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We investigate the dynamic Casimir effect (DCE) of a (1þ 1)-dimensional free massless scalar field in a
finite or semi-infinite cavity for which the boundary condition (BC) instantaneously changes from the
Neumann to the Dirichlet BC or reversely. While this setup is motivated by the gravitational phenomena,
such as the formation of strong naked singularities or wormholes, and the topology change of spacetimes or
strings in quantum gravity, the analysis is quite general. For the Neumann-to-Dirichlet cases, we find two
components of diverging flux emanate from the point where the BC changes. We carefully compare this
result with that of Ishibashi and Hosoya (2002) obtained in the context of a quantum version of cosmic
censorship hypothesis, and show that one of the diverging components was overlooked by them and is
actually nonrenormalizable, suggesting to bring non-negligible backreaction or semiclassical instability.
On the other hand, for the Dirichlet-to-Neumann cases, we reveal for the first time that only one component
of diverging flux emanates, which is the same kind as that overlooked in the Neumann-to-Dirichlet cases.
This result suggests not only the robustness of the appearance of diverging flux in instantaneous limits of
DCE but also that the type of divergence sensitively depends on the combination of initial and final BCs.

DOI: 10.1103/PhysRevD.99.025012

I. INTRODUCTION

One of the surprising pictures that quantum field theories
provide is that a classical vacuum is fluctuating, in which
virtual particles spontaneously appear and disappear in
short periods of time allowed by the Heisenberg uncertainty
principle. The phenomenon that neutral conductive plates
put parallel in a classical electromagnetic vacuum attract
each other is caused by such particles and called the
Casimir effect [1] (see [2] for a review). If one moves
the plates (or boundaries for a quantum field in general), the
virtual particles can convert into real ones, which is known
as the dynamic Casimir effect (DCE) [3] (see [4] for a
review).
In general, in order to realize and detect the DCE

experimentally by moving a boundary, its speed has to
be accelerated up to a few percent of the speed of light.
Therefore, such an experiment had been thought to be quite
difficult. The effect brought by moving a boundary,
however, was recognized to be realized effectively by
modulating with high frequency the electromagnetic prop-
erties of a static boundary. Based on this idea, the DCE
was indeed observed first by Wilson et al. [5] using a

superconducting circuit. So far, there have been proposed
various experimental methods to realize the DCE [6–8],
and various theoretical results have been obtained [9].
It is mentioned that the dynamics of quantum

systems undergoing a rapid change of parameter in their
Hamiltonian (note that the change of boundary conditions
can be included as terms in the Hamiltonian) is called the
quantum quench dynamics and is actively studied nowa-
days since it poses many fundamental questions that can be
studied by current-generation experiments [10]. For exam-
ple, the effect of the time-periodic boundary condition (i.e.,
Floquet dynamics) in a conformal field theory, which is a
low-energy description of quantum critical systems, has
been investigated [11]. The entanglement entropy of a
conformal field excited by the change of boundary con-
ditions (BC) also has been studied [12].
While the DEC is a universal phenomenon caused by

time-dependent BCs, it occupies a special position in
general relativity and other gravitational theories since
the effects similar or equivalent to time-dependent BCs
are realized not artificially but naturally in dynamical
spacetimes, such as the expanding universe [13], the
gravitational collapse of stars to black holes [14], the
creation of naked singularities [15,16] and wormholes
[17], and the topology change of spacetime (and string
world sheets) in quantum gravity [18–20] (see [21,22] for a
comprehensive study of quantum field theory in curved
spacetimes).
Among the above phenomena in gravitational physics,

the particle creation due to the formation of naked
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singularities [16] is of fundamental importance since it is
closely related to the future predictability of the law of
quantum physics, namely, the existence of a cosmic censor
[23] from the quantum physics point of view. The basic
idea is as follows: The spacetime singularity, in which the
predictability of the law of physics is thought to be lost
if the singularity is naked or visible, is defined by the
geodesic incompleteness [24]. However, such a definition
of singular spacetime using the notion of particles may
judge a spacetime appearing harmless (e.g., Minkowski
spacetime from which a single point is taken out) to be
singular. Therefore, it was proposed to define the spacetime
regularity with not the geodesic completeness but a unique-
ness of propagation of classical wave fields (or a unique-
ness of the self-adjoint extension of the time-translation
operator) [25,26]. Such a definition using the notion of
fields actually excludes the spacetimes appearing harmless
from a class of singular spacetimes [27].
Ishibashi and Hosoya [16] proceeded to a next step.

Namely, they investigated what happens if one quantizes a
wave field in the “wave-singular” (therefore singular also
in the ordinary geodesic sense) spacetime describing the
formation of a strong naked singularity, which can be
modeled by an instantaneous change of BCs for the wave
field. More specifically, they considered a quantized (1þ 1)-
dimensional free massless scalar field in a cavity for which
the BC suddenly changes from the Neumann to the Dirichlet.
They showed that a diverging flux taking the form of a delta
function squared emanates from the points where the BCs
change and propagates along null lines. From such a result,
they concluded that the backreaction of created particles
would bring null singularities, resulting in the recovery of
global hyperbolicity (i.e., the future predictability of the law
of physics). That is, the created particles play the role of a
quantum version of the cosmic censor.
While the idea of the quantum version of the cosmic

censor is interesting and shown to work in [16], an
unsatisfactory point may be that the analysis was restricted
to the Neumann-to-Dirichlet case. Although Ishibashi and
Hosoya tried to examine a more general case for which the
BC changes from a Robin BC ϕðt; xÞ ¼ a∂xϕ to another
Robin one ϕðt; xÞ ¼ b∂xϕ [a and bð≠ aÞ are constants and
both sides of the equalities are evaluated at the boundary],
but failed to obtain any rigorous result. (See [28] for a
systematic study on the static Casimir effect under Robin
BCs and [8,29,30] for the DCE with time-dependent Robin
BCs with a nonrelativistic approximation.)
Therefore, in this paper, we shall extend the analysis in

Ref. [16] in two directions. First, we examine the instanta-
neous change of BC in a finite cavity from the Dirichlet to
Neumann. Then, we examine both the Neumann-to-
Dirichlet (N-D) and the Dirichlet-to-Neumann (D-N) cases
in a semi-infinite cavity. For the D-N cases in both the finite
and the semi-infinite cavities, we find with a little surprise
that a diverging flux emanates from the point where the BC

changes but its property is completely different from that in
the N-D case obtained in Ref. [16]. Furthermore, in the
course that we reproduced the result of the N-D case, we
found that such a diverging flux appears also in the N-D
case in addition to the term of delta function squared but
was overlooked in [16]. These results suggest that the
divergence of flux, which would be a necessary condition
for the quantum version of the cosmic censor to work, is not
a special result in the N-D case. In addition, it is also
suggested that the type of divergence sensitively depends
on the combination of the initial and final BCs.
Here, let us give a few remarks on the analysis in this

paper. The idealization of an instantaneous change of BCs,
which is natural from the viewpoint of the formation of
strong naked singularities, enables us to obtain all the
results in analytic form. The particle creation by the rapid
appearance and/or disappearance of a wall in a one-dimen-
sional (1D) finite cavity was studied in Refs. [31–33]. In
particular, the system with the instantaneous appearance
and disappearance of a Dirichlet wall studied in [33] is more
complex than but similar to the system in Sec. II of the
present paper.
The organization of this paper is as follows. In Sec. II, we

investigate the particle creation due to the instantaneous
change of BC in a finite 1D cavity, for the N-D case
(Sec. II B 1) and the D-N case (Sec. II B 2). The origin of
the discrepancy between the result in Sec. II and Ref. [16] is
clarified in Sec. III. In Sec. IV, the case of the semi-infinite
cavity is analyzed. We conclude in Sec. V. The proof of
consistency between different quantizations, called the
unitarity relations, and some integration formulas are
presented in Appendixes A and C, respectively. The result
for the semi-infinite cavity in Sec. IV is reproduced in
Appendix B with the Green-function method, which
naturally involves the regularization of the vacuum expect-
ation value of the energy-momentum tensor. Wework in the
natural units in which c ¼ ℏ ¼ 1.

II. FINITE CAVITY I

A. Quantization of massless scalar field

We consider a free massless scalar field in a 1D cavity of
which the length is L,

ð−∂2
t þ ∂2

xÞϕðt; xÞ ¼ 0; −∞< t <∞; 0< x < L:

ð1Þ

At the right boundary x ¼ L, we assume the homogeneous
Dirichlet boundary condition all the time,

ϕðt; LÞ ¼ 0; −∞ < t < ∞: ð2Þ

At the left boundary x ¼ 0, we consider two kinds of
boundary conditions. One is the homogeneous Neumann
boundary condition,
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∂xϕðt; 0Þ ¼ 0: ð3Þ

Another is the Dirichlet boundary condition,

ϕðt; 0Þ ¼ 0: ð4Þ

When boundary conditions (2) and (3) are imposed,
a natural set of positive-energy mode functions ffng is
given by

fnðt;xÞ¼
ffiffiffiffiffiffi
2

nπ

r
e−ipntcosðpnxÞ; pn≔

nπ
2L

; n¼1;3;5;…:

ð5Þ

In the rest of this paper, we suppose that n and n0 entirely
denote odd natural numbers, otherwise denoted. The
above mode functions satisfy the following orthonormal
conditions:

hfn; fn0 i ¼ −hf�n; f�n0 i ¼ δnn0 ; hfn; f�n0 i ¼ 0; ð6Þ

where the asterisk denotes the complex conjugate and h; i
denotes the Klein-Gordon inner product [21],

hϕ;ψi ≔ i
Z

L

0

ðϕ�∂tψ − ∂tϕ
�ψÞdx: ð7Þ

When boundary conditions (2) and (4) are imposed,
a natural set of positive-energy mode functions fgmg is
given by

gmðt; xÞ ¼
1ffiffiffiffiffiffiffi
mπ

p e−iqmt sinðqmxÞ;

qm ≔
mπ

L
; m ¼ 1; 2; 3;…: ð8Þ

In the rest of this paper, we suppose that m and m0
entirely denote natural numbers, otherwise denoted. The
above mode functions satisfy the following orthonormal
conditions:

hgm; gm0 i ¼ −hg�m; g�m0 i ¼ δmm0 ; hgm; g�m0 i ¼ 0: ð9Þ

Associated with the above two sets of mode functions,
ffng and fgmg, there are two ways to quantize the scalar
field. One is to expand the scalar field by fn,

ϕ ¼
X∞
n¼1
n∶odd

ðanfn þ a†nf�nÞ; ð10Þ

and impose the commutation relations,

½an; a†n0 � ¼ δnn0 ; ½an; an0 � ¼ 0: ð11Þ

By imposing the above commutation relations, the follow-
ing equal-time canonical commutation relation is realized:

½ϕðt; xÞ; ∂tϕðt; x0Þ� ¼ iδðx − x0Þ: ð12Þ

Then, an and a†n are interpreted as the annihilation and
creation operators, respectively. The vacuum state in which
no particle corresponding to mode function fn exists is
defined by

anj0fi ¼ 0; n ¼ 1; 3; 5;…; h0fj0fi ¼ 1: ð13Þ

Another is to expand the field by gm,

ϕ ¼
X∞
m¼1

ðbmgm þ b†mg�mÞ; ð14Þ

and impose the commutation relations,

½bm; b†m0 � ¼ δmm0 ; ½bm; bm0 � ¼ 0: ð15Þ

The vacuum state in which no particle corresponding to gm
exists is defined by

bmj0gi ¼ 0; m ¼ 1; 2; 3;…; h0gj0gi ¼ 1: ð16Þ

Later, we will estimate the vacuum expectation value of
the energy-momentum tensor for the scalar field. The
energy-momentum tensor operator is written as Tμν ¼
∂μϕ∂νϕ − 1

2
ημνð∂ϕÞ2, where ημν ¼ Diagð−1; 1Þ is the

(1þ 1)-dimensional flat metric. Introducing double null
coordinates, nonzero components of this tensor are

T�� ¼ ð∂�ϕÞ2; z� ≔ t� x: ð17Þ

Note that the energy density and momentum density in the
original Cartesian coordinates are Ttt ¼ T−− þ Tþþ and
Ttx ¼ T−− − Tþþ, respectively.

B. Particle creation by instantaneous change
of boundary condition

Given the above quantization schemes, we investigate
how the vacuum is excited when the boundary condition at
the left boundary x ¼ 0 is instantaneously, say at t ¼ 0,
changed from Neumann to Dirichlet (Sec. II B 1) and
reversely (Sec. II B 2).

1. From Neumann to Dirichlet

First, we assume that the boundary condition at x ¼ 0 is
Neumann (3) for t < 0 and Dirichlet (4) for t > 0, and that
the quantum field is in vacuum j0fi in the Heisenberg
picture. See Fig. 1 for a schematic picture of this situation.
Then, we investigate how the vacuum is excited due to the
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change of boundary condition by computing the spectrum
and energy flux of created particles.
Let us expand fn by gm,

fn ¼
X∞
m¼1

ðαnmgm þ βnmg�mÞ; ð18Þ

where the expansion coefficients, called the Bogoliubov
coefficients, are computed by

αnm ¼ hgm; fni; βnm ¼ −hg�m; fni: ð19Þ

Using the explicit form of mode functions (5) and (8), we
obtain

αnm ¼ 2

ð2m − nÞπ

ffiffiffiffiffiffiffi
2m
n

r
; βnm ¼ 2

ð2mþ nÞπ

ffiffiffiffiffiffiffi
2m
n

r
:

ð20Þ

Substituting Eq. (18) into Eq. (10), and comparing it with
Eq. (14), we obtain

bm ¼
X∞
n¼1
n∶odd

ðαnman þ β�nma
†
nÞ: ð21Þ

Substituting Eq. (21) into Eq. (15) and using Eq. (11), we
obtain

X∞
n¼1
n∶odd

ðαnmα�nm0 − β�nmβnm0 Þ ¼ δmm0 ;

X∞
n¼1
n∶odd

ðαnmβ�nm0 − β�nmαnm0 Þ ¼ 0; ð22Þ

which should be satisfied for the two quantizations,
Eqs. (10) and (14), to be consistent. In Appendix A 1,

these consistency conditions, which we call unitarity
relations, are shown to be satisfied by Bogoliubov
coefficients (20).
The spectrum of created particles is given by the vacuum

expectation value of number operator b†mbm,

h0fjb†mbmj0fi ¼
X∞
n¼1
n∶odd

jβnmj2 ¼
8

π2
X∞
n¼1
n∶odd

m
nðnþ 2mÞ2 : ð23Þ

Note that this is finite but its summation over m, the total
number of created particles, is divergent. This implies that
the Fock-space representation associated with an is unitar-
ily inequivalent to that associated with bm [22].
The vacuum expectation value of the energy-momentum

tensor before the change of boundary condition at t ¼ 0 is
computed by substituting Eq. (10) into Eq. (17), and using
Eqs. (11), (13), and (5) as

h0fjT��j0fit<0 ¼
X∞
n¼1
n∶odd

j∂�fnj2 ¼
π

8L2

X∞
n¼1
n∶odd

n: ð24Þ

This represents the Casimir energy density [1], which can
be made finite with standard regularization schemes [21].
The most interesting quantity is the vacuum expec-

tation value of the energy-momentum tensor after t ¼ 0.
Substituting Eq. (14) into Eq. (17) and using Eq. (21),
we obtain

h0fjT��j0fit>0

¼
X∞
n¼1
n∶odd

X∞
m¼1

X∞
m0¼1

½ðαnmβnm0 þ αnm0βnmÞReð∂�gm∂�gm0 Þ

þ ðαnmαnm0 þ βnmβnm0 ÞReð∂�gm∂�g�m0 Þ�: ð25Þ

To derive Eq. (25), we symmetrize it with respect to
dummy indices m and m0, and use the fact that αnm and
βnm are real. Using the explicit expressions of Bogoliubov
coefficients (20) and mode function (8), we obtain

h0fjT��j0fit>0

¼ 1

2πL2

X∞
n¼1
n∶odd

�
1

4n

�
4
X∞
m¼1

cosðqmz�Þþ n2
X∞
m¼1

cosðqmz�Þ
m2 − ðn=2Þ2

�
2

þ n
�X∞
m¼1

m sinðqmz�Þ
m2 − ðn=2Þ2

�
2
�
: ð26Þ

This is an even function of z� with period 2L since it is
invariant under reflection z� → −z� and translation
z� → z� þ 2L. Therefore, it is sufficient to calculate it
in 0 ≤ z� < 2L, and then generalize the obtained expres-
sion appropriately to one valid in the entire domain.

O x

t

gm L
N

eu
m

.

D
ir

i.
D

ir
i.

D
ir

i.

z =0

fn

FIG. 1. The boundary condition at the left end of the domain
(x ¼ 0) instantaneously changes at t ¼ 0 from Neumann (dashed
lines) to Dirichlet (solid lines). Spatial configurations of mode
functions fn and gm are schematically depicted.
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The first and second summations over m in Eq. (26) can
be computed to give

h0fjT��j0fit>0

¼ 1

2πL2

X∞
n¼1
n∶odd

�
1

4n
½16L2δ2ðz�Þ

þ n2π2sin2ðpnz�Þ� þ n

�X∞
m¼1

m sinðqmz�Þ
m2 − ðn=2Þ2

�
2
�
; ð27Þ

which is valid in 0 ≤ z� < 2L, using the following for-
mulas:

X∞
k¼1

cos

�
2kπ
a

y

�
¼ −

1

2
þ a

2

X∞
l¼−∞

δðy − laÞ;

ð−∞ < y < ∞Þ; ð28Þ
X∞
k¼1

cos ky
k2 − a2

¼ −
π

2a
cos½aðπ − yÞ�cosecðaπÞ þ 1

2a2
;

ð0 ≤ y ≤ 2πÞ: ð29Þ

See Ref. [34] [p. 730] for the second formula.
For z� ¼ 0, from Eq. (27), we have

h0fjT��j0fit>0 ¼
2

π

X∞
n¼1
n∶odd

δ2ð0Þ
n

ðz� ¼ 0Þ: ð30Þ

For 0 < z� < 2L, the rest summation over m in Eq. (27)
can be computed to give

h0fjT��j0fit>0 ¼
π

8L2

X∞
n¼1
n∶odd

n ð0 < z� < 2LÞ; ð31Þ

using the following formula [34] [p. 730]:

X∞
k¼1

k sin ky
k2 − a2

¼ π

2
sin½aðπ − yÞ�cosecðaπÞ ð0 < y < 2πÞ:

ð32Þ

Combining Eqs. (30) and (31), we obtain

h0fjT��j0fit>0 ¼
2

π

X∞
n¼1
n∶odd

δ2ðz�Þ
n

þ
� 0 ðz� ¼ 0Þ

π
8L2

P∞
n¼1
n∶odd

n ð0 < z� < 2LÞ :

ð33Þ

This is the expression for 0 ≤ z� < 2L, which we wanted
to know. Extending the domain of Eq. (33), we obtain

h0fjT��j0fit>0 ¼
2

π

X∞
n¼1
n∶odd

1

n

X∞
l¼−∞

δ2ðz� − 2lLÞ

þ
� 0 ðz� ¼ 2lL;l ∈ ZÞ

π
8L2

P∞
n¼1
n∶odd

n ðotherwiseÞ :

ð34Þ
Let us consider the meaning of two terms in Eq. (34).

The first term, the delta function squared multiplied by the
logarithmically divergent series, represents the diverging
flux emanating from the origin ðt; xÞ ¼ ð0; 0Þ and localiz-
ing on the null lines (Fig. 2). The dependence of energy
density on the delta function squared implies also the
divergence of total energy emitted. This component of flux
is similar to that predicted in the topology change of the 1D
universe [18] and is the same as that predicted in the
formation of a strong naked singularity [16].
The second term, at first glance, seems to represent the

ambient Casimir energy just as Eq. (24), which is negative
and finite after a regularization, and its vanishing on the
null lines. As will be explicitly shown in the semi-infinite
cavity case (see Sec. IV and Appendix B), however, this is
not the case. The second term represents the divergence on
the null lines after an appropriate regularization in fact.
A simple understanding of such an appearance of diver-
gence is possible as follows. A regularization corresponds
to the subtraction of the spatially uniform diverging energy
density due to the zero-point oscillation. Therefore, if one
subtracts such a uniform diverging quantity from Eq. (34),
leading to the regularization of the ambient Casimir term, a
divergence appears on the null lines z� ¼ 2lLðl ∈ ZÞ.
As far as the present author knows, the second kind of

diverging flux was first found in the particle creation due to
the instantaneous appearance of the Dirichlet wall in a
cavity [33]. It was confirmed in the same paper that such a
divergence appears in the instantaneous limit of smooth
formation of a Dirichlet wall in the cavity analyzed in [32].

FIG. 2. Vacuum expectation values of energy density
h0fjðT−− þ TþþÞj0fit>0 (left) andmomentumdensity h0fjðT−− −
TþþÞj0fit>0 (right) with cutoff, from which the uniform Casimir
contribution is subtracted. We set L ¼ 1, and the summation over
modes in Eq. (26) is taken up to n ¼ m ¼ 13. The exact results
without cutoff are given by Eq. (34).
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It is suspicious that the second kind of flux component
does not appear in the analysis of Ishibashi and Hosoya
[16], since their system is quite similar to the present one.
Thus, we will revisit their analysis in Sec. III and find that
the component was overlooked in [16].

2. From Dirichlet to Neumann

We assume that the boundary condition at x ¼ 0 is
Dirichlet (4) for t < 0 and Neumann (3) for t > 0, and that
the quantum field is in vacuum j0gi. See Fig. 3 for a
schematic picture of the situation. Since this situation is a
kind of time reversal of that in Sec. II B 1, most parts of the
calculation can be reused but the results are different.
Let us expand gm by fn,

gm ¼
X∞
n¼1
n∶odd

ðρmnfn þ σmnf�nÞ; ð35Þ

where the expansion coefficients are given by

ρmn ¼ hfn; gmi ¼ α�nm; σmn ¼ −hf�n; gmi ¼ −βnm:

ð36Þ
Here, αnm and βnm are given by Eq. (20).
Substituting Eq. (35) into Eq. (14), and comparing it with

Eq. (10), we obtain

an ¼
X∞
m¼1

ðρmnbm þ σ�mnb
†
mÞ: ð37Þ

Substituting Eq. (37) into Eq. (11), and using Eq. (15), we
obtain

X∞
m¼1

ðρmnρ
�
mn0 − σ�mnσmn0 Þ ¼ δnn0 ;

X∞
m¼1

ðρmnσ
�
mn0 − σ�mnρmn0 Þ ¼ 0; ð38Þ

which should be satisfied again for the two quantizations,
Eqs. (10) and (14), to be consistent. It is shown in
Appendix A 2 that the Bogoliubov coefficients given by
Eq. (36) indeed satisfy unitarity relations (38).
The vacuum expectation value of number operator a†nan,

representing the energy spectrum of created particles, is
computed as

h0gja†nanj0gi ¼
X∞
m¼1

jσmnj2 ¼
8

π2
X∞
m¼1

m
nðnþ 2mÞ2 : ð39Þ

This and its summation over odd n, i.e., the total number of
created particles, are divergent. This implies that the Fock-
space representation associated with bm is unitarily inequi-
valent to that associated with an [22].
The vacuum expectation value of the energy-momentum

tensor before the change of boundary condition at t ¼ 0 is
computed by substituting Eq. (14) into Eq. (17), and using
the explicit expression of mode function (8),

h0gjT��j0git<0 ¼
X∞
m¼1

j∂�gmj2 ¼
π

4L2

X∞
m¼1

m: ð40Þ

This represents the Casimir energy density, which can be
made finite by standard renormalization procedures [21].
The vacuum expectation value of the energy-momentum

tensor after t ¼ 0 is computed by substituting Eq. (10) into
Eq. (17), and using Eq. (37), as

h0gjT��j0git>0

¼
X∞
m¼1

X∞
n¼1
n∶odd

X∞
n0¼1
n0∶odd

½ðρmnσmn0 þ ρmn0σmnÞReð∂�fn∂�fn0 Þ

þ ðρmnρmn0 þ σmnσmn0 ÞReð∂�fn∂�f�n0 Þ�; ð41Þ

which we symmetrize with respect to dummy indices n and
n0, and we use the fact that ρmn and σmn are real.
Using the explicit form of Bogoliubov coefficients and

mode functions, Eqs. (36), (20), and (5), we obtain

h0gjT��j0git>0 ¼
4

πL2

X∞
m¼1

 
4m3

"X∞
n¼1
n∶odd

cosðpnz�Þ
n2 − ð2mÞ2

#
2

þm

"X∞
n¼1
n∶odd

n sinðpnz�Þ
n2 − ð2mÞ2

#
2
!
: ð42Þ

This is an even function of z� with period 2L, since it
is invariant under reflection z� → −z� and translation
z� → z� þ 2L. Therefore, it is sufficient to calculate it
in 0 ≤ z� < 2L and generalize it appropriately to one valid
in the entire domain.
The first summation over odd n in Eq. (42) can be

computed to give

O x

t

gm

fn L

N
eu

m
.

D
ir

i.
D

ir
i.

D
ir

i.

z =0

FIG. 3. The boundary condition at the left end of the domain
(x ¼ 0) instantaneously changes at t ¼ 0 from Dirichlet (solid
lines) to Neumann (dashed lines). Spatial configurations of mode
functions gm and fn are schematically depicted.
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h0gjT��j0git>0

¼ 4

πL2

X∞
m¼1

 
mπ2

16
sin2ðqmz�Þ þm

"X∞
n¼1
n∶odd

n sinðpnz�Þ
n2 − ð2mÞ2

#
2
!
;

ð43Þ
which is valid in 0 ≤ z� < 2L. Here, we have used the
following formula [34] [p. 733]:

X∞
k¼0

cos½ð2kþ 1Þy�
ð2kþ 1Þ2 − a2

¼ π

4a
sin

�
a
2
ðπ − 2yÞ

�
sec

�
aπ
2

�

ð0 ≤ y ≤ πÞ: ð44Þ
It is noted here that there are typos in Ref. [34] [p. 733]
about formulas (44) and (47) (see below).
For z� ¼ 0, from Eq. (43), we have

h0gjT��j0git>0 ¼ 0 ðz� ¼ 0Þ: ð45Þ
For 0 < z� < 2L, the rest summation over odd n in
Eq. (43) can be computed to give

h0gjT��j0git>0 ¼
π

4L2

X∞
m¼1

m ð0 < z� < 2LÞ; ð46Þ

using the following formula [34] [p. 733]:

X∞
k¼0

ð2kþ 1Þ sin½ð2kþ 1Þy�
ð2kþ 1Þ2 − a2

¼ π

4
cos

�
a
2
ðπ − 2yÞ

�
sec

�
aπ
2

�

ð0 < y < πÞ: ð47Þ
Combining Eqs. (45) and (46), and extending the domain

periodically into the entire domain, we have

h0gjT��j0git>0 ¼
�
0 ðz� ¼ 2lL;l ∈ ZÞ
π

4L2

P∞
m¼1m ðotherwiseÞ :

ð48Þ
Comparing the above result with that in the N-D case

(34), one sees that there is no flux component of the delta
function squared in this case. As will be explicitly shown in
the semi-infinite cavity case (Sec. IV and Appendix B),
Eq. (48) represents the nonrenormalizable diverging
flux localized on the null lines z� ¼ 2lLðl ∈ ZÞ and
the ambient Casimir energy. Thus, the diverging flux
emanates from origin ðt; xÞ ¼ ð0; 0Þ and propagates along
the null lines in a way similar to Fig. 2.

III. FINITE CAVITY II: REVISIT
ISHIBASHI-HOSOYA [16]

As seen in Sec. II, the vacuum expectation value of the
energy-momentum tensor has two components in the N-D
case as Eq. (34) and one component in the D-N case as
Eq. (48). The origin of such a difference between the N-D

and D-N cases will be discussed in the Conclusion. Here,
let us look into the consistency between these results and a
relevant past work.
In Ref. [16], the authors considered the instantaneous

change of boundary condition at both sides of the finite
cavity. The boundary conditions for t < 0 are Neumann at
both sides and those for t > 0 are Dirichlet at both sides,
which we call the NN-DD case. Since this NN-DD case
resembles the N-D case, one can expect similar results.
Namely, we expect that two diverging flux components
appear also in the NN-DD case. Reference [16], however,
concludes the flux involves only the component of the delta
function squared. Therefore, we will reconsider here the
system adopted in [16], and we find that the other
component was overlooked.

A. Quantization of massless scalar field

We consider the situation that the Neumann boundary
condition is imposed at x ¼ 0 and x ¼ L for t < 0, while
the Dirichlet boundary condition is imposed at x ¼ 0 and
x ¼ L for t > 0 (see Fig. 4).
In this case, a normalized positive-energy mode function

for t < 0 is given by

hkðt;xÞ¼
1ffiffiffiffiffi
kπ

p e−irktcosðrkxÞ; rk≔
kπ
L
; k¼1;2;3;…:

ð49Þ
A normalized mode function for t > 0 is given by Eq. (8).
The scalar field is quantized by expanding it by a set of

mode functions fhkg and an additional zero-mode function
h0, being spatially uniform, as

ϕ¼h0þ
X∞
k¼1

ðckhkþc†kh
�
kÞ; h0¼

1ffiffiffiffi
L

p ðQþ tPÞ: ð50Þ

Here, Q and P are Hermitian (Q† ¼ Q, P† ¼ P), and the
following commutation relations are imposed:

O x

t
gm

L

N
eu

m
.

D
ir

i.

D
ir

i.

z =0

hk

N
eu

m
.

z =L

FIG. 4. The boundary conditions at x ¼ 0 and x ¼ L are
instantaneously changed at t ¼ 0 from Neumann (dashed lines)
to Dirichlet (solid lines). Spatial configurations of mode functions
hk and gm are schematically depicted.
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½Q;P� ¼ i; ½Q; ck� ¼ ½P; ck� ¼ 0;

½ck; c†k0 � ¼ δkk0 ; ½ck; ck0 � ¼ 0: ð51Þ

Note that zero-mode h0, which exists because the boundary
conditions are Neumann at both ends, is indispensable to
realize the equal-time commutation relation (12) using
commutation relations (51).

B. Particle creation by instantaneous change of
boundary condition: From Neumann-Neumann

to Dirichlet-Dirichlet

Let us expand h0 and hk by gm,

h0 ¼
X∞
m¼1

ðξmgm þ ξ†mg�mÞ; hk ¼
X∞
m¼1

ðξkmgm þ ζkmg�mÞ;

ð52Þ

where the Bogoliubov coefficients are given by

ξm ¼ hgm; h0i; ξkm ¼ hgm; hki; ζkm ¼ −hg�m; hki:
ð53Þ

Using the explicit form of mode functions (8) and (49), and
Eq. (50), Bogoliubov coefficients (53) are computed as

ξm ¼ 2ffiffiffiffiffiffiffiffiffiffi
mπL

p
�
Qþ i

L
mπ

P

�
δm∶odd; ð54Þ

ξkm ¼ −
2

ðk −mÞπ
ffiffiffiffi
m
k

r
δkþm∶odd;

ζkm ¼ 2

ðkþmÞπ
ffiffiffiffi
m
k

r
δkþm∶odd: ð55Þ

Here, we have introduced the following symbols:

δk∶odd ≔
1 − ð−1Þk

2
; δk∶even ≔

1þ ð−1Þk
2

; k ∈ Z:

ð56Þ

Substituting Eq. (52) into Eq. (50), and comparing it with
Eq. (14), we have

bm ¼ ξm þ
X∞
k¼1

ðξkmck þ ζ�kmc
†
kÞ: ð57Þ

Substituting Eq. (57) into Eq. (15) and using Eq. (51), we
obtain the unitarity relations

½ξm; ξ†m0 � þ
X∞
k¼1

ðξkmξ�km0 − ζ�kmζkm0 Þ ¼ δmm0 ;

½ξm; ξm0 � þ
X∞
k¼1

ðξkmζ�km0 − ζ�kmξkm0 Þ ¼ 0: ð58Þ

In Appendix A 3, we will show that the operators given in
Eqs. (54) and (55) satisfy unitarity relations (58).
We define the vacuum in which no particle correspond-

ing to h0 or hk exists,

Pj0hi ¼ ckj0hi ¼ 0; k ¼ 1; 2; 3;…: ð59Þ
Then, the spectrum of created particles are given by the
expectation value of number operator b†mbm,

h0hjb†mbmj0hi ¼ h0hjξ†mξmj0hi þ
X∞
k¼1

jζkmj2

¼ 4

m2π2

�
mπ

L
h0hjQ2j0hi − 1

�
δm∶odd

þ 4

π2
X∞
k¼1

m
kðkþmÞ2 δkþm∶odd: ð60Þ

The vacuum expectation value of the energy-momentum
tensor before the change of boundary conditions at t ¼ 0 is
computed by substituting Eq. (50) into Eq. (17), and using
an explicit form of mode function (49) as

h0hjT��j0hit<0 ¼
X∞
k¼1

j∂�hkj2 ¼
π

4L2

X∞
k¼1

k: ð61Þ

This represents the Casimir energy density, which can be
made finite by standard regularization schemes such as the
ζ-function regularization, the point-splitting regularization,
and so on [21].
The vacuum expectation value of the energy-momentum

tensor after t ¼ 0 is computed by substituting Eq. (14) into
Eq. (17), and using Eq. (57),

h0hjT��j0hit>0 ¼
X∞
m¼1
m∶odd

X∞
m0¼1
m0∶odd

�
8h0hjQ2j0hi
πL

ffiffiffiffiffiffiffiffiffi
mm0p Reð∂�gm∂�gm0 þ ∂�gm∂�g�m0 Þ

þ 4iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2m3m03p Im½ðmþm0Þ∂�gm∂�gm0 − ðm −m0Þ∂�gm∂�g�m0 �

�

þ
X∞
k¼1

X∞
m¼1

X∞
m0¼1

½ðξkmζkm0 þ ζkmξkm0 ÞReð∂�gm∂�gm0 Þ þ ðξkmξkm0 þ ζkmζkm0 ÞReð∂�gm∂�g�m0 Þ�; ð62Þ

which we symmetrize with respect to dummy indices m and m0, and we have used the fact that ξkm and ζkm are real.
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Using an explicit form of mode functions (8) and Bogoliubov coefficients (55), we obtain

h0hjT��j0hit>0 ¼
4h0hjQ2j0hi

L3

"X∞
m¼1
m∶odd

cosðqmz�Þ
#
2

−
4i
πL2

X∞
m¼1
m∶odd

sinðqmz�Þ
m

X∞
m¼1
m∶odd

cosðqmz�Þ

þ 4

πL2

X∞
k¼1
k∶odd

 
1

k

"X∞
m¼2

m∶even

cosðqmz�Þ þ k2
X∞
m¼2

m∶even

cosðqmz�Þ
m2 − k2

#
2

þ k

"X∞
m¼2

m∶even

m sinðqmz�Þ
m2 − k2

#
2
!

þ 4

πL2

X∞
k¼2

k∶even

 
1

k

"X∞
m¼1
m∶odd

cosðqmz�Þ þ k2
X∞
m¼1
m∶odd

cosðqmz�Þ
m2 − k2

#
2

þ k

"X∞
m¼1
m∶odd

m sinðqmz�Þ
m2 − k2

#
2
!
: ð63Þ

The summations over odd m in the first two terms of Eq. (63), both of which are the contributions of the zero mode, are
computed using the following formulas:

X∞
k¼1
k∶odd

1

k
sin

�
2kπ
a

y

�
¼ π

4

X∞
l¼−∞

ð−1ÞlΠa=2
0

�
y −

a
2
l
�

ð−∞ < y < ∞Þ; ð64Þ

X∞
k¼1
k∶odd

cos

�
2kπ
a

y

�
¼ a

4

X∞
l¼−∞

ð−1Þlδ
�
y −

a
2
l
�

ð−∞ < y < ∞Þ; ð65Þ

where Πb
aðxÞ is the rectangular function defined as

Πb
aðxÞ ≔

Z
b

a
δðx − yÞdy ¼

8>><
>>:

0 ðx < a; b < xÞ
1
2

ðx ¼ a; bÞ
1 ða < x < bÞ

: ð66Þ

The rest summations over odd and even m in Eq. (63) are computed using formulas (28), (29), (32), (44), and (47) in
addition to the above formulas, to obtain

h0hjT��j0hit>0 ¼
�h0hjQ2j0hi

L
þ 1

π

X∞
k¼1

1

k

� X∞
l¼−∞

δ2ðz� − lLÞ þ
�
0 ðz� ¼ lL;l ∈ ZÞ
π

4L2

P∞
k¼1 k ðotherwiseÞ : ð67Þ

After setting L ¼ π and regularizing the diverging
summation as

P∞
k¼1 k ¼ − 1

12
by the ζ-function regulari-

zation, Eq. (67) should be equal to Eq. (31) of Ref. [16].
The vanishing of Casimir energy on the null lines in
Eq. (67), however, has no counterpart in Eq. (31) of
Ref. [16]. As pointed out at the end of Sec. II B 1, it
should be stressed again that the second term in Eq. (67)
represents both the ambient Casimir energy and the
divergent flux on the null lines ðz� ¼ lL;l ∈ ZÞ after
an appropriate regularization (see Sec. IVand Appendix B),
rather than a constant correction to the first divergent term.

While we have derived Eq. (67) with keeping the
parallelism with the other analyses in the present paper,
it is unclear from where the discrepancy comes. In the next
subsection, therefore, we will rederive Eq. (67) with a
method similar to the one in Ref. [16].

C. Origin of discrepancy

Substituting Eq. (14) into Eq. (17), and using Eq. (57),
the vacuum expectation value of the energy-momentum
tensor after t ¼ 0 is written as

h0hjT��j0hit>0 ¼
X∞
m¼1

X∞
m0¼1

��
h0hjξmξm0 j0hi þ

X∞
k¼1

ξkmζ
�
km0

�
∂�gm∂�gm0

þ
�
h0hjξmξ†m0 j0hi þ

X∞
k¼1

ξkmξ
�
km0

�
∂�gm∂�g�m0 þ

�
h0hjξ†mξm0 j0hi þ

X∞
k¼1

ζkmζ
�
km0

�
∂�g�m∂�gm0

þ
�
h0hjξ†mξ†m0 j0hi þ

X∞
k¼1

ζkmξ
�
km0

�
∂�g�m∂�g�m0

�
: ð68Þ
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Using an explicit form of Bogoliubov coefficients (54) and (55), and mode function (8), this quantity is rewritten in a
compact form,

h0hjT��j0hit>0 ¼
1

L3

X∞
m¼−∞
m∶odd

�
h0hjQ2j0hi þ

L
mπ

�
e−iqmz�

X∞
m0¼−∞
m0∶odd

e−iqm0 z�

þ 1

πL2

X∞
k¼1

1

k

X∞
m¼−∞
m∶odd

me−iðqm−qkÞz�

m − k
δm−k∶odd

X∞
m0¼−∞
m0∶odd

m0e−iðqm0þqkÞz�

m0 þ k
δm0þk∶odd: ð69Þ

The summations over odd m and m0 in Eq. (69) can be evaluated with the following formulas:

X∞
k¼−∞
k∶odd

1

k
exp

�
−i

2kπ
a

y

�
¼ −

iπ
2

X∞
l¼−∞

ð−1ÞlΠa=2
0

�
y −

a
2
l
�
; ð70Þ

X∞
k¼−∞
k∶odd

exp

�
−i

2kπ
a

y

�
¼ a

2

X∞
l¼−∞

ð−1Þlδ
�
y −

a
2
l
�
; ð71Þ

which are equivalent to Eqs. (64) and (65), respectively.
Finally, in order to obtain the final result, it is necessary to use the following relation:

X∞
l¼−∞

ð−1ÞlΠL
0 ðz� − lLÞ

X∞
l0¼−∞

ð−1Þl0ΠL
0 ðz� − l0LÞ ¼

�
0 ðz� ¼ lL;l ∈ ZÞ
1 ðotherwiseÞ : ð72Þ

Then, we obtain Eq. (67). It seems that Ref. [16] over-
looked the fact that the left-hand side of Eq. (72) vanishes
on null lines z− ¼ 0 and zþ ¼ L. This would be the origin
of the discrepancy between our result and their result.

IV. SEMI-INFINITE CAVITY

In the rest of this paper, we investigate the particle
creation by the instantaneous change of boundary
condition in a semi-infinite cavity, which corresponds
to the limit L → þ∞ of the finite-cavity model in
Sec. II. We will see that some simplifications happen
in such a limit. Namely, one needs just some simple
integral formulas rather than the nontrivial summation
formulas in Sec. II. The analysis in semi-infinite space
x ∈ ½0;þ∞Þ can be a footing to generalize the present
analysis, for example, to higher-dimensional models
by regarding the spatial coordinate x as a radial coordi-
nate of higher-dimensional spaces (see [35] for a
relevant higher-dimensional consideration). While the
Bogoliubov transformation will be used in this section
again in order to keep the parallelism with the previous
sections, the results will be rederived in Appendix B
with an independent method using the Green functions,
which naturally involves the point-splitting regulariza-
tion of the vacuum expectation value of the energy-
momentum tensor.

A. Quantization of massless scalar field

We consider a free massless scalar field in the semi-
infinite cavity, of which equation of motion is given by
Eq. (1) with L → þ∞.
At left boundary x ¼ 0, we consider two kinds of

boundary conditions. One is the Neumann boundary con-
dition (3). Another is the Dirichlet boundary condition (4).
When the Neumann boundary condition (3) is satisfied, a

natural set of positive-energy mode functions ffpg, which
is labeled by continuous parameter p, is given by

fpðt; xÞ ¼
1ffiffiffiffiffiffi
πp

p e−ipt cosðpxÞ; p > 0: ð73Þ

This mode function satisfies the following orthonormal
conditions:

hfp;fp0 i¼−hf�p;f�p0 i¼δðp−p0Þ; hfp;f�p0 i¼0; ð74Þ
where the integration range of the Klein-Gordon inner
product, Eq. (7), is from 0 to þ∞.
When the Dirichlet boundary condition (4) is satisfied,

a natural set of positive-energy mode functions fgqg is
given by

gqðt; xÞ ¼
1ffiffiffiffiffiffi
πq

p e−iqt sinðqxÞ; q > 0: ð75Þ
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This mode function satisfies the following orthonormal
conditions:

hgq;gq0 i¼−hg�q;g�q0 i¼δðq−q0Þ; hgq;g�q0 i¼0: ð76Þ

Associated with the above two sets of mode functions,
ffpg and fgqg, there are two ways to quantize the scalar
field. Namely, we can expand the scalar field by two sets of
mode functions,

ϕ ¼
Z

∞

0

dpðapfp þ a†pf�pÞ; ð77Þ

ϕ ¼
Z

∞

0

dqðbqgq þ b†qg�qÞ; ð78Þ

where the expansion coefficients are imposed by the
commutation relations,

½ap; a†p0 � ¼ δðp − p0Þ; ½ap; ap0 � ¼ 0; ð79Þ

½bq; b†q0 � ¼ δðq − q0Þ; ½bq; bq0 � ¼ 0: ð80Þ

Operators ap and bq (respectively, a†p and b†q) are inter-
preted as annihilation (respectively, creation) operators.
Accordingly, we can define two normalized vacuum

states,

apj0fi ¼ 0; ∀ p > 0; h0fj0fi ¼ 1; ð81Þ

bqj0gi ¼ 0; ∀ q > 0; h0gj0gi ¼ 1: ð82Þ

Then, j0fi (respectively, j0gi) is the state where no particle
corresponding to fn (respectively, gm) exists.

B. Particle creation by instantaneous change of
boundary condition

Given the above quantization of the scalar field in the
semi-infinite cavity, we investigate how the vacuum is
excited when the boundary condition at x ¼ 0 instanta-
neously changes from Neumann to Dirichlet (N-D) in
Sec. IV B 1 and reversely (D-N) in Sec. IV B 2.

1. From Neumann to Dirichlet

We assume that the boundary condition at x ¼ 0 is
Neumann (3) for t < 0 and Dirichlet (4) for t > 0, and that
the quantum field is in vacuum j0fi, defined by Eq. (81).
See Fig. 5 for a schematic picture of the situation.
Let us expand fp by gq as

fp ¼
Z

∞

0

dqðαpqgq þ βpqg�qÞ; ð83Þ

where the expansion coefficients are given by

αpq ¼ hgq; fpi; βpq ¼ −hg�q; fpi: ð84Þ

Using Eqs. (73) and (75), we obtain

αpq ¼ −
1

ðp − qÞπ
ffiffiffiffi
q
p

r
; βpq ¼

1

ðpþ qÞπ
ffiffiffiffi
q
p

r
; ð85Þ

where we have used integral formula
R∞
0 eiaxdx ¼

ia−1ð−∞ < a < ∞Þ.
Substituting Eq. (83) into Eq. (77), and comparing it with

Eq. (78), we obtain

bq ¼
Z

∞

0

dpðαpqap þ β�pqa
†
pÞ: ð86Þ

Substituting Eq. (86) into Eq. (80), and using Eq. (79), we
obtain the unitarity relations,Z

∞

0

dpðαpqα�pq0 − β�pqβpq0 Þ ¼ δðq − q0Þ;Z
∞

0

dpðαpqβ�pq0 − β�pqαpq0 Þ ¼ 0: ð87Þ

In Appendix A 4, we prove that Bogoliubov coefficients
(85) satisfy Eq. (87).
The spectrum of created particles is computed as

h0fjb†qbqj0fi ¼
Z

∞

0

dpjβpqj2 ¼
1

π2

Z
∞

0

dp
q

pðpþ qÞ2 :

ð88Þ

This and its integration over q are divergent due to the
contribution from the infrared regime.
The vacuum expectation value of the energy-momentum

tensor before the change of boundary condition at t ¼ 0 is
computed by substituting Eq. (77) into Eq. (17), and using
Eqs. (79) and (73), as

gq
O

t

fp

x

D
ir

i.
N

eu
m

.

z =0

FIG. 5. The boundary condition at the left end of the domain
(x ¼ 0) instantaneously changes at t ¼ 0 from Neumann (dashed
lines) to Dirichlet (solid lines). Spatial configurations of mode
functions fp and gq are schematically depicted.
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h0fjT��j0fit<0 ¼
Z

∞

0

dpj∂�fpj2 ¼
1

4π

Z
∞

0

dpp: ð89Þ

Unlike the finite-cavity case, there is no Casimir energy in
this semi-infinite case. The above result just represents the
divergent energy density due to the zero-point oscillation.
Thus, the renormalized vacuum expectation value obtained
by subtracting such a zero-point contribution identically
vanishes everywhere as Eq. (B13).
The vacuum expectation value of the energy-momentum

tensor after t ¼ 0 is computed by substituting Eq. (78) into
Eq. (17), and using Eq. (86), as

h0fjT��j0fit>0 ¼
Z

∞

0

Z
∞

0

Z
∞

0

dpdqdq0½ðαpqβpq0

þ αpq0βpqÞReð∂�gq∂�gq0 Þ
þ ðαpqαpq0 þ βpqβpq0 ÞReð∂�gq∂�g�q0 Þ�:

ð90Þ

To derive Eq. (90), we symmetrize it with respect to
integration variables q and q0, and use the fact that αpq
and βpq are real. Using explicit expressions of Bogoliubov
coefficients (85) and mode function (75), we obtain

h0fjT��j0fit>0 ¼
1

π3

Z
∞

0

dp

�
1

p

�Z
∞

0

dq cosðqz�Þ

þ p2

Z
∞

0

dq
cosðqz�Þ
q2 − p2

�
2

þ p

�Z
∞

0

dq
q sinðqz�Þ
q2 − p2

�
2
�
: ð91Þ

The integration over q in Eq. (91) can be computed to give

h0fjT��j0fit>0 ¼
δ2ðz�Þ

π

Z
∞

0

dp
p

þ sgn2ðz�Þ
4π

Z
∞

0

dpp;

ð92Þ

where sgn denotes the sign function,

sgnðaÞ ≔
��1 ða ≷ 0Þ
0 ða ¼ 0Þ : ð93Þ

Note that we have used the following integration formulas:Z
∞

0

cosðaxÞdx ¼ πδðaÞ ð−∞ < a < ∞Þ; ð94Þ
Z

∞

0

cosðaxÞ
x2−b2

dx¼−sgnðaÞ π
2b

sinðabÞ ð−∞<a<∞;b>0Þ;

ð95Þ

Z
∞

0

xsinðaxÞ
x2−b2

dx¼ sgnðaÞπ
2
cosðabÞ ð−∞<a<∞;b>0Þ:

ð96Þ

See Appendix C for the derivation of the second and third
formulas.
Let us consider the meaning of two terms in Eq. (92).

The first term, the delta function squared multiplied by a
divergent integral, represents the diverging flux emanating
from the origin ðt; xÞ ¼ ð0; 0Þ and localizing on the null
line z− ¼ 0. The divergent factor involves the infrared
divergence too since there is no infrared cutoff introduced
by finite L. The dependence of energy density on the delta
function squared implies also the divergence of total energy
emitted.
The second term, at first glance, seems to represent an

ambient divergent energy density and its vanishing on the
null line emanating from the origin [note that sgnð0Þ ¼ 0].
As will be seen below, however, this is not the case.
Namely, the divergence at z� ≠ 0 represents the energy due
to the zero-point oscillation just as Eq. (89). Therefore, the
regularized vacuum expectation value of the energy-
momentum tensor should be defined by subtracting such
a diverging quantity distributing uniformly in space and
time. As the result of such a subtraction, the divergence
appears on the null line z− ¼ 0. Such a renormalized
vacuum expectation value of the energy-momentum tensor
is computed in Appendix B with the Green-function
method, which naturally involves the point-splitting regu-
larization. The result is

h0gjT��j0girent>0 ¼
δ2ðz�Þ

π

Z
∞

0

dp
p

þ
8<
:

lim
z0�→z�

1
4πðz�−z0�Þ2

ðz� ¼ 0Þ

0 ðotherwiseÞ
:

ð97Þ
Here, z� and z0� are the coordinates of two points on which
the Green functions are evaluated. As explained above, the
second term diverges on the null line and vanishes else-
where. Thus, there remain the two components of diverging
flux even after the renormalization to propagate along the
null line z− ¼ 0.

2. From Dirichlet to Neumann

We assume that the boundary condition at x ¼ 0 is
Dirichlet (4) for t < 0 and Neumann (3) for t > 0, and that
the quantum field is in vacuum j0gi, given by Eq. (82). See
Fig. 6 for a schematic picture of the physical situation. Then,
we investigate how the vacuum is excited by computing the
spectrum and energy flux of created particles.
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Let us expand gq by fp as

gq ¼
Z

∞

0

dpðρqpfp þ σqpf�pÞ: ð98Þ

Here, the expansion coefficients are given by

ρqp¼hfp;gqi¼α�pq; σqp¼−hf�p;gqi¼−βpq; ð99Þ

where αpq and βpq are given by Eq. (85).
Substituting Eq. (98) into Eq. (78), and comparing it with

Eq. (77), we obtain

ap ¼
Z

∞

0

dqðρqpbq þ σ�qpb
†
qÞ: ð100Þ

Substituting Eq. (100) into Eq. (79), and using Eq. (80), we
obtain the unitarity relations,Z

∞

0

dqðρqpρ�qp0 − σ�qpσqp0 Þ ¼ δðp − p0Þ;Z
∞

0

dqðρqpσ�qp0 − σ�qpρqp0 Þ ¼ 0: ð101Þ

In Appendix A 5, it is shown that Bogoliubov coefficients
(99) indeed satisfy Eq. (101).
The spectrum is computed as

h0gja†papj0gi ¼
Z

∞

0

dqjσqpj2 ¼
1

π2

Z
∞

0

dq
q

pðpþ qÞ2 ;

ð102Þ

which is divergent.
The expectation value of the energy-momentum tensor

before the change of boundary condition at t ¼ 0 is
computed by substituting Eq. (78) into Eq. (17), and using
Eqs. (80) and (75), as

h0gjT��j0git<0 ¼
Z

∞

0

dqj∂�gqj2 ¼
1

4π

Z
∞

0

dqq: ð103Þ

This represents the divergence due to the zero-point
oscillation, and the regularized value vanishes as given
by Eq. (B27).
The expectation value of the energy-momentum tensor

for t > 0 is computed by substituting Eq. (77) into Eq. (17),
and using Eq. (100), as

h0gjT��j0git>0 ¼
Z

∞

0

Z
∞

0

Z
∞

0

dqdpdp0½ðρqpσqp0

þ ρqp0σqpÞReð∂�fp∂�fp0 Þ
þ ðρqpρqp0 þ σqpσqp0 ÞReð∂�fp∂�f�p0 Þ�;

ð104Þ

where we symmetrize it with respect to integration varia-
bles p and p0, and use the fact that ρqp and σqp are real.
Substituting the explicit form of the Bogoliubov coeffi-
cients, given by Eqs. (99) and (85), and mode function (75)
into Eq. (104), we have

h0gjT��j0git>0 ¼
1

π3

Z
∞

0

dq

�
q3
�Z

∞

0

dp
cosðpz�Þ
p2 − q2

�
2

þ q

�Z
∞

0

dp
p sinðpz�Þ
p2 − q2

�
2
�
: ð105Þ

The integrations over p in Eq. (105) are evaluated using
formulas (95) and (96) to obtain

h0gjT��j0git>0 ¼
sgn2ðz�Þ

4π

Z
∞

0

dqq: ð106Þ

Again, result (106) seems to represent a diverging flux
and its vanishing on the null line emanating from the origin.
After subtracting the uniform contribution from the zero-
point oscillation, however, the divergence appears on the
null line. This is explicitly shown by adopting the Green-
function method in Appendix B. The result is given by

h0gjT��j0girent>0 ¼
8<
:

lim
z0�→z�

1
4πðz�−z0�Þ2

ðz� ¼ 0Þ

0 ðotherwiseÞ
: ð107Þ

Here, z� and z0� are the coordinates of two points on which
the Green functions are evaluated. The flux diverges on the
null line and vanishes elsewhere. Thus, there remains only
one component of diverging flux after the renormalization
to propagate along the null line z− ¼ 0.

O x

t

gq

fp
D

ir
i.

N
eu

m
.

z =0

FIG. 6. The boundary condition at the left end of the domain
(x ¼ 0) instantaneously changes at t ¼ 0 from Dirichlet (solid
lines) to Neumann (dashed lines). Spatial configurations of mode
functions fp and gq are schematically depicted.

EXPLOSIVE PARTICLE CREATION BY INSTANTANEOUS … PHYS. REV. D 99, 025012 (2019)

025012-13



V. CONCLUSION

We have investigated the particle creation due to the
instantaneous change of BC in the 1D finite cavity (Secs. II
and III) and semi-infinite cavity (Sec. IV) by computing the
vacuum expectation value of the energy-momentum tensor
for the free massless Klein-Gordon scalar field. The BC
changes from Neumann to Dirichlet in Secs. II and IV, from
Neumann-Neumann to Dirichlet-Dirichlet in Sec. III, and
from Dirichlet to Neumann in Secs. II and IV.
Although any actual change of BC takes a finite interval of

time, we believe that these models are capable of extracting
the essence of the phenomenon when the BC changes
rapidly enough compared to typical timescales in the system.
In particular, it is plausible that such a situation is realized for
the gravitational phenomena such as the appearance of
strong (or wave-singular) naked singularities [16] and top-
ology change of spacetime (or string) in quantum gravity
[18]. In addition, the choice of Dirichlet and Neumann BCs
introduced no adjustable parameters into the system, which
made the whole analysis simple to be a good starting point
for succeeding considerations. Most models of the particle
creation due to time-dependent BCs (i.e., the dynamic
Casimir effect) would have to reproduce the results in this
paper in their limit of infinitely rapid change.
Thanks to the above simplifications made in our model,

we could obtain almost all the results in completely analytic
form. For the finite cavity N-D (respectively, D-N) case, the
vacuum expectation value of the energy-momentum tensor
was obtained as Eq. (34) [respectively, (48)]. Our result that
the flux in the N-D and D-N cases consists of two terms and
only one term, respectively, seemed to contradict the result
in Ref. [16], which analyzes the NN-DD case. Therefore,
we revisited the NN-DD case in Sec. III to obtain Eq. (67),
which is consistent with the result in Sec. II. The flux in the
N-D and NN-DD cases consist of terms of δ2ðz�Þ and
1=ðz� − z0�Þ2, while the flux in the D-N case consists of
only the term of 1=ðz� − z0�Þ2. Although we cannot argue
which term is stronger to dominate at this point, it will be
the case that not only the flux but also the total energy
radiated becomes large since the integration of flux cross
z� ¼ 0 diverges.
While the results in the semi-infinite cavity for the N-D

case (92) and D-N case (106) are quite similar to their
respective counterparts in the finite cavity, the analysis for
the infinite cavity is much simpler than the finite-cavity
case in that nontrivial mathematical formulas such as
summation formulas of Eqs. (29), (44), and so on, are
not necessary. This is a technical but an important point for
succeeding studies such as the generalizations of this work
(future works will be mentioned later). In addition, the
vacuum expectation value of the energy-momentum tensor
in the semi-infinite cavity was rederived by the Green-
function method in Appendix B. This method not only
naturally involves the point-splitting regularization but also
involves only simpler calculations than the Bogoliubov

method in the text. Again, this is a technical but an
important point. Finally, the analysis for the semi-infinite
cavity confirmed that the divergence of flux due to the
change of BC is nothing but an ultraviolet effect rather than
an infrared one, and that the divergence of the flux has
nothing to do with the Casimir effect, which exists only
when L is finite.
Let us discuss the origin of asymmetry between the N-D

and D-N cases, of which similar conjecture was proposed in
a previous paper of the present author and his collaborators
[33]. The δ2 term seems to stem from a temporal dis-
continuity of mode functions fn and fp. For instance, in the
finite-cavity N-D case, mode function fn is given by Eq. (5)
for t < 0, having a nonzero value at x ¼ 0, but given by
Eq. (18) for t > 0, vanishing at x ¼ 0. Therefore, fnðt; 0Þ is
discontinuous as a function of time at t ¼ 0. On the other
hand, in the finite-cavity D-N case, mode function gm is
given by Eq. (8) for t < 0 and Eq. (35) for t > 0, both of
which vanish at x ¼ 0. Therefore, gmðt; 0Þ is continuous as
a function of time at t ¼ 0. In a similar way, hkðt; 0Þ and
hkðt; LÞ are discontinuous as functions of time at t ¼ 0 in
the NN-DD case, and fpðt; 0Þ [respectively, gqðt; 0Þ is
discontinuous (respectively, continuous) at t ¼ 0 in the
semi-infinite N-D (respectively, D-N) case. We conjecture
that such a discontinuity, which would create a shock in the
classical mechanics point of view, is the origin of the delta
function squared.
Naively speaking, the results in this paper suggest that

the backreaction of created particles to the spacetime and/or
the cavity cannot be ignored. However, the analysis is
based on the test-field approximation; therefore, it is too
early to assert such an implication of the results. As a next
step, it is natural to investigate the backreaction through,
say, the semiclassical Einstein equation, where the right-
hand side of the Einstein equation is replaced by the
regularized vacuum expectation value of the energy-
momentum tensor of quantized fields [21].
Given the results in this paper, there would be several

directions to proceed besides investigating the backreaction
mentioned above. First, it is natural to generalize the
present analysis to higher-dimensional spacetime (see
Ref. [35] for a highly relevant study). Second, it would
be important to generalize the BC in the present paper (i.e.,
Dirichlet and Neumann) to the Robin-type BC, which takes
the form of ϕðt; xÞ − a∂xϕðt; xÞjx¼0 ¼ 0. Taking different
values of constant a before and after t ¼ 0, one can
generalize the present analysis. By such a generalization,
we would be able to verify the above conjecture about the
origin of asymmetry between the N-D and D-N cases, and
understand more deeply how the time-dependent BCs make
the quantum vacuum excite in general.
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APPENDIX A: Proof of unitarity relations

1. Equation (22)

Using Eq. (20), the left-hand sides of Eq. (22) are written
as

X∞
n¼1
n∶odd

ðαnmα�nm0 − β�nmβnm0 Þ ¼ 32ðmþm0Þ
ffiffiffiffiffiffiffiffiffi
mm0p

π2
Umm0 ;

ðA1Þ

X∞
n¼1
n∶odd

ðαnmβ�nm0 − β�nmαnm0 Þ ¼ −
32ðm −m0Þ

ffiffiffiffiffiffiffiffiffi
mm0p

π2
Umm0 ;

ðA2Þ

where we define

Umm0 ≔
X∞
n¼1
n∶odd

1

½n2 − ð2mÞ2�½n2 − ð2m0Þ2� : ðA3Þ

The summation over odd n in Eq. (A3) can be computed
to give

Umm0 ¼ π2

16ð2mÞ2 δmm0 ; ðA4Þ

using the following formulas [34] [pp. 688 and 689],

X∞
k¼0

1

ð2kþ 1Þ2 − a2
¼ π

4a
tan

�
aπ
2

�
; ðA5Þ

X∞
k¼0

1

½ð2kþ 1Þ2 − a2�2 ¼ −
π

8a3
tan

�
aπ
2

�
þ π2

16a2
sec2

�
aπ
2

�
:

ðA6Þ

Substituting Eq. (A4) into Eqs. (A1) and (A2), we see
Eq. (22) to hold.

2. Equation (38)

Using Eqs. (36) and (20), the left-hand sides of Eq. (38)
are

X∞
m¼1

ðρmnρ
�
mn0 − σ�mnσmn0 Þ ¼

2ðnþ n0Þffiffiffiffiffiffiffi
nn0

p
π2

Vnn0 ; ðA7Þ

X∞
m¼1

ðρmnσ
�
mn0 − σ�mnρmn0 Þ ¼ −

2ðn − n0Þffiffiffiffiffiffiffi
nn0

p
π2

Vnn0 ; ðA8Þ

where we define

Vnn0 ≔
X∞
m¼1

m2

½m2 − ðn=2Þ2�½m2 − ðn0=2Þ2�

¼
X∞
m¼1

1

m2 − ðn0=2Þ2 þ
�
n
2

�
2X∞
m¼1

×
1

½m2 − ðn=2Þ2�½m2 − ðn0=2Þ2� : ðA9Þ

The summations over m in Eq. (A9) can be computed
to give

Vnn0 ¼
π2

4
δnn0 ; ðA10Þ

using the following formulas [36] [pp. 68–69]:

X∞
k¼1

1

y2 − k2
¼ π

2y
cotðπyÞ − 1

2y2
; ðA11Þ

X∞
k¼1

1

½ðkyÞ2 − 1�2 ¼
π2

4y2
cosec2

�
π

y

�
þ π

4y
cot
�
π

y

�
−
1

2
:

ðA12Þ

Substituting Eq. (A10) into Eqs. (A7) and (A8), we see
Eq. (38) to hold.

3. Equation (58)

Using Eqs. (51), (54), and (55), the left-hand side of
Eq. (58) is written as

½ξm; ξ†m0 � þ
X∞
k¼1

ðξkmξ�km0 − ζ�kmζkm0 Þ

¼ 8ðmþm0Þ
ffiffiffiffiffiffiffiffiffi
mm0p

π2

��
1

2m2m02 þWmm0

�
δm∶oddδm0∶odd

þ Xmm0δm∶evenδm0∶even

�
; ðA13Þ

½ξm; ξm0 � þ
X∞
k¼1

ðξkmζ�km0 − ζ�kmξkm0 Þ

¼ −
8ðm−m0Þ

ffiffiffiffiffiffiffiffiffi
mm0p

π2

��
1

2m2m02 þWmm0

�
δm∶oddδm0∶odd

þXmm0δm∶evenδm0∶even

�
; ðA14Þ

where
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Wmm0 ≔
X∞
k¼2

k∶even

1

ðk2 −m2Þðk2 −m02Þ ;

Xmm0 ≔
X∞
k¼1
k∶odd

1

ðk2 −m2Þðk2 −m02Þ : ðA15Þ

Applying formulas (A11) and (A12) toWmm0 and formulas
(A5) and (A6) to Xmm0 , we obtain

Wmm0 ¼ −
1

2m2m02 þ
π2

16m2
δmm0 ; Xmm0 ¼ π2

16m2
δmm0 :

ðA16Þ

Substituting Eq. (A16) into Eqs. (A13) and (A14), we see
that unitarity relation (58) holds.

4. Equation (87)

Using Eq. (85), the left-hand side of Eq. (87) is written as

Z
∞

0

dpðαpqα�pq0 − β�pqβpq0 Þ ¼
2ðqþ q0Þ

ffiffiffiffiffiffiffi
qq0

p
π2

Uqq0 ;

ðA17Þ
Z

∞

0

dpðαpqβ�pq0 − β�pqαpq0 Þ ¼ −
2ðq − q0Þ

ffiffiffiffiffiffiffi
qq0

p
π2

Uqq0 ;

ðA18Þ

where we define

Uqq0 ≔
Z

∞

0

dp
ðp2 − q2Þðp2 − q02Þ : ðA19Þ

By simple algebra, this is rewritten as

Uqq0 ¼
1

4qðqþ q0Þ
Z

∞

−∞
dp

�
1

ðp − qÞðp − q0Þ

þ 1

ðpþ qÞðpþ q0Þ −
2

p2 − q02

�
: ðA20Þ

Adapting the following formula [37] [p. 488] to the first
and second terms of Eq. (A20),

Z
∞

−∞

dx
ðx − aÞðx − bÞ ¼ π2δða − bÞ ð−∞ < a; b < ∞Þ;

ðA21Þ

and noting the third term vanishes from Eq. (95), we have

Uqq0 ¼
π2

4q2
δðq − q0Þ: ðA22Þ

Substituting Eq. (A22) into Eqs. (A17) and (A18), we see
Eq. (87) to hold.

5. Equation (101)

Using Eqs. (99) and (85), the left-hand side of Eq. (101)
is written as

Z
∞

0

dqðρqpρ�qp0 − σ�qpσqp0 Þ ¼ 2ðpþ p0Þ
π2

ffiffiffiffiffiffiffiffi
pp0p Vpp0 ; ðA23Þ

Z
∞

0

dqðρqpσ�qp0 − σ�qpρqp0 Þ ¼ −
2ðp − p0Þ
π2

ffiffiffiffiffiffiffiffi
pp0p Vpp0 ; ðA24Þ

where we define

Vpp0 ≔
Z

∞

0

dq
q2

ðq2 − p2Þðq2 − p02Þ : ðA25Þ

This is computed as

Vpp0 ¼
Z

∞

0

dq
1

q2 − p02 þ p2

Z
∞

0

dq
1

ðq2 − p2Þðq2 − p02Þ

¼ π2

4
δðp − p0Þ; ðA26Þ

where the first term vanishes from Eq. (95), and the
technique to obtain Eq. (A22) is used to compute the
second term. Substituting Eq. (A26) into Eqs. (A23) and
(A24), we see Eq. (101) to hold.

APPENDIX B: Green-function method
for semi-infinite cavity

We reanalyze the vacuum excitation by the change of
boundary condition for the semi-infinite cavity using the
Green-function method [21,33], which naturally incorpo-
rates the renormalization of zero-point energy.

1. Green functions

Two Hadamard elementary functions, Fð1Þ and Gð1Þ, are
defined by

Fð1Þðz; z0Þ ≔ h0fjfϕðzÞ;ϕðz0Þgj0fi;
Gð1Þðz; z0Þ ≔ h0gjfϕðzÞ;ϕðz0Þgj0gi; ðB1Þ

where we have introduced a simplified notation z ≔
ðz−; zþÞ and z0 ≔ ðz0−; z0þÞ, and f·; ·g denotes the anti-
commutator, fϕ;ψg ≔ ϕψ þ ψϕ. Two Pauli-Jordan or
Schwinger functions, F and G, are defined by
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iFðz; z0Þ ≔ h0fj½ϕðzÞ;ϕðz0Þ�j0fi;
iGðz; z0Þ ≔ h0gj½ϕðzÞ;ϕðz0Þ�j0gi: ðB2Þ

Using the decompositions of field operators (77) and
(78), the Hadamard elementary functions are represented as

Fð1Þðz; z0Þ ¼
Z

∞

0

dp½fpðzÞf�pðz0Þ þ c:c:� ðB3Þ

¼ 1

2π

Z
∞

0

dp
p
½cosðpΔz−ÞþcosðpΔzþÞ

þcospðz−−zþ0Þþcospðzþ−z−0Þ�; ðB4Þ

Gð1Þðz; z0Þ ¼
Z

∞

0

dq½gqðzÞg�qðz0Þ þ c:c:� ðB5Þ

¼ 1

2π

Z
∞

0

dq
q
½cosðqΔz−ÞþcosðqΔzþÞ

−cosqðz−−zþ0Þ−cosqðzþ−z−0Þ�; ðB6Þ

where c.c. denotes the complex conjugate and Δz� ≔
z� − z0�. For the Pauli-Jordan functions, the momentum
integration can be evaluated to give

iFðz; z0Þ ¼ −
i
4
½sgnðΔz−Þ þ sgnðΔzþÞ

þ sgnðz− − z0þÞ þ sgnðzþ − z0−Þ�; ðB7Þ

iGðz; z0Þ ¼ −
i
4
½sgnðΔz−Þ þ sgnðΔzþÞ

− sgnðz− − z0þÞ − sgnðzþ − z0−Þ�; ðB8Þ

where we have used
R∞
0

sinðaxÞ
x dx ¼ � π

2
ða ≷ 0Þ [38]

[p. 251].

2. From Neumann to Dirichlet

The vacuum expectation value of the energy-momentum
tensor before the change of boundary condition is obtained
by differentiating the Hadamard elementary function Fð1Þ
with respect to two points z and z0, and taking the same-
point limit z0 → z,

h0fjT��j0fiGreent<0 ¼ 1

2
lim
z0→z

∂�∂ 0
�F

ð1Þðz; z0Þ: ðB9Þ

From Eqs. (B4) and (B9), one obtains

h0fjT��j0fiGreent<0 ¼ lim
z0→z

1

4π

Z
∞

0

dpp cosðpΔz�Þ ðB10Þ

¼ lim
z0→z

−1
4πðΔz�Þ2

: ðB11Þ

One can see that Eq. (B10) reproduces Eq. (89) if one takes
limit z0 → z before the p integration. Equation (B11) shows

that h0fjT��j0fiGreent<0 contains the ultraviolet divergence
∼1=ðΔz�Þ2, which is the vacuum energy due to the zero-
point oscillation always existing even in a free Mankowski
spacetime. Therefore, the renormalized energy-momentum
is defined by subtracting this ultraviolet divergence as

h0fjT��j0firent<0 ≔ h0fjT��j0fiGreent<0 − lim
z0→z

−1
4πðΔz�Þ2

ðB12Þ
¼ 0; ðB13Þ

which reasonably vanishes before changing the boundary
condition.
The vacuum expectation value of the energy-momentum

tensor after the change of the boundary condition has the
same expression as Eq. (B9). However, since the boundary
condition is changed at t ¼ 0, Hadamard elementary func-
tion Fð1Þ before the change of the boundary condition has to
be propagated into the t > 0 region using Pauli-Jordan
function iG [33]. Thus, the energy momentum is repre-
sented as

h0fjT��j0fiGreent>0

¼ 1

2
lim
B→A

∂�∂ 0
�½iGðA;CÞiGðB;DÞFð1ÞðC;DÞ�; ðB14Þ

where A ≔ z and B ≔ z0. Namely, in this abbreviated
notation, let capital Latin letters (except G and F) denote
a world point, e.g., ϕðA;BÞ ¼ ϕðz; z0Þ. In addition, let a
pair of repeated capital Latin letters denote the Klein-
Gordon inner product at t ¼ 0, e.g., ϕðAÞψðAÞ≔hϕ;ψijt¼0.
Substituting Eq. (B3) into Eq. (B14), one obtains

h0fjT��j0fiGreent>0 ¼ 1

2
lim
B→A

Z
∞

0

dpði∂�GðA;CÞfpðCÞ

× ½i∂ 0
�GðB;DÞfpðDÞ�� þ c:c:Þ;

ðB15Þ
where we have used the property of inner product
hϕ;ψ�i ¼ −hϕ�;ψi�. The inner product in Eq. (B15) can
be written as

i∂�GðA;BÞfpðBÞ ¼
Z

∞

0

dx0½∂�Gðz; z0Þ∂t0fpðz0Þ

− ∂t0∂�Gðz; z0Þfpðz0Þ�jt0¼0: ðB16Þ
Using Eq. (B8), derivatives of G in Eq. (B16) are com-
puted as

∂�Gðz;z0Þjt0¼0¼−
1

2
½δðx0∓ z�Þ−δðx0 �z�Þ�; ðB17Þ

∂t0∂�Gðz; z0Þjt0¼0 ¼ ∓ 1

2
∂x0 ½δðx0 ∓ z�Þ þ δðx0 � z�Þ�;

ðB18Þ
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where sgn0ðxÞ ¼ 2δðxÞ was used. Substituting Eqs. (B17)
and (B18) into Eq. (B16), one obtains

i∂�GðA;BÞfpðBÞ ¼ � i
2

ffiffiffiffi
p
π

r
sgnðz�Þe−ipz� ∓ δðz�Þffiffiffiffiffiffi

πp
p ;

ðB19Þ
where we have usedZ

∞

0

δðx − aÞfðxÞdx ¼ θðaÞfðaÞ; ðB20Þ

θð�xÞ − θð∓ xÞ ¼ �sgnðxÞ: ðB21Þ

With Eq. (B19), Eq. (B15) yields

h0fjT��j0fiGreent>0 ¼ δ2ðz�Þ
π

Z
∞

0

dp
p

þ sgn2ðz�Þlim
z0→z

−1
4πðΔz�Þ2

: ðB22Þ

The last term in Eq. (B22) shows that h0gjT��j0giGreent>0

contains the ultraviolet divergence due to zero-point oscil-
lation. Thus, the renormalized energy momentum is defined
in the same way as Eq. (B12) by subtracting the zero-point
energy,

h0fjT��j0firent>0 ≔ h0fjT��j0fiGreent>0 − lim
z0→z

−1
4πðΔz�Þ2

ðB23Þ

¼ δ2ðz�Þ
π

Z
∞

0

dp
p

þ
(

lim
z0→z

1
4πðΔz�Þ2 ðz� ¼ 0Þ

0 ðotherwiseÞ
; ðB24Þ

which is nothing but Eq. (97).

3. From Dirichlet to Neumann

The vacuum expectation value of the energy-momentum
tensor before the change of the boundary condition is
given by

h0gjT��j0giGreent<0 ¼ 1

2
lim
z0→z

∂�∂ 0
�G

ð1Þðz; z0Þ: ðB25Þ

Substituting Eq. (B6) into Eq. (B25), one obtains

h0gjT��j0giGreent<0 ¼ lim
z0→z

1

4π

Z
∞

0

dqq cosðqΔz�Þ

¼ lim
z0→z

−1
4πðΔz�Þ2

: ðB26Þ

This represents the ultraviolet divergence due to the zero-
point oscillation. The normalized energy momentum is
defined by subtracting such a divergence,

h0gjT��j0girent<0 ≔ h0gjT��j0giGreent<0 − lim
z0→z

−1
4πðΔz�Þ2

¼ 0;

ðB27Þ

which reasonably vanishes before the change of boundary
condition.
The energy momentum after the change of boundary

condition is obtained by propagating Gð1Þ by iF,

h0gjT��j0giGreent>0

¼ 1

2
lim
B→A

∂�∂�0½iFðA;CÞiFðB;DÞGð1ÞðC;DÞ�: ðB28Þ

Substituting Eq. (B5), this quantity is represented as

h0gjT��j0giGreent>0 ¼ 1

2
lim
B→A

Z
∞

0

dqði∂�FðA;CÞgqðCÞ

× ½i∂ 0
�FðB;DÞgqðDÞ�� þ c:c:Þ:

ðB29Þ

The inner product in Eq. (B29) is written as

i∂�FðA;BÞgqðBÞ

¼
Z

∞

0

dx0½∂�Fðz; z0Þ∂t0gqðz0Þ− ∂t0∂�Fðz; z0Þgqðz0Þ�jt0¼0:

ðB30Þ

Using Eq. (B7), derivatives of F in Eq. (B30) are computed
as

∂�Fðz; z0Þjt0¼0 ¼ −
1

2
½δðx0 ∓ z�Þ þ δðx0 � z�Þ�; ðB31Þ

∂t0∂�Fðz; z0Þjt0¼0 ¼∓ 1

2
∂x0 ½δðx0 ∓ z�Þ − δðx0 � z�Þ�:

ðB32Þ

Substitution of Eqs. (B31) and (B32) into Eq. (B30) yields

i∂�FðA;BÞgqðBÞ ¼ −
1

2

ffiffiffi
q
π

r
sgnðz�Þe−iqz� ; ðB33Þ

where we have used formulas (B20) and (B21). The
combination of Eqs. (B33) and (B29) gives

h0gjT��j0giGreent>0 ¼ sgn2ðz�Þlim
z0→z

−1
4πðΔz�Þ2

: ðB34Þ

The renormalized energy momentum is obtained by
subtracting the zero-point energy (B26) from Eq. (B34),
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h0gjT��j0girent>0 ≔ h0gjT��j0giGreent>0 − lim
z0→z

−1
4πðΔz�Þ2

¼
� lim

z0→z

1
4πðΔz�Þ2 ðz� ¼ 0Þ

0 ðotherwiseÞ
; ðB35Þ

which is nothing but Eq. (107).

APPENDIX C: Integral formulas (95) and (96)

Let us calculate the principal values of the following
integrals:

I ≔
Z

∞

0

cosðaxÞ
x2 − b2

dx; J ≔
Z

∞

0

x sinðaxÞ
x2 − b2

dx; ðC1Þ

where −∞ < a < ∞, b > 0. Note that we always consider
only principal values for improper integrals. These are
written as

I ¼ 1

4
ðIþ þ I−Þ; I� ≔

Z
∞

−∞

e�iax

x2 − b2
dx; ðC2Þ

J ¼ 1

4i
ðJþ − J−Þ; J� ≔

Z
∞

−∞

xe�iax

x2 − b2
: ðC3Þ

We suppose two contoursCþ andC− drawn in Fig. 7 and
use Cauchy’s integral theorem and the residue theorem.
For a > 0, taking contour C� for I� and J�, we have

0 ¼
Z
C�

e�iaz

z2 − b2
dz ¼ I� ∓ 1

2
· 2πiRes½I�;−b�

∓ 1

2
· 2πiRes½I�; b�; ðC4Þ

0 ¼
Z
C�

ze�iaz

z2 − b2
dz ¼ J� ∓ 1

2
· 2πiRes½J�;−b�

∓ 1

2
· 2πiRes½J�; b�: ðC5Þ

Here, Res½X; z0� denotes the residue of the integrand of X at
z ¼ z0, and the contributions from the large semicircles
vanish from Jordan’s lemma. Substituting the following
values of residues,

Res½I�;−b� ¼ −
e∓iab

2b
; Res½I�; b� ¼

e�iab

2b
;

Res½J�;−b� ¼
e∓iab

2
; Res½J�; b� ¼

e�iab

2
ðC6Þ

into Eqs. (C4) and (C5), we have

I� ¼ −
π

b
sinðabÞ; J� ¼ �iπ cosðabÞ ða > 0Þ: ðC7Þ

For a < 0, taking contour C∓ for I� and J�, we have

0 ¼
Z
C∓

e�iaz

z2 − b2
dz ¼ I� � 1

2
· 2πiRes½I�;−b�

� 1

2
· 2πiRes½I�; b�; ðC8Þ

0 ¼
Z
C∓

ze�iaz

z2 − b2
dz ¼ J� � 1

2
· 2πiRes½J�;−b�

� 1

2
· 2πiRes½J�; b�: ðC9Þ

Using Eq. (C6) again, we have

I� ¼ π

b
sinðabÞ; J� ¼∓ iπ cosðabÞ ða < 0Þ: ðC10Þ

For a ¼ 0, taking either Cþ or C− for I�, one can show
that I� vanishes. In addition, J obviously vanishes by
definition (C1). Thus, we have

I� ¼ J ¼ 0 ða ¼ 0Þ: ðC11Þ

Combining Eqs. (C2), (C3), (C7), (C10), and (C11), we
see formulas (95) and (96) to hold.

Re(z)
-b +b

C+

C-

O

i Im(z)

FIG. 7. Two closed contours Cþ and C− in the complex plane,
each of which contains an infinitely large semicircle and two
infinitesimal semicircles to avoid −b and þb on the real axis.
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