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In the context of quantum field theory, we derive flavor-energy uncertainty relations for neutrino
oscillations. By identifying the nonconserved flavor charges with the “clock observables,” we arrive at the
Mandelstam-Tamm version of time-energy uncertainty relations. In the ultrarelativistic limit, these relations
yield the well-known condition for neutrino oscillations. Ensuing nonrelativistic corrections to the latter are
explicitly evaluated. The analogy among flavor states and unstable particles and a novel interpretation of
our uncertainty relations, based on the unitary inequivalence of Fock spaces for flavor and massive

neutrinos, are also discussed.
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I. INTRODUCTION

Neutrino mixing and oscillations represent one of the
most pressing challenges of modern theoretical and exper-
imental particle physics. They were first introduced by
Pontecorvo [1] in a close analogy with the phenomenon
of Kaon oscillations [2], and subsequently confirmed in a
number of experimental settings [3]. While the quantum
mechanical (QM) description [4—6] is quite successful in
tackling high-energy features of neutrino oscillations, the
corresponding quantum field theoretical (QFT) description
(which could tackle also the low-energy behavior) is still
controversial [6-9].

In particular, a nonperturbative study of flavor states
shows that field mixing is not the same as the wave-
function (i.e., first-quantized) mixing [8]. In fact, the flavor
vacuum is structurally a condensate similar to the BCS
vacuum [8,10]. From this, the corrections to the standard
neutrino oscillation formula can be derived [11]. It should
be stressed that in this analysis a central role is played by
nonconserved flavor-charges implied by the Noether’s
theorem [12]. Flavor states are defined as eigenstates of
such charges and have the form of SU(2) generalized
coherent states [13]. In fact, according to the standard
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model (SM), the flavor charge is always conserved—at tree
level—in the production and detection processes, a feature
which is violated by the usual Pontecorvo flavor states [14].
In addition, the exact flavor states cannot be generally
phrased as a simple superposition of mass eigenstates,
because of the unitary inequivalence of mass and flavor
Hilbert spaces [8].

In Ref. [15], it was shown that for neutrino oscillations
described in terms of Pontecorvo states, the Mandelstam-
Tamm time-energy uncertainty relations (TEUR) [16]
reduce to the known condition for neutrino oscillations
[4]. However, this result was obtained in the context of
standard perturbative treatment of neutrino flavor states.

In this paper we employ the full QFT framework to
derive the flavor-energy uncertainty relations (FEUR). By
identifying the nonconserved flavor charge with the “clock
observable,” we find from the latter the Mandelstam-Tamm
version of TEUR. Our approach is valid at all energy scales
and the conventional results of Bilenky ef al. [15] are
recovered in the ultrarelativistic limit. Moreover, by
exploiting the analogy between flavor neutrinos and unsta-
ble particles [17], we find that for an exact neutrino flavor
state, an inherent energy uncertainty arises from TEUR.
Although our discussion is, for simplicity’s sake, confined
to two flavors only, the results obtained can be easily
extended to three flavors including CP violation.

II. NEUTRINO MIXING AND OSCILLATIONS
IN QFT

Let us consider a weak decay Wt — et +v,. The
relevant part of the SM Lagrangian is £ = Ly + L;,, with
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The Lagrangian £ is invariant under the global U(1)
transformations v — ¢®v and [ — €/®l, leading to the
conservation of the total flavor charge Q" corresponding
to the lepton-number conservation [5]. This can be written
in terms of the flavor charges for neutrinos and charged
leptons [12],

Qtot Z Qtot

o=e.

0s'(1) = Q, (1) + Q,(1).  (3)
with

@:/&mwmw
0= [ @it (out)

anz/&@umvx

0,0 = [ @xjon, ().
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The above charges can be derived via Noether’s theorem
[12] from the Lagrangian (1). Note the time dependence
of the neutrino charges, due to the nondiagonal mass
matrix M,.

By observing that [L;,(x, 1), O®'(t)] = 0, we see that a
neutrino flavor state is well defined in the production vertex
as an eigenstate of the corresponding flavor charge [18].

The mixing relations for neutrino fields are

(ue(x)> - ( cos 6 sinH) <u1(x)) 5)
v(x))  \=sing@ cos@) \y(x)/)’

with tan26 = 2m,,/(m, —m,). The fields with definite
masses have the usual mode expansion,

yi(x) = Z/dk a1

+ U—k,j(t)ﬁrjk,j(t)]elk.x’
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Equation (5) can be equivalently rewritten as [8]
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j=12 (6

where

vo(x) = Gg' (1) (x) Gy (1), (8)

with (o,j) = (e, 1), (1,2) and Gy(r) given by
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From (6) and (8), it follows that the flavor fields are
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with (o, j) =
given by [19]
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The vacuum for massive fields, |0), ,, is defined as

(e,1),(u,2), and flavor ladder operators

aﬁ,j|0>1.2 :ﬂr—k,j|0>1,2 =0 Jj=12 (12)

and is not left-invariant under the action of Gy(t):

10(2)).

0(7)),, is called the flavor vacuum, and one can easily
verify that it is annihilated by the flavor operators defined
in Eq. (11). Moreover, one can prove [8] that

= G;'(1)|0); . (13)

3
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k
V| = k| Wty o+ 0y . (15)
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i.e., flavor and massive fields belong to unitarily inequi-
valent representations of the anticommutation relations [8].

III. MANDELSTAM-TAMM TEUR

The Mandelstam-Tamm version of TEUR is formulated
as [16]

AEAt

\%
l\)lb—

(16)

where

(17)
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Here, O(t) represents the “clock observable” whose
dynamics quantifies temporal changes in a system, and
At is the characteristic time interval over which the mean
value of O changes by a standard deviation.

TEUR (16)—(17) is typically applied to the study of
unstable particles; see, e.g., [20]. Calling |¢(7)) an eigen-
state of the projection operator Py(t) = (1)) ((1)]
describing an unstable particle state, one gets [17]

dPy(1)
dr

< 2AE\/77(/,(t)(1 —Py1).  (18)
Here, P, (1) is the survival probability

Py(t) = [(¢(1)|¢) . (19)

and |¢) is the (Heisenberg representation) state of the
system prepared at t = 0.

The rhs of (18) has a maximum when P, () = %, which
is satisfied with ¢ = T',. Thus, we have

dPy(1)

AE >
dr

(20)

Because for decaying particles P,;(0) = 1, Py(c0) =0,
and P,(t) is monotonically decreasing, we can integrate
the inequality (18), obtaining

1
AET > —
2

g— arcsin (2P4(T) — 1)] . (21)

From this, one can derive an explicit form of TEUR for
unstable particles [17]

AET, > %. (22)

One can use a similar line of reasonings to arrive at the
TEUR for the neutrino oscillations [15]. However, in order
to remain as close as possible to the full QFT treatment,
we employ a different strategy. We start by considering the
number operator for flavor neutrinos:

Ny (1) = "a (Da (1),

k,r

A o _ ( cos 6 sind 1 (24)
W —sing cos®)\ag, )
These relations are just approximations of the exact ones

(11) in the ultrarelativistic limit. Defining the Pontecorvo
flavor state as

c=e,pu, (23)

where

|’/§,a>P 5‘1?,5|0>1,2’ (25)

one gets the usual relations among flavor and massive
neutrino states

Vke) cos@ sind Uy
( k. P>:< | ><|kl>> (26)
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The standard oscillation formula [1] can be found by taking

the expectation value of the number operator over the
corresponding Pontecorvo flavor state

Pooo(t) = (Ny(1)); = 1 = sin*(26)sin’ (w t>,
(27)

where (+), = p(vg |- [t ) p. By setting O(1) = N, (1)
in (17) and taking into account that

ox = (N3 (1) = (No(1))3
= Poee()(1 = Po(1)). (28)

one gets

< 20E\/P,,(1)(1

‘M = Pom(1))- (29)

dr

This is formally identical to relation (18) for unstable
particles. Note that 6%, is proportional to the linear entropy
which quantifies the dynamical flavor entanglement of the
state (25), cf. [21]. Moreover, (29) is related to the Wigner-
Yanase skew-information [22] which reduces to the stan-
dard variance on pure states [23].

If we consider P,_,(7) in the interval 0 < ¢ <} pin,
where #; i, is the time when P,_,(7) reaches the first
minimum, this is a monotonically decreasing function [15].
In other words, if we try to reveal neutrinos in processes
with time scales much smaller than oscillation time, they
can be thought as unstable particles. In fact, in this time
interval, we can regain, by integration, an expression
analogous to (21).

However, a general inequality, not restricted to a par-
ticular time interval, can also be obtained from (20). Using
the triangular inequality and integrating both sides from 0
to T, we get

T T
0 dr 0 dt
Therefore, one finds
AET > P,_,(T), o #p, (31)

with P,_,,(¢) = 1 = P,_,(t). For T = T}, we finally have
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1
AET) 2 5, (32)

which is even stronger than (22) and, in addition, it has
Heisenberg-like lower bound.

IV. TEUR FOR NEUTRINO OSCILLATIONS
IN QFT

Let us now consider a full QFT treatment of TEUR. We
have seen that these relations are a consequence of the
nonconservation of the number of neutrinos with definite
flavor. However, we used basically a quantum mechanical
treatment, having approximated the flavor neutrino states
with the simple expression (26). One can check that these
are not eigenstates of the flavor charges (4). True flavor
eigenstates can be explicitly constructed as

Vo) = @inl0)e e (33)

where flavor operators and vacuum are taken at reference
time t = 0. The corresponding oscillation formula can
be found by taking the expectation value of the flavor
charges [11],

Qo—p(t) = {0y, (1)) (34)
where (---), = (v .| [t} ,)» Which gives

(1) = sin2(20)[| Uy Psin® (@q 1) + |V [sin? (@ ).

Q
Qo) =1=Q5,(1). o #p, (35)
where now wif = (w5 + wy)/2 and |Uy > = 1= |V %
This formula presents oscillations on two different time-
scales: T_ = 2x/ ., which is the main one, observed also
in the standard treatment, and 7, = 2n/a)I, due to the
interaction with the flavor vacuum condensate [8].

In analogy with the above QM treatment for the number
operators, nonconservation of the flavor charges leads to a
particular form of the QFT-based TEUR. This is because, in
this case, lepton charge is a natural candidate for a “clock
observable.” By employing the fact that

[0,,(1). H] = i%;(t) #0, (36)

we find the flavor-energy uncertainty relation

ooy > —
HZQ =91 qr

Moreover, one can verify that

op = (02, (1), —(Q,, (1)2
= Qa—m(t)(l - Qo‘—m’(t))‘ (38)

Equation (38) quantifies dynamical (flavor) entanglement
for neutrino states in QFT, cf. Refs. [24,25]). This should be
compared to results (18) and (29). By analogy with (20),
one has

‘M < AE. (39)

dr

From (37), we arrive at the Mandelstam-Tamm TEUR in
the form

AET > Q,_,(T), o #p. (40)
When m;/|k| = 0, i.e., in the relativistic case, we get

Uk~ 1-ek), [V ~e(k). (41)
with e(k) = (m; — m,)?/4|k|*. In the same limit,

_ om? T
O X —— = ,

4|k‘ LOSC

o ~ K], (42)

where 6m? = m3 — m? and Ly = 4z|k|/Sm>. Therefore,
at the leading order (ultrarelativistic case) |Uy|*> — 1,
|[Vk|> = 0. In this limit, the standard oscillation for-
mula (27) is recovered,

L

Q,_,(t)~ sin2(29)sin2< > c#p, (43)

osc

where we put ¢ &~ L. The rhs of (43) reaches its maximum at
L = L./2 and the inequality (40) reads

02
> 2sin*(26) ' (44)

LOSC
Note that because the Hamiltonian is time independent,
so is AE. In particular, the relation (44) applies in the
interaction vertex. Inequalities of the form (44) are well
known in literature and are usually interpreted as conditions
of neutrino oscillations [4,7,15].

Having based our derivation on exact flavor states and
charges, we can see the above relations in a new light: From
the inequality (44), we infer that flavor neutrinos have an
inherent energy uncertainty which represents a bound for
future experiments. In order to clarify this statement, note
that (14) implies that

lim g b =0, =12, (43)
i.e., the flavor neutrino state, which is produced in
charged current weak decays, cannot be written as a linear
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superposition of single-particle mass eigenstates. The
orthogonality condition (45) does not hold for the standard
flavor states (26), where limy_, o, (vf | |tf ) p = cos 6. This
contradiction is resolved by observing that

lim lim # lim lim , (46)
mi/ k|0 V=00 " V=0 m/[k| -0

which means that the ultrarelativistic limit cannot be
taken once the “thermodynamical” QFT limit is performed,
but has to be considered just as QM approximation, which
does not hold for systems with an infinite number of
degrees of freedom. Equation (45) should be thus under-
stood as

= ],2<0k|a£,1alrj:e|Ok>e.yHl,2<Op‘0p>e,y' (47)
p#k

<U£,i|y£.0‘>

Let us now consider corrections beyond the ultrarela-
tivistic limit. The exact oscillation formula (35) reduces in
the next-to-leading relativistic order to [26]

Q, (1) ~sin?(26) {Sin2< il

0osc

)1 =<t
+ e(k)sin2(|k|t)} , o #p. (48)

By setting T = L /2, the relation (40) can be written as

2sin?20 k|L
AE > Slin [1 — e(k)cos? <||2°S°>} (49)

i.e., the bound on the energy is lowered with respect
to (44). For neutrino masses [27]: m; = 0.0497 eV, m, =
0.0504 eV, and |k| = 1 MeV, then g(k) =2 x 107"°.

On the other hand, in the nonrelativistic regime where
the pure QFT effects (such as interactions with the vacuum)
are relevant, the full oscillation formula simplifies. To this
end, we consider, e.g., |k| = \/mm;. In this case,

1 ¢
|Uk|2:§+§:1—|vk|2, (50)
:2 mymy (51)
mp +m2 ’

and we can rewrite (40) as

sin?26

AET > [1 —cos (@,T)cos (@,T)

— &sin (@, T) sin (@,7)], (52)

with @; = \/m;(m; + m,). To compare it with the ultra-

relativistic case, we take T = L../4, with L., =
4z, /m m,/Sm?, obtaining

)
AE> 251n 20

osc

(1=x). (53)
Here,

X = §Sin ((Dlzosc/4> sin <@2Z0sc/4)
+¢08 (@ Lose/4) 08 (@ Lo /4). (54)

Substituting the same values as above, for neutrino masses,
we obtain y = 0.1, i.e., the original bound on energy
decreased by 10%.

V. CONCLUSIONS

By identifying the flavor charges obtained via Noether’s
theorem and energy as incompatible observables, we have
derived flavor-energy uncertainty relations. Taking the
nonconserved flavor charges as “clock observables,” we
arrived at the Mandelstam-Tamm version of TEUR, in a full
QFT framework. In the ultrarelativistic regime, our results
reproduce the standard conditions for neutrino oscillations
from Refs. [4,7,15], thus incorporating the achievements
of Ref. [15].

Unlike Ref. [15], our result is valid for all times and
energy scales and improves the bounds of Ref. [17]. We
have interpreted TEUR for flavor neutrinos as representing
fundamental bounds on energy-variances. This interpreta-
tion is drawn in a close analogy with the case of unstable
particles, where a notion of a sharp mass is not natural, and
only mass (energy) distributions are measurable.

We would like to stress that the reason why the results
obtained here generalize, in a natural way, the usual QM
results resides in the fact that the QFT flavor neutrino states
are defined as eigenstates of the flavor charges. This is a
nontrivial step which is possible because of the unitary
inequivalence of the Hilbert spaces for neutrinos with
definite masses and those with definite flavor [8].

Our study naturally correlates with the research line of
Refs. [21,25,29] where neutrino oscillations have been
studied from a quantum information perspective. Finally,
we note that analogous analysis can be applied to boson
mixing, such as for K%, D°, or B® mesons.
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