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The weak decays of the axial-vector tetraquark 7

b d to the scalar state Z

0
h

bz g e investigated using the

QCD three-point sum rule approach. In order to explore the process 77, - — Z° __I7;, we recalculate the

bbiid besind

spectroscopic parameters of the tetraquark 7', - - and find the mass and coupling of the scalar four-quark

0

system th;n P

which are important ingredients of calculations. The spectroscopic parameters of these

tetraquarks are computed in the framework of the QCD two-point sum rule method by taking into account

various condensates up to dimension ten. The mass of the 7., - state is found to be m =

bbitd

(10035 + 260) MeV, which demonstrates that it is stable against the strong and electromagnetic decays.

The full width I" and mean lifetime 7z of T;b-aa

are evaluated using its semileptonic decay channels

- ch.;,;]l’/_z’ I =e, u, and 7. The obtained results, I' = (7.17 £ 1.23) x 107 MeV and 7 =

bsed

9.18f11:392 fs, can be useful for experimental investigations of the doubly-heavy tetraquarks.

DOI: 10.1103/PhysRevD.99.033002

I. INTRODUCTION

Assumptions about the existence of four-quark bound
states (tetraquarks) were made in an early stage of QCD and
aimed to explain some of the unusual features of meson
spectroscopy. Thus, the nonet of light scalar mesons was
considered as bound states of four light quarks rather than
being composed of a quark and an antiquark, as in the
standard models of the mesons. The stability problems of
heavy and heavy-light tetraquarks were also among the
questions addressed in these studies [1-4].

Due to the impressive experimental discoveries and
theoretical progress of the past 15 years, the study of
multiquark hadrons has become an integral part of high-
energy physics. During this period of development and
growth, various difficulties in experimental studies and the
classification and theoretical interpretation of numerous
tetraquarks were successfully overcome [5-8].

But there are still problems in the physics of exotic
hadrons that are not fully solved; the identification of the
tetraquark resonances and their stability are among these
questions. It is known that the first charmonium-like
resonances observed experimentally were interpreted not
only as tetraquarks, but also as excited states of the
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conventional charmonium. Fortunately, there are different
classes of tetraquarks that cannot be identified as charmo-
nia or bottomonia states. Indeed, charged resonances
carrying one or two units of electric charge and states
containing two or more open quark flavors can easily be
distinguished from charmonium- or bottomonium-like
structures. All of the resonances observed in various
experiments and classified as tetraquarks are unstable with
respect to strong interactions. They lie either above the
open-charm (-bottom) thresholds or are very close to them.
Such four-quark compounds can strongly decay to two
conventional mesons. Because the quarks required to create
these mesons already exist in the master particles, the width
of such states is rather large: the dissociation into two mesons
is the main strong decay channel of the unstable tetraquarks.

It is natural that theoretical explorations of stable four-
quark systems and their experimental discovery remain on
the agenda of particle physics. The tetraquarks built of
heavy cc or bb diquarks and light antidiquarks are real
candidates for such states. Their studies have a long history;
in fact, the class of exotic mesons QQQ Q and QQg g were
studied in Refs. [4,9,10], where a potential model with an
additive pairwise interaction was used to search for stable
tetraquarks. It was demonstrated that in the context of this
approach the exotic mesons composed of only heavy
quarks are unstable, but the tetraquarks QQg g may form
stable compounds provided the ratio my/m, is large. The
same conclusions were made in Ref. [11], in which the
only constraint imposed on the confining potential was its
finiteness when two particles come close together. There it
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was found that the isoscalar J¥ = 17 tetraquark T paa

resides below the two-B-meson threshold, and hence can
decay only weakly. At the same time, the tetraquarks 7'...;5
and T'j..;;» may exist as unstable or stable bound states. The
stability of the QQg g compounds in the limit my — oo
was studied in Ref. [12], as well.

Various theoretical models—starting from the chiral
and dynamical quark models and ending with the
relativistic quark model—were used to study the proper-
ties and compute the masses of the Ty, states [13-17].
The masses of the axial-vector states Tp.;; were also
extracted using two-point sum rules [18]. In accordance
with the results of Ref. [18], the mass of the tetraquark

T;b - is 10.2 0.3 GeV, which is below the open-

bottom threshold. Using the same method, the parameters
of the QQg g states with spin-parities 0=, 0", 17, and 1™
were evaluated in Ref. [19]. The production mechanisms
of the T,.. tetraquarks—such as heavy-ion and proton-
proton collisions, electron-positron annihilations, and B,.-
meson and heavy E,. baryon decays—as well as possible
decay channels of the T.. states were addressed in the
literature [20-24].

The discovery of the doubly charmed baryon /.7 = ccu
by the LHCb Collaboration [25] inspired new investiga-
tions of double-charm, double-bottom, and four-bottom
tetraquarks [26-34]. Lattice simulations in the context of
nonrelativistic QCD to search for the existence of the bound

states 79 below the lowest bottomonium-pair threshold
bbib b p

were carried out in Ref. [33], but no evidence was found for
such stable states with quantum numbers 0™, 17, and
27+, which can be considered a present-day confirmation
of the conclusions originally made in Refs. [4,9-11]. A
situation with double-bottom tetraquarks is more promising.

Thus, the mass of the state T;b Jwas estimated once more in

the framework of a phenomenological model in Ref. [26].

There, the mass of the isoscalar axial-vector state T;b g was

found to be m = 10389 4+ 12 MeV, which is 215 MeV
below the B~ B*Y threshold and 170 MeV below the threshold

for B~B% decay. This means that the tetraquark Tbb a1

stable against the strong and electromagnetic decays and only
decays weakly. At the same time, the mass of the double-
charm chm-i state is 3882 £ 12 MeV, which is above the

thresholds of both D°D** and D D*y decays (see Ref. [26]).
The double-charm states T/ ;5 and T/ - that belong to

ceis s
the class of doubly charged tetraquarks were investigated
recently in our work [35]. These particles carry two units
of electric charge, which makes them particularly
interesting. They are above the D D’J (2317) and D* D
(2317) thresholds, and the width of the strong decays
T/ l5s=>DiDy (2317)and T/ ;. — D* Dy (2317) allowed

cciss
us to classify them as relatlvely broad resonances.
In light of recent progress made in the physics of double-

heavy tetraquarks and the expected stability of the Tbb P

state, its weak decays are a very interesting subject for a
detailed analysis. The semileptonic decays of four-quark
systems—when an initial tetraquark transforms into a
final tetraquark and 7, or Iy, leptons—are a relatively new
topic in the physics of exotic mesons [36,37]. In Ref. [36]
the decay of the axial-vector tetraquark Z; = [cs][b 3] to
a final state X(4274)ly, was studied using the QCD sum
rule method. The widths of these decays (where [ = e, u,
and 7) are very small, and therefore the transitions Z; —
X(4274)ly, were classified as rare processes. The semi-
leptonic decays of the stable double heavy tetraquarks
were considered in Ref. [37].

In the present work we are going to explore the semi-
leptonic decays of the tetraquark Ty and evaluate its

full width and mean lifetime. The tetra(biuark T paa under-

goes weak decay through the transition b — W~c. In the
final state, its decay products consist of /7, and a diquark-
antidiquark Zb .3 = |bc][m d) state (for simplicity, here-
after Z9 ). The tetraquark Z9 may decay to B and D
mesons with appropriate masses and spin parities provided
its mass is larger than corresponding thresholds. In this
scenario, ch dissociates strongly to the final conventional
mesons. Otherwise, at the next stage ch should decay due
to weak or electromagnetic interactions. In the present
work we restrict ourselves by considering the semileptonic

decay of T aa only to the scalar state Z),.

The open charm-bottom four-quark systems QQ’g g were
already analyzed in Refs. [10,38]. In recent investigations
these compounds were treated either as B,.-like molecular or
Zy. = |bc][q g]-type diquark-antidiquark states. The masses
of the B, -like scalar and axial-vector molecules with differ-
ent light-quark contents and spin parities were calculated in
Refs. [39,40]. The open charm-bottom states were analyzed
in Ref. [41] in the framework of the diquark-antidiquark
model. In order to extract the masses of these states, the
authors utilized the QCD sum rule method and interpolating
currents of different color structure. The class of open charm-
bottom tetraquarks also includes states with (b, ¢) or (c, b)
quarks, which were the subject of rather intensive studies as
well [39-45]. In fact, the molecule-type tetraquarks with the
contents {Q7}{0"¢q} and {Q5}{0")s} were studied in
Refs. [42,43], respectively. In these papers, the masses of
these hypothetical particles were computed in the context of
the QCD two-point sum rule approach using vacuum
condensates up to dimension six. The spectroscopic param-
eters and strong decays of the scalar and axial-vector tetra-
quarks Z, = [cq][b g] and Z; = [cs][b 5] were calculated in
Refs. [44,45], respectively.

It is remarkable that Z9 = [bc][id] is the open charm-
bottom tetraquark and that it contains four quarks of different
flavors. Two years ago, data on the state known as X(5568)
from the DO Collaboration [46] led to an interest in
compound systems of four distinct quarks. However, both
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experimental and theoretical studies of X(5568) led to
controversial conclusions, leaving the status of this tetra-

quark unclear. Therefore, investigating the process 7', pad

Z9 1p; could not only help to answer questions about the

features of the tetraquark 7', b d itself, but also to clarify the

structure and properties of its decay products.

The spectroscopic parameters of 7 b d and ch are
important input for studying the semlleptomc decay under
consideration. In the present work, we calculate the masses
and couplings of these tetraquarks by employing QCD sum
rules obtained from an analysis of the relevant two-point
correlation functions. When computing the correlation
functions, we take into account the vacuum expectation
values of the quark, gluon, and mixed local operators up to
dimension ten. We evaluate the width of the semileptonic
decay 7, .- = Z bclul by applying the standard prescrip-

tions of the QCD three-point sum rule method. Our aim
here is to extract the sum rules for the weak form factors
Gi(¢*), i=0, 1, 2, 3 and to compute their numerical
values. This allows us to determine the so-called fit functions
F;(¢?), which coincide with G,(¢?), but can be extended to a
region of momentum transfers that is not accessible to the
QCD sum rules. The functions F ,-(qz) are used to integrate
the differential decay rate dI"/dg?* and find the partial width
of the decay processes F(T‘ P Z9.1v)),1 = e, p,and 7.

This article is orgamzed in the following manner. In
Sec. II we derive the QCD two-point sum rules for the
masses and couplings of the tetraquarks 7', ad and Z9 e and
numerically compute their values. In Sec III, we use the
QCD three-point correlation function to derive sum rules
for the weak form factors G;(g?). In this section we also
perform a numerical analysis of the obtained sum
rules and determine the fit functions, which allow us to

evaluate the width of the semileptonic decay Thb Pl

;- Section IV
contains a discussion of the obtained results and our brief
conclusions. The explicit expression for the decay rate
dl'/dg? can be found in the Appendix.

79 1y, and mean lifetime of the state 7 _
be bb;i

II. SPECTROSCOPIC PARAMETERS OF
THE TETRAQUARKS T, .- AND Z),

In this section we calculate the spectroscopic parameters
of the tetraquarks T, - and Z9_ by employing the QCD
two-point sum rules extracted from an analysis of the
relevant correlation functions II,(p) and II(p). The

masses of Tbb 5 and Z,. in the framework of QCD sum

rules were found in Refs. [18,19,41], respectively. We are
going to evaluate the masses and tetraquark-current cou-
plings of these states by taking into account the vacuum
condensates up to dimension ten, which exceeds the
accuracy of the previous studies: updated information on
the spectroscopic parameters of the tetraquarks Tl:b;ufi

and Z)_ is necessary to explore the semileptonic decay

L Z9 19, in the next section.

The function I1,,(p) is defined as

M, (p) = i/d4xei”'x<0|T{J,4(X)Ji(0)}|0>, (1)

where J,(x) is the interpolating current to the axial-vector
tetraquark T, .- composed of an axial-vector diquark and

a scalar ant1d1quark. This current is given by [18]

Ju(x) = b (x)Cr,by ()i, (x)y5Caf (). (2)
Here, a and b are the color indices and C is the charge-
conjugation operator.

The correlation function TI(p) for the scalar tetraquark

Z9  has the form

I(p) = i/d4x€i”'x<0T{JZ(X)JZT(O)HO), (3)
where the current JZ(x) is defined as

J#(x) = b (x)Crscy (x) [, (x)rsCd] (x)
~iiy (x)ys Cdyy (x)] (4)

and is obtained using currents for the diquark-antidiquarks
Zy. from Ref. [41]. The current J#(x) is composed of a
scalar diquark and an antidiquark in the antitriplet and
triplet representations of the color group, respectively.
Here we concentrate on calculating the parameters of the
tetraquark T;b;ﬁ 5 and only provide necessary expressions
and final results for ch. In accordance with the QCD sum
rule method, one first has to express the correlation
function IT,,(p) in terms of the tetraquark’s mass m and
coupling f, which form the phenomenological or physical
side of the sum rules. We treat the tetraquark 7', - as a

ground-state particle in its class, and therefore we 1solate

only the first term in thy (p), which is given by

(O1,,[T(p))(T ( )IJv|0>

Phys
Hlluyb(p) = m2 — P

(5)

This expression is derived by saturating the correlation
function (1) with a complete set of states with J© = 1+ and
performing the integration over x. The dots here indicate

contributions to Hﬁfys(p) from higher resonances and
continuum states.

The function IT,"*(p) can be further simplified by
introducing the matrix element

O|T(p.€)) = fmey. (6)
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bbiad state. It is

not difficult to demonstrate that in terms of m and f the
function takes the following form:

m? f* Pul

where €, is the polarization vector of the T’

hys
" (p) =

To suppress the contribution arising from the higher
resonances and continuum, we carry out the Borel trans-
formation of the correlation function, which reads

s —1 PuP
B (p) = e (g, + D) 4y

where M? is the Borel parameter.

The second part of the sum rules is given by the same
correlation function I1,,(p), but expressed in terms of the
quark propagators,

MOPE (p) = / xe? [ Trly s34 (—x)ys $49(~)]
x Tr[y, S4 (x)7, 857 (x)] = TrlysS5®(—x)
X 7sSU= el S0 (D, S W]} ()

In Eq. (9), S¢?(x) and $4”(x) are the b- and ¢(u, d)-quark
propagators, explicit expressions for which can be found,
for example, in Ref. [36]. Here we also introduce the
notation
Spig)(x) = CS} ) (x)C. (10)
The QCD sum rules can be extracted by using the same
Lorentz structures in both IT,,"*(p) and TIQPE(p). The
structures ~g,,, are appropriate for our purposes, because
they receive contributions only from spin-1 particles. The

invariant amplitude TT°PE(p?) corresponding to this struc-
ture can be represented by the dispersion integral

% (p?) = Am pOPE(sz) ds+- - (11)

2§ -
m =D

where pOPE(s) is the two-point spectral density. It is

proportional to the imaginary part of the structure ~g,,
in the function IIOFE(p). In the present work, p°FE(s) is
calculated by taking into account the quark, gluon, and
mixed vacuum condensates up to dimension ten.

By applying the Borel transformation to IIOPE(p?),
equating the obtained expression with the relevant part
of the function BIT,,"*(p), and performing the continuum
subtraction, we find the final sum rules. Then, the mass of
the T, - state can be evaluated from the sum rule

f dsspOPE< ) —s/M?

2 _
m OPE( ) —s/M?

0 (12)

4m‘
whereas to find the coupling f we employ the expression

1

== / " dspOPE(s)em I (13)
m 4mb

Here s is the continuum threshold parameter that separates
the ground-state and continuum contributions from one
another.

In the case of the scalar tetraquark Z9 he» there are some
differences stemming from its spin-parity and the structure
of the interpolating current. Thus, the matrix element
(0|J%|Z(p)) has the form

(017%1Z(p)) = fzmz. (14)
which is analogous to the matrix element of a conventional
scalar meson. The correlation function IT°PE(p) is given by

0% (p) = i [ el (S (317533 (1))
X {Tr[i/ssgb(—X)YSSZ/‘I(—X)} - Tr[?sgglb(—x)
X 7553/0(—)5)] - Tr[?sszra(—x)yssﬁ/b(—x)}
+Trlys89(—x)ysS5° (—x)]}. (15)

The remaining manipulations and final sum rules for m,

and f, are similar to those for the tetraquark Tbb P

The obtained sum rules depend on the quark, gluon, and
mixed condensates, the numerical values of which are
collected in Table I. This table also contains the masses of
the b and ¢ quarks, which appear in the sum rules as input
parameters.

Besides, Egs. (12) and (13) depend on the auxiliary
parameters M? and s, which should satisfy the standard
constraints of the sum rule computations. Our analysis
proves that the working windows

TABLE 1. The parameters utilized in our numerical
computations.
Parameters Values
my, 418700 GeV
m, (1.27 £0.03) GeV
(qq) —(0.24 £0.01)% GeV?
(ss) 0.8(q4)
m} (0.8 £0.1) GeV?
(a9:0Gaq) m§(aq)
(59,0Gs) 3 (5s)
<a:Gz> (0.012 £ 0.004) GeV*
(g2G?) (0.57 £0.29) GeV®
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M? € [9,13] GeV?, so € [115,120] GeV?  (16)
meet all of the restrictions imposed on M? and s,. Thus, the
maximum of the Borel parameter is determined from the
minimum allowed value of the pole contribution (PC),
which at M? = 13 GeV? is 16% of the full correlation
function. Within the region M? € [9, 13] GeV? the pole
contribution varies from 59 to 16%. The lower limit of the
Borel parameter is fixed by the convergence of the operator
product expansion (OPE) for the correlation function. In
the present work, we use the criterion

HDim(8+9+lO) (M2 , SO)
H(MZ, S())

R(M?) = <005, (17)

where T1(M?2, s,) is the Borel-transformed and subtracted
function TTOPF(p?), and TIP™B+9+10)(A12 5} is the con-
tribution from the last three terms in its expansion. At M? =
9 GeV? the ratio R is equal to R(9 GeV?) = 0.01, which
ensures the excellent convergence of the sum rules.
Moreover, at M> =9 GeV? the perturbative contribution
amounts to 74% of the full result, considerably exceeding
the nonperturbative terms.

The quantities evaluated by means of the sum rules, in
general, should not depend on the auxiliary parameters M>
and 5. But in calculations of the mass m and coupling f we
observe a residual dependence on M? and s,. Therefore, the
stability of the extracted parameters (i.e., m and f) is a
necessary condition to fix the working windows for M? and
so. In Figs. 1 and 2 we plot the dependence of the mass and
coupling of the tetraquark T;b;ﬁ 5 on the parameters M 2 and

so. It is seen that m and f depend on M? and s, which
generates the main part of the theoretical errors inherent to
the sum rule computations. For the mass m these ambi-
guities are small, whereas for the coupling f they may be
sizable. This behavior has a simple explanation: the sum
rule for the mass of the tetraquark (12) is given as the ratio
of integrals over the functions sp°FE () and pOFE(s), which

11.0 ]
105 ]
% e tetateiaivieipini
Q 10.0 o= bl
E 95 $0=115.0 GeV2 ]

----- So=117.5 GeV?
9.0} , ]
------- 50=120.0 GeV/ ]
9 10 1 12 13
M(GeV?)

considerably reduces effects due to the variation of M? and
so- The coupling f depends on the integral over the spectral
density pOPE(s) itself, and therefore undergoes relatively
sizable changes. In the case under discussion, theoretical
errors for m and f stemming from the uncertainties of M?
and s, and other input parameters are £2.6 and +20% of
the corresponding central values, respectively.

Our analysis for the mass and coupling of the tetraquark
T,,.5, predicts

m = (10035 + 260) MeV,

f=(1.384£0.27) x 1072 GeV*. (18)
Similar studies of Z!_ lead to the following results:
my = (6660 + 150) MeV,
fz=1(05140.16) x 1072 GeV*, (19)

which have been obtained using the working regions

M? € [5.5,6.5] GeV?, so € [53,55] GeV2.  (20)
It is worth noting that in the calculations of m, and f, the
PC changes by 55 to 21%. The contribution of the last three
terms to the corresponding correlation function at the point
M? = 5.5 GeV? amounts to 1.9% of the total result, which
guarantees the convergence of the sum rules. In Figs. 3
and 4 we depict the mass and coupling of the tetraquark Z9,
as a function of M? and s, to demonstrate their residual
dependence on these parameters. It is evident that, as in
the case of the T;b;aﬁ state, the mass my is less sensitive to
variations of M? and s, than the coupling f,. But, the
relevant theoretical errors stay within the allowed limits
inherent to sum rule computations, which may equal up to
+30% of the predictions.

As it has been noted above, the mass of the state T

I;b;uli
was evaluated using different approaches in Refs. [18,19]

11.5 T T T T
11.0
__10.5¢
% e lelvietrintalriulyiepirfelpisfeipiente,
o 10.0F=============mmm """
3 —_ MP= 2
9.5t M"=9 GeV
----- M?=11 GeV?
S S M?=13 GeV?2
8.5 ) ) ) )
115 116 117 118 119 120
so(GeV?)

FIG. 1. The mass of the tetraquark T, ..asa function of the Borel parameter (left) and continuum threshold parameter (right).
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3_0""x""x""x"" 3_0' LU S S B R R S R B L RN R S B S R R

= 2 Y72 2
25t 50=115.0 GeV ] 95l M?=9 GeV ]

----- 50=117.5 GeV? m=mm= M?=11 GeV?

b Tt S— 50=120.0 GeV2 [ Nd S—— MP=13 GeV? ]

I e e S

L ST ettt - ,?’ L R

=) A ———— o W pmmm—————

- -

X 10f X 1.0f 1
0.5} 05Ff 1
0.0 " 1 " " " n 1 n n n n 1 n n n n 0.0 1 1 1 1

9 10 1 12 13 115 116 17 118 119 120
M?(GeV?) so(GeV?)

FIG. 2. The coupling f vs M? (left) and s, (right).
8_0'x"'x"'x"'x"'w'4 8.0""x""x""x""
7.5} 7.5}

_ 7.0f 1 . 7.0}

Q b L S e T e e e e e e e e T e 3 @

O 65F 1O 65F

g _53 Ge\?2 | g — MP=55Ge\?

6.0} So=93 € 1% 60f =0 e

..... So=54 GeV? ] --—-- M?=6.0 GeV?
5.5¢f 2 1 5.5 2_ 2

-------- s9=55 GeV ] mmmeaee M=6.5 GV
5.0‘1“‘1“‘1“‘1“‘1“ sol———

5.6 5.8 6.0 6.2 6.4 53.0 53.5 54.0 54.5 55.0
M*(GeV?) so(GeV?)
FIG. 3. The same as in Fig. 1, but for the mass of the tetraquark Z) .

1_0'x T T T T 1.0""I""X"'V{VVVV
0.8} 1 o8} ]

<O i

> | 1>

g“i 0'6»........-------------------------"_';'_"_';'_';‘_“_';'_':_".'LZ § 06 O ettt

N i — ~ T e Lt et

o 1 ©

% 04 $0=53 GeV? 1 % 04r —— M?=55 Ge\? ]

S I

S — S0=54 GeV? L T — M?=6.0 GeV?
0.2f 1 0.2 1
[ $0=55 GeV? 1 e M?=6.5 GeV?
oolbn— ] 00—
5.6 5.8 6.0 6.2 6.4 53.0 53.5 54.0 54.5 55.0
M*(GeV?2) so(GeV?)

FIG. 4. The coupling f of the tetraquark Z9, vs M? (left) and s, (right).

and [26]. The investigations in the first two papers were  values differ from each other. This discrepancy is presumably
carried out in the framework of the sum rules method, and  connected with the accuracy of the analysis performed
therefore we first compare our result for m with those  there (up to dimension-eight condensates), and with the
predictions. Our result for m is smaller than the prediction  choice of the working intervals for the parameters M? and s,,.
m = 10.2 £ 0.3 GeV made in Ref. [18]: there is an over-  Thus, in Ref. [18] the explored range for the continuum
lapping region between these two results, but the central  threshold was 11.3 < /sy < 11.7 GeV, whereas the Borel
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parameter varied within the limits M? € [7.5,9.6] GeV? or
M? € [1.5,11.2] GeV?. Because /s, determines the mass

of the first excited tetraquark 7, biad the corresponding mass
gap amounts to Am = 1.30 £ 0.36 GeV, which is larger
than the typical tetraquark value Amy ~ 0.5-0.7 GeV. In our
case, this mass gap is Am = 0.79 £ 0.17 GeV and over-
shoots Amy as well. But one should take into account that
the estimate Amy ~ 0.6 GeV was made for tetraquarks
lying near or above the corresponding two-meson thresholds,
and therefore this fact may be connected with the stable
nature of TI:b;:z P

The sum rules analysis of the state T yaWas performed
in Ref. [19] by employing various interpolating currents 7;.
In computations the continuum threshold s, = 115 GeV?
and different regions for the Borel parameter were used,
with M? = [6.5,8.6] GeV?> and M? =[7.0,9.2] GeV?
being two extreme choices for M?. The mass of the
axial-vector tetraquark T;b;ua in Ref. [19] was found to

be m = 10.2 + 0.3 GeV. Here we also underline a differ-
ence between the Borel windows in Ref. [19] and those in
the present work as a possible source of this deviation.
The recent model analysis of Ref. [26] predicted
m = 10389 + 12 MeV, which is considerably larger than
the present result. Nevertheless, all calculations confirm
that the tetraquark Tz:b;ua is stable against the strong and

electromagnetic decays and can only dissociate weakly.
The tetraquarks Z,. = [bc][q ] (¢ = u, d) were inves-
tigated in Ref. [41] by employing the QCD sum rule method
and various interpolating currents. The masses of the charged
scalar tetraquarks Z,.; , = [bc][i i] and ZZC;M = [bc][d d]
found there were m = 7.14 £ 0.10 GeV. This prediction is
considerably higher than our present result for m,. But one

should take into account that the scalar tetraquark ch‘u =

[bc][ii d) has different quark content: it is a neutral particle
and contains [like the resonance X(5568)] four quarks of
different flavors. Therefore, a discrepancy between the
predictions for Z,,. and ch may be explained not only by
the accuracy of the corresponding sum rule analysis and
different working regions for the parameters M2 and s, but
also by the aforementioned reasons. In Ref. [47] the masses
of the ground-state tetraquarks QQ'iid in the context of
the Bethe-Salpeter method. In the case of the state Z, , using
one of parameter sets the authors found that its mass is
m = 6.93 GeV: this estimate is closer to our prediction.

1. SEMILEPTONIC DECAY T;, . — Z). 17,

The semileptonic decay of the tetraquark 7', - to the
final state Z9 [7;, runs through the chain of transitions b —
W~c and W~ — [p. As is seen from results obtained in the
previous section, the difference between the initial and final
tetraquark masses is large enough to make all of the decays

(I = e, pu, and 7) kinematically allowed processes.

At the tree level the transition » — ¢ can be described
using the effective Hamiltonian

G _ _
Heff — _FVbCC}/ﬂ(l — ys)bl}/ﬂ(l - }’5)”17 (21)

V2

where G is the Fermi coupling constant and V. is the
corresponding element of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. After sandwiching the H®" between the
initial and final tetraquarks and factoring out the lepton fields,
we get the matrix element of the current

Jip =2y, (1 —ys)b (22)

in terms of the form factors G;(¢?) that parametrize the long-
distance dynamics of the weak transition [48],

(Z(PEIT(p.€)) = Go(g*)e, + Gi(g*)(ep')P,
+Ga(q*)(ep")a, + iG3 (4 ewape’ PP (23)
The scaled functions G,(g*) above are connected with

the dimensionless form factors G;(g*) by the following
equalities:

j=1,2,3.
(24)

In Egs. (23) and (24) m =m+ myz, p and € are the
momentum and polarization vector of the tetraquark

_ ;o 0 _
Tbb;ua’ p' is the momentum of the state Z,., P, =

Py + py» and g, = p, — p, is the momentum transferred
to the leptons. It is clear that ¢g> changes within the limits
m? < g* < (m — my)?, where m; is the mass of the lepton /.
The form factors G,(¢?) are quantities that should be
extracted from the sum rules which, in turn, are obtainable
from an analysis of the three-point correlation function

M, (p.p') = i* / d*xdtyei(r'y=px)
< (O[T {J*(y)75(0)J5(x)}]0).  (25)

where J,(x) and J%(y) are the interpolating currents to the
T;h;b_{a and ch states, respectively.

To derive sum rules for the weak form factors we express
the correlation function IL,,(p, p) in terms of the masses
and couplings of the involved particles, and thus determine

the physical or phenomenological side of the sum rule
L (p, p'). We also calculate I, (p. p') using the inter-
polating currents and quark propagators, which leads to its
expression in terms of the quark, gluon, and mixed vacuum
condensates. By matching the obtained results and employ-
ing the assumption on the quark-hadron duality, it is possible
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to extract sum rules and evaluate the physical parameters of
interest.

The function IT,,"*(p, p') can be easily written down in
the form

(O#|Z(p" ) Z(P")|IIT (p.€))
(p* —m?)(p" —m3)
x (T(p.e)|J5|0) + -, (26)

Ph
L, (p. p') =

where we only take into account contributions arising from
the ground-state particles, and effects of the excited and
continuum states are denoted by dots.

The phenomenological side of the sum rules can be
further simplified by rewriting the relevant matrix
elements in terms of the tetraquark parameters, and
employing for (Z(p')|J};|T(p.€)) its expression through
the weak transition form factors G;(g?). The matrix

0
elements of the tetraquarks Tbb 5 and Z;  are known

and given by Eqgs. (6) and (14), respectively. The matrix
|

element (Z(p')|J;;|T(p.€)) is modeled by means of the

four transition form factors G;(¢?) which can be used
calculate all three semileptonic decays.

Substltutlng the relevant matrix elements into Eq. (26),
for T2 (p. p'. ¢%) we finally get

fmfzmy
(p* = m?)(p?* —m3)

~ PuPv
x {Go(‘lz) (_g;w + #)

+1G1(4)P, + Ga(47)g,]

m +m -q*
2 P

- lG3(q2) Euvapl p/ﬂ} + - (27)

L (p, p'. ) =

The function ITIOPE(p, p’) constitutes the second side of
the sum rules and has the following form:

NPE(p. p') = / d*xd*ye PP {Tr[ys 85 (x — y)ysSTe(x = y)|(Trly, 84« (v — x)ysS (y)r, (1 — ¥s)

xSy (=x)] + Trlr, Sy (

To extract the sum rules for the form factors G;(g?), we
equate invariant amplitudes corresponding to the same
Lorentz structures in IT,""(p.p’.¢%) and OPE (p, p'),
perform a double Borel transformation over the variables
p'? and p? to suppress contributions of the higher excited
and continuum states, and perform continuum subtraction.

For example, to extract the sum rule for G (g?) we use the
structure g,,, whereas for G5(q*) we employ the term
~€,,sP"P'P. It is convenient to present the obtained sum
rules in a single formula through the functions G;(¢?),

G M d %o ds'
i(M?,50, %) = fmfzmz/ . S/(m,,er(.)z s
X py(s,, gP)elm =M /M2 (29)

bearing in mind that they are connected to the dimension-
less form factors G,(g?) by Eq. (24). Here M? = (M?, M3)
are the Borel parameters, and sy = (s, s;) are the con-
tinuum threshold parameters that separate the main con-
tribution to the sum rules from the continuum effects. The
sum rules (29) are written down using the spectral densities
pi(s,s’,¢*) which are proportional to the imaginary parts
of the corresponding invariant amplitudes in ITOFE(p, p').

—x)(1 = y5)r, 82 (»)rsSe (y — x)))
X (Trly, 859 (v = x)rsS2 (y)r, (1 = y5) S (—x)] + Ty, S (=x) (1 = v5)7, 52 (y)rsSe (v —

= TilysS5(x = )rsSi” (x = )]
Dy (28)

|
They contain the perturbative and nonperturbative contri-
butions, and are calculated with dimension-six accuracy.
For numerical computations of the weak form factors
G;(M2,s, ¢*) one needs to fix various parameters. Values
some of these parameters are collected in Table I, while the
masses and couplings of the tetraquarks Tbh .7 and ch
were evaluated in the previous section. In the present
computations, we impose the same constraints on the
auxiliary parameters M? and s as in the mass calculations.
To obtain the width of the decay T iz ™ Z9 1y, one has

to integrate the differential decay rate dI"/dq? (for details,
see the Appendix) within allowed kinematical limits m,2 <
q* < (m —my)?. Tt is clear that for light leptons [ = e, u
the lower limit of the integral is considerably smaller than
1 GeV?, but the perturbative calculations lead to reliable
predictions for momentum transfers g> > 1 GeV?. Therefore,
we use the usual prescription and replace the weak form
factors in the whole integration region by fit functions F;(g?),
which for perturbatively allowed values of g> coincide with
Gi(q%)-

There are various analytical expressions for the fit
functions. In the present paper we utilize

2

' q 2 \2
Fi(q*) = fiexp [Clim—z‘f'czl' <m_2> } (30)
fit fit
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TABLE II. The parameters of the fit functions F;(g?).
Fi(q?) fo Cyi o m, (GeV?)
Fo(q?) ~2.34 1953  —36.87 100.70
Fi(¢?) ~1.75 1845  —14.29 100.70
Fy(q%) 8.80 20.21 -32.09 100.70
F3(q%) 17.13 20.60 —32.49 100.70

where fi, c1;, ¢5;, and m?, are fitting parameters. The values
of these parameters are presented in Table II. Besides that,
for the numerical calculations we need the Fermi coupling
constant G and CKM matrix element | V.|, for which we use

Gr = 1.16637 x 107 GeV~2,

Vel = (41.2 £ 1.01) x 1073. (31)
As aresult, for the decay width of the processes T, - —
chlz_/l (I = e, p, and 7) we find ’
D(T,,.a = Zhet,) = (2.65£0.78) x 107 MeV,
D(T), a0 = Zbetty) = (2.64£0.78) x 107° MeV,

(T, .- — Zj10,) = (1.88 £0.55) x 107* MeV, (32)
which are the main results of the present work.

The partial decay widths from Eq. (32) can be used to
estimate the full width and mean lifetime of the tetraquark
T;b;t'u_i

= (717 £1.23) x 107* MeV,

7=9.18"20 x 10713 . (33)
These predictions can be employed to explore the double-
heavy tetraquarks.

IV. ANALYSIS AND CONCLUSIONS

The spectroscopic parameters of the tetraquarks 7', _-
and Z9_ as well as the width of the semileptonic decay
T;h;ﬁa - chlz'/l provide very interesting information on
the properties of four-quark systems. Thus, the mass of the

tetraquark 7, - obtained in the present work confirms

bbiind
once more that it is stable against strong and electromag-
netic decays, and can transform only weakly to a tetraquark

ch and a pair of leptons [7;. This conclusion is valid even

dr _ G%‘Vcb|2

2 2 i
q - —m 2 .2 2
A~ 3 2°2°m’ < 7 )’I(m Mz, 4 ){

LEo()5 (D) Ans(a?) + Gl<q2>62<q2>Au<q2>} .

when taking into account uncertainties inherent to the sum
rule computations. Our result for m is smaller than the
predictions made in Refs. [18] and [26] using the QCD sum
rule method and phenomenological model estimations,
respectively. The semileptonic decays T;b;u{_j — Z,QL_ZD,,
where [ = e, y and 7 have allowed us to evaluate the width
of T, .5 and its mean lifetime 7 = 9.187/39 fs, which is
considerably shorter than the prediction of Ref. [26].

Another interesting result of this work is connected with
the parameters of the scalar tetraquark ch composed of the
heavy diquark bc and light antidiquark iz d. In fact, the
mass of this state m, = (6660 + 150) MeV is consider-
ably below the threshold ~7145 MeV for strong S-wave
decays to conventional heavy B~D* and B°D° mesons.
Because of its quark content, ch cannot decay to a pair of
heavy and light mesons as well. These features differ
qualitatively from those of the open charm-bottom scalar
tetraquarks Z, = [cq][b g] and Z; = [cs][b 5], which decay
strongly to B,z and B.n mesons [44], and, in turn, cannot
decay to two heavy mesons. In other words, the four-quark
system consisting of a heavy diquark and a light anti-
diquark is more stable than one consisting of a heavy-light
diquark and antidiquark. This is seen from a comparison of
the masses of the tetraquark Z)_ and the state Z,, for
which mz = (6.97 £0.19) GeV.

Theoretical information on the decay properties of the
state 7', . - can be further improved by including its other
weak decay channels in analyses. The investigation of the
stable open charm-bottom tetraquarks Z)_ with different
quantum numbers is also an interesting topic of exotic
hadron physics: by clarifying these problems we can
deepen our understanding of multiquark systems.
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APPENDIX: THE DECAY RATE dI'/dq*

This appendix contains the explicit expression for the
decay rate dI"/dq” necessary to calculate the width of the
semileptonic decay 17, - — chlz'/,. Calculations lead to

the following result:

Il
w

G (g*)Ai(q?) + Go(4*)G1 (%) Aot (4%)

i
=
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In Eq. (A1) the functions A;(¢?) and A;;(g

%) are given by

(m* —m% + ¢*)* + 2¢°(3m* = m%) + 4],

2

= 2m?(m7 + ¢*){mj(m* — m3)* + q*m}(q* — 2m* — 2m)

—2m*(m3 + q*)],

= 2m*(m7 + ¢°)].

Ao(4?) g [q*(m* = m3)* = 4q* m*m] — mj]
) = 5o ' + (3= )

gt + (3 = ) = 20 + )]},
Aoq?) = 25 (2 = )+ (=
Al?) = 5 (= )+ (= )
Ao () = —

m2(m2 — 2
Ale?) =" o (o - P

m2(a? — m2) (m2 — m2
Ap(@?) = 1(q 12)(2 7)

m=q

and

A(m?.m7. q*) =

= g 1at(mf 4y = = )+ i (m® = )| [m* + (i - )7 — 2m?

m* + (m3, = ¢*)?

[m* + m? + ¢*

(m% + %)),

—2m*(m3 + q)),

= 2m*(m7 + ¢*)]. (A2)

—2(m*m% + m*q* + m%q?)]'/2.
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