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We study the rare radiative leptonic decays Bs → lþl−γ (l ¼ e, μ, τ) within the Standard Model,
considering both the structure-dependent amplitude and bremsstrahlung. In the framework of the covariant
confined quark model developed by us, we calculate the form factors characterizing the Bs → γ transition
in the full kinematical region of the dilepton momentum squared and discuss their behavior. We provide the
analytic formula for the differential decay distribution and give predictions for the branching fractions in
both cases: with and without long-distance contributions. Finally, we compare our results with those
obtained in other approaches.
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I. INTRODUCTION

The rare radiative decays Bq → lþl−γ with l ¼ e, μ, τ
and q ¼ d, s are of great interest for several reasons. First,
they are complementary to the well-known decays B →
Kð�Þlþl− and therefore provide us with extra tests of the
Standard Model (SM) predictions for processes which
proceed at loop level. Second, this process is not helicity
suppressed as compared with the pure leptonic decays
Bq → lþl− due to the appearance of a photon in the final
state. Theoretical estimates of the decay branching fractions
have shown that BðBs → μþμ−γÞ may be an order of
magnitude larger than BðBs → μþμ−Þ.
There are a number of theoretical calculations of the

branching fractions BðBq → lþl−γÞ performed in different
approaches. Among them one can mention the early studies
in the framework of a constituent quark model [1], light-
cone QCD sum rules [2,3], and the light-front model [4].
The structure-dependent amplitude of the decays Bs →
lþl−γ was analyzed in Ref. [5] by taking a universal form

for the form factors, which is motivated by QCD and
related to the light-cone wave function of the Bs meson. In
Ref. [6] it was shown that efficient constraints on the
behavior of the form factors can be obtained from the
gauge-invariance requirement of the Bq → lþl−γ ampli-
tude, as well as from the resonance structure of the form
factors and their relations at large photon energies.
Universality of nonperturbative QCD effects in radiative
B decays was studied in Ref. [7]. In Ref. [8] long-distance
QCD effects in the Bd=s → lþl−γ decays were analyzed. It
was shown that the contribution of light vector-meson
resonances related to the virtual photon emission from
valence quarks of the Bmeson gives a sizable impact on the
dilepton differential distribution. In Ref. [9] the Bd=s → γ
transition form factors were calculated within the relativ-
istic dispersion approach based on the constituent quark
picture. A detailed analysis of the charm-loop contributions
to the radiative leptonic decays was also performed. Very
recently, a novel strategy to search for the decays Bs →
μþμ−γ in the event sample selected for Bs → μþμ−
searches was presented [10].
It is worth noting that the predictions for the branching

fractions BðBs → lþl−γÞ given in the literature are still
largely different from each other, ranging from 2.4 × 10−9

to 2.5 × 10−8 for the electron mode, and from 1.9 × 10−9 to
1.9 × 10−8 for the muon one [2,8]. Moreover, in some early
calculations, the long-distance contributions from the cc̄
resonances were neglected [1,5]. Note that in Refs. [1,2,4]
the authors concluded that the contributions from diagrams
with the virtual photon emitted from the valence quarks of
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the Bs meson are small and, therefore, neglected them.
However, as we will show later on, the diagram with the
virtual photon emission from the light s quark gives a very
sizable contribution.
Putting aside the total branching fraction, the shape of

the hadronic form factors are important. In particular, it
directly affects the decay distribution, and therefore the
partial branching fraction integrated in different q2 bins,
which is more important for experimental studies than the
total branching fraction. Regarding the form factor shape,
the authors of Refs. [5,6] have pointed out that the form
factors FTV and FTA in Ref. [2] may be unreliable since
they strongly violate the relation FTV ≈ FTA at large photon
energies. Also, the form factors FTV and FTA obtained
in Ref. [4] vanish at maximum transferred momentum
q2 ¼ m2

Bs
, which seems unrealistic [6]. Among the model-

based approaches, the most reliable form factors in the
whole q2 range are provided in Refs. [5,9]. However, in
Ref. [5], the resonances were not taken into account. Note
that the light resonance ϕ is important since it significantly
enhances the partial branching fraction in the low q2 region,
which is the main source of the signal for these decays at
the LHC [8].
In the literature there exist also model-independent

studies of the Bs → lþl−γ and related decays Bs →
lþl− and Bs → lþνlγ [7,11–14]. However, most of them
focus mainly on the form factors FV and FA. Also, the form
factors were given with high accuracy only in a limited
kinematical range, usually the range where the photon
energy Eγ is much higher than the QCD scale. In Ref. [15],
model-independent predictions for BðBs → μþμ−γÞ were
provided, but only for the low-Eγ region.
In this paper we calculate the matrix elements and the

differential decay rates of the decays Bs → lþl−γ in the
framework of the covariant confined quark model previ-
ously developed by us (see, e.g., Ref. [16]). This is a
quantum-field theoretical model based on relativistic
Lagrangians which effectively describe the interaction of
hadrons with their constituent quarks. The quark confine-
ment is realized by cutting the integration variable, which is
called the proper time, at the upper limit. The interaction
with the electromagnetic field is introduced by gauging the
interaction Lagrangian in such a way as to keep the gauge
invariance of the matrix elements at all calculation steps.
This model has been successfully applied for the descrip-
tion of the matrix elements and form factors in the full
kinematical region in semileptonic and rare decays of
heavy mesons as well as baryons (see, e.g., Refs. [17–21]).
The rest of the paper is organized as follows. In Sec. II

we give a necessary brief sketch of our approach. The
introduction of electromagnetic interactions in the model is
described in Sec. III. Section IV is devoted to the calcu-
lation of the decay matrix elements. We also briefly discuss
their gauge invariance. In Sec. V we recalculate the formula
for the twofold decay distribution in terms of the

Mandelstam variables ðt; sÞ. Then we integrate out the t
variable analytically and present the expression for the
dilepton differential distribution. In Sec. VI we provide
numerical results for the form factors, the differential decay
widths, and the branching fractions. A comparison with
existing results in the literature is included. Finally, we
conclude in Sec. VII.

II. BRIEF SKETCH OF THE COVARIANT
CONFINED QUARK MODEL

The covariant confined quark model (CCQM) has been
developed by our group in a series of papers. In this section,
we mention several key elements of the model only for
completeness. For a more detailed description of the model,
as well as the calculation techniques used for the quark-
loop evaluation, we refer to Refs. [16–23] and references
therein.
In the CCQM, the interaction Lagrangian of the Bs

meson with its constituent quarks is constructed from the
hadron field BsðxÞ and the interpolating quark current
JBs

ðxÞ:

Lint ¼ gBs
BsðxÞJBs

ðxÞ þ H:c:; ð1Þ

where the latter is given by

JBs
ðxÞ ¼

Z
dx1

Z
dx2FBs

ðx; x1; x2Þb̄aðx1Þiγ5saðx2Þ: ð2Þ

The hadron-quark coupling gBs
is obtained with the help of

the compositeness condition, which requires the wave
function renormalization constant of the hadron to be equal
to zero ZH ¼ 0. Here, FBs

ðx; x1; x2Þ is the vertex function
whose form is chosen so as to reflect the intuitive expect-
ations about the relative quark-hadron positions

FBs
ðx;x1;x2Þ¼ δð4Þðx−w1x1−w2x2ÞΦBs

½ðx1−x2Þ2�; ð3Þ

where we require w1 þ w2 ¼ 1. We actually adopt the most
natural choice

w1 ¼
mb

mb þms
; w2 ¼

ms

mb þms
; ð4Þ

in which the barycenter of the hadron is identified
with that of the quark system. The interaction strength
ΦBs

½ðx1 − x2Þ2� is assumed to have a Gaussian form which
is, in the momentum representation, written as

Φ̃Bs
ð−p2Þ ¼ exp ðp2=Λ2

Bs
Þ: ð5Þ

Here, ΛBs
is a hadron-related size parameter, regarded as an

adjustable parameter of the model. For the quark propa-
gators Sq we use the Fock-Schwinger representation
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SqðkÞ ¼ ðmq þ =kÞ
Z

∞

0

dα exp½−αðm2
q − k2Þ�: ð6Þ

Using various techniques described in our previous
papers, a form factor F can be finally written in the form
of a threefold integral

F ¼
Z

1=λ2

0

dtt
Z

1

0

dα1

Z
1

0

dα2δð1 − α1 − α2Þfðtα1; tα2Þ;

ð7Þ

where fðtα1; tα2Þ is the resulting integrand corresponding
to the form factor F, and λ is the so-called infrared cutoff
parameter, which is introduced to avoid the appearance of
the branching point corresponding to the creation of free
quarks, and taken to be universal for all physical processes.
The threefold integral in Eq. (7) is calculated by using
FORTRAN code with the NAG library.
The model parameters are determined from a least-

squares fit to available experimental data and some lattice
calculations. We have observed that the errors of the fitted
parameters are within 10%. We calculated the propagation
of these errors on the form factors and found the uncer-
tainties for the form factors to be of order 20% at small q2

and 30% at high q2 [24].
In this paper we use the results of the updated fit

performed in Refs. [20,25,26]. The central values of the
model parameters involved in this paper are given by
(in GeV)

mu=d ms mc mb λ ΛBs

0.241 0.428 1.67 5.04 0.181 2.05
: ð8Þ

III. ELECTROMAGNETIC INTERACTIONS

Within the CCQM framework, interactions with electro-
magnetic fields are introduced as follows. First, one gauges
the free-quark Lagrangian in the standard manner by using
minimal substitution

∂μqi → ð∂μ − ieqiA
μÞqi ð9Þ

that gives the quark-photon interaction Lagrangian

Lem−min
int ðxÞ ¼

X
q

eqq̄ðxÞ=AðxÞqðxÞ: ð10Þ

In order to guarantee local invariance of the strong
interaction Lagrangian, one multiplies each quark field
qðxiÞ in Lstr

int with a gauge field exponential. One then has

qiðxiÞ → e−ieqi Iðxi;x;PÞqiðxiÞ; ð11Þ

where

Iðxi; x; PÞ ¼
Z

xi

x
dzμAμðzÞ: ð12Þ

The path P connects the end points of the path integral.
It is readily seen that the full Lagrangian is invariant

under the transformations

qiðxÞ → eieqi fðxÞqiðxÞ;
q̄iðxÞ → q̄iðxÞe−ieqi fðxÞ;
AμðxÞ → AμðxÞ þ ∂μfðxÞ: ð13Þ

One then expands the gauge exponential up to the
required power of eqAμ needed in the perturbative series.
This will give rise to a second term in the nonlocal
electromagnetic interaction Lagrangian Lem−nonloc

int . At first
glance, it seems that the results will depend on the path P
taken to connect the end points of the path integral in
Eq. (12). However, one needs to knowonly the derivatives of
the path integral expressions when calculating the pertur-
bative series. Therefore, we use the formalism suggested in
Refs. [27,28], which is based on the path-independent
definition of the derivative of Iðx; y; PÞ:

∂
∂xμ Iðx; y; PÞ ¼ AμðxÞ: ð14Þ

As a result of this rule, the Lagrangian describing the
nonlocal interaction of the Bs meson, the quarks, and
electromagnetic fields reads (to the first order in the
electromagnetic charge)

Lem−nonloc
int ðxÞ¼ igBs

BsðxÞ
Z

dx1

Z
dx2

Z
dzðb̄ðx1Þγ5sðx2ÞÞAμðzÞEμðx;x1;x2;zÞ; ð15Þ

Eμðx; x1; x2; zÞ ¼
Z

d4p1

ð2πÞ4
Z

d4p2

ð2πÞ4
Z

d4q
ð2πÞ4 exp½−ip1ðx1 − xÞ þ ip2ðx2 − xÞ þ iqðz − xÞ�

×

�
ebðqμw2 − 2pμÞw2

Z
1

0

dτΦ̃0
Bs
½−ðp − w2qÞ2τ − p2ð1 − τÞ�

− esðqμw1 þ 2pμÞw1

Z
1

0

dτΦ̃0
Bs
½−ðpþ w1qÞ2τ − p2ð1 − τÞ�

�
; ð16Þ

where p ¼ w2p1 þ w1p2.
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IV. MATRIX ELEMENTS OF THE
DECAYS Bs → l+l− γ

The decays Bs → lþl−γ are described by three sets of
diagrams shown in Figs. 1–3. Diagrams from the first set
(Fig. 1) correspond to the case when the real photon is
emitted from the quarks or the meson-quark vertex. The
effective Hamiltonian describing the b → slþl− weak
transition is written as

Hb→slþl−
eff ¼ GFffiffiffi

2
p αem

2π
λt½Ceff

9 ðs̄γμð1 − γ5ÞbÞðl̄γμlÞ

−
2m̃b

q2
Ceff
7 ðs̄iσμνqνð1þ γ5ÞbÞðl̄γμlÞ

þ C10ðs̄γμð1 − γ5ÞbÞðl̄γμγ5lÞ�; ð17Þ

where λt ¼ VtbV�
ts, and m̃b is the QCD quark mass which is

different from the constituent quark mass mb used in our
model. Here and in the following we denote the QCD quark
masses with a tilde to distinguish them from the constituent
quark masses used in the model [see Eq. (8)]. The Wilson
coefficients Ceff

7 ¼ C7 − C5=3 − C6 and C10 depend on the
scale parameter μ. The Wilson coefficient Ceff

9 effectively
takes into account, first, the contributions from the four-
quark operators Oi (i ¼ 1;…; 6) and, second, nonpertur-
bative effects coming from the cc̄-resonance contributions

which are as usual parametrized by the Breit-Wigner
ansatz [29]:

Ceff
9 ¼ C9 þ C0

�
hðm̂c; sÞ þ

3π

α2
κ

X
Vi¼ψð1sÞ;ψð2sÞ

ΓðVi → lþl−ÞmVi

mVi
2 − q2 − imVi

ΓVi

�
−
1

2
hð1; sÞð4C3 þ 4C4 þ 3C5 þ C6Þ

−
1

2
hð0; sÞðC3 þ 3C4Þ þ

2

9
ð3C3 þ C4 þ 3C5 þ C6Þ; ð18Þ

where C0 ≡ 3C1 þ C2 þ 3C3 þ C4 þ 3C5 þ C6, m̂c ¼ m̃c=MBs
, s ¼ q2=M2

Bs
, and κ ¼ 1=C0. Here,

hðm̂c; sÞ ¼ −
8

9
ln
m̃b

μ
−
8

9
ln m̂c þ

8

27
þ 4

9
x

−
2

9
ð2þ xÞj1 − xj1=2

8>>><
>>>:

�
ln

����
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
− 1

���� − iπ

�
; for x≡ 4m̂2

c
s < 1;

2 arctan
1ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p ; for x≡ 4m̂2
c

s > 1;

hð0; sÞ ¼ 8

27
−
8

9
ln
m̃b

μ
−
4

9
ln sþ 4

9
iπ:

The SM Wilson coefficients are taken from Ref. [30].
They were computed at the matching scale μ0 ¼ 2MW and
run down to the hadronic scale μb ¼ 4.8 GeV. Their
numerical values are given in Table I.
We use the bare c-quark mass corresponding to the

running mass m̃c ¼ m̄cðμ ¼ m̄cÞ ¼ 1.27� 0.03 GeV in
the MS scheme (for a review, see “Quark masses” in

PDG [31]). Note that the m̃c appears only in the charm-loop
function hðm̂c; sÞ via the logarithm. Therefore, uncertain-
ties related to the choice of the scale parameter μ are small.
For the bare b-quark mass we use the central value of m̃b ¼
m1S

b ¼ 4.68� 0.03 GeV obtained in the 1S mass scheme;
see Ref. [32]. This value is close to the pole b-mass which
was used in the Wilson coefficients CiðμbÞ. Finally, the

FIG. 1. Diagrams which contribute to the decays Bs → lþl−γ
with the real photon emitted from the quarks or the meson-quark
vertex.
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values of αemðMZÞ ¼ 1=128.94 and λt ¼ jVtbV�
tsj ¼ 0.040

are taken from PDG [31].
Diagrams from the second set (Fig. 2) represent the case

when the real photon is emitted from the magnetic penguin
operator. The effective Hamiltonian describing the b → sγ
electroweak transition is written as

Hb→sγ
eff ¼ −

GFffiffiffi
2

p λtCeff
7

em̃b

8π2
ðs̄σμνð1þ γ5ÞbÞFμν: ð19Þ

Diagrams from the first two sets contribute to the
structure-dependent (SD) part of the decay amplitude.
They can be parametrized by a set of invariant form factors.
In order to define the form factors, we specify our choice
for the momenta in the decays as follows:

Bsðp1Þ → γðp2Þ þ lþðkþÞ þ l−ðk−Þ; ð20Þ

where p1 ¼ p2 þ kþ þ k− and p1 − p2 ¼ kþ þ k− ≡ q,
with p2

1 ¼ M2
Bs
, p2

2 ¼ 0, ϵ†2 · p2 ¼ 0, and k2þ ¼ k2− ¼ m2
l.

We will use the definition of the Bs → γ transition form
factors given, for instance, in Ref. [8]:

hγðp2;ϵ2Þjs̄γμbjBsðp1Þi¼eϵ†2αε
μαp1p2

FVðq2Þ
MBs

;

hγðp2;ϵ2Þjs̄γμγ5bjBsðp1Þi¼ ieϵ†2αðgμαp1p2−pα
1p

μ
2Þ
FAðq2Þ
MBs

;

hγðp2;ϵ2Þjs̄σμqbjBsðp1Þi¼ ieϵ†2αε
μαp1p2FTVðq2Þ;

hγðp2;ϵ2Þjs̄σμqγ5bjBsðp1Þi¼eϵ†2αðgμαp1p2−pα
1p

μ
2ÞFTAðq2Þ:

ð21Þ

Here we use the short notations σμq ≡ σμβqβ and εμαp1p2 ≡
εμαβδp1βp2δ.

The form factors gain contributions from the diagrams in
Figs. 1 and 2 in the following manner:

FV ¼ MBs
½ebF̃bγb

V þ esF̃
sγs
V �;

FA ¼ MBs
½ebF̃bγb

A þ esF̃
sγs
A þ ebF̃bubble−b

A þ esF̃bubble−s
A �;

FTV ¼ ebF̃
bγb
TV þ esF̃

sγs
TV þ ebF̃

bðl̄lÞb
TV þ esF̃

sðl̄lÞs
TV ;

FTA ¼ ebF̃
bγb
TA þ esF̃

sγs
TA þ ebF̃bubble−b

TA þ esF̃bubble−s
TA

þ ebF̃
bðl̄lÞb
TA þ esF̃

sðl̄lÞs
TA : ð22Þ

The process with the virtual photon emitted from the
light s quark is described by the diagram in Fig. 2 (left
panel). The physical region for q2 in the decays Bs →
γlþl− is extended up to q2max ¼ M2

Bs
, which is much higher

than the branch-point value q2 ¼ 4m2
s . In this case, the

form factor F̃sðl̄lÞs
TV=TA cannot be directly calculated in our

model due to the appearance of hadronic singularities
associated with the light vector meson resonances. In order
to describe this amplitude, we follow the authors of Ref. [9]
in using the gauge-invariant version [33] of the vector
meson dominance [34–36],

F̃sðl̄lÞs
TV=TAðq2Þ¼ F̃sðl̄lÞs

TV=TAð0Þ

−
X
V

2fe:m:
V GT

1 ð0Þ
q2=MV

q2−M2
V þ iMVΓV

; ð23Þ

whereΓV andMV are the decaywidth andmass of the vector
meson resonance, andGT

1 ð0Þ is one of the tensor form factors
for the Bs → V transition, defined as follows [37–39]:

hVðp2; ϵ2Þjs̄σμνbjBsðp1Þi

¼ ϵ†2α

�
εPμναGT

1 ðq2Þ þ εqμναGT
2 ðq2Þ

þ εPqμνPα GT
0 ðq2Þ

ðMBs
þMVÞ2

	
: ð24Þ

All parameters necessary for the form factor definition in
Eq. (23) are calculated in our model and are given by

F̃sðl̄lÞs
TV=TAð0Þ fϕðGeVÞ GT

1 ð0Þ
0.120 0.227 0.266

: ð25Þ

Note that the electromagnetic decay constant is related to the
leptonic decay constant by the relation fe:m:

ϕ ¼ − 1
3
fϕ.

FIG. 2. Diagrams which contribute to the decays Bs → lþl−γ
with the real photon emitted from the penguin.

TABLE I. NNLO Wilson coefficients at the scale μb ¼ 4.8 GeV obtained in Ref. [30].

C1 C2 C3 C4 C5 C6 Ceff
7

C9 C10

−0.2632 1.0111 −0.0055 −0.0806 0.0004 0.0009 −0.2923 4.0749 −4.3085
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Regarding the light resonances, here we consider only the
main contribution from the ground-state ϕ meson. It is
interesting to note that our result for GT

1 ð0Þ is equal to the
value 0.27� 0.01 obtained by the authors of Ref. [9].
Finally, the SD part of the amplitude is written in terms

of the form factors as follows:

MSD¼GFffiffiffi
2

p αemλt
2π

eϵ�2α

��
εμαp1p2

FVðq2Þ
MBs

− iTμα
1

FAðq2Þ
MBs

	

× ðCeff
9 l̄γμlþC10l̄γμγ5lÞ

þ ½εμαp1p2FTVðq2Þ− iTμα
1 FTAðq2Þ�

2m̃b

q2
Ceff
7 l̄γμl

�
;

ð26Þ
where Tμα

1 ≡ ðgμαp1p2 − pα
1p

μ
2Þ.

The structure-independent part of the amplitude (brems-
strahlung) is described by the diagrams in Fig. 3. Only the
operator O10 contributes to this process, and it effectively
gives the leptonic decay constant fBs. One has

MBR ¼ −i
GFffiffiffi
2

p αemλt
2π

eϵ�2αð2mlfBsC10Þūðk−Þ

×

�
γα=p1

t −m2
l
−

=p1γ
α

u −m2
l

	
γ5vðkþÞ: ð27Þ

Here, t ¼ ðp2 þ k−Þ2 ¼ ðp1 − kþÞ2, u ¼ ðp2 þ kþÞ2 ¼
ðp1 − k−Þ2, and s ¼ q2 so that sþ tþ u ¼ M2

Bs
þ 2m2

l.
The variable t varies in the interval t− ≤ t ≤ tþ, where the
bounds t� are given by

t�¼m2
lþ

1

2
ðM2

Bs
−sÞ½1�βðsÞ�; βðsÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
l

s

r
: ð28Þ

One can see that t� ¼m2
l at minimum recoil s ¼ q2 ¼ M2

Bs
,

which leads to the infrared pole in Eq. (27). A cut in the
photon energy is required. In the Bs center-of-mass system
one has

Eγ ¼
MBs

2

�
1 −

q2

M2
Bs

�
≥ Eγmin: ð29Þ

Note that there are also weak annihilation diagrams with
a uðcÞ anomalous triangle in addition to the above

diagrams. However, the contribution from these diagrams
is much smaller than that from other diagrams as was
shown in Ref. [8]. Therefore, we will drop these types of
diagrams in what follows.
A few remarks should be made with respect to the

calculation of the Feynman diagrams in our approach. The
SD part of thematrix element is described by the diagrams in
Figs. 1 and 2. These diagrams do not include ultraviolet
divergences because the hadron-quark vertex functions drop
off exponentially in the Euclidean region. The loop integra-
tion is performed by using the Fock-Schwinger representa-
tion for the quark propagators, and the exponential form for
the meson-quark vertex functions. The tensorial integrals are
calculated by using the differential technique. The final
expression for the SDpart is represented as a sumof products
of Lorentz structures and the corresponding invariant form
factors. The form factors are described by threefold integrals
in such a way that one integration is over a dimensional
parameter t (proper time), which proceeds from zero to
infinity, and two others are over dimensionless Schwinger
parameters. The possible branch points and cuts are regu-
larized by introducing the cutoff at the upper limit of the
integration over proper time. The final integrals are calcu-
lated numerically by using the FORTRAN codes.
Then one can check that the final expression for the SD

part of the amplitude is gauge invariant. Technically, it
means that in addition to the gauge-invariant structures
εμαp1p2 and Tμα

1 ¼ ðgμαp1p2 − pα
1p

μ
2Þ, the amplitude has

also the non-gauge-invariant pieces gμα and pμ
1p

α
1 . We have

checked numerically that the form factors corresponding to
the non-gauge-invariant part vanish for arbitrary momen-
tum transfer squared q2.

V. DIFFERENTIAL DECAY RATE

The twofold decay distribution is written as

dΓ
dsdt

¼ 1

28π3M3
Bs

X
pol

jMj2;M ¼ MSD þMBR; ð30Þ

where
P

pol denotes the summation over polarizations of
both the photon and leptons. The physical region was
discussed in the previous section, which reads 4m2

l ≤ s≡
q2 ≤ M2

Bs
, and t− ≤ t ≤ tþ. It ismore convenient towrite the

final result for the twofold decay distribution in terms of
dimensionless momenta and masses:

X̂ ≡ X
M2

Bs

ðX ¼ s; t; uÞ;

Ŷ ≡ Y
MBs

ðY ¼ ml; m̃q; fBs
Þ; etc: ð31Þ

The decay distribution is written as a sum of the SD part,
the bremsstrahlung (BR), and the interference (IN) ones as
follows:

FIG. 3. Bremsstrahlung diagrams.
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dΓ
dŝdt̂

¼ Nt

�
dΓSD

dŝdt̂
þ dΓBR

dŝdt̂
þ dΓIN

dŝdt̂

�
;

Nt ≡G2
Fα

3
emM5

Bs
jλtj2

210π4
: ð32Þ

One has

dΓSD

dŝdt̂
¼ x̂2B0 þ x̂ðû − t̂ÞB1 þ ðû − t̂Þ2B2; ð33Þ

B0 ¼ ðŝþ 4m̂l
2ÞΔF − 8m̂l

2C2
10ðF2

V þ F2
AÞ;

B1 ¼ 8½ŝC10ReðCeff
9 ÞFVFA þ m̂bCeff

7 C10ðFVReðFTAÞ þ FAReðFTVÞÞ�;
B2 ¼ ŝΔF;

ΔF ¼ ðjCeff
9 j2 þ C2

10ÞðF2
V þ F2

AÞ þ

2m̂b

ŝ

�
2ðCeff

7 Þ2ðjFTV j2 þ jFTAj2Þ

þ
�
4m̂b

ŝ

�
Ceff
7 ½FVReðCeff

9 FTVÞ þ FAReðCeff
9 FTAÞ�;

dΓBR

dŝdt̂
¼ ð8f̂Bs

Þ2m̂l
2C2

10

�
1

2
ð1þ ŝ2ÞD̂uD̂t − ðx̂m̂lD̂uD̂tÞ2

	
; ð34Þ

dΓIN

dŝdt̂
¼ −16f̂Bs

m̂l
2x̂2D̂uD̂t ×

�
2x̂m̂b

ŝ
C10Ceff

7 ReðFTVÞ þ x̂C10ReðCeff
9 ÞFV þ ðû − t̂ÞC2

10FA

	
; ð35Þ

where x̂ ¼ 1 − ŝ, D̂t ¼ 1=ðt̂ − m̂l
2Þ, and D̂u ¼

1=ðû − m̂l
2Þ. We have checked that all the

expressions above are in agreement with those given
in Ref. [9].
After integrating out the variable t̂ we obtain the

following analytic expressions for the differential
decay rate:

dΓSD

dŝ
¼ Ntx̂3β

�
B0 þ

1

3
β2B2

	
; ð36Þ

dΓBR

dŝ
¼ Ntð8f̂Bs

Þ2m̂l
2C2

10

�
1þ ŝ2

x̂
ln

�
1þ β

1 − β

�

−
8m̂l

2

x̂

�
β

1 − β2
þ 1

2
ln

�
1þ β

1 − β

��	
; ð37Þ
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FIG. 4. Form factors for the Bs → γ transition (see text for more details).
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dΓIN

dŝ
¼−Nt32f̂Bs

m̂l
2x̂2 ln

�
1þβ

1−β

�

×

�
C10ReðCeff

9 ÞFV þ
2m̂b

ŝ
Ceff
7 C10ReðFTVÞ

	
; ð38Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂l

2=ŝ
p

.

VI. NUMERICAL RESULTS

In Fig. 4 we present the q2 dependence of the calculated
form factors with the fixed values of the model parameters
given in Eq. (8) in the full kinematical region 0 ≤ q2 ≤
M2

Bs
. Here, the form factors F̃TV and F̃TA are defined as

follows:

F̃TV=TAðq2Þ ¼ FTV=TAðq2Þ − esF̃
sðl̄lÞs
TV=TA: ð39Þ

One sees that F̃TV and F̃TA are real and are made of
contributions from all diagrams except for the one with the
virtual photon emitted from the s quark. The total form
factors FTV and FTA are complex due to the parametriza-

tion of F̃sðl̄lÞs
TV=TA in Eq. (23). In Fig. 4 (lower panels) we also

plot the absolute values jFTV j and jFTAj together with F̃TV

and F̃TA for comparison.
The results of our numerical calculations for the form

factors FV , FA, F̃TV , and F̃TA can be approximated with
high accuracy by the double-pole parametrization

Fðq2Þ ¼ Fð0Þ
1 − aŝþ bŝ2

; ŝ ¼ q2

M2
B�
s

; ð40Þ

with the relative error less than 1%. The parameters Fð0Þ,
a, and b are listed in Table II. For completeness we also list
here the values of the form factors at zero recoil ðq2maxÞ.
In Fig. 5 we compare our form factors with the

Kozachuk-Melikhov-Nikitin (KMN) form factors calcu-
lated in Ref. [9]. Using the definitions in Eqs. (21) and (22)
we can relate our form factors Fiðq2Þ to the KMN form
factors Fiðq2; 0Þ as follows (see Ref. [9] for more detail):

FV=Aðq2; 0Þ ¼ FV=Aðq2Þ;
FTV=TAðq2; 0Þ ¼ FTV=TAðq2Þ − ebF̃

bðl̄lÞb
TV=TA − esF̃

sðl̄lÞs
TV=TA:

ð41Þ
One can see that in the low-q2 region (q2 ≲ 20 GeV2) the
corresponding form factors from the two sets are very close.
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FIG. 5. Comparison of the form factors Fiðq2; 0Þ calculated in our model (solid lines) with those from Ref. [9] (dashed lines).

TABLE II. Parameters of the approximated Bs → γ form
factors and their values at zero recoil.

FV FA F̃TV F̃TA

Fð0Þ 0.13 0.074 0.16 0.15
a 0.56 0.42 0.47 0.41
b −0.27 −0.31 −0.34 −0.27
Fðq2maxÞ 0.67 0.26 0.74 0.46
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In the high-q2 region, the KMN form factors steeply
increase and largely exceed our form factors.
In order to have a better picture of the behavior of the form

factors, in Fig. 6 we plot all of them together and compare
with those from Ref. [9]. It is very interesting to note that our
form factors share with the corresponding KMN ones not
only similar shapes (especially in the low-q2 region) but also
relative behaviors, i.e., similar relations between the form
factors, in the whole q2 region. Several comments should be
made: (i) our form factors satisfy the constraintFTAðq2; 0Þ ¼
FTVðq2; 0Þ atq2 ¼ 0, with the commonvalue equal to 0.135;

(ii) in the small-q2 region, FVðq2; 0Þ ≈ FTAðq2; 0Þ≈
FTVðq2; 0Þ; (iii)FVðq2; 0Þ andFTVðq2; 0Þ are approximately
equal in the full kinematical range and rise steeply in the
high-q2 region; and (iv) FAðq2; 0Þ and FTAðq2; 0Þ are rather
flat when q2 → M2

Bs
as compared to FVðq2; 0Þ and

FTVðq2; 0Þ. These observations show that our form factors
satisfy very well the constraints on their behavior proposed
by the authors of Ref. [6].
In Fig. 7 we plot the differential branching fractions

109dBðBs → γlþl−Þ=dŝ as functions of the dimensionless
variable ŝ ¼ q2=M2

Bs
. We also plot here the ratio
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CCQM
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FIG. 6. Behavior of the form factors Fiðq2; 0Þ in comparison with Ref. [9] (KMN).
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FIG. 7. Differential branching fractions 109dBðBs → γlþl−Þ=dŝ and ratio rγ as functions of the dimensionless variable ŝ ¼ q2=M2
Bs

without long-distance contributions (dashed lines) and with contributions of the low lying charmonia J=ψ and ψð2SÞ, and the light ϕ
meson (solid lines). The photon energy cut Eγmin ¼ 20 MeV is used.
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rγðŝÞ≡ dBðBs → γμþμ−Þ=dŝ
dBðBs → γeþe−Þ=dŝ ; ð42Þ

which is a promising observable for testing lepton flavor
universality (LFU) in these channels [40]. The ratio rγ is
very close to unity in the low-q2 region but far above unity
at large q2 due to bremsstrahlung. As was pointed out in
Ref. [9], in the high-q2 region (q2 ≳ 15 GeV2), the ratio rγ
is mainly described by the form factors FAðq2Þ and FVðq2Þ.
Therefore, knowledge of their behavior at large q2 plays an
important role in testing LFU. In Fig. 8 we plot the
ratio rγ at large q2 in comparison with Ref. [9]. The
ratios are very close in the range 16≲ q2 ≲ 20 GeV2 (i.e.,
0.55≲ ŝ≲ 0.69), which is a result of the similarity between
the form factors discussed above.

The authors of Ref. [40] suggested a useful observable

Rγðŝ1; ŝ2Þ≡
R ŝ2
ŝ1
dŝdBðBs → γμþμ−Þ=dŝR ŝ2

ŝ1
dŝdBðBs → γeþe−Þ=dŝ ; ð43Þ

with the optimal choice ŝ1 ¼ 0.55 and ŝ2 ¼ 0.8 (corre-
sponding to q21 ¼ 15.8 GeV2 and q22 ¼ 23.0 GeV2, respec-
tively). In this range, the ratio is dominated by the form
factors FAðq2Þ and FVðq2Þ. We provide our prediction for
this ratio Rγð0.55; 0.8Þ ¼ 1.54, about 30% larger than the
prediction Rγð0.55;0.8Þ¼1.115�0.030 given in Ref. [40].
Note that from the results of Ref. [9], one obtains
Rγð0.55; 0.8Þ ¼ 1.32.
In Table III we give the values of the branching fractions

calculated without and with long-distance contributions. In
the calculation with long-distance contributions, the region
of two low lying charmonia is excluded by assuming
0.33 ≤ ŝ ≤ 0.55, as usually done in experimental data
analysis. It is seen that the bremsstrahlung contribution
to the electron mode is negligible, while for the tau mode it
becomes the main part.
In Table IV we compare our results for the branching

fractions with those obtained in other approaches. Our
predictions for the electron and muon modes agree well
with the results of Ref. [41]. In the case of the tau mode, the
contribution from bremsstrahlung dominates the decay
branching fractions and the SD amplitude becomes less
important. As a result, our prediction for BðBs → γτþτ−Þ
agrees well with other studies.

0.55 0.60 0.65 0.70 0.75 0.80 0.85
0

2

4

6

8

s

r

FIG. 8. Ratio rγðŝÞ at large ŝ obtained in our model (solid line)
and from Ref. [9] (dotted line).

TABLE III. Branching fractions with (in brackets) and without long-distance contributions. The used minimal photon energy is
Eγmin ¼ 20 MeV.

SD BR IN Sum

109BðBs → γeþe−Þ 3.05 (15.9) 3.2 × 10−5 −4.8ð−9.5Þ × 10−6 3.05 (15.9)
109BðBs → γμþμ−Þ 1.16 (10.0) 0.53 −7.4ð−14.4Þ × 10−3 1.7 (10.5)
109BðBs → γτþτ−Þ 0.10 (0.05) 13.4 0.30 (0.18) 13.8 (13.7)

TABLE IV. Comparison of the branching fractions 109BðBs → γlþl−Þ (l ¼ e, μ, τ) with other approaches. The
used minimal photon energy is Eγmin ¼ 20 MeV.

Reference Electron Muon Tau

This work 15.9 10.5 13.7
[1] 6.2 4.6 not available
[2] 2.35 1.9 not available
[3] not available not available 15.2
[4] 7.1 8.3 15.7
[5] 20.0 12.0 not available
[8] 24.6 18.9 11.6
[41] 18.4 11.6 not available
[42] 17.4 17.4 not available
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Finally, in Tables Vand VI we provide our predictions for
the branching fractions integrated over severalq2 bins,which
are more practical for experimental studies than the total
branching fractions. We show also the corresponding results
obtained by KMN [9] and Guadagnoli-Reboud-Zwicky
(GRZ) [40] for comparison. It is seen that our predictions
agree quite well with both the KMN and GRZ results.
Our predictions for the branching fractions in

Tables III–VI contain the uncertainties from the hadronic
form factors and from other inputs, including the Wilson
coefficients given in Table I. However, the uncertainties
from the latter are much smaller than those from the former.
Thereforewe estimate the errors of the branching fractions to
be of order 30%based on the uncertainty of the form factors.
It is also important to note that the light ϕ meson

resonance significantly enhances the branching fractions of
the electron and muon modes. In the calculation above we
have integrated over the whole q2 range corresponding to
the ϕ meson resonance. If we consider a small q2 cut
½ðmϕ − ΓϕÞ2; ðmϕ þ ΓϕÞ2� around the ϕ resonance, then we
obtain 109ΔBðBs → γlþl−Þ ¼ 2.04 for q2 ∈ ½1; 6� GeV2,
where l ¼ e, μ.

VII. SUMMARY AND CONCLUSIONS

We have studied the rare radiative leptonic decays Bs →
γlþl− (l ¼ e, μ, τ) in the framework of the covariant
confined quark model. The relevant transition form factors
have been obtained in the full kinematical range of dilepton
momentum transfer squared. We have found a very good
agreement between our form factors and those from
Ref. [9], especially in the region q2 ≲ 20 GeV2. We have
provided predictions for the decay branching fractions and
their ratio. The branching fractions for the light leptons
agree well with the results of Ref. [41]. For the tau mode,
our prediction agrees well with all existing values in the
literature. The branching fractions in different q2 bins have
also been calculated and show good agreement with the
results of Refs. [9,40]. In particular, we have predicted
109ΔBðBs → γlþl−Þ ¼ 7.50 for q2 ∈ ½1; 6� GeV2, where
l ¼ e, μ.
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