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Using Nf ¼ 2þ 1þ 1 lattice QCD, we determine the fermionic connected contributions to the first and
second moments of the pion parton distribution function. Based on gauge configurations from the
European Twisted Mass Collaboration, chiral and continuum extrapolations are performed using pion
masses in the range of 230 to 500 MeV and three values of the lattice spacing. Finite volume effects are
investigated using different volumes. In order to avoid mixing under renormalization for the second
moment, we use an operator with two nonzero spatial components of momentum. Momenta are injected

using twisted boundary conditions. Our final values read hxiphysR ¼ 0.2075ð106Þ and hx2iphysR ¼ 0.163ð33Þ,
determined at 2 GeV in the MS scheme and with systematic and statistical uncertainties summed in
quadrature.
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I. INTRODUCTION

In quantum chromodynamics (QCD), the pion represents
the Goldstone boson of spontaneously broken chiral
symmetry and is the lightest hadronic state in the spectrum.
As such it is of deep importance both for the long range part
of the nucleon-nucleon interaction and for the inner
structure of the nucleon. In the latter case, it is now widely
recognized that the pion is responsible for most, if not
for all, of the excess of d̄ over ū antiquarks in the proton sea
[1–4]. Despite this importance, compared to the relatively
detailed knowledge of the quark and gluon substructure of
the nucleon, the pion substructure is largely unknown
because pion fixed target experiments cannot be built.
Nevertheless, Drell-Yan lepton-pair production and prompt
photon production in totally inclusive pion-nucleon scat-
tering [5–7], as well as leading neutron electroproduction

[8], have been used to determine the pion structure
functions.
Among the most important tools for understanding

hadron structure are parton distribution functions (PDFs),
which have been extensively studied both experimentally
and theoretically. The determination of PDFs from exper-
imental data requires fits based on phenomenological
models affected by systematic uncertainties that are not
easy to quantify. Therefore, a direct determination of parton
distribution functions from first principles is highly desir-
able. The method of choice is thus lattice QCD, a non-
perturbative tool based on discretized Euclidean spacetime.
However, due to their light-cone nature PDFs cannot be
computed directly on a Euclidean lattice. Nevertheless, a
recent proposal by Ji [9] has led to the exciting possibility
of computing the Bjorken x dependence of PDFs from
lattice QCD [10–13] based on quasidistributions instead of
using the light cone. Indeed, this method has recently been
applied to the nucleon unpolarized [14,15], helicity [14,16],
and transversity [17,18] distributions, directly at the
physical point, where the pion mass assumes its physical
value. For the valence quark distributions of the pion with
mass of Mπ ≈ 310 MeV results can be found in Ref. [19].
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The alternative proposal of using pseudodistributions was
put forward by Radyushkin in Ref. [20]. It was studied for
the first time on the lattice for the nucleon case in Ref. [21].
Its relation to moments of PDFs is analyzed in Ref. [22]. A
third proposal by Ma and Qiu can be found in Ref. [23].
Although these efforts have opened a new direction to

access PDFs demonstrating remarkable qualitative agree-
ment with phenomenological parametrizations, there are still
a number of improvements that have to be implemented
before one reaches the reliability for a direct quantitative
comparison with systematic uncertainties under control.
For doubts on the aforementioned approaches we refer
to Ref. [24].
In lattice QCD there is a long history of calculations of

moments of PDFs. In principle the PDFs can be obtained, as
outlined in Ref. [25] and references therein, using the inverse
Mellin transform and the operator product expansion. Such a
reconstruction can be reliable only if several moments of
PDFs are available [26]. However, the signal-to-noise ratio
decreases for high moments and mixing with lower dimen-
sional operators becomes unavoidable. Nevertheless, there
have been advances in noise reduction techniques and
methods to disentangle mixing between operators, which
allow one to extract moments beyond the leading one. This
progress has led to investigations of interesting physics
questions, such as the momentum and spin decomposition
of the nucleon in terms of their quark and gluon contents.
Within our European Twisted Mass Collaboration (ETMC),
this has been accomplished by lattice QCD simulations
directly at the physical point [27], where both momentum
and spin sum rules have been verified without imposing any
constraints. For the pion, however, the situation is much less
satisfactory. Earlier studies have computed the first three
moments either in the quenched approximation [28–30] or
for connected insertions only [31–34], all of them using
simulations with quark masses away from their physical
value. Only a few results for realistic QCD simulations
appear in the literature, that is, Ref. [33] at about 150MeV for
the pion mass, and a determination directly at the physical
point withNf ¼ 2 in Ref. [34] for the lowest moment. Given
the importance of the pion for ongoing and planned experi-
ments, further study of the pion structure is imperative. For
the extraction of reliable estimates, systematic uncertainties
such as discretization and volume effects must be properly
addressed and quantified.
In this work we present a multicomponent effort in the

aforementioned direction, with a variety of improvements
compared to the studies available in the literature, in terms of
the ensembles employed and level of control over systematic
uncertainties in the computed moments. We calculate the
light quark connected contributions of the first and second
moments—hxi and hx2i—of the pion using lattice QCD
simulations that include degenerate light as well as strange
and charm quarks in the sea (Nf ¼ 2þ 1þ 1). We use
several ensembles produced by the ETMC corresponding to

three values of the lattice spacing, which allow us to study
discretization effects. These ensembles have pion mass
values that range between 230 MeV and 500 MeV, which
are combined in a chiral extrapolation to obtain the value at
the physical pion mass. Different volumes are used to
investigate finite size effects and excited state contamina-
tions. In addition, a way around possible mixing for hx2i is
the choice of an operator that is free from mixing under
renormalization.A first preliminary account of thiswork can
be found in Ref. [35].
The remainder of the paper is organized as follows: In

Sec. II we discuss the technical aspects of the lattice
calculation, while in Sec. III we discuss the method used
for the determination of the required renormalization
functions in the RI’-MOM scheme and the conversion to
the MS scheme. The main results of this work are presented
in Sec. IV, followed by a discussion and a summary in
Sec. V. Technical details related to renormalization can be
found in Appendix A, while correlation coefficients of fit
parameters are collected in Appendix B.

II. LATTICE DETAILS

The calculation presented in this paper is based on gauge
configurations generated by ETMC with Nf ¼ 2þ 1þ 1
dynamical quark flavors at three values of the lattice spacing.
Details for the configuration generation and analyses for
basic quantities can be found in Refs. [36–38]. The ensem-
bles were generated using the Iwasaki gauge action [39]
and the Wilson twisted mass fermion action at maximal
twist [40–42]. Working at maximal twist guarantees OðaÞ
improvement for most physical quantities [40], and in
particular for the quantities considered here.
The bare parameters of the ensembles used here are

summarized in Table I. μl is the bare light quark mass
directly proportional to the renormalized light quark mass.
μσ and μδ parametrize the strange and charm quark masses
[36,41]. For the subset of configurations we used from each
ensemble we have computed the autocorrelation times for
the relevant quantities to verify their statistical independ-
ence. The error analysis is performed using the stationary
blocked bootstrap procedure [43] with 1500 bootstrap
samples.
In general, the computation of the moments requires the

computation of three-point functions of the form

COðt; p⃗Þ ¼
X
x⃗;y⃗

hπðT=2; x⃗; p⃗ÞOðt; y⃗Þπ†ð0; 0⃗; p⃗Þi ð1Þ

with operator O inserted at Euclidean time t. We fix here
the time difference between the two pions to T=2, which is
not necessary, but convenient. The operators for the two
moments will be detailed below. The particular choice of
operators is motivated by their transformation properties
under the symmetries of the lattice as well as the require-
ment of minimal mixing with lower-dimensional operators
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under renormalization; see Refs. [25,44,45] for details. The
interpolating operators for the pions read

πðt; x⃗; p⃗Þ ¼ ψ̄ðt; x⃗; θ⃗Þiγ5
τ1 þ iτ2

2
ψðt; x⃗; θ⃗0Þ; ð2Þ

with the momentum p⃗ ∝ θ⃗ − θ⃗0 realized via twisted boun-
dary conditions; see below. τi, i ¼ 1, 2, 3 are the Pauli
matrices acting in flavor space, and ψ ¼ ðu; dÞt is the light
quark field.

A. The first moment hxi
A convenient operator in Euclidean spacetime for the

calculation of the first moment hxi is

Ov2b ≡O44ðxÞ

¼ 1

2
ψ̄ðxÞ

�
γ4D

↔

4 −
1

3

X3
k¼1

γkD
↔

k

��
1þ τ3

2

�
ψðxÞ: ð3Þ

Here, D
↔

μ ¼ 1
2
ð▽μ þ▽�

μÞ is the symmetric, gauge covariant
lattice derivative with ▽μ (▽�

μ) being the usual gauge
covariant forward (backward) derivative on the lattice. The
above operator has the advantage that hxi is extracted
without the need for an external momentum, because
external momentum in general increases the noise. For
the first use of this operator with Wilson twisted mass
fermions we refer to Refs. [30,46].
The bare moment hxibare is related to the matrix element

of the operator O44 as follows:

hπðpÞjO44jπðpÞi ¼ 2

�
p0p0 −

1

3
p⃗ · p⃗

�
hxibare; ð4Þ

where p ¼ ðp0; p⃗Þ is the four momentum of the pions.
With pions at rest one obtains

hxibare ¼
1

2M2
π
hπð0ÞjO44jπð0Þi; ð5Þ

with Mπ the mass of the pion. The matrix element
hπð0ÞjO44jπð0Þi between two pions at rest is calculated
from the ratio

hπð0ÞjO44jπð0Þi ¼ 4Mπ
C44ðt; 0⃗Þ
CπðT=2; 0⃗Þ

ð0≪ t≪ T=2Þ ð6Þ

of the three point function

C44ðt; 0⃗Þ ¼
X
x⃗;y⃗

hπðT=2; x⃗; 0⃗ÞO44ðt; y⃗; 0⃗Þπ†ð0; 0⃗; 0⃗Þi ð7Þ

over the two point function

CπðT=2; p⃗Þ ¼
X
x⃗

hπðT=2; x⃗; p⃗Þπ†ð0; 0⃗; p⃗Þi: ð8Þ

In Eq. (6) a factor of 2Mπ relates the lattice and continuum
matrix elements of O44 between pion states, and a further
factor of 2 relates the ratio of correlation functions to the
value of the matrix element. This leads to

hxibareðtÞ ¼
2

Mπ

C44ðt; 0⃗Þ
CπðT=2; 0⃗Þ

ð0 ≪ t ≪ T=2Þ: ð9Þ

There are two contributions in the Wick contractions of
C44: the first is extracted when the current couples to the
quarks of the pion directly (connected diagram), while the
second is obtained from the so-called quark loop (dis-
connected diagram) in which the current interacts with the
pion via gluon exchange. Both are visualized in Fig. 1. The
disconnected contribution is ignored in our calculation,

TABLE I. The Nf ¼ 2þ 1þ 1 ensembles used in this investigation. The notation of Ref. [38] is used for labeling
the ensembles. We list the bare parameters β, μl, μσ , and μδ. T=a and L=a are time and spatial extents of the lattice,
respectively. Nconf is the number of configurations we used to estimate the moments.

Ensemble β aμl aμσ aμδ L=a T=a Nconf

A30.32 1.90 0.0030 0.150 0.190 32 64 280
A40.24 1.90 0.0040 0.150 0.190 24 48 280
A40.32 1.90 0.0040 0.150 0.190 32 64 250
A60.24 1.90 0.0060 0.150 0.190 24 48 313
A80.24 1.90 0.0080 0.150 0.190 24 48 304
A100.24 1.90 0.0100 0.150 0.190 24 84 312

B25.32 1.95 0.0025 0.135 0.170 32 64 212
B35.32 1.95 0.0035 0.135 0.170 32 64 249
B55.32 1.95 0.0055 0.135 0.170 32 64 310
B85.24 1.95 0.0085 0.135 0.170 24 84 357

D15.48 2.10 0.0015 0.120 0.1385 48 96 161
D30.48 2.10 0.0030 0.120 0.1385 48 96 174
D45.32sc 2.10 0.0045 0.0937 0.1077 32 64 300
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assuming that it is small, which is indeed the case for the
nucleon [47]. A computation of the disconnected contri-
butions is, however, planned for the near future.

B. The second moment hx2i
In order to avoid mixing under renormalization with

lower dimensional operators [44], we use for the second
moment the operator (in Euclidean spacetime)

O012 ¼
1

22
ψ̄γf0D

↔

1D
↔

2g

�
1þ τ3

2

�
ψ − traces; ð10Þ

which is related to hx2i via

hπðpÞjO012jπðpÞi ¼ −2ðp0p1p2Þhx2ibare: ð11Þ

In contrast to hxi, nonzero momentum is needed to extract
hx2i, due to the presence of the kinematic factor ðp0p1p2Þ
multiplying the quantity of interest. We use twisted
boundary conditions here to inject momentum; see below.
As in the case of the first moment, the matrix element of the
second moment is related to a ratio of three point to two
point functions,

hπðpÞjO012jπðpÞi ¼ 4Eπðp⃗Þ
C012ðt; p⃗Þ
CπðT=2; p⃗Þ

; ð12Þ

which leads to

hx2ibareðtÞ ¼
2

p1p2

C012ðt; p⃗Þ
CπðT=2; p⃗Þ

: ð13Þ

For details on the implementation of O012 we refer to
Ref. [44]. We employ the convention given therein for the
discretization of terms involving D⃗ D⃖.

C. The pion mass and decay constant

The pion mass enters the equations leading to hxi and
hx2i, and thus, it must be computed. It can be obtained by
fits of the functional form

fðt; A;MπÞ ¼ Aðe−Mπ t þ e−MπðT−tÞÞ ð14Þ

to the data for CπðtÞ for sufficiently large Euclidean times.
In twisted mass lattice QCD at maximal twist the pion
decay constant is directly related to the amplitude A via

fπ ¼ 2μl

ffiffiffiffi
A

p

M3
π

ð15Þ

without the need for renormalization [48].
We note that Mπ and fπ are affected significantly by

finite size effects [49]. Therefore, we use the corrections
computed in Ref. [49], which are summarized in Table II
for all the ensembles used in this work.
In Eqs. (9) and (13) one needs to divide by the two-point

function at T=2. We explore two possibilities to perform
this division: the first one is to use the data of Cπ for
t ¼ T=2. The second one is to first fit Eq. (14) to the data
for Cπ in the region where the ground state dominates, and
then use the best fit parameters to reconstruct CπðT=2Þ. The
latter procedure can help to average out fluctuations.
However, the differences between the two procedures are

FIG. 1. Connected (left) and disconnected (right) contributions
to the three-point functions. The lines represent quark propagators.

TABLE II. θ values, pion mass aMπ , pion decay constant afπ , finite volume correction factors Kf andKm, as well
as MπL for all ensembles.

Ensemble θ Mπ fπ Kf Km MπL

A30.32 0.4242640 0.12361(48) 0.06459(25) 0.9757 1.0023 4.0
A40.24 0.2828425 0.14423(62) 0.06567(34) 0.9406 1.0099 3.5
A40.32 0.3771235 0.14147(47) 0.06809(22) 0.9874 1.0013 4.5
A60.24 0.3535535 0.17253(72) 0.07148(26) 0.9716 1.0047 4.1
A80.24 0.3535535 0.19953(48) 0.07596(21) 0.9839 1.0025 4.8
A100.24 0.4242640 0.22117(49) 0.07931(22) 0.9900 1.0015 5.3

B25.32 0.4242640 0.10882(52) 0.05518(32) 0.9605 1.0136 3.5
B35.32 0.4242640 0.12450(53) 0.06056(22) 0.9794 1.0025 4.0
B55.32 0.4242640 0.15534(28) 0.06513(16) 0.9920 1.0009 5.0
B85.24 0.4242640 0.19253(53) 0.06984(21) 0.9795 1.0032 4.6

D15.48 0.5185450 0.06986(43) 0.04298(20) 0.9762 1.0081 3.4
D30.48 0.4714045 0.09786(28) 0.04721(13) 0.9938 1.0021 4.7
D45.32 0.3771235 0.11980(48) 0.04826(18) 0.9860 1.0047 3.8
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always well below the statistical uncertainty for both hxi
and hx2i. As our method of choice, we henceforth use the
second of the two methods.

D. Stochastic evaluation

The above two and three point correlators are evaluated
by using a stochastic time slice source (Zð2Þ noise in both
real and imaginary parts) [50–52] for all color, spin, and
spatial indices. That is, the quark propagator Xbθ⃗

β ðyÞ for

quark flavor f and twist angle θ⃗ is obtained by solving1

X
y;β;b

Dabθ⃗
αβfðz;yÞXbθ⃗

βfðyÞ¼ ξðz⃗Þaαδz0;0 ðsource at t¼ 0Þ ð16Þ

for X, where the Zð2Þ random source ξðz⃗Þaα satisfies the
random average condition

hξ�ðx⃗Þaαξðy⃗Þbβi ¼ δx⃗;y⃗δa;bδα;β: ð17Þ

This allows one to estimate for instance the pion two-point
function CπðtÞ at zero momentum from

Cπðt; 0⃗Þ ¼
X
x⃗;a;α

Xa0⃗
αfðx⃗; tÞ · ½Xa0⃗

αfðx⃗; tÞ�� þ noise;

where the γ5 hermiticity Du ¼ γ5D
†
dγ5 has been used. The

generalized propagator [53] Σbθ⃗0θ⃗
βf0fðyÞ needed in the com-

putation of C44ðtÞ is obtained by solving

X
y

Dabθ⃗0
αβf0 ðz;yÞΣbθ⃗0θ⃗

βf0fðyÞ¼ γ5Xaθ⃗
αfðzÞδz0;T=2 ðsink at t¼T=2Þ

ð18Þ

for Σ. This approach was first applied for hxi of the pion in
Ref. [32], and we used it recently in a computation of the
pion vector form factor [35,54], where further details can be
found. To further improve the signal, we use Nsrc ¼ 5
sources per gauge configuration and average. The source
time slices are chosen uniformly random in ½0; 1;…; T − 1�.

E. Twisted boundary conditions

In order to realize nonzero momentum of arbitrary values
for the pions as needed for hx2i, we make use of so-called
twisted boundary conditions [55–57]. Enforcing the spatial
boundary conditions ψðxþ e⃗iLÞ ¼ e2πiθiψðxÞ on the quark
fields changes the momentum quantization condition in
finite volume to pi ¼ 2πθi

L þ 2πni
L . In the time direction we

chose θ0 ¼ 1=2 to obtain antiperiodic boundary conditions

in time. We chose the θ⃗ in the spatial directions to obtain
nonzero momentum for the pions.
For the two quarks in the pion, we always chose a zero

twist angle for one of the quarks and nonzero θ⃗ for the other
one. The pion three-momentum p⃗ is then given by (ni ¼ 0)

p⃗ ¼ 2πθ⃗

L
:

We recall that for the computation of hx2i two nonzero
spatial components of the pion momentum are needed
whenO012 is used; see Eq. (13). We chose the two nonzero
elements of θ⃗ to be equal, for instance θ⃗ ¼ ðθ; θ; 0Þ. The
corresponding values for θ for each ensemble are compiled
in Table II. We always perform the computation for hx2i for
both �p⃗ and average. The such obtained result is auto-
matically OðaÞ improved.
The main reason for using twisted boundary conditions

is the fact that noise in the three point and two point
functions increases significantly with increasing modulus
of the injected momentum. With twisted boundary con-
ditions we are able to chose the momentum as small as
possible. However, we remark that twisted boundary
conditions induce additional finite volume effects, which
might influence our results [58]. As will be discussed later,
we do not see such effects in hx2i within statistical
uncertainties.

F. Chiral extrapolations

In Ref. [59] the pion mass dependence of pion moments
has been computed in leading order (LO) chiral perturba-
tion theory (ChPT). The functional form for hxi reads

hxiðM2
πÞ ¼ c0 þ c1

M2
π

f2π
ð19Þ

with low energy constants (LECs) c0 and c1. For the second
moment it reads

hx2iðM2
πÞ ¼ b0

�
1 −

M2
π

ð4πfπÞ2
log

M2
π

μ2R

�
þ b1

M2
π

f2π
; ð20Þ

where we denote the corresponding LECs with b0 and b1.
We chose the renormalization scale conventionally
μR ¼ fπ . In contrast to Ref. [59], we have expressed the
two moments as a function of Mπ=fπ , which has the big
advantage of fully dimensionless expressions. In principle
one should then use fphysπ , i.e., the physical value of the
decay constant. However, we use here fπ as estimated for
each ensemble, because scale setting is required only to
estimate the moments at the physical point. Since fπ is a
constant in leading order ChPT, this procedure is consistent
to the order of ChPT we are working here. Unfortunately,
the next-to-leading-order expressions for the moments are

1Greek indices represent spin and latin indices color degrees of
freedom. f ¼ u, d indexes the (light) quark flavors.
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not known. Still, in contrast to the case of nucleons, in the
pion sector ChPT works well such that we already expect
the lowest order to provide a reliable tool for our set of pion
masses. In order to account also for lattice spacing artifacts
we add terms caa2=r20 and baa2=r20 to the expressions for
the first and the second moments, respectively.

III. RENORMALIZATION FUNCTIONS

A renormalization factor (Z factor) must be applied to
the bare matrix elements of the operators defined in Eqs. (3)
and (10), in order to obtain physical quantities. More
precisely, the bare and the renormalized moments are
related as follows:

hxiR ¼ ZvDhxibare; hx2iR ¼ ZvDDhx2ibare: ð21Þ

In particular, the renormalization procedure eliminates
divergences with respect to the lattice regulator and allows
the continuum limit to be taken. In this section we present
the methodology and results for the renormalization func-
tions, which are finally converted to the MS scheme at a
scale μ̄ ¼ 2 GeV. We employ the Rome-Southampton
method (RI0 scheme) [60] to compute the Z factors non-
perturbatively determined by the conditions

Zq ¼
1

12
Tr½ðSLðpÞÞ−1SBornðpÞ�

����
p2¼μ2

0

; ð22Þ

Z−1
q ZO

1

12
Tr½ΓLðpÞΓBorn−1ðpÞ�

����
p2¼μ2

0

¼ 1: ð23Þ

The momentum p is set to the RI0 renormalization scale, μ0,
SBorn (ΓBorn) is the tree-level value of the fermion propa-
gator (operator), and the trace is taken over spin and color
indices.
We obtain the Z factors using several ensembles at

different values of the pion mass, so that the chiral limit can
be safely taken. In addition, on each ensemble we use
several values of the momentum p (to be set equal to the RI0
renormalization scale μ0) to control systematic uncertain-
ties as explained below. The RI0 values for the Z factors are
converted to the MS scheme and are evolved to a reference
scale of 2 GeVusing an intermediate renormalization group
invariant scheme defined in continuum perturbation theory.
Renormalized matrix elements can be compared to phe-
nomenological and experimental estimates that typically
refer to quantities renormalized in the MS scheme.
For a proper chiral extrapolation we compute the Z

factors on ensembles generated specifically for the renorm-
alization program of ETMC that include four degenerate
quarks (Nf ¼ 4) at the same values of β as the Nf ¼
2þ 1þ 1 ensembles used for the calculation of hxi and
hx2i. The parameters of the ensembles are given in
Table III, where the lattice spacing is determined using

the nucleon mass computed with the Nf ¼ 2þ 1þ 1

twisted mass configurations [61,62].
We employ the momentum source method introduced in

Ref. [63] and used in Ref. [64], which leads to a high
statistical accuracy with a small number of configurations.
For the Z factors presented in this work we use between 10
to 50 configurations depending on the ensemble under
study. To reduce discretization effects we use momenta that
have the same spatial components, that is,

ðapÞ≡ 2π

�
nt
Lt

þ 1

2Lt
;
nx
Ls

;
nx
Ls

;
nx
Ls

�
;

ntϵ½2; 20�; nxϵ½1; 10�; ð24Þ

where Lt (Ls) is the temporal (spatial) extent of the
lattice, and we restrict the momenta up to ðapÞ2 ∼ 7. A
useful constraint for the chosen spatial momenta isP

ip
4
i =ð

P
ip

2
i Þ2 < 0.3 which ensures reduced discretiza-

tion effects. This is based on empirical arguments [65], as
this ratio appears to suppress Oða2Þ terms in the perturba-
tive expressions for Green’s functions. The procedure we
follow in this work is the same as our previous work in
nonperturbative renormalization, and thus, we refer the
interested reader to Refs. [64,66,67] for technical details. It
is worth mentioning that in the renormalization of the one-
derivative operator we also employ improvements by

TABLE III. Simulation details for the ensembles used for the
renormalization functions.

aμ κ aμseaPCAC aMPS Lattice size

β ¼ 1.90, a ¼ 0.0934 fm
0.0080 0.162689 þ0.0275ð4Þ 0.280(1) 243 × 48

0.163476 −0.0273ð2Þ 0.227(1)

0.0080 0.162876 þ0.0398ð1Þ 0.279(2) 243 × 48
0.163206 −0.0390ð1Þ 0.241(1)

β ¼ 1.95, a ¼ 0.082 fm
0.0020 0.160524 þ0.0363ð1Þ 243 × 48

0.161585 −0.0363ð1Þ
0.0085 0.160826 þ0.0191ð2Þ 0.277(2) 243 × 48

0.161229 −0.0209ð2Þ 0.259(1)

0.0180 0.160826 þ0.0163ð2Þ 0.317(1) 243 × 48
0.161229 −0.0160ð2Þ 0.292(1)

β ¼ 2.10, a ¼ 0.064 fm
0.0030 0.156042 þ0.0042ð1Þ 0.127(2) 323 × 64

0.156157 −0.0040ð1Þ 0.129(3)

0.0046 0.156017 þ0.0056ð1Þ 0.150(2) 323 × 64
0.156209 −0.0059ð1Þ 0.160(4)

0.0064 0.155983 þ0.0069ð1Þ 0.171(1) 323 × 64
0.156250 −0.0068ð1Þ 0.180(4)

0.0078 0.155949 þ0.0082ð1Þ 0.188(1) 323 × 64
0.156291 −0.0082ð1Þ 0.191(3)
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subtracting lattice artifacts [64]. The latter are computed to
one loop in perturbation theory and to all orders in the
lattice spacing, Oðg2a∞Þ. These artifacts are present in the
nonperturbative vertex functions of the fermion propagator
and fermion operators under study. Such an improvement is
not yet available for the two-derivative operator, but finite a
effects are partly removed upon the ðapÞ2 → 0 extrapola-
tion. In this section we focus on the results for ZvDD, which
are presented for the first time to our knowledge, while
results on ZvD have been extracted within the work of
Ref. [64].
To extract the renormalization functions in the chiral

limit we perform an extrapolation using a quadratic fit
with respect to the pion mass of the ensemble, that is,
aRI

0 ðμ0Þ þ bRI
0 ðμ0Þ ·M2

π where a and b depend on the
scheme and scale. In addition, these parameters depend on
the coupling constant, and separate fits are performed at
each value of β. We find that the renormalization functions
under study have a very mild dependence on the pion mass,
which becomes slightly larger for ðapÞ2 < 1. However,
these points do not participate in the fit ðapÞ2 → 0 for the
final estimates. Allowing a slope, b ≠ 0, and performing a
linear extrapolation with respect to M2

π , the data yield a
slope that is compatible with zero within the small
uncertainties. This is demonstrated in Fig. 2 for ZRI0

vDD for
β ¼ 1.95, plotted as a function of the initial scale ðapÞ2.
For clarity we only show two values of the twisted mass
aμsea, while the statistical errors are too small to be visible.
The corresponding plot for ZvD is shown in Ref. [64].
In order to compare lattice values to experimental results

one must convert to a universal renormalization scheme and
use a reference scale μ̄. Typically one chooses the MS
scheme at μ̄ ¼ 2 GeV. The conversion from the RI0 to the
MS scheme uses the intermediate renormalization group
invariant (RGI) scheme,which is scale independent and thus,

ZRGI
O ¼ ZRI0

O ðμ0ÞΔZRI0
O ðμ0Þ

¼ ZMS
O ð2 GeVÞΔZMS

O ð2 GeVÞ: ð25Þ

The conversion factor can be extracted from the above
relation,

CRI0;MS
O ðμ0;2GeVÞ≡ZMS

O ð2GeVÞ
ZRI0
O ðμ0Þ

¼ ΔZRI0
O ðμ0Þ

ΔZMS
O ð2GeVÞ

: ð26Þ

The quantity ΔZS
Oðμ0Þ is expressed in terms of the β

function and the anomalous dimension γSO ≡ γS of the
operator,

ΔZS
OðμÞ ¼

�
2β0

gSðμÞ2
16π2

�− γ0
2β0

× exp

�Z
gSðμÞ

0

dg0
�
γSðg0Þ
βSðg0Þ þ

γ0
β0g0

�	
; ð27Þ

with all necessary ingredients defined in Appendix A. We
employ a three-loop approximation, for which ΔZS

Oðμ0Þ
takes a simpler form [64].
In Fig. 3 we present representative results for ZvDD (at

β ¼ 2.10) in the RI0 [ZRI0
vDDðμ0Þ] and MS [ZMS

vDDð2 GeVÞ]
schemes as a function of the initial RI renormalization

scale, μ0 ¼ p. Note that ZMS
vDD has been evolved to 2 GeV,

but there is residual dependence on the initial scale. This
dependence is removed by extrapolating to zero, using the
Ansatz

ZOðapÞ ¼ Zð0Þ
O þ Zð1Þ

O · ðapÞ2; ð28Þ

where Zð0Þ
O corresponds to our final value on the renorm-

alization functions for the operator O. For each value of β
we consider momenta 6 ≥ ðapÞ2 ≥ 2 for which perturba-
tion theory is trustworthy and lattice artifacts are still under
control.

FIG. 2. Pion mass dependence of ZRI0
vDD at β ¼ 1.95 as a

function of the initial RI0 renormalization scale (p ¼ μ0).

FIG. 3. Chirally extrapolated renormalization function for hx2i
in the RI0 [ZRI0

vDDðμ0Þ] and MS [ZMS
vDDð2 GeVÞ] schemes at

β ¼ 2.10, as a function of the initial renormalization scale
(p ¼ μ0). A black diamond represents the final estimate upon
ðapÞ2 → 0 and the solid line to fit in the interval [3, 6] of ZMS.
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In Table IV we report our chirally extrapolated values for

Zð0Þ
vD and Zð0Þ

vvD in the MS scheme at 2 GeV. Zð0Þ
vD has been

extracted upon subtraction of the Oðg2a∞Þ terms, which
improves the estimates as explained in Ref. [64]. The
statistical and systematic uncertainties are given in the first

and second parentheses, respectively. For Zð0Þ
vvD we chose as

appropriate fit interval ðapÞ2∶½3 − 6�. The reported sys-

tematic uncertainty is extracted from the difference of Zð0Þ
vvD

between various intervals for the ðapÞ2 → 0 extrapolation.
In Ref. [68] ZvD has been determined on the same gauge

configurations using a different method. The authors find
generally lower values for ZvD, which are within the quoted
systematic uncertainties compatible with what we quote in
Table IV. In order to be consistent in our treatment of hxi
and hx2i, we stick here to the values compiled in Table IV.

IV. RESULTS

In the left panel of Fig. 4 we show the bare three-point
function C44ðtÞ for ensemble D30.48. The plot demon-
strates the quality of the data we are able to obtain for

C44ðtÞ. In Ref. [69] it was found that, in the quenched
approximation, with Schrödinger functional boundary con-
ditions and clover improved Wilson fermions, finite size
effects to hxi are quite sizable. This persists even at values
of Mπ · L where finite size effects in Mπ are no longer
visible. The authors measured these effects to be about 5%
at values ofMπ · L ≈ 4. In this work we use two ensembles,
A40.24 with Mπ · L ¼ 3.5 and A40.32 with Mπ · L ¼ 4.5,
which differ only in the volume and can be used for
investigation of finite size effects. In the right panel of
Fig. 4 we show a comparison of hxiðtÞ between A40.24 and
A40.32. We find that the values of the bare hxiðtÞ in the
plateau regions for A40.24 and A40.32 agree within error
bars. This indicates that in our lattice discretization for the
given values ofMπ · L, finite size effects play a minor role,
if any. This is in agreement with the finding in the quenched
approximation [46].
In Fig. 5 we show two examples for the bare data of the

three-point function C012 for the ensembles A100.24 in the
left panel and A30.32 in the right panel. One nicely
observes the asymmetry in C012 around t ¼ T=2. The
signal-to-noise ratio deteriorates significantly with decreas-
ing light quark mass value. Compared to C44 a strong
increase in the statistical uncertainty is clearly visible. Still,
the determination of hx2i is feasible for all quark mass
values. Finite size effects for the case of hx2i are within the
reported statistical uncertainties.
For determining an estimate of hxi and hx2i we perform

plateau fits to the (anti)symmetrized data for hxiðtÞ and
hx2iðtÞ. Following the ideas put forward in Ref. [70], we
perform such fits for many different fit ranges. The
estimates for Mπ and fπ are obtained by fitting all possible

TABLE IV. Our final values of the renormalization functions

ZMS
vD and ZMS

vDD at μ̄ ¼ 2 GeV renormalization scale. The first
error is the statistical error. The second error corresponds to
the systematic error obtained by varying the fit range in the
ðapÞ2 → 0 extrapolation.

RFs β ¼ 2.10 β ¼ 1.95 β ¼ 1.90

ZMS
vD

1.0991(29)(55) 1.0624(108)(33) 1.0268(26)(103)

ZMS
vDD

1.406(1)(20) 1.356(1)(18) 1.307(1)(21)

FIG. 4. Left: The bare three point function C44ðtÞ for ensemble D30.48 as a function of t=a. Right: The bare hxiðtÞ as a function of t=a
for A40.24 and A40.32.
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fit ranges with at least six consecutive time slices. Each of
these fits obtains a weight according to

wi ¼
ð1 − 2jpi − 1=2jÞ2

Δ2
i

: ð29Þ

Here, pi is the p value of the corresponding fit and Δi is the
statistical error on Mπ or fπ determined from the bootstrap
procedure for this fit range. This procedure is repeated for
each bootstrap replica. In addition, a systematic uncertainty
from the fit range choice can be specified from the
68% confidence interval of the weighted distribution.
The estimates for the moments are then obtained in a very

similar manner, just that also Mπ is needed. Thus, we
combine all possible fit ranges with at least six consecutive
time slices forCπ with all possible fit ranges with at least six
consecutive time slices to the corresponding three point
function. The weight for a moment with a specific fit range
combination is obtained by multiplying the corresponding
weights of the fit toCπ and the fit to the three-point function.
The estimates extracted as explained above for the first

and second moments are compiled in Table V. The values
are renormalized at 2 GeV in the MS scheme. Statistical
errors coming from the renormalization functions are
included via the parametric bootstrap procedure. The
second error quoted comes from the different fit ranges
estimated as discussed before. One observes that this
systematic uncertainty is for the first moment usually of
the order of the statistical error. For the second moment it is
sometimes a bit larger. D15.48 and B25.32 have, unfortu-
nately, a large statistical and systematic uncertainty on hx2i.
In particular for D15.48 the significance of the result
strongly depends on the chosen fit range. The reason is

the significant increase of noise toward smaller light quark
mass values.
These results for the renormalized first and second

moments of the pion are shown in Fig. 6 in the left and
right panels, respectively. They are plotted as a function of
ðMπ=fπÞ2 with statistical errors only.

A. Chiral and continuum extrapolations

The ChPT expressions Eqs. (19) and (20) plus terms
proportional to ða=r0Þ2 for hxi and hx2i read

FIG. 5. The bare three-point function C012ðtÞ as a function of t=a for ensemble A100.24 (left) and for ensemble A30.32 (right).

TABLE V. The results for the renormalized hxiR and hx2iR for
the ensembles used in this investigation. hxiR and hx2iR are given
at μ̄ ¼ 2 GeV in the MS scheme. In addition we give the values of
Mπ · L.

Ensemble hxiR hx2iR
A30.32 0.2586(41)(28) 0.131(18)(24)
A40.24 0.2630(44)(16) 0.116(20)(26)
A40.32 0.2652(37)(26) 0.114(16)(29)
A60.24 0.2782(36)(17) 0.116(15)(08)
A80.24 0.2835(33)(10) 0.115(10)(08)
A100.24 0.2921(33)(05) 0.123(08)(08)

B25.32 0.2523(51)(71) 0.132(40)(53)
B35.32 0.2617(41)(33) 0.109(21)(28)
B55.32 0.2770(36)(17) 0.134(12)(16)
B85.24 0.2902(35)(47) 0.139(09)(07)

D15.48 0.2331(50)(32) 0.18(06)(20)
D30.48 0.2510(25)(37) 0.122(20)(38)
D45.32 0.2610(31)(20) 0.153(14)(12)
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hxibare½ðMπ=fπÞ2;β� ¼
1

ZvDðβÞ
�
c0 þ c1

M2
π

f2π

�

þ caða=r0ðβÞÞ2;

hx2ibare½ðMπ=fπÞ2;β� ¼
1

ZvDDðβÞ
�
b0

�
1−

M2
π

ð4πfπÞ2
log

M2
π

f2π

�

þ b1
M2

π

f2π

�
þ baða=r0ðβÞÞ2: ð30Þ

We perform fits of these functional forms to all the data of
the first and second moments separately. For these fits we
have the data for the bare hxi (hx2i) and the estimates for
ZvD (ZvDD) and r0=a. To properly account for the uncer-
tainties in the renormalization functions and the Sommer
parameter r0=a, we use the augmented χ2 function as
follows:

χ2aug ¼ χ2þ
X
β

�
ZðβÞ−PZðβÞ

ΔZðβÞ
�

2

þ
X
β

�r0
a ðβÞ−Pr0ðβÞ

Δ r0
a ðβÞ

�
2

:

ð31Þ

Here, Z and ΔZ denote the relevant renormalization factor
and its statistical uncertainty either for the first or the
second moment. PZ and Pr0 are additional fit parameters
per β value. The usual χ2 function entering χ2aug reads

χ2 ¼
X
β

X
iðβÞ

�
yi − gðxi; fPgÞ

Δyi

�
2

: ð32Þ

Here iðβÞ index the data points for the corresponding β
value, yi are the bare data for hxi (hx2i), and xi are the data
for ðMπ=fπÞ2. With fPg we label the set of fit parameters
fc0; c1; ca; Pr0 ; PZvD

g (fb0; b1; ba; Pr0 ; PZvDD
g) and with g

the corresponding ChPT expression. The equation for the
χ2 function above is written for the uncorrelated case,
because all data points stem from independent ensembles,
r0=a, and the renormalization constants from independent
analyses. Errors of fit parameters are again computed using
the bootstrap procedure by performing a fit on every
bootstrap replica.
In principle one could also include the error on ðMπ=fπÞ2

in the fit. However, these errors are so small compared to the
ones for the moments that they do not alter the fit results.We
also do not include systematic uncertainties in the fit,
because they lack a statistical interpretation and would
increase all error bars more or less uniformly.
For the first moment we obtain the following best fit

parameters:

c0 ¼ 0.199ð5Þ; c1¼ 0.0083ð5Þ; ca ¼ 0.92ð20Þ: ð33Þ

The p value of the fit equals 0.61 with χ2aug=dof ¼ 8.2=10.
Thus, the fit is acceptable and the continuum value of hxi at
the physical point—defined via Mπ=fπ ¼ 1.0337—reads

hxiphysR ¼ 0.2075ð53Þ: ð34Þ

The best fit curves for the three lattice spacings are included
as dashed lines in the left panel of Fig. 6. The continuum

FIG. 6. hxiR of the pion (left) and hx2iR (right) as functions of ðMπ=fπÞ2 at μ̄ ¼ 2 GeV in the MS scheme. Dashed colored lines
represent the best fit functions Eq. (30) at the three lattice spacing values, respectively. The solid black line represents the continuum
curve. The black triangles represent the estimates at the physical point in the continuum limit. The error bars represent only the statistical
uncertainty.
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curve is the black solid line with the estimate of the first
moment at the physical point indicated with the black
triangle.
If we had used the values for ZvD from Ref. [68] instead

of the ones we quote in Table IV, we would have obtained
an equally good fit with result hxiphysR ¼ 0.189ð16Þ. This
value is compatible with the value above, but with larger
uncertainties. We include half of the difference as a
systematic error in our final value.
For the second moment, the best fit parameters read

b0¼ 0.16ð2Þ; b1¼ 0.005ð2Þ; ba ¼−1.6ð7Þ: ð35Þ

With a p value of 0.89 (χ2aug=dof ¼ 5=10) the continuum
estimate at the physical point reads

hx2iphysR ¼ 0.163ð23Þ: ð36Þ

As for hxiR, the corresponding curves are shown in the right
panel of Fig. 6 in addition to the data. Again, the black
triangle represents the estimate of the second moment at the
physical point in the continuum limit.
For both the first and the second moments the fit

parameters for the renormalization factors and for r0=a
agree very well with the input data. All best fit parameters,
their uncertainties, and correlations are compiled in
Appendix B.
As is visible from Fig. 6 and from the p values, the data

are well described by the ChPTexpressions in the full range
of pion mass values we have available. However, it is
questionable whether one-loop ChPT works for pion
masses up to about 500 MeV. Therefore, we have repeated
the fits excluding all data points with ðMπ=fπÞ2 > 6. The
so obtained results are well compatible within error bars
with the results quoted above. Also the p values of the fits
do not improve. Thus, we conclude that our statistical
uncertainty covers this systematics. This point needs to be
reconsidered once NLO formulas are available.

V. DISCUSSION

In this work we demonstrate the feasibility of the lattice
calculation for the first and second moments of the pion
PDF. Despite the challenges present in calculations of
higher moments, we find sufficiently long plateau regions
for the bare matrix elements for all ensembles used here,
with the dependence on the fit range of the order of the
statistical uncertainties. For the first moment, where our
bare values are precise to the few percent level, we observe
a sizable dependence onM2

π and significant lattice artifacts;
cf. the left panel of Fig. 6. From the value of hxiR of
ensemble D15.48, which is the smallest pion mass value
closest to the continuum limit, there is still a 10% difference
to the continuum value at the physical point.

The statistical errors for hx2i are significantly larger than
for hxi, since two derivatives and two nonzero spatial
components of momentum are required. Therefore, pion
mass and lattice spacing dependences are both not signifi-
cant: all the data could be fitted to a constant inMπ=fπ with
a result similar to the one we quote above. For both
moments, finite size effects turn out to be not relevant,
which is in agreement with the finding of Ref. [34], where
the twisted mass formulation was used as well.
Our results for the first moment can be compared to other

lattice computations, including our recentwork usingNf¼2
simulations directly at the physical point, however, without
extrapolation to the continuum limit [34]. The value found
in Ref. [34] also neglecting disconnected contributions at
the physical point reads hxiR ¼ 0.214ð15Þðþ12

−9 Þ. It is fully
compatible with the result we find here. In Refs. [31,71] a
value of hxiR ¼ 0.271ð2Þð10Þ at μ̄ ¼ 2 GeV in the MS
scheme is quoted for Nf ¼ 2 flavor QCD also neglecting
disconnected diagrams, which is significantly larger than
our value. In these two references almost no lattice artifacts
appear to be visible, in contrast to our findings. In the
work of Bali et al. [33] a significantly lower value is
reported, using a single ensemble at a near physical pion
mass value.
It is not so easy to identify a reason for the differences we

observe. It seems the number of flavors is not so important,
because our result with Nf ¼ 2þ 1þ 1 quark flavors is
fully compatible with the Nf ¼ 2 result at the physical
point. Even though the latter computation is at a single
lattice spacing only, lattice spacing effects seem to be small
with this action [72]. Thus, differences are likely to come
from the chosen lattice discretization leading to different
lattice artifacts and finite size effects. This clearly demands
further careful investigations of systematic uncertainties in
the future.
References [31,71] present the calculation for hx2i using

a different operator that possibly mixes under renormaliza-
tion. The authors compute only the connected diagram,
too, and find hx2iR ¼ 0.128ð9Þð4Þ at μ̄ ¼ 2 GeV in the MS
scheme, compatible with our result.
It is utterly important to relate the values of the moments

computed in this paper to what is measured experimentally.
But, in our computation fermionic disconnected contribu-
tions to the three-point functions C44 and C012 have been
neglected. Thus, strictly speaking from a quantum field
theory point of view, the spectral decomposition of the
(connected only) three-point functions is not possible.
A meaning is recovered only if we rely on the assumption
that the fermionic disconnected contributions have a
negligible share to the total three-point functions.
On the other hand, in practice the fermionic connected

and eventually also the disconnected contributions can be
determined. It is then very appealing to identify the part
coming from the disconnected contributions as purely sea
moments; see Fig. 1. This allows one to make contact to the
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phenomenological point of view, where typically the
following sum rule is used, here for hxi:

2hxivðμ̄2Þ þ 2Nfhxisðμ̄2Þ þ hxiGðμ̄2Þ ¼ 1; ð37Þ

where the v, s, G denote the valence quark, sea quark, and
gluon contributions, respectively. On the other hand, for a
lattice calculation one would write

hxiconnu ðμ̄2Þ þ hxiconnd ðμ̄2Þ þ
X
q

hxidiscq ðμ̄2Þ þ hxiGðμ̄2Þ ¼ 1;

ð38Þ

where conn (disc) stands for a lattice computation per-
formed with only fermionic connected (disconnected)
contributions to the corresponding three-point function
taken into account. The sum in q is over all active quark
flavors. As defined in Eq. (4), the quantity calculated in this
work is the total connected only contribution:

hxiphysR ðμ̄2Þ ¼ hxiconnu ðμ̄2Þ ¼ hxiconnd ðμ̄2Þ: ð39Þ

Still, from Eq. (39) it is clear that hxiphysR ðμ̄2Þ cannot be the
valence contribution of Eq. (37), because the connected
contributions also receive contributions from so-called Z
diagrams, which are counted as sea quark distributions in
Eq. (37). Nevertheless, since the following equality must
hold:

hxiconnu ðμ̄2Þ þ hxiconnd ðμ̄2Þ þ
X
q

hxidiscq ðμ̄2Þ

¼ 2hxivðμ̄2Þ þ 2Nfhxisðμ̄2Þ; ð40Þ

we may, keeping the caveat discussed above in mind,
compare hxiphysR ðμ̄2Þwith phenomenology if we understand
the quantity computed here as an upper limit for hxivðμ̄2Þ.
Phenomenological results for average x and x2 are

provided in Refs. [73,74]. Below we compare to the more
recent results from Ref. [73], which are based on a larger set
of experimental data, where they find

2hxiv ¼ 0.49ð1Þ; 2hx2iv ¼ 0.217ð4Þ; ð41Þ

both in the MS scheme at μ̄ ¼ 2 GeV. Compared to our
results in Eqs. (34) and (36), i.e., 2hxiconnu and 2hx2iconnu ,
respectively, we observe a tension for hxi. In particular, the
value for hxi we observe is smaller than the phenomeno-
logical estimate, which is opposite to what we expect from
our discussion above. This tension might be explained with
the caveats lined out above, noticing also that according to
Ref. [73], the extraction of hxiv is still sensitive to the
inclusion of new datasets, being reduced when leading
neutron production data are added to previously existing
Drell-Yan data. The results we find here point to the

direction of further reductions of hxiv. In this context,
experimental efforts planned at COMPASS [75,76] and
JLab [77] to measure the pion structure functions will be
instrumental to settle this matter, having also an impact in
the decomposition of the pion momentum sum rule. Our
value for hx2i is larger than 2hx2iv, but its also has a large
error bar.
Finally, we note that the relative share of connected to

disconnected contributions to the total hximay well depend
on the pion mass.

VI. SUMMARY

In this paper we have presented results for the first
and second moments of the pion PDF computed in Nf ¼
2þ 1þ 1 lattice QCD. While we still neglect fermionic
disconnected diagrams for both moments, we have thor-
oughly investigated the extrapolations to the physical point
and to the continuum. This was possible due to ETMC
ensembles spanning three values of the lattice spacing and
pion masses ranging from 270 to 500MeV. For hxi and hx2i
we use operators which avoid any mixing under renorm-
alization. By studying two ensembles with all identical
parameters but the lattice size, we can exclude finite
volume effects significantly larger than our statistical
uncertainties.
For the computation of hx2i nonzero spatial momenta are

required which we inject using twisted boundary condi-
tions. These allow us to chose the momenta optimally for
the signal-to-noise ratio in the corresponding three-point
function. Still, our results for hx2i have significantly larger
statistical uncertainties than the ones for hxi, which is of
course also due to the second derivative needed for hx2i.
It turns out that the choice of fit ranges represents a major

systematic uncertainty in the calculation of the moments.
We approach this uncertainty by performing many fits and
include them all weighted appropriately in the final
estimates. From the weighted distribution a systematic
error can be estimated which is typically of the order of
the statistical error. The only exception is our ensemble at
the smallest lattice spacing and pion mass value, where the
systematic errors prevent us from obtaining a significant
result. In summary we obtain

hxiphysR ¼ 0.2075ð53Þstatð20Þsysð90ÞZ and

hx2iphysR ¼ 0.163ð23Þstatð25Þsys;

determined at 2 GeV in the MS scheme. In the bare matrix
elements we find on average a 1% systematic error on hxi
and a 15% systematic error on hx2i, which we have added
to the final results in order to reflect the systematic
uncertainty coming from the fit range choice. In hxi we
add the systematic uncertainty from using the Z factors
determined in Ref. [68] instead of the ones compiled in
Table IV.
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The comparison to phenomenology is difficult, because in
our computation fermionic disconnected contributions to
the three-point functions have been neglected. However, if
one identifies the quantities computed here with an upper
limit to what is called valence contribution in phenomenol-
ogy, we observe that our value for hxi is smaller compared to
phenomenology, while the value for hx2i is also larger
compared to phenomenology, but has large error bars.
From the discussion in the previous section it is clear that

a computation including fermionic disconnected diagrams
is highly desirable. Thus, we are planning to repeat this
computation by including fermionic disconnected contri-
butions to the three-point functions. Then also the gluonic
moments ought to be computed to properly perform the
renormalization procedure.
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APPENDIX A: β FUNCTION AND
ANOMALOUS DIMENSIONS

In this appendixwe provide the definition of the β function
and the anomalous dimension of the two operators presented
in this work. To simplify the expressions we give the
perturbative coefficients in the Landau gauge and in SUð3Þ.
The perturbative expansion of the anomalous dimension

in a renormalization scheme S is given as follows:

γS¼−μ
d
dμ

logZS

¼ γ0
gSðμÞ2
16π2

þγS1

�
gSðμÞ2
16π2

�
2

þγS2

�
gSðμÞ2
16π2

�
3

þ���; ðA1Þ

while the β function is defined as

βS ¼ μ
d
dμ

gSðμÞ

¼ −β0
gSðμÞ3
16π2

− β1
gSðμÞ5
ð16π2Þ2 − βS2

gSðμÞ7
ð16π2Þ3 þ � � � : ðA2Þ

For the conversion from the RI0 to the MS scheme we use
the three-loop expressions, to which the coefficients of the
β function coincide and are given by [84,85]

β0 ¼ 11 −
2

3
Nf; ðA3Þ

β1 ¼ 102 −
38

3
Nf; ðA4Þ

β2 ¼
2857

2
−
5033

18
Nf þ

325

54
N2

f: ðA5Þ

All necessary expressions to convert to the MS scheme are
presented below. An upper index appears for scheme-
dependent quantities, in order to denote the scheme that
they correspond to.
One-derivative vector/axial [86,87]:

γ0 ¼
64

9
; ðA6Þ

γMS
1 ¼ 23488

243
−
512

81
Nf; ðA7Þ

γRI
0

1 ¼ 48040

243
−
112

9
Nf; ðA8Þ

γMS
2 ¼ 11028416

6561
þ 2560

81
ζ3 −

�
334400

2187
þ 2560

27
ζ3

�
Nf

−
1792

729
N2

f; ðA9Þ

γRI
0

2 ¼ 59056304

6561
−
103568

81
ζ3 −

�
2491456

2187
þ 416

27
ζ3

�
Nf

þ 19552

729
N2

f: ðA10Þ

Two-derivative vector/axial [87–89]:

γ0 ¼
100

9
; ðA11Þ

γMS
1 ¼ 34450

243
−
830

812
Nf; ðA12Þ

γRI
0

1 ¼ 76822

243
−
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Nf; ðA13Þ

γMS
2 ¼ 64486199

26244
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81
ζ3 −

�
469910
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þ 4000
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ζ3

�
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−
2569
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N2
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γRI
0

2 ¼ 1889349409

131220
−
744568

408
ζ3

−
�
20589053

10935
þ 4736

135
ζ3

�
Nf þ

34330

729
N2

f: ðA15Þ
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APPENDIX B: CORRELATION COEFFICIENTS OF FIT PARAMETERS

The chiral fit for hxi gives the following best fit parameters:

c0 0.199(5)
c1 0.0083(5)
ca 0.92(20)
PZvD

ðβ ¼ 1.90Þ 1.033(9)
PZvD

ðβ ¼ 1.95Þ 1.053(7)
PZvD

ðβ ¼ 2.10Þ 1.100(6)
Prðβ ¼ 1.90Þ 5.32(8)
Prðβ ¼ 1.95Þ 5.76(6)
Prðβ ¼ 2.10Þ 7.60(8)

with correlation coefficients in the same order as above:

1.0 −0.37 −0.84 −0.49 −0.32 0.53 −0.24 0.03 0.09

1.0 −0.10 0.10 0.13 −0.03 0.05 −0.004 0.01

1.0 0.68 0.49 −0.43 0.28 0.02 −0.06
1.0 0.68 −0.04 −0.07 0.09 0.03

1.0 0.07 0.22 −0.14 0.07

1.0 −0.08 0.07 −0.04
1.0 0.01 0.03

1.0 0.03

The chiral fit for hx2i gives the following best fit parameters:

b0 0.16(2)
b1 0.005(2)
ba −1.6ð7Þ
PZvDD

ðβ ¼ 1.90Þ 1.31(2)
PZvDD

ðβ ¼ 1.95Þ 1.35(2)
PZvDD

ðβ ¼ 2.10Þ 1.41(2)
Prðβ ¼ 1.90Þ 5.30(7)
Prðβ ¼ 1.95Þ 5.78(6)
Prðβ ¼ 2.10Þ 7.60(8)

with correlation coefficients in the same order as above:

1.0 −0.38 −0.73 −0.14 0.06 0.16 0.04 0.06 −0.05
1.0 −0.33 −0.04 0.05 0.01 −0.03 0.01 0.004

1.0 0.22 −0.07 −0.16 −0.07 −0.09 0.04

1.0 0.03 −0.05 0.06 −0.01 0.03

1.0 0.01 −0.02 0.05 −0.03
1.0 0.02 0.003 −0.01

1.0 0.01 0.04

1.0 0.01
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