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The simplest extension of the standard model consists in adding one singlet scalar field which
mixes with the Higgs boson. OðGeVÞ masses of the new scalar carry strong motivation from
relaxion, dark matter and inflation models. The decay of a GeV scalar is, however, notoriously difficult
to address since, at this mass scale, the chiral expansion breaks down and perturbative QCD does not
apply. Existing estimates of the GeV scalar decay rate disagree by several orders of magnitude. In this
work, we perform a new dispersive analysis in order to strongly reduce these uncertainties and to address
discrepancies in earlier results. We will update existing limits on light scalars and future experimental
sensitivities which are in some cases strongly affected by the new-found decay rates. The meson form
factors provided in this work, can be used to generalize our findings to non-universally coupled
light scalars.
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I. INTRODUCTION

Many prominent extensions of the standard model
(SM) feature a gauge singlet scalar ϕ with a mass below
or at the weak scale. Within the relaxion mechanism [1]
the new scalar is introduced to cure the (little) hierarchy
problem. In well-motivated dark matter models, a light
scalar emerges as the mediator which links the dark and
the visible sector [2]. A light scalar appears in super-
symmetric theories such as the next-to-minimal super-
symmetric standard model [3]. It has been identified with
the field driving cosmic inflation [4,5] and it is present
in models which address the cosmological constant
problem through radiative breaking of classical scale
invariance [6].
Through mixing with the Higgs, the light scalar inherits

the Higgs couplings to SM matter reduced by a universal
suppression factor. While for scalar masses around the
electroweak scale, LEP and LHC constraints on extended
Higgs sectors apply, rare meson decays offer a particular
powerful search channel for scalars below the bottom mass
threshold [7]. If the mixing is suppressed, the scalar may,
however, travel a macroscopic distance before decay. In
this case, searches including missing energy or displaced
vertices become relevant. Present and future experimental

sensitivities to a light scalar thus crucially depend on its
decay rate and decay pattern.
Since the chiral expansion breaks down shortly above the

two-pion threshold, while a perturbative QCD calculation
becomes reliable for masses of a few GeV, the scalar decay
rate in the windowmϕ ≃ 0.5–2 GeV suffers from notorious
uncertainties (see e.g., [8]). The problem already man-
ifested itself when a light SM Higgs was still considered
viable [9]. In the late 1980s, it was realized that the form
factors determining the Higgs (or general scalar) decay rate
to meson final states are accessible through dispersion
relations [10]. Unfortunately, the two most comprehensive
calculations based on this technique by Truong and Willey
[11] and Donoghue et al. [12] disagree by orders of
magnitude at mϕ ∼ GeV. It was argued in [12] that
Truong and Willey had obtained the wrong interference
pattern between elastic and inelastic contributions to the
form factors due to a sign error. In this work, we will
reinvestigate the discrepancy and recalculate the decay rate
of a light scalar to pions and kaons. Our evaluation profits
from progress in the description of pion/kaon phase shift
data entering the dispersive integral.
After identifying the favored parameter regions for

some of the most promising SM extensions with light
scalars, we will update the existing limits and future
experimental sensitivities. These were previously based
on varying sets of assumptions on the scalar decay. In
several cases, we find the sensitivities to be substantially
altered by our new-found decay rates. This holds in
particular in the context of beam dump experiments which
are very sensitive to the scalar decay length through the
location of the detector.
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II. STANDARD MODEL EXTENSIONS WITH
LIGHT SCALARS

A new scalar can connect to the SM at the renormalizable
level via the Higgs portal

L ⊃ ðg1ϕþ g2ϕ2ÞðH†HÞ: ð1Þ

Once electroweak symmetry is broken, the couplings g1;2
induce mixing between the scalar and the Higgs. We will
focus on the case where the scalar mass is considerably
below the electroweak scale. In the low energy effective
theory, the Higgs can then be integrated out and it arises the
coupling of the new scalar to SM fermions

L ⊃ −
sθmf

v
ϕf̄f; ð2Þ

where sθ denotes the sine of the Higgs-scalar mixing angle
and v the Higgs vacuum expectation value (vev). With
regard to experimental searches, the light scalar behaves as
a light version of the Higgs boson with universally sup-
pressed couplings. In concrete models, a more complicated
coupling pattern may emerge if they feature e.g., more than
one Higgs doublet. While we focus on the simplest case
given above, many of our results can be applied to more
general couplings after simple rescaling. In order to identify
the most promising parameter space for the mixing angle,
we shall briefly discuss some well-motivated SM exten-
sions with light scalars.

A. Connection to dark matter

New particles with a weak scale annihilation cross
section have been considered among the leading dark
matter candidates since—within the thermal production
mechanism—their relic density naturally matches the
observed dark matter density. The absence of a signal in
direct detection experiments, however, suggests even fee-
bler interactions between dark matter and nuclei. An
appealing possibility is that dark matter resides within a
dark sector of particles which do not directly feel the strong
or electroweak forces [2]. In this scenario, a scalar boson
could be the mediator which communicates between dark
and visible matter. In the simplest realization, dark matter
is identified with a gauge singlet Majorana fermion χ which
is stable due to a (discrete) symmetry and couples to the
scalar via the Yukawa term [13,14]

L ⊃
κ

2
ϕχ̄χ: ð3Þ

We will assume mχ > mϕ, such that a hierarchy between
the annihilation cross section and the dark matter nucleus
cross section can naturally be realized: the fermions
annihilate into scalars via the (unsuppressed) coupling κ,
while dark matter nucleus interactions are suppressed

by the mixing angle sθ. The annihilation cross section
times relative velocity vrel is of the size σvrel ¼ σ1v2rel
with [13,15]

σ1 ≃
κ4mχ

24π

9m4
χ − 8m2

χm2
ϕ þ 2m4

ϕ

ð2m2
χ −m2

ϕÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ −m2
ϕ

q
; ð4Þ

where we assumed a vanishing trilinear scalar self-coupling
for simplicity.1 Since the annihilation cross section is p-wave
suppressed, strong indirect dark matter detection constraints
are avoided. The fermion relic density is approximated
as [16]

Ωχh2 ¼ 2.8 × 10−11 GeV−2 m2
χffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g�ðTFÞ
p

σ1T2
F

; ð5Þ

where g� denotes the number of relativistic degrees
of freedom and TF the freeze-out temperature which
we take from [17]. For a given set of masses, the coupling
κ is fixed by requiring that Ωχh2 matches the observed dark
matter relic density. We find κ ¼ ð0.03–0.05Þ × ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mχ=GeV
p

for mχ ¼ 10 MeV–10 TeV.2

We have implicitly assumed a standard thermal freeze-
out of the singlet fermion. This is justified if the dark sector
was in thermal equilibrium with the SM bath prior to
freeze-out. We, therefore, require that the thermalization
rate Γtherm of the dark sector exceeds the Hubble rate of
expansion H at freeze-out, i.e.,

ΓthermðTFÞ > HðTFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3g�ðTFÞ

45

r
T2
Fffiffiffiffiffiffi

8π
p

MP

: ð6Þ

Since Γtherm scales with s2θ, (6) puts a lower limit on the
mixing angle. Notice that thermal decoupling of the dark
sector is not a strict exclusion criterion. It would, however,
invalidate the simple connection between mχ , κ and Ωχh,
making the relic density a UV sensitive quantity.
At the same time, large mixing angles are excluded due

to direct dark matter detection. The dark matter-nucleon
cross section reads3 [14]

σn ≃
4μ2χ
π

�
sθκ
2vm2

ϕ

mnfn
�

2

ð7Þ

with

fn ¼ fnu þ fnd þ fns þ
6

27
fG: ð8Þ

1The general expression for the annihilation cross section for
nonvanishing trilinear coupling can be found in [15].

2This holds unless for very degenerate cases mχ −mϕ <
0.01mχ .

3The formula is valid for scalar masses substantially larger than
the momentum transfer, i.e., mϕ ≳ 100 MeV.
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Here, mn denotes the nucleon mass and μχ the reduced
mass of the dark matter-nucleon system. The scalar
coefficients fnu;d;s and fG define the quark and gluon
content of the nucleon. While fG ¼ 1 − fnu − fnd − fns
derives from the QCD trace anomaly, fnu;d;s have been
determined in lattice-QCD and in chiral perturbation
theory. We employ the value fn ¼ 0.30 from [18] which
is consistent with other recent evaluations [19,20]. The dark
matter direct detection constraints can now be mapped into
the scalar mass-mixing plane. Besides the constraints of
XENON1T [21], we also include those of CRESST-III [22]
and DarkSide-50 [23] which dominate at mχ ≲ 5 GeV.
Since the most conservative (weakest) bounds are

obtained if χ is just slightly heavier than ϕ, we fix
mχ ¼ 1.1mϕ. In this case, the thermalization rate is
dominated by the inverse decay of the scalar [24] and
we have to apply (6) with Γtherm ≃ Γϕ. As shown in Fig. 8,
the parameter space, where the correct relic density can be
achieved via standard freeze-out and the direct detection
constraints are satisfied, spans several orders of magnitude
in sθ. Further experimental constraints on this window will
be discussed in Sec. IV.

B. Relaxion

The relaxion mechanism constitutes a dynamical sol-
ution to the (little) hierarchy problem of the standard model
[1]. It provides another motivation for the existence of a
light scalar boson. While the phenomenology of Higgs-
relaxion mixing has been comprehensively studied [25,26],
we wish to include the additional possibility of a low
inflationary Hubble scale HI .
The evolution of the relaxion ϕ reduces the initially

large Higgs boson mass M ≫ v to the observed mass
mh ¼ OðvÞ. This is achieved via the potential4

V¼ðM2−gMϕÞh2−gM3ϕ−Λ2h2 cos

�
ϕ

f

�
þλh4; ð9Þ

where g is a dimensionless coupling and h denotes the
neutral component of the Higgs doublet. Since the relaxion
settles in a CP breaking minimum, it is not identified with
the QCD axion in the basic model. Instead, the periodic
potential may stem from the instantons of a new strongly
coupled gauge group [1].5 The scale Λ must not exceed the
electroweak scale since, otherwise, the Higgs vev is driven
up to Λ. This constraint also ensures that a constant term in
front of the cosine, which is generated by closing the Higgs

loop, is sufficiently suppressed and does not trap the
relaxion before electroweak symmetry breaking [25,26].
The relaxion slowly rolls down its potential and, at ϕ ∼

M=g triggers electroweak symmetry breaking. As soon as
the Higgs field is displaced, the cosine term induces
wiggles on the relaxion potential which ultimately stop
its motion. The required dissipation mechanism is provided
by the Hubble friction of inflation. If HI exceeds a critical
value HI;c ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gM3=f

p
, the relaxion immediately stops in

one of its first minima. Otherwise, it continues rolling and
later settles in one of the steeper minima, further down the
potential. The difference between both cases manifests in
the phase factor

sin

�
vϕ
f

�
∼Min

�
1;
H2

I f
gM3

�
; ð10Þ

where we introduced the relaxion vev vϕ. The sine is of
order unity if HI > HI;c, while it can be substantially
suppressed for a low inflationary scale. The Higgs vev
emerges as

v2 ≃
gM3f

Λ2 sinðvϕf Þ
: ð11Þ

Validity of the effective theory (9) without further light
degrees of freedom requires f ≫ v ≳ Λ. This implies that
the relaxion is lighter than the Higgs and the mixing effect
on mh is negligible. The relaxion mass6 and the Higgs-
relaxion mixing angle can be approximated as [26]

m2
ϕ ≃

Λ2v2

2f2

�
cos

�
vϕ
f

�
−
2Λ2

m2
h

sin2
�
vϕ
f

��
;

sθ ≃
Λ2v
fm2

h

sin

�
vϕ
f

�
: ð12Þ

The relaxion couples to SM matter via its Higgs admixture
and via pseudoscalar couplings which are generically
present but model-dependent. Requiring that the mixing-
induced couplings dominate leads to the constraint
sinðvϕ=fÞ≳ 1=ð16π2Þ.7 The resulting theory exclusion
on the parameter space (requiring also f > v) is depicted
in Fig. 8. Compared to [25,26], we obtain a larger relaxion
window since suppression of sθ by small HI has not been
considered in these references.

4We neglect anOð1Þ coefficient in front of the gM3 term which
does not play a role for the following discussion.

5For concreteness, we assumed that the new strongly coupled
sector does not break electroweak symmetry such that odd
powers of h are absent in front of the cosine. The phenomenology
is, however, hardly sensitive to this assumption (see [26]).

6More precisely, we are referring to the mass of the relaxion-
like scalar mass eigenstate.

7For sinðvϕ=fÞ≳ 1=ð16π2Þ, the CP violating scalar relaxion
couplings can still dominate since pseudoscalar couplings may
suffer additional loop suppression [26]. We note that viable
relaxion models with smaller sinðvϕ=fÞ may exist. The con-
straint, however, singles out the parameter region in which the
relaxion can be described as a minimal singlet scalar mixing with
the Higgs.
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III. SCALAR DECAY RATES

It is straightforward to evaluate the scalar decay rates into
leptonic final states. One finds

Γðϕ → l̄lÞ≡ Γl̄l ¼ s2θGFmϕ

4
ffiffiffi
2

p
π

m2
lβ

3
l; ð13Þ

with l ¼ e, μ, τ. Here, GF denotes the Fermi constant and

βl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l=m
2
ϕ

q
the velocity of the final state leptons.

Hadronic decay rates require a more careful treatment due
to the strong final state interactions. This holds in particu-
lar, if the scalar mass resides in the vicinity of the f0ð980Þ
resonance.

A. Status of hadronic decay rates

Figure 1 shows that different evaluations of the scalar
decay rate to pions disagree by several order of magnitude
at mϕ ∼ GeV. The result of Voloshin was obtained at
leading order in chiral perturbation theory (ChPT) [27].
In the “Higgs Hunter’s guide” the perturbative spectator
model is extrapolated into the nonperturbative regime.
Quark masses were adjusted such as to (approximately)
reproduce Voloshin’s decay rate at low mass [9]. Both
evaluations are frequently used to describe GeV scalar
decays although they do not apply to this mass range due to
its proximity to the chiral symmetry breaking scale. Raby
and West [10] introduced the use of dispersion relations to
access the GeV regime and predicted a huge enhancement
of the scalar decay rate to pions close to the f0ð980Þ
resonance. However, they treated f0ð980Þ as an elastic
ππ-resonance which leads to an overestimation of the rate.
A full two-channel analysis including KK and ππ was
finally performed by Truong and Willey [11] and
Donoghue et al. [12]. Their results are incompatible with
one another, which was related to a sign error in Truong and
Willey’s T-matrix parametrization in [12]. Monin et al. [28]
recently performed a modified one-channel analysis in
order to provide an analytic expression for Γππ in terms of
the ππ-scattering phase. Since free parameters were chosen

with the purpose of reproducing the rate of Donoghue et al.,
it was not meant as a test of previous results. A calculation
of the hadronic decay rates in an independent two-channel
dispersive analysis is still missing. It will be performed
in the next sections, before matching the result to the
perturbative spectator model at higher mass.

B. Chiral perturbation theory

We first consider scalar masses below the charm thresh-
old. The Lagrangian describing the interaction of the scalar
with light quarks (u, d, s) and gluons reads

L ⊃ sθ
ϕ

v

�
3αs
12π

Ga
μνGaμν −muūu −mdd̄d −mss̄s

�

¼ −sθ
ϕ

v

�
2

9
Θμ

μ þ 7

9
ðmuūuþmdd̄dþmss̄sÞ

�
; ð14Þ

where the effective coupling to gluons origins from heavy
quark (c, b, t) loops. In the second step, we used the trace
identity

Θμ
μ ¼ −

9αs
8π

Ga
μνGaμν þmuūuþmdd̄dþmss̄s; ð15Þ

of the energy-momentum tensor which results from the
conformal anomaly [29,30]. The decay rates of the scalar
into pion and kaon pairs read

Γππ ¼
3s2θGF

16
ffiffiffi
2

p
πmϕ

βπ

���� 79Γπ þ
7

9
Δπ þ

2

9
Θπ

����2;
ΓKK ¼ s2θGF

4
ffiffiffi
2

p
πmϕ

βK

���� 79ΓK þ 7

9
ΔK þ 2

9
ΘK

����2; ð16Þ

where we introduced the form factors

Γπ ¼ hππjmuūuþmdd̄dj0i;
Δπ ¼ hππjmss̄sj0i;
Θπ ¼ hππjΘμ

μj0i; ð17Þ

for pions and analogous for kaons. The pion form factors
have been determined to lowest order in ChPT in [27].
A ChPT calculation of the kaon form factors may seem
pointless since the scalar decay to kaons only opens in
the regime, where chiral symmetry is strongly broken.
However, the low-momentum kaon form factors will later
define the matching conditions for the dispersive analysis.
Therefore, we briefly outline the computation using the
(strangeness-conserving part of the) 3-flavor chiral
Lagrangian which reads8

FIG. 1. Evaluations of the light scalar decay rate to pions by
Voloshin [27], Raby and West [10], the Higgs Hunter’s Guide [9],
Truong and Willey [11], Donoghue et al. [12] and Monin et al.
[28]. In this figure sθ has been set to unity.

8An analogous determination of the kaon form factors can be
found in [12]. For a review on the application of ChPT techniques
to Higgs physics, see [9,31].
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L ¼ 1

4
fπTr∂μΣ∂μΣ† þ 1

2
f2πðTrμMΣ† þ H:c:Þ; ð18Þ

with

Σ ¼ exp

8>>><
>>>:

ffiffiffi
2

p
i

fπ

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ηffiffi
6

p

1
CCCA
9>>>=
>>>;

ð19Þ

and M ¼ diagðmu;md;msÞ. Here fπ denotes the pion
decay constant. The mass parameters in the chiral
Lagrangian are related to the physical meson masses as

m2
π ¼ μðmu þmdÞ;

m2
K0 ¼ μðmd þmsÞ;

m2
K� ¼ μðmu þmsÞ: ð20Þ

One can now use the Feynman-Hellmann theorem
[32,33] mqq̄q ¼ −mq∂L=∂mq and the trace of the
energy-momentum tensor

Θμ
μ ¼ fπ

2
Tr∂μΣ∂μΣ† − gμμL; ð21Þ

to evaluate the form factors at lowest order in the chiral
expansion (denoted by the superscript 0). One finds

Γ0
π ¼ m2

π; Γ0
K ¼ 1

2
m2

π;

Δ0
π ¼ 0; Δ0

K ¼ m2
K −

1

2
m2

π;

Θ0
π ¼ sþ 2m2

π; Θ0
K ¼ sþ 2m2

K; ð22Þ

where we set mu ¼ md. The form factors have to be
evaluated at

ffiffiffi
s

p ¼ mϕ. Higher orders are suppressed by
powers of the chiral symmetry breaking scale Λχ ∼ 1 GeV.
The lowest order does, hence, not provide a realistic
estimate of the form factors for mϕ ≳ 0.5 GeV.

C. Dispersive analysis

Fortunately, form factors at higher mass are accessible
through dispersion relations. These employ analyticity and
unitarity conditions without relying on any details of the
microscopic interaction theory. For

ffiffiffi
s

p ≲ 1.3 GeV a two-
channel approximation in terms of ππ and KK can be
applied. This is because scalar decays are controlled by the
f0ð980Þ resonance at

ffiffiffi
s

p
∼ GeV which mainly couples to

these states [34]. At even lower mass, where also f0ð500Þ
contributes, ππ is the only relevant decay channel due to
kinematics.
We define F ¼ ðFπ; 2ffiffi

3
p FKÞ (F ¼ Γ, Δ, Θ), where the

Clebsch-Gordan coefficient occurring in the isoscalar

projection of the ππ state has been absorbed into the
definition of F [12]. Below the kaon threshold, the phase of
the pion form factors coincides with the isoscalar s-wave
ππ phase shift according to Watson’s theorem [35]. Its
generalization to two channels is expressed in form of the
unitary relation

ImFi ¼ T�
ijβjFjθðs − 4m2

jÞ ð23Þ

with β1;2 ¼ βπ;K . The (isoscalar s-wave projection of the)
T-matrix for ππ, KK → ππ, KK scattering is parametrized
in terms of two phases δ, ψ and an inelasticity parameter g

T ¼
 ηe2iδ−1

2iβπ
geiψ

geiψ ηe2iðψ−δÞ−1
2iβK

!
; ð24Þ

where

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4βπβKg2θðs − 4m2

KÞ
q

;

βi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
i

s

r
: ð25Þ

The parameters of the T matrix are efficiently determined
by invoking ππ, KK scattering data and theoretical con-
straints in form of the Roy-Steiner equations. We extract the
phases and inelasticity parameter from the analysis of
Hoferichter et al. [36] which incorporates earlier results
[37,38]. Above

ffiffiffiffiffi
s0

p ¼ 1.3 GeV, the correct asymptotic
behavior of the T-matrix is ensured by guiding δ, ψ
smoothly to 2π. We follow [39] and assume that the
difference between the phases and their asymptotic values
in this regime decreases as

2

1þ
� ffiffi

s
pffiffiffi
s0

p
	
m ; ð26Þ

where m is set to 3. We have verified that form factors atffiffiffi
s

p
<

ffiffiffiffiffi
s0

p
are rather insensitive to the particular function

by which the phases approach their asymptotic values.
Above

ffiffiffiffiffi
s0

p
the form factors obtained from the two-channel

analysis are anyway less trustable since further channels
such as 4π, ηη become relevant.
Form factors satisfying the unitary relation (23) can be

expressed as [40,41]

F ¼
�Ω11 Ω12

Ω21 Ω22

��
P1

P2

�
; ð27Þ

where P1;2 are polynomials and ðΩ11;Ω21Þ, ðΩ12;Ω22Þ are
the two linear independent solution-vectors fulfilling the
dispersion relation
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ReFðsÞ ¼ 1

π
−
Z
�

∞

4m2
π

ds0
ImFðs0Þ
s0 − s

: ð28Þ

The Ωij (which are found as described in [39]) are
conveniently normalized such that Ω11ð0Þ ¼ Ω22ð0Þ ¼ 1,
Ω12ð0Þ ¼ Ω21ð0Þ ¼ 0.
The form factors Γi, Δi are expected to vanish at high

energy due to the composite nature of mesons. Since Ωij ∝
s−1 for large s, the polynomial prefactors in (27) need to be
constants. Their values can be determined by matching (27)
to the lowest order result in chiral perturbation theory (22)
at s ¼ 0. In the case of the energy-momentum form factors,
Lorentz-invariance and four-momentum conservation
require the structure [42]

Θi ¼
3

2
sΘS;i þ

�
2m2

i −
s
2

�
ΘT;i ði ¼ π; KÞ; ð29Þ

where ΘS;i and ΘT;i refer to the scalar and tensor parts of
Θi. In order to match the chiral result at s ¼ 0, one needs to
require thatΘS;i,ΘT;i (rather thanΘi) vanish asymptotically
(see also [12]). We thus obtain

Γπ ¼ m2
π

�
Ω11 þ

1ffiffiffi
3

p Ω12

�
;

Δπ ¼
2ffiffiffi
3

p
�
m2

K −
m2

π

2

�
Ω12;

Θπ ¼ ð2m2
π þ psÞΩ11 þ

2ffiffiffi
3

p ð2m2
K þ qsÞΩ12;

ΓK ¼ m2
π

2
ð
ffiffiffi
3

p
Ω21 þ Ω22Þ;

ΔK ¼
�
m2

K −
m2

π

2

�
Ω22;

ΘK ¼
ffiffiffi
3

p

2
ð2m2

π þ psÞΩ21 þ ð2m2
K þ qsÞΩ22; ð30Þ

where we introduced

p ¼ 1 − 2m2
πΩ0

11ð0Þ −
4m2

Kffiffiffi
3

p Ω0
12ð0Þ;

q ¼ 1 −
ffiffiffi
3

p
m2

πΩ0
21ð0Þ − 2m2

KΩ0
22ð0Þ: ð31Þ

Numerically, we find p ¼ 0.73 and q ¼ 0.52. The most
relevant SU(3) breaking effect (concerning the impact on
decay rates) applies to the value of qwhich can get changed
by up to 0.2 [12]. In Fig. 2 we depict the pion and kaon
form factors resulting from our dispersive analysis. The
corresponding scalar decay rate to pions is shown in Fig. 3.
We also provide an estimate of the uncertainties related to
the phase extrapolation and to the matching conditions. The
error band was obtained by varying m in (26) between 2
and 4, and q in the range 0.32–0.72. Note that uncertainties

due to the opening of further hadronic decay channels
beyond ππ and KK are not included.
As can be seen in the same figure, our result on the decay

rate agrees reasonably well with that of Donoghue et al.
[12]. Differences reside within a factor of ∼3 and follow
from our updated phase shift input [36]. The decay rates
found by us are, however, incompatible with those in [11].
The reason for the discrepancy is indeed a sign error in
Truong and Willey’s parametrization of the T-matrix. Their
choice leads to a negative sign of T12 at low energy which is
inconsistent with ChPT [12]. In Fig. 3 we also depict the
decay rate after flipping the sign of their parameter λ. It can
be seen that this correction puts Truong and Willey’s rate
into qualitative agreement with our result.

D. Perturbative spectator model

We now turn to the hadronic decays at higher energy,
where the perturbative spectator model can be applied. The
decay rates to quarks are given as9

Γl̄l∶Γs̄s∶Γc̄c ¼ m2
lβ

3
μ∶3m2

sβ
3
K∶3m2

cβ
3
D ð32Þ

and analogous for the b̄b-channel. The kinematic threshold
is set by the lightest meson containing an s or c quark
respectively [9]. In addition, we need to consider the loop-
induced decay rate into gluon pairs [43]

FIG. 2. Modulus (upper panel) and phase (lower panel) of the
pion and kaon form factors.

9We set ms ¼ 95 MeV, mc ¼ 1.3 GeV [34] and neglect the
tiny decay rate into u, d quarks.
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Γgg ¼
s2θα

2
sm3

ϕ

32π3v2

����Xquarks

xi þ ðxi − 1ÞfðxiÞ
x2i

����2; ð33Þ

with xi ¼ m2
ϕ=ð4m2

i Þ and

fðxÞ ¼
8<
:

arcsin2
ffiffiffi
x

p
; x ≤ 1

− 1
4

�
log

1þ
ffiffiffiffiffiffiffiffiffi
1−1=x

p
1−

ffiffiffiffiffiffiffiffiffi
1−1=x

p − iπ

�
2

; x > 1:
ð34Þ

We take αsðmϕÞ from [44]. Following [45] we assume that
the perturbative spectator model is valid at mϕ > 2 GeV.
The dispersive analysis holds for mϕ ≲ 1.3 GeV, where ππ
and KK dominate the hadronic decay rate. In the regime
mϕ ¼ 1.3–2 GeV, significant corrections are expected. We
will use the dispersive results up to 2 GeV, but include an
additional contribution

Γ4π;ηη;ρρ;… ¼ Cs2θm
3
ϕβ2π; ð35Þ

to account for the increasing number of hadronic channels
opening above the 4π threshold. The mass scaling is leaned
upon the gluon channel. Setting C ¼ 5.1 × 10−9 GeV−2,
the hadronic decay rate transits smoothly into the rate of the
spectator model at mϕ ¼ 2 GeV.
In reality, peaks may occur in different hadronic channels

due to further unflavored scalar resonances including
f0ð1370Þ, f0ð1500Þ, f0ð1710Þ, f0ð2020Þ, f0ð2100Þ,
f0ð2200Þ and f0ð2300Þ [46]. The strong increase of the
decay rate around GeV, however, appears since f0ð980Þ is
narrow and located just below the kaon threshold to which
it strongly couples [11]. Since a comparable situation does
not seem to arise for the listed heavier f0-resonances, less
pronounced enhancements are expected at higher mass.
Therefore, the hadronic decay rates we obtain at mϕ ¼
1.3–2 GeV may at least provide a valid order-of-magnitude
estimate. On the other hand, presently unconfirmed

FIG. 3. Light scalar decay rate into pions from this work, from
Truong & Willey [11] and from Donoghue et al. [12]. We also
show Truong and Willey’s decay rate after correcting a sign error
in their T-matrix parametrization (see text).

FIG. 4. Hadronic and leptonic decay rates of a light scalar mixing with the Higgs. These were obtained from our dispersive analysis
(mϕ < 2 GeV) and from the perturbative spectator model (mϕ > 2 GeV). The possible impact of the charmonium resonances on the
hadronic decay rate is illustrated by the gray line. All decay rates scale with s2θ which was set to unity in this plot.
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resonances including potential glueball states could still
have significant impact [47].
Around the two-charm threshold, the scalar mixes with

the CP even quarkonia χc0ðnPÞ. In Appendix A, we assess
the effect on the scalar decay rates due to χc0ð1PÞ and
χc0ð2PÞ within a nonrelativistic potential approach [48].
Since nonperturbative corrections to the simple quantum
mechanical picture are unknown10 and due to the sparse-
ness of experimental data on the heavier charmonium
resonances, this should only be seen as a very qualitative
estimate. For masses mϕ ∼ 10 GeV, which are not in the
main focus of this work, the bottomonium resonances cause
analogous mixing effects [48].
In Fig. 4, we depict the leptonic and hadronic decay rates

of the light scalar below the b̄b-threshold. These were
obtained from the dispersive results matched to the spec-
tator model as described above. The possible distortion of
the hadronic decay rate due to the charmonium resonances
(see Appendix A) is also indicated for illustration. Due
to the mentioned uncertainties, we will mask the regions
mϕ ¼ 3.3–3.5 GeV and mϕ ¼ 3.75–4.0 around the char-
monium peaks in the experimental analysis.

IV. EXPERIMENTAL CONSTRAINTS
AND FUTURE SENSITIVITIES

Experimental limits on light scalars as well as future
sensitivities have been summarized various times, recently
in [24,26,50–53]. These crucially depend on the decay
properties of the scalar. In many instances, constraints with
different assumptions on the hadronic decay rate have been
combined. We will, therefore, reevaluate the existing limits
on light scalars consistently using our new set of decay
rates. Sensitivities of some important future searches will
also be discussed. Our focus is on the mass window mϕ ≃
0.01–9.8 GeV which is accessible to accelerator probes
(and below the threshold of bottomonium resonances).

A. Rare decays

Light scalars can mediate rare meson decays. The most
relevant processes include radiative ϒ-decays as well as
flavor changing B and K meson decays (see Fig. 5). The
calculation of the corresponding branching ratios is sum-
marized in Appendix B.
BABAR has performed various searches for radiative ϒ

decays mediated by a light scalar. The most important
channel is ϒ → γ þ jets triggered by a hadronically
decaying ϕ [54].11

Below the B threshold, searches for semileptonic B
decays become relevant. LHCb measured the branching

ratio Bþ → Kþ þ μ̄μ in several bins of dilepton invariant
mass [56]. The corresponding upper limit on the ϕ-induced
branching ratio in each bin is determined as in [14]. It must
be taken into account that LHCb triggered on prompt decays
in this search. Following [14], we estimate that events with a
(boosted) scalar decay length d < dmax ≃ 5 mm are recon-
structed. This translates to an efficiency factor

η ¼
Z

∞

0

dpϕfðpϕÞð1 − e−mϕΓϕdmax=pϕÞ; ð36Þ

where fðpϕÞ denotes the momentum distribution of ϕ which
is obtained with PYTHIA [57].12 LHCb has subsequently
performed dedicated searches for light scalars with macro-
scopic decay lengths. In [58,59] constraints on BrB0→K�0ϕ ×
Brϕ→μ̄μ and BrBþ→Kþϕ × Brϕ→μ̄μ have been set as a function
of the intermediate scalar mass and lifetime. We digitized the
provided images and derived the corresponding constraints
on sθ.

13 As can be seen in Fig. 6, the inclusion of displaced
decays has significantly increased the LHCb sensitivity to
light scalars in most of the mass range. A search for long-
lived particles in B decays was also performed by BABAR
which looked for the inclusive process B → Xsϕ with ϕ
further decaying into leptons or hadrons [60]. The pion
channel is most relevant since it excludes a small parameter
region not covered by the previously mentioned LHCb
searches.
Scalar masses of up to a few hundred MeV can be

probed by rare kaon decays. We include the upper
limit BrKL→π0þμ̄μ< 3.8×10−10 stemming from the KTeV
experiment [61] in our analysis. Again, ϕ-mediated proc-
esses only contribute to the rate if ϕ decays sufficiently
promptly. Since KTeV is a fixed-target experiment, event
reconstruction mostly depends on the transverse vertex
location. Following [62] we assume that events with a
(boosted) transverse scalar decay length below 4 mm pass
the trigger. The corresponding efficiency factor is calcu-
lated using (36) with pϕ replaced by the transverse

FIG. 5. Radiative ϒ decays and flavor changing B decays
mediated by a light scalar.

10The decay width of χc0ð1PÞ is e.g., strongly underestimated
in the potential models which might suggest the importance of
instanton effects [49].

11For mϕ ≳ 4 GeV a very similar sensitivity to light scalars is
achieved in the channel ϒ → γ þ τ̄τ [55].

12We generated a large sample of B mesons with PYTHIA and
decayed each B further to ϕ using the appropriate kinematics.

13The case of a light scalar mixing with the Higgs has been
covered explicitly in the two references. We, nevertheless,
rederive the constraints on sθ since a different set of scalar decay
rates has been employed in [58,59].
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momentum. The distribution of transverse momenta is
again determined with PYTHIA.
Below the muon threshold, the scalar typically escapes

detection due to its long lifetime. It still leaves a trace in the
form of missing energy. The search for Kþ → πþ þ ν̄ν by
E949 is used to set limits on BrKþ→πþϕ as a function of the
scalar mass and lifetime [63]. In this case, visible decays of
ϕ are vetoed, and the sensitivity increases with the lifetime
of the scalar. We determine the corresponding exclusion in
the mϕ − sθ plane. The standard model contribution to
Kþ → πþ þ ν̄ν is neglected for this purpose.
Figure 8 shows that rare decays set the strongest

constraints on light scalars over wide regions of the
parameter space. Mixing angles down to sθ ¼ 10−3–10−4

are excluded for mϕ < mB −mK unless mϕ resides in the
vicinity of the charmonium resonances. The limits sub-
stantially degrade once scalar production in B decays
becomes kinematically inaccessible.

B. Collider searches

At LEP, searches for Higgs bosons and Higgs-like
scalars have been performed through the process
ēe → Z�ϕ. In the considered mass window, the strongest
constraints are set by L3 [64]. Strictly speaking, these apply
to scalars which share the exact decay properties of a SM
Higgs boson (at the considered mass). Since the mixing
angle sθ suppresses the couplings of ϕ compared to the
Higgs one may worry that the longer decay length invalid-
ates the bounds. This is not the case: for the range of sθ ≳
0.1 covered by the search, a light SM Higgs and a light
scalar would both decay mostly invisibly (meaning outside
the detector) below the muon threshold and visibly above.

Even in the GeV range (and beyond), the L3 analysis can
be considered robust since it merely relies on the domi-
nance of hadronic decay modes, while the particular
enhancement of the pionic decay rate does not play a role.
Above the B meson mass, LEP still sets the strongest
constraints on light scalars (see Fig. 8).
Turning to the LHC, light scalars are constrained by the

search for spin-0 resonances in the dimuon channel. CMS
and LHCb provided constraints on σpp→ϕ × Brϕ→μ̄μ atffiffiffi
s

p ¼ 7 TeV and 8 TeV respectively [65,66] (see also
[67]). In the covered mass range mϕ ¼ 5.5–15 GeV, scalar
production by B-meson decay is kinematically forbidden
which makes gluon fusion the relevant process. We
calculated the corresponding cross section with the tool
SUSHI 1.6.1 [68] in order to translate the limits into
exclusions on sθ for our considered mass range (see Fig. 8).
Additional LHC constraints on light scalars arise from the
nonobservation of exotic Higgs decays. These shall not be
considered in this work since they rely on the model-
dependent Higgs-scalar coupling and, furthermore, only
lead to subdominant exclusions in the considered mass
range [26]. For proposed detector concepts (MATHUSLA,
CODEX-b, FASER) which would increase the LHC
sensitivity to light scalars, we refer to [24,52,53].

C. Beam dump experiments

Beam dump experiments with detectors located
Oð100 mÞ away from the interaction point provide a
sensitive laboratory to search for long-lived particles.
Light scalars are most efficiently generated by B and K
meson decays. For a proton beam impinging on a thick
target which absorbs hadrons efficiently, the number of
produced scalars can be estimated as

Nϕ ≃ Np:o:t:ðnBBrB→Xsϕ þ hγ−1K ilHnKΓK→πϕÞ ð37Þ

with Np:o:t: denoting the number of protons on target. The
multiplicities nB, nK stand for the number of B, K mesons
created per incoming proton, hγ−1K i for the mean inverse
kaon Lorentz factor. In the case of kaons only K� and KL
should be considered since KS has a suppressed decay rate
to scalars (see Appendix B 3). Different from B mesons,
most kaons are absorbed in the target since their decay
length exceeds the hadronic absorption length lH.

14 The
above approximation neglects kaon regeneration by sec-
ondary interactions. Furthermore, it assumes that the
number of kaons escaping the target is negligible (as is
valid for a target with a thickness of several lH).
The probability Pϕ that a scalar with three-momentum

pϕ leaves a signal in the detector reads

FIG. 6. LHCb constraints on light scalars derived from rare B
decays. Masses around the charmonium resonances have been
masked by the collaboration or by us (see Sec. III D).

14While the decay length differs substantially between K� and
KL, Γ−1

K ≫ lH holds for both species.
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Pϕ ¼
Z

d2

d1

dz
ηgeomηrecmϕΓϕ

pϕ
e−mϕΓϕz=pϕ : ð38Þ

The decay vertex z of the scalar needs to be located within
the distance d1 − d2 from the target to be detected. The
geometric efficiency ηgeom accounts for the probability that
the decay products of ϕ pass through the detector. It
depends on the angular coverage of the detector and varies
with the scalar’s momentum and the location z of the decay
vertex. The factor ηrec is the reconstruction efficiency for
final states of a certain type. In order to determine the total
number of events, we need to integrate the product NϕPϕ

over the momentum distribution of ϕ. The latter is again
determined with PYTHIA by creating large samples of B and
K mesons which are then decayed further to scalars. Kaon
events are properly weighted to account for the fact that
highly boosted kaons are more likely to be absorbed due to
their longer decay length. The geometric efficiency is
determined from the momentum spectrum of ϕ by decaying
the scalars and selecting events with all final states passing
through the detector.
We consider the CHARM beam dump (which operated

in the 1980s), the upcoming run of NA62 in dump mode
and the planned SHiP experiment. All three detectors have
been/ will be located at the CERN SPS and employ a
400 GeV proton beam.15 The meson multiplicities are
estimated as nB ≃ 3.2 × 10−7 [70] and nK ≃ 0.9 [71].16 The
target materials copper (CHARM, NA62) and molybdenum
(SHiP) share a hadronic absorption length lH ≃ 15.3 cm
[72]. Locations and coverage of the detectors are described
in [70,73,74]. CHARM is sensitive to leptonic final states
with efficiency 0.5 [73]. SHiP and NA62 should be
sensitive to all sorts of final states with ηrec ¼ 0.4
(ηrec ¼ 0.7) below (above) the two-muon threshold for
SHiP [70] and ηrec ≃ 1 for NA62 [75]. We summarize
the luminosities, locations of the decay volumes and mean
geometric efficiencies η̄geom (for detection of B- and
K-induced scalars) in Table I.17 SHiP will be a factor
Oð104Þ more sensitive compared to its predecessors due to
the larger beam intensity and the better detector coverage.
CHARM did not observe any signal events which

translates to an upper limit of 3 expected events (at
95% confidence level). The corresponding exclusion
on light scalars reaches down to sθ ∼ 10−4 (see Fig. 8).
We note that the CHARM constraint obtained by

us is substantially weaker than in previous evaluations
[8,24,26,50–53,62]. We believe that in these references,
kaon absorption in the thick copper target—which drasti-
cally reduces Nϕ from kaon decays—has been neglected.
Sensitivity projections for NA62 and SHiP in Fig. 8

again correspond to 3 events. They should be considered
as optimistic since a negligible background level was
assumed. While the number of produced scalars in
NA62 is similar as in CHARM, NA62 is sensitive to
higher masses since it can reconstruct pion final states.
SHiP will cover a huge parameter region not previously
accessible to any experiment. For SHiP and NA62, we
again find deviations from the semi-official sensitivity
estimates [75,76] (see Fig. 7).
In this case, the discrepancy can be traced back to the

assumptions on the scalar decay rates. While we relied
on a dispersive analysis in the non-perturbative QCD
regime (see Sec. III), the perturbative spectator model with

TABLE I. Comparison between the CHARM, NA62 and SHiP
beam dump experiments.

Np:o:t d1 − d2 [m] η̄geom

CHARM 2.4 × 1018 480–515 0.001–0.002 (K)
0.002–0.01 (B)

NA62 1018 95–160 0.002–0.005 (K)
0.002–0.02 (B)

SHiP 2 × 1020 69–120 0.05–0.08 (K)
0.2–0.5 (B)

FIG. 7. SHiP sensitivity to light scalars found in this work
compared to [76]. The blue shaded region is obtained for the
scalar decay rates derived in Sec. III and represents our preferred
estimate. The yellow region is obtained if we treat the scalar
decay in the perturbative spectator model.

15A search for long-lived scalars could potentially also be
performed at the Fermilab SeaQuest Experiment after minor
modifications of the setup [69].

16We extracted nK� ¼ 0.62 from [71] and estimated nKL
≃

0.28 by taking the KL=K� ratio from PYTHIA.
17The mean geometric efficiency η̄geom was derived by aver-

aging ηgeom over the momentum distribution and the location of
the decay vertex within d1 − d2. The stated ranges are obtained
by varying the scalar mass between 0.01 GeV and mB −mK .
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adjusted quark masses [9] has been employed in [75,76]. In
Fig. 7 it can be seen that our sensitivity estimate approx-
imately reproduces the SHiP projection from [76] if we also
switch to the same spectator model. The same observation
is made in the case of NA62. We emphasize, however, that
our dispersive analysis provides a much more realistic
description of the scalar decay properties in the GeV range
compared to the spectator model.
We finally comment that the sensitivity of NA62 to light

scalars could be significantly improved: the present esti-
mate refers to the experiment running in dump mode. This
means that the beryllium target is lifted and the collimator is
closed such that it acts as dump for the proton beam. The
disadvantage of this layout is that most produced kaons are
absorbed in the thick collimator before they can decay. It
appears preferential to leave the (thin) beryllium target in
the beam line and keep the collimator closed. The latter
would then still filter hadronic backgrounds. But since it is
located 20 m downstream the target, a significant fraction
of the kaons created in the target could decay before
reaching the collimator. This would increase the number of
light scalars from kaon decay by a factor 10–100 compared
to dump mode.

D. Cosmology and astrophysics

Light scalars can also be constrained by requiring that
they do not spoil the cosmological evolution. In the hot
early universe, the light scalars are copiously produced in
the thermal bath. Due to their small coupling to SM matter,
their freeze-out abundance is significant. If their decay
happens after the onset of primordial nucleosynthesis

(BBN), the hadronic energy injection would have spoiled
the light element abundances. The resulting upper limit on
the scalar lifetime ranges from 1=100s − 1 s in the con-
sidered mass range [77].18 It was converted to a constraint
on sθ by using the decay rate from Fig. 4.
Finally, astrophysical processes can be affected by light

scalars. Most importantly, scalar emission could carry away
significant amounts of energy in supernova explosions
[78,79]. This would lead to a shortening of the neutrino
pulse which is constrained by observations of SN1987a.
We determine the corresponding exclusions on light scalars
following the treatment described in [24,51].
While accelerator searches exclude large mixing angles,

cosmology constrains sθ from below (see Fig. 8).
For mϕ ≲ 5 GeV, a window of sθ ∼ 10−3–10−5 and sθ ∼
10−4–10−8 remains viable below and above the two-muon
threshold respectively. In models, where the light scalar is
identified with the relaxion (Sec. II B) or the mediator
connecting to dark matter (Sec. II A), additional constraints
apply which close parts of this window. Nevertheless, there
remains an exciting discovery potential for the next gen-
eration of experiments.

V. CONCLUSION

We have reinvestigated the decay properties of a light
scalar boson mixing with the Higgs. A special focus was

FIG. 8. Constraints on light scalars mixing with the Higgs. The filled regions with solid boundaries correspond to model-independent
constraints. Sensitivity projections are indicated by the dashed boundary. The hatched regions refer to model-dependent exclusions
which apply to the relaxion model (cyan) and the dark matter model (red, ocher) discussed in Sec. II. Masses around the charmonium
resonances have been masked in some probes.

18The constraint mildly depends on the (model-dependent)
Higgs-scalar coupling and was shown for three different choices
in [77]. To be conservative we used the weakest of the three
constraints at each mass.
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placed on the mass range mϕ ≃ 0.5–2 GeV in which
hadronic decay modes are affected by strong final state
interactions. We performed an updated dispersive analysis
and derived the decay rates of the scalar to pions and
kaons. These were confronted with two earlier evalua-
tions [11,12] which are inconsistent with one another.
Our calculation confirms the result of Donoghue et al.
[12] to within Oð1Þ precision. The remaining difference
can be explained by our updated input of pion-kaon
phase shift data. Truong and Willey’s decay rate [11]
differs substantially from ours due to a sign error in their
T-matrix parametrization, first pointed out in [12]. We
flipped the sign in their calculation and showed that this,
indeed, brings their result into qualitative agreementwith our
findings. By matching the dispersive calculation to the
perturbative spectator model at higher mass, we then
obtained—with the mentioned caveats—a realistic estimate
of scalar decay rates over the full mass range (Fig. 4). We
also provided the hadronic form factors which allow to
generalize our result to nonuniversally coupled light
scalars (Fig. 2).
Finally, we rederived the accelerator-, cosmological and

theoretical constraints on light scalars in the MeV–GeV
mass window (Fig. 8). We covered the model-independent
case as well some of the most prominent explicit models
with light scalars. Sensitivity projections for future key
searches were also provided. The strongest deviations
compared to previous evaluations occur for beam dump
experiments. In the case of CHARM, previous exclusions
were too restrictive since they had neglected kaon absorp-
tion in the target. In addition, our new-found decay rates
strongly impact the sensitivity window of beam dumps by
affecting the decay length of light scalars.
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APPENDIX A: MIXING WITH THE
CHARMONIUM RESONANCES

We estimate the impact of the charmonium resonances
on the scalar decay rates in a nonrelativistic potential
approach [48]. For this purpose, we consider the
χc0ð1PÞ state and the χc0ð2PÞ candidate. Masses and
widths are set to the central values listed in [46]. Notice,
however, that the uncertainty on Γχc0ð2PÞ reaches almost an
order of magnitude. Two higher χc0 resonances are listed as
candidates for exotic structure [46] and can likely not be
described within simple potential models.
The off-diagonal mass matrix element between ϕ and

χc0ðnPÞ is estimated as [48],

m2
ϕχc0

¼ sθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

ffiffiffi
2

p

π
GFmχc0

s
jR0

χc0ð0Þj: ðA1Þ

The derivative of the radial quarkonium wave function
at the origin can be extracted from the measured decay
rate Γχc0ð1PÞ→γγ ¼ 2.0 keV [80]. We find jR0

χc0ð1PÞð0Þj2 ≃
0.06 GeV5 and assume the same value for the heavier state.
The angles characterizing the mixing of the scalar with the
two charmonium states are approximated as [48]

ϑ1;2 ≃
m2

ϕχc0

m2
ϕ −m2

χc0 þ imχc0Γχc0

: ðA2Þ

The mixing-induced contributions to the scalar decay
amplitude derive from the meson decay amplitudes
multiplied by ϑ1;2. These are added to the perturbative
amplitudes from which the charm part is subtracted in
order to avoid double counting. The interference between
perturbative and mixing-induces terms depends on the
assumptions regarding the charmonium branching ratios
(see [48]). We set Brðχc0ð1PÞ → ggÞ ¼ 1 for the lighter
resonance which is located below the DD-threshold. For
the heavier state, we assume Brðχc0ð2PÞ → DDÞ ¼ 0.95,
Brðχc0ð2PÞ → ggÞ ¼ 0.05 (such that the decay rate to
gluons is similar for both resonances). The resulting
hadronic scalar decay rate for this estimate is shown
in Fig. 4.

APPENDIX B: SCALAR IN RARE DECAYS

1. Radiative ϒ decays

A light scalar can emerge in the radiative decay ϒ → γϕ
and induce a meson or lepton pair [81]. It is convenient to
express the corresponding branching ratio in the form

Brϒ→γϕ

Brϒ→ēe
¼ s2θGFm2

bffiffiffi
2

p
πα

F
�
1 −

m2
ϕ

m2
ϒ

�
; ðB1Þ

where α is the Sommerfeld constant and F a correction
function taken from [82]. It accounts for higher order QCD
processes [83,84] as well as bound state effects appearing
close to the kinematic endpoint [85,86].

2. Rare B decays

The scalar appears in an effective flavor violating
coupling ϕ-s-b. By integrating out the W-t-loop one
obtains [87]

Lϕsb ¼ gϕsbϕs̄LbR þ H:c:;

gϕsb ¼
sθmb

v
3
ffiffiffi
2

p
GFm2

t V�
tsVtb

16π2
; ðB2Þ

MARTIN WOLFGANG WINKLER PHYS. REV. D 99, 015018 (2019)

015018-12



where Vts and Vtb denote the Cabibbo-Kobayashi-
Maskawa matrix elements. The above Lagrangian triggers
the decay B → Kð�Þϕ for which the rate reads

ΓB→Kð�Þϕ ¼ jgϕsbj2jhKð�Þjs̄LbRjBij2
λ1=2
B;Kð�Þϕ

16πmB
; ðB3Þ

where we introduced

λx;yz ¼
m2

x − ðmy −mzÞ2
m2

x

m2
x − ðmy þmzÞ2

m2
x

: ðB4Þ

The matrix elements can be approximated as [88,89]

jhK�js̄LbRjBij2 ¼
1

4

m4
BλB;Kð�Þϕ

ðmb þmsÞ2
A2
K� ;

jhKjs̄LbRjBij2 ¼
1

4

ðm2
B −m2

KÞ2
ðmb −msÞ2

f2K ðB5Þ

with

AK� ¼ 1.36
1 − q2=27.9 GeV2

−
0.99

1 − q2=36.8 GeV2
;

fK ¼ 0.33
1 − q2=37.5 GeV2

: ðB6Þ

The transferred momentum is set to q2 ¼ m2
ϕ. In the case of

K� we already took the sum over polarizations.
For cases where the nature of the strange particle(s)

in the final state is not of relevance, one can define
the inclusive decay rate B → Xsϕ. The spectator model
predicts [7]

ΓB→Xsϕ ¼ jgϕsbj2
ðm2

B −m2
ϕÞ2

32πm3
B

: ðB7Þ

This estimate is not valid close to the kinematic endpoint,
where the spectator model breaks down. In this regime, the
inclusive rate should, however, converge towards ΓB→Kϕ

since this is the only available final state. In order to
obtain a smooth function with the correct asymptotic
behavior, we use (B7) formϕ < 4.7 GeV and set ΓB→Xsϕ ¼
ΓB→Kϕ above.

3. Rare K decays

The scalar can also induce rare decays of lighter mesons,
for instance K → πϕ. The corresponding decay rate is
again dominated by the W-t-loop. One finds19 [91]

ΓK�→π�ϕ ≃ jgϕdsj2jhπjd̄LsRjKij2 λ1=2K;πϕ

16πmK
; ðB8Þ

and ΓKL→π0ϕ ≃ ΓK�→π�ϕ. The effective coupling gϕds is
obtained from (B2) by the replacement ðb; sÞ → ðs; dÞ. The
matrix element reads [92]

jhπjd̄LsRjKij ≃ 1

2

ðm2
K −m2

πÞ
ms −md

: ðB9Þ

Since the corresponding rate for the KS decays is
proportional to the small CP violating phase in the
Cabibbo–Kobayashi–Maskawa matrix, it suffers a stronger
suppression [90].
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