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The weak decays of the axial-vector tetraquark T−
bb;ū d̄

to the scalar state Z0
bc;ū d̄

are investigated using the
QCD three-point sum rule approach. In order to explore the process T−

bb;ū d̄
→ Z0

bc;ū d̄
lν̄l, we recalculate the

spectroscopic parameters of the tetraquark T−
bb;ū d̄

and find the mass and coupling of the scalar four-quark

system Z0
bc;ū d̄

, which are important ingredients of calculations. The spectroscopic parameters of these

tetraquarks are computed in the framework of the QCD two-point sum rule method by taking into account
various condensates up to dimension ten. The mass of the T−

bb;ū d̄
state is found to be m ¼

ð10035� 260Þ MeV, which demonstrates that it is stable against the strong and electromagnetic decays.
The full width Γ and mean lifetime τ of T−

bb;ū d̄
are evaluated using its semileptonic decay channels

T−
bb;ū d̄

→ Z0
bc;ū d̄

lν̄l, l ¼ e, μ, and τ. The obtained results, Γ ¼ ð7.17� 1.23Þ × 10−8 MeV and τ ¼
9.18þ1.90

−1.34 fs, can be useful for experimental investigations of the doubly-heavy tetraquarks.

DOI: 10.1103/PhysRevD.99.033002

I. INTRODUCTION

Assumptions about the existence of four-quark bound
states (tetraquarks) were made in an early stage of QCD and
aimed to explain some of the unusual features of meson
spectroscopy. Thus, the nonet of light scalar mesons was
considered as bound states of four light quarks rather than
being composed of a quark and an antiquark, as in the
standard models of the mesons. The stability problems of
heavy and heavy-light tetraquarks were also among the
questions addressed in these studies [1–4].
Due to the impressive experimental discoveries and

theoretical progress of the past 15 years, the study of
multiquark hadrons has become an integral part of high-
energy physics. During this period of development and
growth, various difficulties in experimental studies and the
classification and theoretical interpretation of numerous
tetraquarks were successfully overcome [5–8].
But there are still problems in the physics of exotic

hadrons that are not fully solved; the identification of the
tetraquark resonances and their stability are among these
questions. It is known that the first charmonium-like
resonances observed experimentally were interpreted not
only as tetraquarks, but also as excited states of the

conventional charmonium. Fortunately, there are different
classes of tetraquarks that cannot be identified as charmo-
nia or bottomonia states. Indeed, charged resonances
carrying one or two units of electric charge and states
containing two or more open quark flavors can easily be
distinguished from charmonium- or bottomonium-like
structures. All of the resonances observed in various
experiments and classified as tetraquarks are unstable with
respect to strong interactions. They lie either above the
open-charm (-bottom) thresholds or are very close to them.
Such four-quark compounds can strongly decay to two
conventional mesons. Because the quarks required to create
these mesons already exist in the master particles, the width
of such states is rather large: the dissociation into twomesons
is the main strong decay channel of the unstable tetraquarks.
It is natural that theoretical explorations of stable four-

quark systems and their experimental discovery remain on
the agenda of particle physics. The tetraquarks built of
heavy cc or bb diquarks and light antidiquarks are real
candidates for such states. Their studies have a long history;
in fact, the class of exotic mesonsQQQ̄ Q̄ andQQq̄ q̄were
studied in Refs. [4,9,10], where a potential model with an
additive pairwise interaction was used to search for stable
tetraquarks. It was demonstrated that in the context of this
approach the exotic mesons composed of only heavy
quarks are unstable, but the tetraquarks QQq̄ q̄ may form
stable compounds provided the ratio mQ=mq is large. The
same conclusions were made in Ref. [11], in which the
only constraint imposed on the confining potential was its
finiteness when two particles come close together. There it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 033002 (2019)

2470-0010=2019=99(3)=033002(11) 033002-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.033002&domain=pdf&date_stamp=2019-02-07
https://doi.org/10.1103/PhysRevD.99.033002
https://doi.org/10.1103/PhysRevD.99.033002
https://doi.org/10.1103/PhysRevD.99.033002
https://doi.org/10.1103/PhysRevD.99.033002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


was found that the isoscalar JP ¼ 1þ tetraquark T−
bb;ū d̄

resides below the two-B-meson threshold, and hence can
decay only weakly. At the same time, the tetraquarks Tcc;q̄q̄0

and Tbc;q̄q̄0 may exist as unstable or stable bound states. The
stability of the QQq̄ q̄ compounds in the limit mQ → ∞
was studied in Ref. [12], as well.
Various theoretical models—starting from the chiral

and dynamical quark models and ending with the
relativistic quark model—were used to study the proper-
ties and compute the masses of the TQQ states [13–17].
The masses of the axial-vector states TQQ;ū d̄ were also
extracted using two-point sum rules [18]. In accordance
with the results of Ref. [18], the mass of the tetraquark
T−
bb;ū d̄

is 10.2 � 0.3 GeV, which is below the open-
bottom threshold. Using the same method, the parameters
of the QQq̄ q̄ states with spin-parities 0−, 0þ, 1−, and 1þ
were evaluated in Ref. [19]. The production mechanisms
of the Tcc tetraquarks—such as heavy-ion and proton-
proton collisions, electron-positron annihilations, and Bc-
meson and heavy Ξbc baryon decays—as well as possible
decay channels of the Tcc states were addressed in the
literature [20–24].
The discovery of the doubly charmed baryon Ξþþ

cc ¼ ccu
by the LHCb Collaboration [25] inspired new investiga-
tions of double-charm, double-bottom, and four-bottom
tetraquarks [26–34]. Lattice simulations in the context of
nonrelativistic QCD to search for the existence of the bound
states T0

bb;b̄ b̄
below the lowest bottomonium-pair threshold

were carried out in Ref. [33], but no evidence was found for
such stable states with quantum numbers 0þþ, 1þ−, and
2þþ, which can be considered a present-day confirmation
of the conclusions originally made in Refs. [4,9–11]. A
situation with double-bottom tetraquarks is more promising.
Thus, themass of the stateT−

bb;ū d̄
was estimated oncemore in

the framework of a phenomenological model in Ref. [26].
There, the mass of the isoscalar axial-vector state T−

bb;ū d̄
was

found to be m ¼ 10389� 12 MeV, which is 215 MeV
below theB−B̄�0 threshold and 170MeVbelow the threshold
for B−B̄0γ decay. This means that the tetraquark T−

bb;ū d̄
is

stable against the strong and electromagnetic decays and only
decays weakly. At the same time, the mass of the double-
charm Tþ

ccū d̄
state is 3882� 12 MeV, which is above the

thresholds of bothD0D�þ andD0Dþγ decays (seeRef. [26]).
The double-charm states Tþþ

cc;s̄ s̄ and Tþþ
cc;d̄ s̄

that belong to
the class of doubly charged tetraquarks were investigated
recently in our work [35]. These particles carry two units
of electric charge, which makes them particularly
interesting. They are above the Dþ

s D
�þ
s0 ð2317Þ and DþD�þ

s0
ð2317Þ thresholds, and the width of the strong decays
Tþþ
cc;s̄s̄→Dþ

s D
�þ
s0 ð2317Þ and Tþþ

cc;d̄s̄
→DþD�þ

s0 ð2317Þ allowed
us to classify them as relatively broad resonances.
In light of recent progress made in the physics of double-

heavy tetraquarks and the expected stability of the T−
bb;ū d̄

state, its weak decays are a very interesting subject for a
detailed analysis. The semileptonic decays of four-quark
systems—when an initial tetraquark transforms into a
final tetraquark and lν̄l or l̄νl leptons—are a relatively new
topic in the physics of exotic mesons [36,37]. In Ref. [36]
the decay of the axial-vector tetraquark Zs ¼ ½cs�½b̄ s̄� to
a final state Xð4274Þl̄νl was studied using the QCD sum
rule method. The widths of these decays (where l ¼ e, μ,
and τ) are very small, and therefore the transitions Zs →
Xð4274Þl̄νl were classified as rare processes. The semi-
leptonic decays of the stable double heavy tetraquarks
were considered in Ref. [37].
In the present work we are going to explore the semi-

leptonic decays of the tetraquark T−
bb;ū d̄

and evaluate its
full width and mean lifetime. The tetraquark T−

bb;ū d̄
under-

goes weak decay through the transition b → W−c. In the
final state, its decay products consist of lν̄l and a diquark-
antidiquark Z0

bc;ū d̄
¼ ½bc�½ū d̄� state (for simplicity, here-

after Z0
bc). The tetraquark Z0

bc may decay to B and D
mesons with appropriate masses and spin parities provided
its mass is larger than corresponding thresholds. In this
scenario, Z0

bc dissociates strongly to the final conventional
mesons. Otherwise, at the next stage Z0

bc should decay due
to weak or electromagnetic interactions. In the present
work we restrict ourselves by considering the semileptonic
decay of T−

bb;ū d̄
only to the scalar state Z0

bc.
The open charm-bottom four-quark systemsQQ0q̄ q̄ were

already analyzed in Refs. [10,38]. In recent investigations
these compounds were treated either as Bc-like molecular or
Zbc ¼ ½bc�½q̄ q̄�-type diquark-antidiquark states. The masses
of the Bc-like scalar and axial-vector molecules with differ-
ent light-quark contents and spin parities were calculated in
Refs. [39,40]. The open charm-bottom states were analyzed
in Ref. [41] in the framework of the diquark-antidiquark
model. In order to extract the masses of these states, the
authors utilized the QCD sum rule method and interpolating
currents of different color structure. The class of open charm-
bottom tetraquarks also includes states with ðb; c̄Þ or ðc; b̄Þ
quarks, which were the subject of rather intensive studies as
well [39–45]. In fact, the molecule-type tetraquarks with the
contents fQq̄gfQ̄ð0Þqg and fQs̄gfQ̄ð0Þsg were studied in
Refs. [42,43], respectively. In these papers, the masses of
these hypothetical particles were computed in the context of
the QCD two-point sum rule approach using vacuum
condensates up to dimension six. The spectroscopic param-
eters and strong decays of the scalar and axial-vector tetra-
quarks Zq ¼ ½cq�½b̄ q̄� and Zs ¼ ½cs�½b̄ s̄� were calculated in
Refs. [44,45], respectively.
It is remarkable that Z0

bc ¼ ½bc�½ū d̄� is the open charm-
bottom tetraquark and that it contains four quarks of different
flavors. Two years ago, data on the state known as Xð5568Þ
from the D0 Collaboration [46] led to an interest in
compound systems of four distinct quarks. However, both
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experimental and theoretical studies of Xð5568Þ led to
controversial conclusions, leaving the status of this tetra-
quark unclear. Therefore, investigating the process T−

bb;ū d̄
→

Z0
bclν̄l could not only help to answer questions about the

features of the tetraquark T−
bb;ū d̄

itself, but also to clarify the
structure and properties of its decay products.
The spectroscopic parameters of T−

bb;ū d̄
and Z0

bc are
important input for studying the semileptonic decay under
consideration. In the present work, we calculate the masses
and couplings of these tetraquarks by employing QCD sum
rules obtained from an analysis of the relevant two-point
correlation functions. When computing the correlation
functions, we take into account the vacuum expectation
values of the quark, gluon, and mixed local operators up to
dimension ten. We evaluate the width of the semileptonic
decay T−

bb;ū d̄
→ Z0

bclν̄l by applying the standard prescrip-
tions of the QCD three-point sum rule method. Our aim
here is to extract the sum rules for the weak form factors
Giðq2Þ, i ¼ 0, 1, 2, 3 and to compute their numerical
values. This allows us to determine the so-called fit functions
Fiðq2Þ, which coincidewithGiðq2Þ, but can be extended to a
region of momentum transfers that is not accessible to the
QCD sum rules. The functions Fiðq2Þ are used to integrate
the differential decay rate dΓ=dq2 and find the partial width
of the decay processes ΓðT−

bb;ū d̄
→ Z0

bclν̄lÞ, l ¼ e, μ, and τ.
This article is organized in the following manner. In

Sec. II we derive the QCD two-point sum rules for the
masses and couplings of the tetraquarks T−

bb;ū d̄
and Z0

bc, and
numerically compute their values. In Sec. III, we use the
QCD three-point correlation function to derive sum rules
for the weak form factors Giðq2Þ. In this section we also
perform a numerical analysis of the obtained sum
rules and determine the fit functions, which allow us to
evaluate the width of the semileptonic decay T−

bb;ū d̄
→

Z0
bclν̄l and mean lifetime of the state T−

bb;ū d̄
. Section IV

contains a discussion of the obtained results and our brief
conclusions. The explicit expression for the decay rate
dΓ=dq2 can be found in the Appendix.

II. SPECTROSCOPIC PARAMETERS OF
THE TETRAQUARKS T −

bb;ū d̄
AND Z0

bc

In this section we calculate the spectroscopic parameters
of the tetraquarks T−

bb;ū d̄
and Z0

bc by employing the QCD
two-point sum rules extracted from an analysis of the
relevant correlation functions ΠμνðpÞ and ΠðpÞ. The
masses of T−

bb;ū d̄
and Zbc in the framework of QCD sum

rules were found in Refs. [18,19,41], respectively. We are
going to evaluate the masses and tetraquark-current cou-
plings of these states by taking into account the vacuum
condensates up to dimension ten, which exceeds the
accuracy of the previous studies: updated information on
the spectroscopic parameters of the tetraquarks T−

bb;ū d̄

and Z0
bc is necessary to explore the semileptonic decay

T−
bb;ū d̄

→ Z0
bclν̄l in the next section.

The function ΠμνðpÞ is defined as

ΠμνðpÞ ¼ i
Z

d4xeip·xh0jT fJμðxÞJ†νð0Þgj0i; ð1Þ

where JμðxÞ is the interpolating current to the axial-vector
tetraquark T−

bb;ū d̄
composed of an axial-vector diquark and

a scalar antidiquark. This current is given by [18]

JμðxÞ ¼ bTaðxÞCγμbbðxÞūaðxÞγ5Cd̄TbðxÞ: ð2Þ

Here, a and b are the color indices and C is the charge-
conjugation operator.
The correlation function ΠðpÞ for the scalar tetraquark

Z0
bc has the form

ΠðpÞ ¼ i
Z

d4xeip·xh0jT fJZðxÞJZ†ð0Þgj0i; ð3Þ

where the current JZðxÞ is defined as

JZðxÞ ¼ bTaðxÞCγ5cbðxÞ½ūaðxÞγ5Cd̄TbðxÞ
−ūbðxÞγ5Cd̄TaðxÞ� ð4Þ

and is obtained using currents for the diquark-antidiquarks
Zbc from Ref. [41]. The current JZðxÞ is composed of a
scalar diquark and an antidiquark in the antitriplet and
triplet representations of the color group, respectively.
Here we concentrate on calculating the parameters of the

tetraquark T−
bb;ū d̄

and only provide necessary expressions
and final results for Z0

bc. In accordance with the QCD sum
rule method, one first has to express the correlation
function ΠμνðpÞ in terms of the tetraquark’s mass m and
coupling f, which form the phenomenological or physical
side of the sum rules. We treat the tetraquark T−

bb;ū d̄
as a

ground-state particle in its class, and therefore we isolate
only the first term in ΠPhys

μν ðpÞ, which is given by

ΠPhys
μν ðpÞ ¼ h0jJμjTðpÞihTðpÞjJ†νj0i

m2 − p2
þ � � � ð5Þ

This expression is derived by saturating the correlation
function (1) with a complete set of states with JP ¼ 1þ and
performing the integration over x. The dots here indicate
contributions to ΠPhys

μν ðpÞ from higher resonances and
continuum states.
The function ΠPhys

μν ðpÞ can be further simplified by
introducing the matrix element

h0jJμjTðp; ϵÞi ¼ fmϵμ; ð6Þ
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where ϵμ is the polarization vector of the T−
bb;ū d̄

state. It is
not difficult to demonstrate that in terms of m and f the
function takes the following form:

ΠPhys
μν ðpÞ ¼ m2f2

m2 − p2

�
−gμν þ

pμpν

m2

�
þ � � � ð7Þ

To suppress the contribution arising from the higher
resonances and continuum, we carry out the Borel trans-
formation of the correlation function, which reads

BΠPhys
μν ðpÞ ¼ m2f2e−m

2=M2

�
−gμν þ

pμpν

m2

�
þ � � � ; ð8Þ

where M2 is the Borel parameter.
The second part of the sum rules is given by the same

correlation function ΠμνðpÞ, but expressed in terms of the
quark propagators,

ΠOPE
μν ðpÞ ¼ i

Z
d4xeip·xfTr½γ5S̃b0bd ð−xÞγ5Sa0au ð−xÞ�

× Tr½γνS̃aa0b ðxÞγμSbb0b ðxÞ� − Tr½γ5S̃b0bd ð−xÞ
× γ5Sa

0a
u ð−xÞ�Tr½γνS̃ba0b ðxÞγμSab0b ðxÞ�g: ð9Þ

In Eq. (9), Sabb ðxÞ and Sabq ðxÞ are the b- and qðu; dÞ-quark
propagators, explicit expressions for which can be found,
for example, in Ref. [36]. Here we also introduce the
notation

S̃bðqÞðxÞ ¼ CSTbðqÞðxÞC: ð10Þ

The QCD sum rules can be extracted by using the same
Lorentz structures in both ΠPhys

μν ðpÞ and ΠOPE
μν ðpÞ. The

structures ∼gμν are appropriate for our purposes, because
they receive contributions only from spin-1 particles. The
invariant amplitude ΠOPEðp2Þ corresponding to this struc-
ture can be represented by the dispersion integral

ΠOPEðp2Þ ¼
Z

∞

4m2
b

ρOPEðsÞ
s − p2

dsþ � � � ; ð11Þ

where ρOPEðsÞ is the two-point spectral density. It is
proportional to the imaginary part of the structure ∼gμν
in the function ΠOPE

μν ðpÞ. In the present work, ρOPEðsÞ is
calculated by taking into account the quark, gluon, and
mixed vacuum condensates up to dimension ten.
By applying the Borel transformation to ΠOPEðp2Þ,

equating the obtained expression with the relevant part
of the function BΠPhys

μν ðpÞ, and performing the continuum
subtraction, we find the final sum rules. Then, the mass of
the T−

bbū d̄
state can be evaluated from the sum rule

m2 ¼
R s0
4m2

b
dssρOPEðsÞe−s=M2

R s0
4m2

b
dsρOPEðsÞe−s=M2 ; ð12Þ

whereas to find the coupling f we employ the expression

f2 ¼ 1

m2

Z
s0

4m2
b

dsρOPEðsÞeðm2−sÞ=M2

: ð13Þ

Here s0 is the continuum threshold parameter that separates
the ground-state and continuum contributions from one
another.
In the case of the scalar tetraquark Z0

bc, there are some
differences stemming from its spin-parity and the structure
of the interpolating current. Thus, the matrix element
h0jJZjZðpÞi has the form

h0jJZjZðpÞi ¼ fZmZ; ð14Þ

which is analogous to the matrix element of a conventional
scalar meson. The correlation function ΠOPEðpÞ is given by

ΠOPEðpÞ ¼ i
Z

d4xeip·xTr½Sbb0c ðxÞγ5S̃aa0b ðxÞγ5�

× fTr½γ5S̃b0bd ð−xÞγ5Sa0au ð−xÞ� − Tr½γ5S̃a0bd ð−xÞ
×γ5Sb

0a
u ð−xÞ� − Tr½γ5S̃b0ad ð−xÞγ5Sa0bu ð−xÞ�

þTr½γ5S̃a0ad ð−xÞγ5Sb0bu ð−xÞ�g: ð15Þ

The remaining manipulations and final sum rules for mZ
and fZ are similar to those for the tetraquark T−

bb;ū d̄
.

The obtained sum rules depend on the quark, gluon, and
mixed condensates, the numerical values of which are
collected in Table I. This table also contains the masses of
the b and c quarks, which appear in the sum rules as input
parameters.
Besides, Eqs. (12) and (13) depend on the auxiliary

parameters M2 and s0, which should satisfy the standard
constraints of the sum rule computations. Our analysis
proves that the working windows

TABLE I. The parameters utilized in our numerical
computations.

Parameters Values

mb 4.18þ0.04
−0.03 GeV

mc ð1.27� 0.03Þ GeV
hq̄qi −ð0.24� 0.01Þ3 GeV3

hs̄si 0.8hq̄qi
m2

0 ð0.8� 0.1Þ GeV2

hq̄gsσGqi m2
0hq̄qi

hs̄gsσGsi m2
0hs̄si

hαsG2

π i ð0.012� 0.004Þ GeV4

hg3sG3i ð0.57� 0.29Þ GeV6
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M2 ∈ ½9; 13� GeV2; s0 ∈ ½115; 120� GeV2 ð16Þ

meet all of the restrictions imposed onM2 and s0. Thus, the
maximum of the Borel parameter is determined from the
minimum allowed value of the pole contribution (PC),
which at M2 ¼ 13 GeV2 is 16% of the full correlation
function. Within the region M2 ∈ ½9; 13� GeV2 the pole
contribution varies from 59 to 16%. The lower limit of the
Borel parameter is fixed by the convergence of the operator
product expansion (OPE) for the correlation function. In
the present work, we use the criterion

RðM2Þ ¼ ΠDimð8þ9þ10ÞðM2; s0Þ
ΠðM2; s0Þ

< 0.05; ð17Þ

where ΠðM2; s0Þ is the Borel-transformed and subtracted
function ΠOPEðp2Þ, and ΠDimð8þ9þ10ÞðM2; s0Þ is the con-
tribution from the last three terms in its expansion. AtM2 ¼
9 GeV2 the ratio R is equal to Rð9 GeV2Þ ¼ 0.01, which
ensures the excellent convergence of the sum rules.
Moreover, at M2 ¼ 9 GeV2 the perturbative contribution
amounts to 74% of the full result, considerably exceeding
the nonperturbative terms.
The quantities evaluated by means of the sum rules, in

general, should not depend on the auxiliary parameters M2

and s0. But in calculations of the massm and coupling f we
observe a residual dependence onM2 and s0. Therefore, the
stability of the extracted parameters (i.e., m and f) is a
necessary condition to fix the working windows forM2 and
s0. In Figs. 1 and 2 we plot the dependence of the mass and
coupling of the tetraquark T−

bb;ū d̄
on the parametersM2 and

s0. It is seen that m and f depend on M2 and s0, which
generates the main part of the theoretical errors inherent to
the sum rule computations. For the mass m these ambi-
guities are small, whereas for the coupling f they may be
sizable. This behavior has a simple explanation: the sum
rule for the mass of the tetraquark (12) is given as the ratio
of integrals over the functions sρOPEðsÞ and ρOPEðsÞ, which

considerably reduces effects due to the variation ofM2 and
s0. The coupling f depends on the integral over the spectral
density ρOPEðsÞ itself, and therefore undergoes relatively
sizable changes. In the case under discussion, theoretical
errors for m and f stemming from the uncertainties of M2

and s0 and other input parameters are �2.6 and �20% of
the corresponding central values, respectively.
Our analysis for the mass and coupling of the tetraquark

T−
bb;d̄ ū

predicts

m ¼ ð10035� 260Þ MeV;

f ¼ ð1.38� 0.27Þ × 10−2 GeV4: ð18Þ

Similar studies of Z0
bc lead to the following results:

mZ ¼ ð6660� 150Þ MeV;

fZ ¼ ð0.51� 0.16Þ × 10−2 GeV4; ð19Þ

which have been obtained using the working regions

M2 ∈ ½5.5; 6.5� GeV2; s0 ∈ ½53; 55� GeV2: ð20Þ

It is worth noting that in the calculations of mZ and fZ the
PC changes by 55 to 21%. The contribution of the last three
terms to the corresponding correlation function at the point
M2 ¼ 5.5 GeV2 amounts to 1.9% of the total result, which
guarantees the convergence of the sum rules. In Figs. 3
and 4 we depict the mass and coupling of the tetraquark Z0

bc
as a function of M2 and s0 to demonstrate their residual
dependence on these parameters. It is evident that, as in
the case of the T−

bb;d̄ ū
state, the mass mZ is less sensitive to

variations of M2 and s0 than the coupling fZ. But, the
relevant theoretical errors stay within the allowed limits
inherent to sum rule computations, which may equal up to
�30% of the predictions.
As it has been noted above, the mass of the state T−

bb;ū d̄

was evaluated using different approaches in Refs. [18,19]

FIG. 1. The mass of the tetraquark T−
bb;ū d̄

as a function of the Borel parameter (left) and continuum threshold parameter (right).
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and [26]. The investigations in the first two papers were
carried out in the framework of the sum rules method, and
therefore we first compare our result for m with those
predictions. Our result for m is smaller than the prediction
m ¼ 10.2� 0.3 GeV made in Ref. [18]: there is an over-
lapping region between these two results, but the central

values differ fromeachother. This discrepancy is presumably
connected with the accuracy of the analysis performed
there (up to dimension-eight condensates), and with the
choice of theworking intervals for the parametersM2 and s0.
Thus, in Ref. [18] the explored range for the continuum
threshold was 11.3 ≤ ffiffiffiffiffi

s0
p ≤ 11.7 GeV, whereas the Borel

FIG. 2. The coupling f vs M2 (left) and s0 (right).

FIG. 3. The same as in Fig. 1, but for the mass of the tetraquark Z0
bc.

FIG. 4. The coupling fZ of the tetraquark Z0
bc vs M2 (left) and s0 (right).
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parameter varied within the limits M2 ∈ ½7.5; 9.6� GeV2 or
M2 ∈ ½7.5; 11.2� GeV2. Because

ffiffiffiffiffi
s0

p
determines the mass

of the first excited tetraquark T−
bb;ū d̄

the corresponding mass
gap amounts to Δm ¼ 1.30� 0.36 GeV, which is larger
than the typical tetraquark valueΔmT ∼ 0.5–0.7 GeV. In our
case, this mass gap is Δm ¼ 0.79� 0.17 GeV and over-
shoots ΔmT as well. But one should take into account that
the estimate ΔmT ∼ 0.6 GeV was made for tetraquarks
lying near or above the corresponding two-meson thresholds,
and therefore this fact may be connected with the stable
nature of T−

bb;ū d̄
.

The sum rules analysis of the state T−
bb;ū d̄

was performed
in Ref. [19] by employing various interpolating currents ηi.
In computations the continuum threshold s0 ¼ 115 GeV2

and different regions for the Borel parameter were used,
with M2 ¼ ½6.5; 8.6� GeV2 and M2 ¼ ½7.0; 9.2� GeV2

being two extreme choices for M2. The mass of the
axial-vector tetraquark T−

bb;ū d̄
in Ref. [19] was found to

be m ¼ 10.2� 0.3 GeV. Here we also underline a differ-
ence between the Borel windows in Ref. [19] and those in
the present work as a possible source of this deviation.
The recent model analysis of Ref. [26] predicted

m ¼ 10389� 12 MeV, which is considerably larger than
the present result. Nevertheless, all calculations confirm
that the tetraquark T−

bb;ū d̄
is stable against the strong and

electromagnetic decays and can only dissociate weakly.
The tetraquarks Zbc ¼ ½bc�½q̄ q̄� (q ¼ u, d) were inves-

tigated in Ref. [41] by employing the QCD sum rule method
and various interpolating currents. Themasses of the charged
scalar tetraquarks Z−

bc;ū ū ¼ ½bc�½ū ū� and Zþ
bc;d̄ d̄

¼ ½bc�½d̄ d̄�
found there were m ¼ 7.14� 0.10 GeV. This prediction is
considerably higher than our present result for mZ. But one
should take into account that the scalar tetraquark Z0

bc;ū d̄
¼

½bc�½ū d̄� has different quark content: it is a neutral particle
and contains [like the resonance Xð5568Þ] four quarks of
different flavors. Therefore, a discrepancy between the
predictions for Zbc and Z0

bc may be explained not only by
the accuracy of the corresponding sum rule analysis and
different working regions for the parametersM2 and s0, but
also by the aforementioned reasons. In Ref. [47] the masses
of the ground-state tetraquarks QQ0ū d̄ in the context of
the Bethe-Salpeter method. In the case of the stateZ0

bc, using
one of parameter sets the authors found that its mass is
m ¼ 6.93 GeV: this estimate is closer to our prediction.

III. SEMILEPTONIC DECAY T −
bb;ū d̄

→ Z0
bclν̄l

The semileptonic decay of the tetraquark T−
bb;ū d̄

to the
final state Z0

bclν̄l runs through the chain of transitions b →
W−c and W− → lν̄. As is seen from results obtained in the
previous section, the difference between the initial and final
tetraquark masses is large enough to make all of the decays
(l ¼ e, μ, and τ) kinematically allowed processes.

At the tree level the transition b → c can be described
using the effective Hamiltonian

Heff ¼ GFffiffiffi
2

p Vbcc̄γμð1 − γ5Þbl̄γμð1 − γ5Þνl; ð21Þ

where GF is the Fermi coupling constant and Vbc is the
corresponding element of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. After sandwiching the Heff between the
initial and final tetraquarks and factoringout the lepton fields,
we get the matrix element of the current

Jtrμ ¼ c̄γμð1 − γ5Þb ð22Þ

in terms of the form factorsGiðq2Þ that parametrize the long-
distance dynamics of the weak transition [48],

hZðp0ÞjJtrμ jTðp; ϵÞi ¼ G̃0ðq2Þϵμ þ G̃1ðq2Þðϵp0ÞPμ

þ G̃2ðq2Þðϵp0Þqμ þ iG̃3ðq2Þεμναβϵνpαp0β: ð23Þ

The scaled functions G̃iðq2Þ above are connected with
the dimensionless form factors Giðq2Þ by the following
equalities:

G̃0ðq2Þ ¼ m̃G0ðq2Þ; G̃jðq2Þ ¼
Gjðq2Þ

m̃
; j ¼ 1; 2; 3:

ð24Þ

In Eqs. (23) and (24) m̃ ¼ mþmZ, p and ϵ are the
momentum and polarization vector of the tetraquark
T−
bb;ū d̄

, p0 is the momentum of the state Z0
bc, Pμ ¼

p0
μ þ pμ, and qμ ¼ pμ − p0

μ is the momentum transferred
to the leptons. It is clear that q2 changes within the limits
m2

l ≤ q2 ≤ ðm −mZÞ2, whereml is the mass of the lepton l.
The form factors Giðq2Þ are quantities that should be

extracted from the sum rules which, in turn, are obtainable
from an analysis of the three-point correlation function

Πμνðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞ

× h0jT fJZðyÞJtrμð0ÞJ†νðxÞgj0i; ð25Þ

where JνðxÞ and JZðyÞ are the interpolating currents to the
T−
bb;ū d̄

and Z0
bc states, respectively.

To derive sum rules for the weak form factors we express
the correlation function Πμνðp; p0Þ in terms of the masses
and couplings of the involved particles, and thus determine
the physical or phenomenological side of the sum rule
ΠPhys

μν ðp; p0Þ. We also calculate Πμνðp; p0Þ using the inter-
polating currents and quark propagators, which leads to its
expression in terms of the quark, gluon, and mixed vacuum
condensates. By matching the obtained results and employ-
ing the assumption on the quark-hadron duality, it is possible
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to extract sum rules and evaluate the physical parameters of
interest.
The function ΠPhys

μν ðp; p0Þ can be easily written down in
the form

ΠPhys
μν ðp; p0Þ ¼ h0jJZjZðp0ÞihZðp0ÞjJtrμ jTðp; ϵÞi

ðp2 −m2Þðp02 −m2
ZÞ

× hTðp; ϵÞjJ†νj0i þ � � � ; ð26Þ

where we only take into account contributions arising from
the ground-state particles, and effects of the excited and
continuum states are denoted by dots.
The phenomenological side of the sum rules can be

further simplified by rewriting the relevant matrix
elements in terms of the tetraquark parameters, and
employing for hZðp0ÞjJtrμ jTðp; ϵÞi its expression through
the weak transition form factors Giðq2Þ. The matrix
elements of the tetraquarks T−

bb;ū d̄
and Z0

bc are known
and given by Eqs. (6) and (14), respectively. The matrix

element hZðp0ÞjJtrμ jTðp; ϵÞi is modeled by means of the
four transition form factors Giðq2Þ which can be used
calculate all three semileptonic decays.
Substituting the relevant matrix elements into Eq. (26),

for ΠPhys
μν ðp; p0; q2Þ we finally get

ΠPhys
μν ðp; p0; q2Þ ¼ fmfZmZ

ðp2 −m2Þðp02 −m2
ZÞ

×

�
G̃0ðq2Þ

�
−gμν þ

pμpν

m2

�

þ ½G̃1ðq2ÞPμ þ G̃2ðq2Þqμ�

×

�
−p0

ν þ
m2 þm2

Z − q2

2m2
pν

�

− iG̃3ðq2Þεμναβpαp0β
�
þ � � � ð27Þ

The function ΠOPE
μν ðp; p0Þ constitutes the second side of

the sum rules and has the following form:

ΠOPE
μν ðp; p0Þ ¼

Z
d4xd4yeiðp0y−pxÞfTr½γ5S̃b0bd ðx − yÞγ5Sa0au ðx − yÞ�ðTr½γμS̃aa0b ðy − xÞγ5Sbic ðyÞγνð1 − γ5Þ

×Sib
0

b ð−xÞ� þ Tr½γμS̃ia0b ð−xÞð1 − γ5ÞγνS̃bic ðyÞγ5Sab0b ðy − xÞ�Þ − Tr½γ5S̃b0ad ðx − yÞγ5Sa0bu ðx − yÞ�
× ðTr½γμS̃aa0b ðy − xÞγ5Sbic ðyÞγνð1 − γ5ÞSib0b ð−xÞ� þ Tr½γμS̃ia0b ð−xÞð1 − γ5ÞγνS̃bic ðyÞγ5Sab0b ðy − xÞ�Þg: ð28Þ

To extract the sum rules for the form factors Giðq2Þ, we
equate invariant amplitudes corresponding to the same
Lorentz structures in ΠPhys

μν ðp; p0; q2Þ and ΠOPE
μν ðp; p0Þ,

perform a double Borel transformation over the variables
p02 and p2 to suppress contributions of the higher excited
and continuum states, and perform continuum subtraction.
For example, to extract the sum rule for G̃0ðq2Þ we use the
structure gμν, whereas for G̃3ðq2Þ we employ the term
∼εμναβpαp0β. It is convenient to present the obtained sum
rules in a single formula through the functions G̃iðq2Þ,

G̃iðM2; s0; q2Þ ¼
1

fmfZmZ

Z
s0

4m2
b

ds
Z

s0
0

ðmbþmcÞ2
ds0

× ρiðs; s0; q2Þeðm2−sÞ=M2
1eðm2

Z−s
0Þ=M2

2 ; ð29Þ

bearing in mind that they are connected to the dimension-
less form factors Giðq2Þ by Eq. (24). HereM2 ¼ ðM2

1;M
2
2Þ

are the Borel parameters, and s0 ¼ ðs0; s00Þ are the con-
tinuum threshold parameters that separate the main con-
tribution to the sum rules from the continuum effects. The
sum rules (29) are written down using the spectral densities
ρiðs; s0; q2Þ which are proportional to the imaginary parts
of the corresponding invariant amplitudes in ΠOPE

μν ðp; p0Þ.

They contain the perturbative and nonperturbative contri-
butions, and are calculated with dimension-six accuracy.
For numerical computations of the weak form factors

GiðM2; s0; q2Þ one needs to fix various parameters. Values
some of these parameters are collected in Table I, while the
masses and couplings of the tetraquarks T−

bb;ū d̄
and Z0

bc

were evaluated in the previous section. In the present
computations, we impose the same constraints on the
auxiliary parametersM2 and s0 as in the mass calculations.
To obtain the width of the decay T−

bb;ū d̄
→ Z0

bclν̄l one has

to integrate the differential decay rate dΓ=dq2 (for details,
see the Appendix) within allowed kinematical limits m2

l ≤
q2 ≤ ðm −mZÞ2. It is clear that for light leptons l ¼ e; μ
the lower limit of the integral is considerably smaller than
1 GeV2, but the perturbative calculations lead to reliable
predictions formomentum transfersq2 > 1 GeV2. Therefore,
we use the usual prescription and replace the weak form
factors in thewhole integration region by fit functionsFiðq2Þ,
which for perturbatively allowed values of q2 coincide with
Giðq2Þ.
There are various analytical expressions for the fit

functions. In the present paper we utilize

Fiðq2Þ ¼ fi0 exp

�
c1i

q2

m2
fit

þ c2i

�
q2

m2
fit

�
2
�
; ð30Þ
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where fi0, c1i, c2i, andm
2
fit are fitting parameters. The values

of these parameters are presented in Table II. Besides that,
for the numerical calculations we need the Fermi coupling
constantGF andCKMmatrix element jVbcj, forwhichweuse

GF ¼ 1.16637 × 10−5 GeV−2;

jVbcj ¼ ð41.2� 1.01Þ × 10−3: ð31Þ
As a result, for the decay width of the processes T−

bb;ū d̄
→

Z0
bclν̄l (l ¼ e; μ, and τ) we find

ΓðT−
bb;ū d̄

→ Z0
bceν̄eÞ ¼ ð2.65� 0.78Þ × 10−8 MeV;

ΓðT−
bb;ū d̄

→ Z0
bcμν̄μÞ ¼ ð2.64� 0.78Þ × 10−8 MeV;

ΓðT−
bb;ū d̄

→ Z0
bcτν̄τÞ ¼ ð1.88� 0.55Þ × 10−8 MeV; ð32Þ

which are the main results of the present work.
The partial decay widths from Eq. (32) can be used to

estimate the full width and mean lifetime of the tetraquark
T−
bb;ū d̄

Γ ¼ ð7.17� 1.23Þ × 10−8 MeV;

τ ¼ 9.18þ1.90
−1.34 × 10−15 s: ð33Þ

These predictions can be employed to explore the double-
heavy tetraquarks.

IV. ANALYSIS AND CONCLUSIONS

The spectroscopic parameters of the tetraquarks T−
bb;ū d̄

and Z0
bc as well as the width of the semileptonic decay

T−
bb;ū d̄

→ Z0
bclν̄l provide very interesting information on

the properties of four-quark systems. Thus, the mass of the
tetraquark T−

bb;ū d̄
obtained in the present work confirms

once more that it is stable against strong and electromag-
netic decays, and can transform only weakly to a tetraquark
Z0
bc and a pair of leptons lν̄l. This conclusion is valid even

when taking into account uncertainties inherent to the sum
rule computations. Our result for m is smaller than the
predictions made in Refs. [18] and [26] using the QCD sum
rule method and phenomenological model estimations,
respectively. The semileptonic decays T−

bb;ū d̄
→ Z0

bclν̄l,
where l ¼ e, μ and τ have allowed us to evaluate the width
of T−

bb;ū d̄
and its mean lifetime τ ¼ 9.18þ1.90

−1.34 fs, which is
considerably shorter than the prediction of Ref. [26].
Another interesting result of this work is connected with

the parameters of the scalar tetraquark Z0
bc composed of the

heavy diquark bc and light antidiquark ū d̄. In fact, the
mass of this state mZ ¼ ð6660� 150Þ MeV is consider-
ably below the threshold ≈7145 MeV for strong S-wave
decays to conventional heavy B−Dþ and B0D0 mesons.
Because of its quark content, Z0

bc cannot decay to a pair of
heavy and light mesons as well. These features differ
qualitatively from those of the open charm-bottom scalar
tetraquarks Zq ¼ ½cq�½b̄ q̄� and Zs ¼ ½cs�½b̄ s̄�, which decay
strongly to Bcπ and Bcη mesons [44], and, in turn, cannot
decay to two heavy mesons. In other words, the four-quark
system consisting of a heavy diquark and a light anti-
diquark is more stable than one consisting of a heavy-light
diquark and antidiquark. This is seen from a comparison of
the masses of the tetraquark Z0

bc and the state Zq, for
which mZq

¼ ð6.97� 0.19Þ GeV.
Theoretical information on the decay properties of the

state T−
bb;ū d̄

can be further improved by including its other
weak decay channels in analyses. The investigation of the
stable open charm-bottom tetraquarks Z0

bc with different
quantum numbers is also an interesting topic of exotic
hadron physics: by clarifying these problems we can
deepen our understanding of multiquark systems.
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APPENDIX: THE DECAY RATE dΓ=dq2

This appendix contains the explicit expression for the
decay rate dΓ=dq2 necessary to calculate the width of the
semileptonic decay T−

bb;ū d̄
→ Z0

bclν̄l. Calculations lead to
the following result:

dΓ
dq2

¼ G2
FjVcbj2

3 · 28π3m3

�
q2 −m2

l

q2

�
λðm2; m2

Z; q
2Þ
�Xi¼3

i¼0

G̃2
i ðq2ÞAiðq2Þ þ G̃0ðq2ÞG̃1ðq2ÞA01ðq2Þ

þG̃0ðq2ÞG̃2ðq2ÞA02ðq2Þ þ G̃1ðq2ÞG̃2ðq2ÞA12ðq2Þ
�
: ðA1Þ

TABLE II. The parameters of the fit functions Fiðq2Þ.
Fiðq2Þ fi0 c1i c2i m2

fit (GeV
2)

F0ðq2Þ −2.34 19.53 −36.87 100.70
F1ðq2Þ −1.75 18.45 −14.29 100.70
F2ðq2Þ 8.80 20.21 −32.09 100.70
F3ðq2Þ 17.13 20.60 −32.49 100.70
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In Eq. (A1) the functions Aiðq2Þ and Aijðq2Þ are given by

A0ðq2Þ ¼
1

2m2q4
½q4ðm2 −m2

ZÞ2 − 4q4m2m2
l −m4

l ðm2 −m2
Z þ q2Þ2 þ 2q6ð3m2 −m2

ZÞ þ q8�;

A1ðq2Þ ¼
1

2m2q4
½m4 þ ðm2

Z − q2Þ2 − 2m2ðm2
Z þ q2Þ�fm4

l ðm2 −m2
ZÞ2 þ q4m4

l ðq2 − 2m2 − 2m2
ZÞ

−q4½m4 þ ðm2
Z − q2Þ2 − 2m2ðm2

Z þ q2Þ�g;

A2ðq2Þ ¼
m2

l

2m2
ðq2 −m2

l Þ½m4 þ ðm2
Z − q2Þ2 − 2m2ðm2

Z þ q2Þ�;

A3ðq2Þ ¼
1

2q2
ðm4

l − q4Þ½m4 þ ðm2
Z − q2Þ2 − 2m2ðm2

Z þ q2Þ�;

A01ðq2Þ ¼
1

m2q4
½q4ðm2

l þm2
Z −m2 − q2Þ þm4

l ðm2 −m2
ZÞ�½m4 þ ðm2

Z − q2Þ2 − 2m2ðm2
Z þ q2Þ�;

A02ðq2Þ ¼
m2

l ðm2
l − q2Þ

m2q2
½m4 þ ðm2

Z − q2Þ2 − 2m2ðm2
Z þ q2Þ�;

A12ðq2Þ ¼
m2

l ðq2 −m2
l Þðm2 −m2

ZÞ
m2q2

½m4 þ ðm2
Z − q2Þ2 − 2m2ðm2

Z þ q2Þ�; ðA2Þ

and

λðm2; m2
Z; q

2Þ ¼ ½m4 þm4
Z þ q4 − 2ðm2m2

Z þm2q2 þm2
Zq

2Þ�1=2:
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