner form of propagators. This is a step beyond the
leading order in the 1=Nc expansion which we are forced to
make in connection with the above-mentioned problem.We
consider the substitutions:

1

m2
R − k2

→
1

m2
R − k2 − imRΓRðk2Þ

: ð18Þ

A k2 dependence for ΓRðk2Þ is required by unitarity. The
description of a set of resonances with the same quantum
numbers as a sum of Breit-Wigner amplitudes may violate
unitarity and is a good approximation only for well-
separated resonances with little overlap. This condition
is fulfilled here.
Following Ref. [15], we have chosen to use the form

ΓRðk2Þ ¼ ΓR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðk2; m2

ρ; m2
πÞ

λðm2
R;m

2
ρ; m2

πÞ

s
m2

R þ k2R
k2 þ k2R

; ð19Þ

where ΓR ¼ ΓRðm2
RÞ. The function ΓRðk2Þ has a threshold

factor in the proper position, i.e., at k2 ¼ ðmρ þmπÞ2. The
value of k2R is determined by the following integral
condition

1

π

Z
∞

ðmρþmπÞ2
dk2 Im½m2

R − k2 − imRΓRðk2Þ�−1 ¼ 1: ð20Þ

In the narrow-width approximation this equation is auto-
matically fulfilled. If the resonance is broad, Eqs. (19) and
(20) make our results less sensitive to the details of ΓRðk2Þ.
A rigorous form can only be obtained if the total width is
completely understood, but this is not the case at the
moment.
The differential decay rate can be written in the form

dΓ
ds

¼
Z

tþðsÞ

t−ðsÞ
dt

jA0j2
32m3

τð2πÞ3
; ð21Þ

where

t�ðsÞ¼
1

2

�
m2

τþm2
ρþm2

π−sþm2
τ

s
ðm2

ρ−m2
πÞ�

ffiffiffiffiffiffiffiffiffiffi
DðsÞ

p �
;

ð22Þ

DðsÞ ¼
�
m2

τ

s
− 1

�
2

λðs;m2
ρ; m2

πÞ: ð23Þ

The integral over t in (21) can be done explicitly:

dΓ
ds

¼ ðGFVudÞ2
64m3

τð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
DðsÞ

p �
m2

τ

s
− 1

�
ð1 − gAÞ

×

�
4m2

ρjF0
0j2

�
sþ 2m2

τ

6sm2
ρ

λðs;m2
ρ; m2

πÞ þm2
τ þ 2s

�

þm2
τ λðs;m2

ρ; m2
πÞðsjF0

−j2 þ 2ReðF0
0F

0�
−ÞÞ

�
: ð24Þ

Integrating this expression over s one finally obtains the
τ → ντρ

0π− decay width.

V. NUMERICAL RESULTS

Our consideration above shows that we are able to
describe the tree τ → ντρ

0π− decay amplitude in terms
of the known masses: mπ , mρ, ma1 , mπ0 , ma0

1
, mτ two

mixing parameters βπ0 , βa0
1
, and three widths Γa1 ;Γa0

1
;Γπ0 .

The value of gA is not free due to the mass formula gAm2
a1 ¼

m2
ρ which is valid in the NJL model. This parameter is also

related with the value of the constituent quark mass m,
which, in the case of exact isospin symmetry
m ¼ mu ¼ md, is given by

m ¼ mρffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

gA
− 1

s
: ð25Þ

In the following we will vary the value ofma1 in the interval
1120 MeV ≤ ma1 ≤ 1300 MeV. The parameter gA will be
changed correspondingly. The upper boundary is inspired by
the recent measurements of the COMPASS Collaboration
ma1 ¼ 1299þ12

−28 MeV, Γa1 ¼ 380� 80 MeV [26,27]. The
lower boundary is a result of a comparison between the
theoretical m2

3π-spectra of the τ → ντπ
þπ−π− decay [14]

with ALEPH data [28], that yields ma1 ¼ 1120 MeV and
Γa1 ¼ 483� 80 MeV. The PDG averaged values: ma1 ¼
1230� 40 MeV,Γa1 ¼ 250–600 MeV [10], and the param-
eters extracted by the JPACgroupma1 ¼ 1209� 4þ12

−9 MeV,
and Γa1 ¼ 576� 11þ80

−20 MeV [29] are also considered.

A. Ground states contribution

Our numerical calculations we start from the simplest
case, when only ground states are considered. With this
purpose we use the form factors given by Eq. (10) modified
by the substitutions (18). As can be seen from Table I, the
higher value of ma1 and the lower value of Γa1 , the better
agreement with experimental data. We make this conclu-
sion by confronting our results to the old value of the
branching ratio Brðτ → ντρ

0π−Þ ¼ ð5.4� 1.7Þ%, quoted
by PDG [30] (presently, PDG does not give data on the
τ → ντρ

0π− mode). This corresponds to the following
decay width

τ → ντρ
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Γexp
τ→ντρ

0π−
¼ ð1.22� 0.39Þ × 10−10 MeV: ð26Þ

It is worth pointing out that the latest measurements of
the CLEO Collaboration of the τ → ντπππ decay [31,32]
and the results of the COMPASS experiment in diffractive
production [26,27,33] can be used (although this is a model
dependent procedure which is also influenced by the
production mechanism) to extract the branching ratios of
the specific decay channels. In particular, the JPAC [29]
made a rough estimate for the dominant ρπS-wave channel.
The found branching ratio is of 60%–80%. It corresponds
to the decay width

ΓJPAC
τ→ντρ

0π−
¼ ð1.26 − 1.69Þ × 10−10 MeV: ð27Þ

In sets (a) and (b) of Table I we use the input data of the
COMPASS Collaboration [26,27]. Two values of Γa1 are
considered: the lowest one Γa1 ¼ 300 MeV, and the central
one Γa1 ¼ 380 MeV. The PDG averaged values (c) and
(d) [10] are selected in the same way. The input (e) is taken
in accord with the results of the JPAC group [29]. In set
(f) the output of the analyses [14] is used.
To summarize the above, it should be noted that, the

ground states contribution, where the a1ð1260Þ exchange
dominates, is too low to explain the experimental data on
Γτ→ντρ

0π− . The best estimate here is given by set (c), but
even this prediction of the NJL model is slightly below the
lower boundary of the experimental value (26). Therefore,
one should take into account the exited states which also
contribute to the τ → ντρ

0π− decay amplitude in leading
1=Nc order.

B. Exited states contribution

Let us turn now to the study of the contributions arising
from the exited πð1300Þ ¼ π0 and a1ð1640Þ ¼ a01 states to
clarify their role in the decay τ → ντρ

0π−.
The characteristics of πð1300Þ quoted by the PDG are

mπ0 ¼ 1300� 100 MeV and Γπ0 ¼ 200–600 MeV [10].
The impact of this state on the τ → ντρ

0π− decay width
is controlled by the parameter βπ0. In accord with the PCAC

relation, one can expect that jβπ0 j ∼ ðmπ=mπ0 Þ2 ¼ 0.01 [11].
This is too small to have an appreciable impact on the τ →
ντρ

0π− decay width. Hence, the only contribution which
may affect the description presented in Table I is the
contribution of the exited a1ð1640Þ state.
The PDG lists the a1ð1640Þ as “omitted from summary

table,” nonetheless they give the average world values
ma0

1
¼ 1654� 19 MeV and Γa0

1
¼ 240� 27 MeV. On top

of that, the COMPASS Collaboration has recently reported
on the Breit-Wigner a01-resonance parameters: ma0

1
¼

1700þ35
−130 MeV, and Γa0

1
¼ 510þ170

−90 MeV [27].
It is worth mentioning that the value of the parameter βa0

1

is not so strongly suppressed as βπ0 . This follows from the
crude estimate jβa0

1
j ∼ ðma1=ma0

1
Þ2 ¼ 0.56. Therefore one

can expect that mixing (11) gives a visible effect {let us
note, that a similar estimation made for the parameter βρ0
considered in Ref. [14] in the context of an effective
description of the role of the ρ0 ¼ ρð1450Þ exited state
of ρð770Þ gives jβρ0 j ∼ ðmρ=mρ0 Þ2 ¼ 0.28, in harmony with
their result βρ0 ¼ −0.25, obtained by fitting experimental
data}. In the following, the free parameter βa0

1
will be fixed

in accord with our estimate βa0
1
¼ −0.56 above. Notice the

increase of the impact of the ground state a1ð1260Þ due
to the factor 1=ð1þ βa0

1
Þ in Eq. (11). Again, the similar

effect took place for the ground ρð770Þ state contribution
when the exited state ρ0 ¼ ρð1450Þ had been taken into
account [14].
Our goal now is to show that the known experimental

data allow for a meaningful evaluation of the impact of the
a01-resonance propagator on the τ → ντρ

0π− decay. To this
end, we consider the sets of experimentally known char-
acteristics of a1 and a01 resonances. The results of such
numerical calculations are collected in Table II.
In sets (a) and (b) of Table II, the data of the COMPASS

Collaboration are considered [27]. Notice that COMPASS
has performed the so far most advanced partial-wave
analysis of diffractively produced πþπ−π− final states,
using the isobar model. That has allowed them, in par-
ticular, to determine mass and width of a1 and a01
resonances with high confidence. Their interpretation of
a01 as a first radial excitation of a1 is in line with our
theoretical consideration.
In Fig. 3 we show the typical behavior of the spectral

function (24) for case (b), which agrees well both with the
experimental value (26) and with the JPAC estimate (27).
The a1ð1640Þ resonance contributes mostly through its
interference with a1ð1260Þ. The distractive interference

suppresses the a1-exchange contribution Γ
ða1Þ
τ→ντρ

0π−
on 16%.

Sets (c) and (d) of Table II are based on the
PDG averaged values: ma1 ¼ 1230� 40 MeV, Γa1 ¼
250–600 MeV, and ma0

1
¼ 1654� 19 MeV, Γa0

1
¼ 240�

27 MeV [10]. The width of a1 shows large uncertainties,
but large values for the width are known to be ruled out by

TABLE I. The width of the τ → ντρ
0π− decay obtained in the

NJL model with only the ground state contributions. The first two
columns contain the phenomenological input values of ma1 and
Γa1 taken from Refs. [10,26–29].

Set ma1 (MeV) Γa1ðm2
a1Þ (MeV) Γτ→ντρ

0π− (MeV)

(a) 1299 300 0.67 × 10−10

(b) 1299 380 0.58 × 10−10

(c) 1230 250 0.72 × 10−10

(d) 1230 400 0.52 × 10−10

(e) 1209 576 0.40 × 10−10

(f) 1120 483 0.35 × 10−10
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COMPASS measurements. Thus, in our estimates, we use
two values Γa1 ¼ 250 MeV and 400 MeV. The latter value
is more preferable. The distractive interference suppresses

the a1-exchange contribution Γða1Þ
τ→ντρ

0π−
on 20%.

In set (e) of Table II we use the a1 parameters extracted
by the JPAC group ma1 ¼ 1209� 4þ12

−9 MeV, and Γa1 ¼
576� 11þ80

−20 MeV [29]. In set (f) the data of the theoretical
fit for the ground state of a1 are considered [14]. In both
cases the characteristics of a01 are taken from the PDG [10].
Let us summarize the results presented in Table II

and Fig. 3.
(1) The a1ð1260Þ resonance dominates the τ → ντρ

0π−

process, while the a1ð1640Þ contributes less than
the 20%.

(2) The contribution of the πð1300Þ resonance to the
τ → ντρ

0π− decay is negligible. This is a direct
consequence of the PCAC relation. In particular, the
value βπ0 ¼ 0 in Table II can be replaced by βπ0 ¼
−ðmπ=mπ0 Þ2 ¼ −0.01without a noticeable effect. To
have a noticeable effect the value of βπ0 should be
about βπ0 ¼ −0.4. At this stage, however we do not
see any valid theoretical reason why jβπ0 j would be
so large.

(3) The comparison of Tables I and II shows that the
inclusion of the excited axial-vector a1ð1640Þ state
is a necessary element for the successful description
of the τ → ντρ

0π− decay width. A reason for the
improvement is contained in the substitutions of
Eqs. (11) and (18) which substantially increase the
contribution of the a1 ground state, although this
growth is partly suppressed due to a destructive
interference with the exited a01 state. This our
conclusion agrees with the CLEO Collaboration
result [31]. Their studies show that adding of the
a01 term into the Breit-Wigner function improves
significantly the agreement with the τ → ντ3π data.

(4) Set (c) overestimates the τ → ντρ
0π− decay rate. This

is a consequence of a very low a1-resonance width
Γa1 ¼ 250 MeV. The other sets with larger values of
Γa1 are in agreement with the experimental value (26).
Apparently, this points out that the value Γa1 ≃
400 MeV is preferable one. This observation is
consistent with the determinations from COMPASS.

(5) The spectral distribution shown in Fig. 3 is a
prediction of the NJL model. It is assumed that this
result would be checked in the study of the tau decay
into three pions and neutrino, where events with pion
pairs over the ρð770Þ mass would be selected.

VI. CONCLUSIONS

The purpose of this paper has been to describe the τ →
ντρ

0π− decay by using an extended Uð2ÞL ×Uð2ÞR chiral
symmetric NJL model with spin-0 and spin-1 four-quark
interactions. The channel τ → ντρ

0π− → ντπ
−π−πþ domi-

nates the tau decay into three pions and neutrino. That
explains our interest to the problem.
We have used the covariant approach [21] to describe the

weak interactions of mesons in leading order in 1=Nc and
derivative expansions. It has been shown that in this
approximation the axial-vector current is dominated by
the a1ð1260Þ and the pion exchanges. However, we have
found that the τ → ντρ

0π− decay width is too low if the
physical value of Γa1 is considered.

1.5 2.0 2.5 3.0

5.× 10–14

1.× 10–13

1.5× 10–13

FIG. 3. The predicted spectral distribution (24) (in GeV−1 on
the ordinate) as a function of s (in GeV2 on the abscissa). The
parameters correspond to set (b) in Table II.

TABLE II. The effect of the exited axial-vector a1ð1640Þ state on the τ → ντρ
0π− decay width obtained in the NJL model with the use

of Eqs. (11) and (18), where βπ0 ¼ 0 and βa0
1
¼ −0.56. The ground state contribution Γða1Þ

τ→ντρ
0π−

is shown for comparison. The masses and

widths are given in MeV.

Set ma1 Γa1 m gA ma0
1

Γa0
1

Γða1Þ
τ→ντρ

0π−
Γτ→ντρ

0π−

(a) 1299 300 426 0.356 1700 510 1.95 × 10−10 1.35 × 10−10

(b) 1299 380 426 0.356 1700 510 1.56 × 10−10 1.31 × 10−10

(c) 1230 250 390 0.397 1654 240 2.74 × 10−10 2.22 × 10−10

(d) 1230 400 390 0.397 1654 240 1.61 × 10−10 1.28 × 10−10

(e) 1209 576 379 0.411 1654 240 1.12 × 10−10 0.83 × 10−10

(f) 1120 483 330 0.479 1654 240 1.17 × 10−10 0.99 × 10−10

τ → ντρ
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The contributions of the first radial excitations of the
pion and the a1 states have been taken into account to
improve the description. For that we supplemented the
regular π and a1 propagators with new terms corresponding
to the propagators of excited πð1300Þ and a1ð1640Þ states.
Our treatment of these excitations is similar to the suc-
cessful description of the ground ρð770Þ and excited
ρð1450Þ vector resonances in Ref. [14]. The momentum
dependent off shell widths of all resonances have been
approximated by the functions introduced in the paper in
Ref. [15]. This procedure can be further elaborated as soon
as the new more precise experimental data will be reported
on the τ → ντρ

0π− decay.
As a result, we obtain that the contribution of the

πð1300Þ resonance is negligible, and conclude that the
channel τ → ντρ

0π− → ντπ
−π−πþ is a source of suffi-

ciently clear information on a1ð1260Þ and a1ð1640Þ states.
The a1ð1260Þ resonance dominates the intermediate proc-
ess, while the a1ð1640Þ contributes less than 20%. In
Table II, we present our estimations for the decay width
Γðτ → ντρ

0π−Þ which correspond to the different input
values of a1 and a01 characteristics. The spectral distribution

shown in Fig. 3 can be used for comparison with the data,
as soon as those would be available.
Our result indicates on the important role which the

a1ð1640Þ state plays in the theoretical description of this
τ → ντρ

0π− decay. It means, in particular, that one should
carefully estimate its contribution and role in the τ →
ντπ

−π−πþ decay. This will be done somewhere else. The
results obtained here could be useful for such studies.
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