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We simulate SUð2Þ lattice gauge theory in four dimensions using dynamical reduced staggered
fermions. The latter lead to two rather than four Dirac fermions in the continuum limit. We review the
derivation and properties of reduced staggered fermions and show that in the case of fields in the
fundamental representation of SUð2Þ the theory does not exhibit a sign problem and can be simulated using
the rational hybrid monte carlo algorithm. We present results on lattices up to 164 for a wide range of bare
fermion masses. We find a single site condensate appears at strong coupling that spontaneously breaks the
one global Uð1Þ symmetry remaining in the reduced fermion action.
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I. INTRODUCTION

Simulations of gauge theories using staggered fermions
have a long history going back to the early days of lattice
gauge theory. In recent years they have allowed for
precision studies of hadronic quantities of crucial impor-
tance to experimental efforts to test and constrain the
Standard Model [1].
As is well known the four dimensional naive staggered

fermion action yields not one but four Dirac fermions in
the continuum limit. It is less well appreciated that this
replication can be halved by an additional thinning of
lattice degrees of freedom to create what are called reduced
staggered fermions. At first glance this fact seems to imply
that the reduced fermion would be a better choice than the
usual staggered fermion for simulations. It was realized
early on that this was not the case; for QCD the resulting
fermion determinant is not real, positive definite, and
furthermore it is not possible to write gauge invariant
single site mass terms in such a theory [2].
In this paper we point out that these problems can be

evaded for gauge groups with pseudoreal representations.
As an example we consider the case of fermions trans-
forming in the fundamental representation of SUð2Þ.
Quenched simulations of this model have been studied
in [3] but the only work we are aware of with dynamical
fermions was carried out in the context of a four fermion

model with off site Yukawa couplings [4]. In this paper we
study the case of the SUð2Þ gauge theory with both single
site and one-link mass terms. We show that the correspond-
ing single site fermion condensate dominates at strong
coupling in the thermodynamic limit as the fermion masses
are sent to zero. The appearance of a single site condensate
breaks the one remaining global Uð1Þ symmetry in the
reduced fermion action and leads to a light pion which is also
measured in our simulations. This Uð1Þ symmetry breaking
is consistent with the random matrix theory analysis of [5].
One of our motivations for this work comes from recent

studies of a four fermion model built from four reduced
staggered fermions. In three dimensions there is good
evidence that the weak and strong couplings phases of
this theory are separated by a continuous phase transition
with nontrivial critical exponents [6,7]. Moreover, while no
symmetries are broken in the strong coupling phase, the
system nevertheless generates a mass gap. Thus the phase
transition does not seem to be describable in terms of a
Landau-Ginzburg effective theory [8].
In four dimensions a very narrow broken symmetry

phase reappears between the weak and strong coupling
phases [9,10], but there is evidence that this broken
symmetry phase may be evaded in an expanded phase
diagram corresponding to a Higgs-Yukawa generalization
of the model [11,12]. This latter model possesses a global
SOð4Þ ¼ SUð2Þ × SUð2Þ symmetry with the Yukawa
interaction coupling the staggered fermions to a scalar
field living in the adjoint representation of one of these
SUð2Þs. A natural extension of this model then replaces
the scalar field with an SUð2Þ gauge field which we
conjecture is capable of generating the same four fermion
condensate now via strong gauge interactions. As a first
step in this direction we need to understand the phase
structure and symmetry breaking patterns of reduced
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staggered fermions interacting via a SUð2Þ gauge field—
the study reported here.

II. ACTION AND SYMMETRIES

For completeness we repeat here the derivation of the
reduced staggered fermion action [2]. Starting with the full
massless staggered action

SF ¼
X

x;μ

1

2
ημðxÞψ̄ðxÞ½UμðxÞψðxþ μÞ

−U†
μðx − μÞψðx − μÞ�; ð1Þ

where the staggered fermion phases are given by

ημðxÞ ¼ ð−1Þ
P

μ−1
i¼1

xi ; ð2Þ

we project down to reduced staggered variables.

ψ̄ðxÞ → 1þ ϵðxÞ
2

ψ̄ðxÞ

ψðxÞ → 1 − ϵðxÞ
2

ψðxÞ; ð3Þ

where the parity factor ϵðxÞ ¼ ð−1Þ
P

4

i¼1
xi. Since ψ̄ is only

defined on even sites we can relabel it as ψT . Furthermore,
we can introduce a new gauge field UμðxÞ defined by

UμðxÞ ¼
1þ ϵðxÞ

2
UμðxÞ þ

1 − ϵðxÞ
2

U�
μðxÞ ð4Þ

and rewrite the resultant reduced staggered action in the
form

SF ¼
X

x;μ

1

2
ημðxÞψTðxÞUμðxÞψðxþ μÞ: ð5Þ

By taking the transpose of this equation it can be written
equivalently as

SF ¼
X

x;μ

1

2
ψTðxÞημðxÞΔμðxÞψðxÞ; ð6Þ

where

ΔμψðxÞ ¼
1

2
ðUμðxÞψðxþ μÞ − UT

μ ðx − μÞψðx − μÞÞ; ð7Þ

which reveals explicitly the antisymmetric character of the
reduced fermion operator. This reduced action is invariant
under two symmetries in addition to gauge invariance, a
continuous Uð1Þ symmetry which acts on the fermions

ψðxÞ → eiαϵðxÞψðxÞ ð8Þ

and a discrete shift symmetry

ψ → ξρψðxþ ρÞ; ð9Þ

where ξμ ¼ ð−1Þ
P

d−1
i¼μþ1

xi . Since for reduced fermions one
keeps only ψ or ψ̄ at each site the usual staggered fermion
mass term does not exist. However ψaψbϵab is clearly a
gauge invariant fermion bilinear for fermions transforming
in the fundamental representation of SUð2Þ and can hence
be added to the fermion action,1

δS ¼ OS ¼ m
X

x

ϵðxÞψaðxÞψbðxÞϵab: ð10Þ

To understand why the parity factor ϵðxÞ appears in the
mass term consider the full fermion operator

D ¼ ημðxÞΔab
μ þmϵðxÞϵab: ð11Þ

The poles of the associated propagator are determined by
the zeroes ofD2. Using the fact that the parity operator ϵðxÞ
anticommutes with the symmetric difference operator Δμ

allows one to write

−D2 ¼ −ΔμΔμ þm2; ð12Þ

which exhibits the correct pole structure for a massive
fermion (in Euclidean space). Notice that this mass operator
induces the breaking Uð1Þ → Z2. Alternatively, we can
retain the Uð1Þ symmetry by adding a gauge invariant one
link mass term which then breaks the shift symmetry.

OL ¼ m1

X

x;μ

1

2
ξμðxÞϵðxÞψTðxÞMμψðxÞ; ð13Þ

where

MμψðxÞ ¼
1

2
½UμðxÞψbðxþ μÞ þ UT

μ ðx − μÞψðx − μÞ�:
ð14Þ

Notice the addition ofOS andOL to the action preserves the
antisymmetry of the fermion operator. In our numerical
work we have investigated the effects of both of these mass
terms. For a full staggered field the symmetry breaking
patterns are a little different. For such a staggered field in a
pseudoreal representation we can pair the ψ and ψ̄ at each
site into a doublet with the kinetic operator now being
invariant under a Uð2Þ symmetry. In this case a site mass
term now breaks Uð2Þ → Oð2Þ. Such a symmetry breaking
pattern could also be obtained by using two reduced

1Notice the analog of this term vanishes for two continuum
Weyl fermions because of an additional contraction over Lorentz
indices unless the fermions carry additional flavor indices.
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staggered fields. Once we integrate the fermions we
generate a Pfaffian. Since the fermion operator is antisym-
metric its eigenvalues come in pairs ðλ;−λÞ. Additionally
the pseudoreal nature of the representation implies that
U�

μðxÞ ¼ σ2UμðxÞσ2, which ensures that every eigenvalue
λn (generically complex) and corresponding eigenvector vn
is paired with another with eigenvalue λ�n and eigenvector
σ2v�n. This quartic structure of the spectrum ensures that
the Pfaffian is positive definite and can hence be written
PfðDÞ ¼ detðD†DÞ14, which is suitable for use in a
Monte Carlo algorithm [13].2 For the gauge part of the
SUð2Þ action we employ the standard Wilson action

SG ¼
X

x

X

μ<ν

−
β

2N
Tr½UμνðxÞ þ U†

μνðxÞ�: ð15Þ

The full action used for lattice simulation is given by

S ¼ SF þ SG þOS þOL: ð16Þ

III. NUMERICAL RESULTS

We implemented the rational hybrid monte carlo algo-
rithm to simulate the model exploring lattice volumes up to
164 with gauge couplings spanning β ¼ 0.5–4.0 and for a
wide range of site and link masses. Figures 1 and 2 show
plots of the expectation values of the site and link bilinears
form ¼ m1 ¼ 0.1 as a function of the gauge coupling β for
several lattice volumes. Both vacuum expectation values
(vevs) are driven to small values for large β as expected
since the model enters a deconfined phase in that regime
which can be seen clearly in Fig. 3 which shows the
Polyakov line as a function of gauge coupling for m ¼
m1 ¼ 0.1 on a 64 site lattice. The Polyakov line functions as
a quasiorder parameter for the breaking of center symmetry
and runs from small to large values as the system
deconfines. However in a dynamical setup Polyakov line
susceptibility does not show anything interesting for
characterizing the order of transition. Of course the key
question is whether one or more of these bilinears vev
remains nonzero in the thermodynamic limit as the bare
fermion mass is sent to zero. We focus on the largest values
of the (inverse) gauge coupling (smallest lattice spacing)
which clearly lie within the confining regime of the theory
on the lattice volumes we have simulated. In Figs. 4 and 5
we show plots of the expectation values of the two blinears
vs the bare fermion mass m ¼ m1 for gauge coupling
β ¼ 1.8 for a range of lattice volumes. Clearly the link vev
shows no strong volume dependence and smoothly goes to
zero as the external mass is sent to zero. This is consistent
with work by Follana et al. [3] for full staggered fermions
in quenched approximation. The site bilinear shows a very

different behavior with the measured vev growing with
volume at small mass. This is the behavior needed for a
nonzero condensate to survive the zero mass limit, and
indeed the data is quite consistent with the presence of a

FIG. 1. hOSi with m ¼ m1 ¼ 0.1 for L ¼ 6, 8, 12.

FIG. 2. hOLi with m ¼ m1 ¼ 0.1 for L ¼ 6, 8, 12.
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FIG. 3. hjLpðxÞji Polyakov line for L ¼ 6 and m ¼ 0.1.

2An exception to this can occur if the fermion operator
develops a purely real eigenvalue which is then unpaired. We
have seen no sign of such eigenvalues in our simulations.
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nonzero site condensate in that limit. To gain confidence in
this result we repeated the analysis for β ¼ 1.7 (Figs. 6
and 7) corresponding to a larger value of the lattice spacing.
The overall conclusion remains the same, and we infer that
the preferred breaking channel for the simple reduced
staggered fermions studied here corresponds to Uð1Þ →
Z2

3 We can confirm these conclusions by looking for the
corresponding Goldstone boson—the pion—whose corre-
lator is given by

hϕðxÞϕðyÞi ¼ hϵabψaðxÞψbðxÞϵcdψcðyÞψdðyÞi: ð17Þ

A typical correlator is shown at m ¼ 0.1 and β ¼ 1.8 on a
83 × 32 lattice in Fig. 8. We use the standard fit CπðtÞ ∼
A½expð−amπðtÞ þ expð−amπðT − tÞÞ� to extract the pion
mass. In Fig. 9 we plot the pion mass as a function of the
bare quark mass m. For this calculation the smallest quark

mass we use is m ¼ 0.01 which ensures safe distance
from epsilon regime where finite volume effects drive the
condensate to zero in m → 0 limit. The solid line is a fit
to the expected square root form and corresponds to the

FIG. 4. hOSi vs m at β ¼ 1.8 for L ¼ 6, 8, 12, 16.

FIG. 5. hOLi vs m1 at β ¼ 1.8 for L ¼ 6, 8, 12, 16.

FIG. 6. hOSi vs m at β ¼ 1.7 for L ¼ 6, 8, 12, 16.

FIG. 7. hOLi vs m1 at β ¼ 1.7 for L ¼ 6, 8, 12, 16.

FIG. 8. hCðtÞi:pion correlator with quark mass m ¼ 0.2 for
83 × 32.

3Similar results were observed by Follana [3] in the quenched
approximation although the nature of the condensate changed
when a smeared action was employed.
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standard GMOR prediction confirming that this state is
indeed a pion resulting from spontaneous breaking of the
Uð1Þ symmetry.

IV. SUMMARY

In this paper we perform the first studies of SUð2Þ lattice
gauge theory with dynamical reduced staggered fermions.
The pseudoreal nature of the fundamental representation
of SUð2Þ allows us to employ the standard rational hybrid

monte carlo algorithm without encountering a sign prob-
lem. Unlike SUðNÞ for N > 2 a gauge invariant site mass
term is allowed, and we investigate the model including
both this term and a gauge invariant one-link mass operator.
We find strong evidence that a site bilinear fermion
condensate is formed at strong coupling spontaneously
breaking an exact Uð1Þ symmetry down to Z2. We find
good evidence for the corresponding Goldstone boson—
the pion. These results are consistent with previous studies
that used the spectrum of low-lying eigenmodes of the
quenched Dirac operator to find evidence for chiral
symmetry breaking in this theory. Our results strengthen
these conclusions and support the analysis given in [5].
This work is motivated by an attempt to understand some of
the novel phase structure in a related Higgs-Yukawa model
involving reduced staggered fermions interacting with
SUð2Þ gauge fields.The current work establishes the bed-
rock for understanding the results of those studies the
results of which will be reported soon.
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