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We study nonperturbative aspects of the QCD Kondo effect, which has been recently proposed for the
finite density and strong magnetic field systems, using conformal field theory describing the low-energy
physics near the IR fixed point. We clarify the symmetry class of the QCD Kondo effect for both the finite
density and magnetic field systems and show how the IR fixed point is nonperturbatively characterized by
the boundary condition, which incorporates the impurity effect in the Kondo problem. We also obtain the
low-temperature behavior of several quantities of the QCD Kondo effect in the vicinity of the IR fixed point
based on the conformal field theory analysis.
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I. INTRODUCTION

Recently, a novel type of the Kondo effect induced by
color degrees of freedom (d.o.f.), the so-called QCD Kondo
effect, was proposed [1]. The QCDKondo effect is a Kondo
effect realized in high-density quark matter with a heavy
quark impurity. It is well known that there are three
important ingredients for the appearance of the Kondo
effect: (i) the Fermi surface, (ii) quantum fluctuations (loop
effects), and (iii) the non-Abelian property of interaction.
In the QCD Kondo effect, the last condition (iii) corre-
sponds to the color exchange interaction mediated by gluon
between a light quark near the Fermi surface and the
heavy quark impurity. Near the Fermi surface, the system
becomes effectively (1þ 1) dimensional. This dimensional
reduction plays an essential role for the appearance of the
Kondo effect. As a later development of the QCD Kondo
effect, one of the authors together with the others has
proposed the magnetically induced QCD Kondo effect [2].
In strongmagnetic field, the dimensional reduction to (1þ 1)
dimensions also occurs. This (1þ 1)-dimensional dynamics
gives rise to magnetically induced QCD Kondo effect.
A lot of approaches to the nonperturbative regime of the

Kondo effect have been developed, since the standard
perturbative analysis does not work below the typical energy
scale, due to the asymptotic freedom. The conformal field

theory (CFT) is one of such approaches to study the IR fixed
point of the Kondo effect [3–8]. See also a review article [9].
In the CFT approach, the impurity effect is treated as the
boundary condition. Thus, we can discuss the nontrivial
boundary behavior using the boundary CFT method. This
approach allows us to compute the boundary contribution to
the entropy, which characterizes the ground-state degeneracy
of the impurity, called the g factor. This g factor gives useful
information about the IR fixed point of the Kondo problem.
If this degeneracy were to be given by an integer value, the
system would be described by the Fermi liquid. On the other
hand, when the degeneracy becomes irrational, which is
typically observed in the overscreening system, it could be a
signal of the non-Fermi liquid nature. In addition to the g
factor, we can obtain the low-temperature behavior of several
quantities, e.g., specific heat and susceptibility. Usually, to
obtain such scaling behaviors, we have to compute the
correlation functions and their scaling limit. Thus, it is
difficult to evaluate it in general. However, in the CFT
approach, this scaling behavior can be studied using the
perturbation analysis with respect to the leading irrelevant
operator in thevicinity of the IR fixed point. Similarly,we can
also compute the exact value of the Wilson ratio, which is
knownas theuniversal quantity of theKondo systemat the IR
fixed point.
In this paper, we apply the CFT approach to the QCD

Kondo problem for both the finite density and strong
magnetic field systems. We first clarify the effective
(1þ 1)-dimensional field theory describing the low-energy
physics, especially with emphasis on some specific features
of the QCD Kondo effect. We will show that the symmetry
at the IR fixed point is enhanced from that for the UV
theory, which is indeed a specific feature of the QCD
Kondo effect, since such a symmetry enhancement does not
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occur in the conventional Kondo effect. We then discuss the
g factor and its dependence on the flavor d.o.f. It shows that
the IR fixed point would exhibit the non-Fermi liquid
behavior for the finite density system and the Fermi liquid
for the strongmagnetic field system.We also discuss the low-
temperature behavior of some quantities just by applying the
established formula.
The remaining part of this article is organized as follows.

In Sec. II, we review some basic aspects of the CFT
approach to the Kondo effect. We especially focus on the
role of the g factor and the low-temperature scaling
behavior of specific heat and susceptibility. In Sec. III,
we perform the CFT analysis for the QCD Kondo effect. In
Sec. III A, we first study the (1þ 1)-dimensional effective
field theory for the finite density system and clarify its
specific symmetry. We then compute the g factor for this
case and find that the factor is irrational. This implies that
the corresponding IR fixed point of the QCD Kondo effect
is described as the non-Fermi liquid. In Sec. III B, we apply
the CFTapproach to the strong magnetic field system using
a similar (1þ 1)-dimensional effective theory. We show
that the large-N analysis is naturally applicable to the
situation in the strong magnetic field limit, due to the color
symmetry enhancement. In Sec. IV, we conclude this paper
with some remarks and discussions.

II. CFT APPROACH TO k-CHANNEL
SUðNÞ KONDO EFFECT

We briefly summarize the CFT approach to the
multichannel SUðNÞ Kondo effect (see Refs. [6,10] for
more details). The Kondo model is originally a three-
dimensional model of the bulk fermions interacting with
the localized impurity. Under the assumption that the
impurity is sufficiently dilute, we consider the s-wave
approximation, which ends up with the effective one-
dimensional system along the radial direction. The effec-
tive one-dimensional Hamiltonian of the k-channel SUðNÞ
Kondo model is given by

H ¼ H0 þHK; ð2:1Þ

where the free fermion Hamiltonian is

H0 ¼
Z

∞

0

dx

�
iψ†

LðxÞ
∂ψLðxÞ
∂x − iψ†

RðxÞ
∂ψRðxÞ
∂x

�
; ð2:2Þ

and the Kondo interaction term is

HK ¼ λK
4
Saðψ†

Lð0Þ þ ψ†
Rð0ÞÞtaðψLð0Þ þ ψRð0ÞÞ: ð2:3Þ

Here, the one-dimensional coordinate x is the relative
coordinate between the bulk fermion and the impurity.
ψL and ψR are left and right moving fermions. These
fermions have SUðNÞ spin and SUðkÞ flavor d.o.f., but

here we have suppressed those indices in Eqs. (2.2) and
(2.3). Saða ¼ 1; 2;…; N2 − 1Þ is a localized SUðNÞ spin at
the origin, and ta is the generator of SUðNÞ group. Since
the bulk fermions satisfy the boundary condition ψLðxÞ ¼
ψRð−xÞ, the Hamiltonian (2.1) can be rewritten as

H ¼
Z

∞

−∞
dx

�
iψ†

LðxÞ
∂ψLðxÞ
∂x þ λKSaψ

†
LðxÞtaψLðxÞδðxÞ

�
:

ð2:4Þ

Below, we will suppress the subscript L. In terms of the
spin, flavor, and charge currents,

JaðxÞ ¼ ∶ψ†ðxÞtaψðxÞ∶; ð2:5aÞ

JAðxÞ ¼ ∶ψ†ðxÞTAψðxÞ∶; ð2:5bÞ

JðxÞ ¼ ∶ψ†ðxÞψðxÞ∶; ð2:5cÞ

we can express the Hamiltonian (2.4) in the Sugawara
form

H ¼
Z

dx

�
1

N þ k
JaðxÞJaðxÞ þ 1

kþ N
JAðxÞJAðxÞ

þ 1

2Nk
JðxÞJðxÞ þ λKJaSaδðxÞ

�
: ð2:6Þ

In Eqs. (2.5), the normal order product is defined as
:OðxÞOðxÞ∶ ¼ limϵ→0fOðxÞOðxþ ϵÞ − hOðxÞOðxþ ϵÞig,
which subtracts the singular part at ϵ→0. TAðA¼
1;2;…;k2−1Þ in Eq. (2.5b) is the generator of the flavor
SUðkÞ group. Redefining the color current as

J aðxÞ ¼ JaðxÞ þ λK
2ðN þ kÞ S

aδðxÞ; ð2:7Þ

we can rewrite the Hamiltonian as

H ¼
Z

dx

�
1

N þ k
J aðxÞJ aðxÞ þ 1

kþ N
JAðxÞJAðxÞ

þ 1

2Nk
JðxÞJðxÞ

�
; ð2:8Þ

up to a constant term that does not contain the fermion
fields. We see the Hamiltonian is separated into the color,
flavor, and charge parts, respectively. Furthermore, the
effect of the impurity is reflected on the boundary of the
theory.
Equivalently, the above effective (1þ 1)-dimensional

theory can be expressed by the Wess-Zumino-Witten
(WZW) model (see, e.g., Refs. [11,12])
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S ¼ Sk½g ∈ SUðNÞ� þ SN ½h ∈ SUðkÞ� þ Nk
2

Z
d2xð∂μϕÞ2;

ð2:9Þ

where the WZW action Sn½g� is given by

Sn½g� ¼
n
16π

Z
d2x∂μg∂μg−1 þ n

24π

Z
d3xϵμνλðg−1∂μgÞ

× ðg−1∂νgÞðg−1∂λgÞ: ð2:10Þ
In Eq. (2.9), g (h) is an element of the SU ðNÞ (SU ðkÞ)
group, while k (N) is the level of the WZW action. The
bosonic field ϕðxÞ describes the U(1) d.o.f. associated
with the charge current (2.5c). In particular, k corresponds
to the number of the channel (flavor). The WZW model
(2.9) is also separated into the spin, flavor, and charge parts
with the symmetry

dSUðNÞk × dSUðkÞN × dUð1ÞNk: ð2:11Þ
This factorization reflects the spin-charge separation in the
effective one-dimensional theory, and Ĝk is associated with
the Kac-Moody algebra at level k.
In the CFT approach, it is essential to specify the

symmetries of the Kondo system as well as the represen-
tation of the impurity Rimp, e.g., s-spin representation for
SU(2)-spin interaction. The fundamental parameters
ðN; k; RimpÞ characterize the properties of the Kondo
system near the IR fixed point, and the analysis based
on CFT can be performed with them. The method using
CFT allows us to evaluate several quantities explicitly. For
example, one can compute the free energy, which character-
izes thermodynamic properties of the system,

F ¼ Lfbulk þ fimp; ð2:12Þ
where the first term is the bulk contribution with the system
size L and the second one is the contribution of the
impurity. We are, in particular, interested in the impurity
contribution to see the specific behavior under the Kondo
effect. What we focus on in this paper is:
(1) Boundary entropy (g factor) at zero temperature.
(2) Specific heat and susceptibility at low temperature.

These quantities are exactly computed using the boundary
CFT and the CFT perturbation theory with respect to the
leading irrelevant operator, which are characterized by the
fundamental parameters ðN; k; RimpÞ of the Kondo system.
In this paper, we refer to our previous work [10] for the
formulas in the SUðNÞ Kondo model.

A. Boundary entropy: g factor

In the Kondo system, the thermodynamic entropy can
contain the contribution from the impurity associated with the
free energy fimp (2.12), which can be exactly computed [4],

Simp ¼ log gðRimpÞ; ð2:13Þ

where gðRimpÞ depending on the impurity representation
Rimp is called the g factor, which counts the degeneracy
of the residual impurity spin at the IR fixed point and
monotonically decreases in the renormalization flow
from UV to IR. Furthermore, this is a useful quantity
to see whether the IR fixed point is described as the Fermi
liquid or the non-Fermi liquid: If the g factor shows an
integer value, the system is described as the Fermi liquid,
while it is the non-Fermi liquid for noninteger g, typically
observed in the overscreening Kondo system.
For latter convenience, let us show the formula for the

fundamental N and antifundamental N representations,

gðNÞ ¼ gðNÞ ¼ qðN−1Þ=2 þ qðN−3Þ=2 þ � � � þ q−ðN−1Þ=2;

ð2:14Þ

where q ¼ exp ð2πi=ðN þ kÞÞ for the k-channel SUðNÞ
Kondo system. See, e.g., Ref. [10] for derivation.

B. Low-temperature behavior

In addition to the quantity at the IR fixed point, we can
exactly compute the low-temperature scaling behavior of
the specific heat and susceptibility, based on the conformal
perturbation theory. First of all, the bulk contribution
depends only on the total central charge for the specific heat
[13,14]

Cbulk ¼
π

3
cT; ð2:15Þ

where c ¼ Nk is for the k-channel SUðNÞ Kondo system,
while it depends on the channel number for the suscep-
tibility [15]

χbulk ¼
k
2π

: ð2:16Þ

The impurity contribution exhibits an interesting depend-
ence on the fundamental parameters ðN; kÞ. The computation
with the WZWmodel for the single-channel system (k ¼ 1)
yields [3]

Cimp ¼ −λ1
kðN2 − 1Þ

3
π2T χimp ¼ −λ1

kðN þ kÞ
2

:

ð2:17Þ

Then, the multichannel system ðk > 1Þ shows [10]
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Cimp ¼

8>>>>><
>>>>>:

λ2

2
π1þ2Δð2ΔÞ2ðN2 − 1ÞðN þ k=2Þ

h
1−2Δ
2

i
Γð1=2−ΔÞΓð1=2Þ

Γð1−ΔÞ T2Δ ðk > NÞ

λ2π1þ2ΔðN2 − 1ÞðN þ k=2Þð2ΔÞ2T log
�
TK
T

�
ðk ¼ NÞ

−λ1
kðN2−1Þ

3
π2T þ 2λ2π2ðN2 − 1ÞðN þ k=2Þ 2Δ

1þ2Δ

�
β−2Δþ1
K
2Δ−1

�
T ðN > k > 1Þ

; ð2:18Þ

χimp ¼

8>>>>><
>>>>>:

λ2

2
π2Δ−1ðN þ k=2Þ2ð1 − 2ΔÞ Γð1=2−ΔÞΓð1=2ÞΓð1−ΔÞ T2Δ−1 ðk > NÞ

2λ2ðN þ k=2Þ2 log
�
TK
T

�
ðk ¼ NÞ

−λ1
kðNþkÞ

2
þ 2λ2ðN þ k=2Þ2

�
β−2Δþ1
K
2Δ−1

�
ðN > k > 1Þ

; ð2:19Þ

where βK ¼ 1=TK and Δ ¼ N=ðN þ kÞ. Two unknown
parameters λ1 and λ are coupling constants in the leading
irrelevant operators with which the CFT perturbation is
applied:

O ¼ λJ a
−1ϕ

aðxÞ; ð2:20aÞ

O1 ¼ λ1J aJ aðxÞ: ð2:20bÞ

See Refs. [6,10] for details. In the regime N ≤ k, we can
focus on the operator with the coupling λ, which is specific
to the non-Fermi liquid case, since the leading-order
contribution of the coupling λ is dominant in this case.
In the regime N > k > 1, however, we have to consider
another operator with the coupling λ1, which is for the
Fermi liquid since these contributions are in the same
order. This peculiar behavior in this regime N > k > 1 is
called the Fermi/non-Fermi mixing [10] and may affect
the universality of the Wilson ratio as explained below. The
scaling behaviors are summarized as

Cimp ∝

8<
:

T2N=ðNþkÞ ðk > NÞ
T log ðTK=TÞ ðk ¼ NÞ
T ðN > k > 1Þ

χimp ∝

8<
:

TðN−kÞ=ðNþkÞ ðk > NÞ
logðTK=TÞ ðk ¼ NÞ
const: ðN > k > 1Þ:

ð2:21Þ

In general, the impurity contributions to the specific heat
and susceptibility contain the coupling constants λ and λ1,
which depend on the microscopic details of the system, and
are thus not universal. Wilson showed that such a nonuni-
versal dependence can be canceled in a specific ratio of the
specific heat and susceptibility, which is called the Wilson
ratio [16],

RW ¼
�
χimp

Cimp

�
=

�
χbulk
Cbulk

�
: ð2:22Þ

For the single-channel system (k ¼ 1), it is given by

RW ¼ N
N − 1

: ð2:23Þ

For the multichannel system ðk > 1Þ, there are two pos-
sibilities. In the regime N < k, it becomes a universal
constant that depends only on the fundamental parameters
ðN; kÞ [8],

RW ¼ ðN þ k=2ÞðN þ kÞ2
3NðN2 − 1Þ ðN < kÞ; ð2:24Þ

while in the regime N > k > 1, it fails to cancel the
nonuniversal factor [10]

RW ¼ ðN þ k=2ÞðN þ k=3Þ
N2 − 1

γ − kðNþkÞ
ðNþk=2Þ2

γ − kðNþk=3Þ
NðNþk=2Þ

ðN > k > 1Þ;

ð2:25Þ

where the dimensionless constant is defined:

γ ¼ 4T2Δ−1
K

λ2

λ1
: ð2:26Þ

Therefore, in this case, the Wilson ratio does depend on the
microscopic details of the system, and then it is no longer
universal.

III. QCD KONDO EFFECT: CFT ANALYSIS

The QCD Kondo effect is the Kondo effect induced by
the color exchange interaction between light quarks near
the Fermi surface and a heavy quark impurity. One of us
and others have studied the QCD Kondo effect at finite
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chemical potential and in strong magnetic fields in terms of
the perturbative renormalization group approach [1,2].
Then, we find the Kondo scale ΛK, at which the effective
interaction GðΛÞ between the light quark and the heavy
quark impurity diverges. The resultant expression of the
Kondo scale is given by [1,2]

ΛK ∼ Λ0 exp

�
−

4π

Ncαs logð4παsÞ
�
; ð3:1Þ

where Λ0 ¼ μ for a finite density system and Λ0 ¼
ffiffiffiffiffiffi
eB

p
for a strong magnetic field system. In Fig. 1, the schematic
picture of the scale dependence of GðΛÞ is shown. At the
finite temperature, the IR cutoff is replaced by the temper-
ature T. Then, the typical scale of the Kondo system is
given by the Kondo temperature TK, instead of ΛK. These
two scales are the same order [17]. Below the Kondo
temperature or Kondo scale, the system would be in the
nonperturbative regime, and thus the perturbative approach
is no longer valid. In this section, we apply the CFT
approach to investigate the QCD Kondo effect around the
IR fixed point. Wewill obtain several observables including
the specific heat and the color susceptibility.
Furthermore, we study the QCD Kondo effect with

multiflavors. Although the multichannel Kondo problem
has a rich structure that leads to the non-Fermi liquid
behavior, there are some difficulties of realizing such a
multichannel system in condensed matter physics because
of the fine-tuning of channel degeneracy. The QCD Kondo
effect could overcome this difficulty of realizing the
multichannel Kondo effect because we can naturally
introduce flavor d.o.f. to quarks. For the QCD Kondo
system, we consider the sufficiently large chemical poten-
tial μ or strong magnetic field

ffiffiffiffiffiffi
eB

p
. Comparing with these

energy scales, the current quark masses of u, d, and s are
sufficiently small, and thus we can take into account the
corresponding flavor symmetry for light quarks.

A. Finite density system

In a finite density system, we have the Fermi surface of
light quarks. Assuming the Fermi surface is spherically
symmetric in the momentum space, we can apply the
s-wave approximation, which allows us to consider the
(1þ 1)-dimensional setup. Then, the massless excitation
near the Fermi surface is actually given by a momentum
fluctuation perpendicular to the surface, which is effec-
tively described by (1þ 1)-dimensional WZW model.

1. Effective field theory and symmetry in
(1+ 1) dimensions

In this study, we take the chemical potential μ much
larger than the QCD scale, μ ≫ ΛQCD, so that the gauge
coupling gs as well as αs ¼ g2s=4π are sufficiently small.
Integrating the gluon fields, the QCD action at high
densities becomes

S4D¼
Z

d4xψ̄ðiγμ∂μþμγ0Þψþ4παs

Z
d4xd4yψ̄γμtaψðxÞ

×Dab
μνðx;y;μÞQ̄γνtbQðyÞþOðα2sÞ; ð3:2Þ

where ðψ ; ψ̄Þ is the light quark field with Nf flavors while
ðQ; Q̄Þ is a single heavy quark field. Dab

μνðx; y; μÞ stands
for the gluon propagator at finite density. Since the gauge
coupling is sufficiently small, we neglect higher-order
terms with respect to αs. Furthermore, considering the
heavy quark mass limit, the vertex of the heavy quark
impurity leads to Q̄γνQ ∼ Q̄γ0Q ¼ Q†Q and Q†taQðxÞ →
CaδðxÞ, which is the spatially localized color charge with
the (anti)fundamental representation of the heavy quark
impurity. Then, the action reads

S4D¼
Z

d4xψ̄ðiγμ∂μþμγ0Þψþ4παs

Z
d4xd4yψ̄γ0taψðxÞ

×Dab
00ðx;y;μÞCbδðyÞ: ð3:3Þ

In the finite density, the gluon propagation is suppressed
by the Tomas-Fermi screening with the screening mass
m2

g ¼ ðαs=πÞNfμ
2. Consequently, the interaction between

the light quark and the heavy quark impurity becomes the
δ function–type interaction. This enables us to apply the
s-wave approximation. Under the s-wave approximation
near the Fermi surface, the (1þ 1)-dimensional effective
action of high density QCD in the presence of the heavy
quark impurity can be written as [18,19]

S2Deff ¼
Z

d2x½Ψ̄iΓμ∂μΨþ GΨ†taΨCaδðxÞ�; ð3:4Þ

where the two-dimensional Dirac matrices are given by
Γ0 ¼ σ1, Γz ¼ −iσ2. We choose the z direction to be
perpendicular to the Fermi surface. Ψ is a two-component

FIG. 1. Schematic picture of the flow of the effective interaction
GðΛÞ. The black solid line is a perturbative flow of GðΛÞ, while
the blue dashed line is a nonperturbative flow. ΛK stands for the
Kondo scale.
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quark field with 2NF flavors. Here, the factor 2 of the flavor
comes from the spin d.o.f. in (3þ 1) dimensions. Since
there is no rotational symmetry in the (1þ 1)-dimensional
system, there is no spin. Therefore, the spin d.o.f. in (3þ 1)
dimensions enlarge the flavor symmetry in the (1þ 1)-
dimensional system. The relation between the two-
component quark field Ψ in (1þ 1) dimensions and the
ordinary four component quark field ψ with NF flavors in
(3þ 1) dimensions is the following: the two component
quark field Ψ with 2Nf flavors is defined by

Ψ ¼
�
eiμzΓ

5

φ↑

eiμzΓ
5

φ↓

�
; ð3:5Þ

where Γ5 ¼ Γ0Γz ¼ σ3, φT
↑ ¼ ðψRþ;ψL−Þ, and φT

↓ ¼
ðψLþ;ψR−Þ. ψR;L and ψþ;− are quark fields in the chiral
and spin bases in (3þ 1) dimensions. The dimensionless
coupling G corresponds to λK in Sec. II. Therefore, the
effective action (3.4) can be regraded as a (1þ 1)-
dimensional k-channel SUðNcÞKondomodel with k ¼ 2Nf.
In the perturbative regime, the interaction term in

Eq. (3.4) is induced by the s-wave projected one-gluon
exchange between light quarks and the heavy quark. Near
the Fermi surface, the coupling G is obtained by [20]

G ¼ ρF

Z
dΩq

ðigsÞ2
q2 −m2

g

¼ μ2

ð2πÞ2
Z

dΩq
ðigsÞ2

−2μ2ð1 − cos θÞ −m2
g

¼ αs log

�
4μ2

m2
g

�
; ð3:6Þ

where ρF ¼ μ2=ð2πÞ2 is the density of state on the Fermi
surface.1 Then, by using the perturbation theory of the
effective action (3.4) with respect to the coupling (3.6), one
can reproduce the perturbative result of the QCD Kondo
effect obtained in Ref. [1].2

Now, as mentioned in the beginning of this section, the
perturbative approach is no longer valid below the Kondo
scale. To investigate QCD Kondo effect near the IR fixed
point where the system is highly nonperturbative, we apply
the CFT approach to the effective action (3.4) in the same

way as discussed in Sec. II. We can express the effective
Hamiltonian at the IR fixed point in the Sugawara form as

H¼
Z

dx

�
1

Ncþ2Nf
J aðxÞJ aðxÞþ 1

2NfþNc
JAðxÞJAðxÞ

þ 1

4NcNf
JðxÞJðxÞ

�
; ð3:7Þ

where

J aðxÞ ¼ JaðxÞ þ G
2ðNc þ 2NfÞ

CaδðxÞ ð3:8aÞ

with the color, flavor, and charge currents

JaðxÞ ¼ ∶Ψ†ðxÞtaΨðxÞ∶; ð3:8bÞ

JAðxÞ ¼ ∶Ψ†ðxÞTAΨðxÞ∶; ð3:8cÞ

JðxÞ ¼ ∶Ψ†ðxÞΨðxÞ∶; ð3:8dÞ

respectively. Here, taða ¼ 1; 2;…; N2
c − 1Þ is the generator

of the color SUðNcÞ group, while TAðA ¼ 1; 2;…;
ð2NfÞ2 − 1Þ is the generator of the flavor SUð2NfÞ group.
The effective Hamiltonian (3.7) is equivalent to the
following WZW model with the definition (2.10):

S2Nf
ðg ∈ SUðNcÞÞ þ SNc

ðh ∈ SUð2NfÞÞ

þ NcNf

Z
d2xð∂μϕÞ2; ð3:9Þ

See, e.g., Ref. [12] for the non-Abelian bosonization
scheme. We remark that a similar WZW action for the
finite density QCD is obtained in Ref. [19]. From the
effective Hamiltonian (3.7) or the chiral WZWmodel (3.9),
we can read off the symmetry of the (1þ 1)-dimensional
effective theory as

dSUðNcÞ2Nf
× dSUð2NfÞNc

× dUð1Þ2NcNf
; ð3:10Þ

which is equivalent to the symmetry of the k-channel
SUðNÞ Kondo model (2.11) under the replacement
ðN; kÞ → ðNc; 2NfÞ. The first and third factors are due
to color SUðNcÞ and baryon number U(1) symmetries.
The remaining one is of the SUðNfÞ flavor symmetry,

which is now enhanced to dSUð2NfÞ. This is because,
during the dimensional reduction from the original (3þ 1)-
dimensional theory to the (1þ 1)-dimensional theory, the
number of spinor components is reduced as 4 → 2, and
we have up and down spin states in the effective model.
We need to combine the flavor symmetry with this spin
rotation symmetry. The reason for the level 2Nf ofdSUðNcÞ2Nf

is actually the same. We remark that a similar

1Here, we only consider the color electric interaction since the
color magnetic interaction is suppressed by 1=MQ with the large
heavy quark mass limit.

2In Ref. [1], the gluon propagator at finite density is just taken
as −1=m2

g with q → 0. However, depending on the angle of the
scattered light quark, the momentum transfer q can be of the order
of μ (≫mg). Taking into account the angle dependence on the
gluon propagator, the authors of Ref. [20] showed that the
effective coupling has a logarithmic form as in (3.6). Once we
use the same gluon propagator, we can reproduce the result of
Ref. [1] from the effective action (3.4).
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argument on the flavor symmetry enhanced by the chirality
has been provided in Ref. [21].
Although we have three kinds of d.o.f. for the effective

(1þ 1)-dimensional theory, the relevant part to our purpose
is only color d.o.f. First of all, to exhibit the Kondo effect,
we need to take into account the non-Abelian interaction
with the impurity. In addition, as mentioned above, we
have the up and down spin states in the effective model.
Nevertheless, we do not need to incorporate these spin
d.o.f. as a non-Abelian property of the interaction because
the impurity spin is fixed in the heavy quark limit. Thus, the
spin interaction with the impurity can be now negligible,

and we can focus only on the color d.o.f. dSUðNcÞ2Nf
in this

case, which is the same as the ordinary Kondo problem.
As shown in Eq. (2.11), the Kondo problem is characterized
by the fundamental parameters of spin, channel, and the
impurity representation ðN; k; RimpÞ. In the case of QCD
Kondo effect, we first apply ðN; kÞ ¼ ðNc; 2NfÞ, and it is
natural to assign the (anti)fundamental representation to the
heavy quark impurity, Rimp ¼ N or N̄.

2. IR behaviors of QCD Kondo effect

Let us first compute the g factor with the formula (2.14)
and put Nc ¼ 3. The SU(3) impurity in the (anti)funda-
mental representation Rimp ¼ 3 (3̄) gives rise to

g ¼ qþ 1þ q−1 ¼ 1þ 2 cos
�

2π

3þ 2Nf

�
; ð3:11Þ

where q ¼ exp ð2πi=ð3þ 2NfÞÞ. Now, the g factor is the
same for the fundamental and antifundamental representa-
tions. Table I shows this g factor with Nf ¼ 1, 2, 3.
We observe that the asymptotic behavior of the g factor
is g → 3 as Nf → ∞. This is just the dimension of 3 (3̄)
representation of SU(3) in a usual sense. A remarkable
point to this QCD Kondo effect is that we obtain an
irrational g factor even for Nf ¼ 1 theory.3 In other words,

the QCDKondo effect is always overscreening; it cannot be
critical nor underscreening. This is due to the spin d.o.f. of
quarks. Even starting with a single quark, it splits into up
and down spin states in (1þ 1)-dimensional effective
theory, while the heavy quark spin is fixed in the impurity
limit (the heavy quark limit). This means that, in the finite
density QCD Kondo effect, the minimal number of chan-
nels is 2 when Nf ¼ 1, which leads to the overscreening
state. A naive Kondo singlet state is the qQ̄-bound state,
but the situation is not so simple in this case because this
kind of bound-state picture is based on the Fermi liquid
description. Our analysis suggests that the finite density
QCD Kondo effect is always described as the non-Fermi
liquid at the IR fixed point, and thus a screening process of
color d.o.f. becomes also nontrivial.
In addition to the g factor, which characterizes the IR

fixed point, we can compute low-temperature dependences
of several quantities just by applying the method shown in
Sec. II B. Since the finite density QCD Kondo effect shows
always k > 1, as discussed above, we straightforwardly
apply the formulas for the multichannel system to this case
just by putting ðN; kÞ ¼ ðNc; 2NfÞ. The bulk contribution
to the specific heat and the susceptibility are obtained as

Cbulk ¼
2π

3
NcNfT χbulk ¼

Nf

π
: ð3:13Þ

respectively. Then, the low-temperature scaling of the
impurity part is given by

Cimp ∝

8>><
>>:

T2Nc=ðNcþ2NfÞ ð2Nf > NcÞ
T log ðTK=TÞ ð2Nf ¼ NcÞ
T ðNc > 2Nf > 1Þ

ð3:14Þ

χimp ∝

8>><
>>:

TðNc−2NfÞ=ðNcþ2NfÞ ð2Nf > NcÞ
logðTK=TÞ ð2Nf ¼ NcÞ
const: ðNc > 2Nf > 1Þ:

ð3:15Þ

For Nc ¼ 3, the low-temperature behaviors of Nf ¼ 1 and
Nf > 1 are essentially different since the former case
shows the Fermi liquid–type dependence, while the latter
exhibits the non-Fermi liquid–type low-temperature behav-
ior. Furthermore, the case with Nf ¼ 1 shows the Fermi/
non-Fermi mixing since its g factor implies that its IR fixed
point is described as the non-Fermi liquid.
The Wilson ratio of the QCD Kondo effect can be

obtained by taking the ratio of the specific heat and the
susceptibility. In the cases of Nc ≤ 2Nf, we find

RW ¼ ðNc þ NfÞðNc þ 2NfÞ2
3NcðN2

c − 1Þ ðNc ≤ 2NfÞ: ð3:16Þ

The Wilson ratio is universal for these cases. On the other
hand, in the cases of Nc > 2Nf, the Wilson ratio becomes

TABLE I. The g factor of SU(3) color theory for Nf ¼ 1, 2, 3
with Rimp ¼ 3 (3̄) given by the formula (3.11). The asymptotic
behavior of the g factor is g → 3 as Nf → ∞.

Nf g factor

1 1.61803…
2 2.24698…
3 2.53209…

3In particular, the g factor with Nf ¼ 1 is given by the golden
ratio

1þ 2 cos

�
2π

5

�
¼ 1þ ffiffiffi

5
p

2
; ð3:12Þ

which also appears in the three-channel SU(2) Kondo system,
described by dSUð2Þ3 theory. This connection is due to the level-
rank duality of dSUð3Þ2 and dSUð2Þ3.
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RW ¼ ðNc þ 2NfÞðNc þ 2Nf=3Þ
N2

c − 1

γ − 2NfðNcþ2NfÞ
ðNcþNfÞ2

γ − 2NfðNcþ2Nf=3Þ
NcþNfÞ

ðNc > 2NfÞ; ð3:17Þ

where the dimensionless constant is defined as

γ ¼ 4T2Δ−1
K

λ2

λ1
ð3:18Þ

with Δ ¼ Nc=ðNc þ 2NfÞ. The couplings ðλ; λ1Þ are of
the perturbation operators (2.20), which would be obtained
from the higher-order terms in the original (3þ 1)-
dimensional QCD action (3.2).

B. Strong magnetic field system

In this section, we consider the magnetized quark matter
in the presence of a heavy quark impurity with

ffiffiffiffiffiffi
eB

p
≫ μ.

In this case, the effect of the magnetic field dominates, and
then the magnetically induced QCD Kondo effect occurs
[2]. However, we have to keep in mind that, since μ ≠ 0, the
Fermi surface is still there, and the IR fixed point exists on
the Fermi surface. This is one of the reasons why we need
the CFT analysis to study this situation, while the system in
the background magnetic field at zero density μ ¼ 0 can be
studied, for example, based on the lattice QCD [22].

1. Effective field theory and symmetry in
(1+ 1) dimensions

Let us derive the (1þ 1)-dimensional effective field
theory describing the QCD Kondo effect in the strong
magnetic field. In strong magnetic fields, quarks with
electric charges are in the lowest-Landau-level (LLL) state.
With the different electric charges of the bulk quarks,Qu ¼
2=3 and Qd ¼ −1=3, we can divide the flavor sector as

Nf → NðuÞ
f ⊕ NðdÞ

f , whereNðu;dÞ
f is the number of the flavor

having the electric chargeQuðQdÞ. Accordingly, in the LLL
approximation, the bulk quark part of the four-dimensional
action reads

S4Dψ ¼
Z

d4xψ̄ ðuÞ
LLL½iγμð∂μ þ igsAμÞ þ μγ0�ψ ðuÞ

LLL þ ðu ↔ dÞ:

ð3:19Þ

In the symmetric gauge, the LLL quark fields with the spin
basis are given by

ψ ðu;dÞ
LLL ðxÞ ¼

�PNðu;dÞ
L −1

l¼0 ϕðu;dÞ
l ðx⊥Þcðu;dÞl;c ðxkÞ

0

�
; ð3:20Þ

where ðl; cÞ are indices of the angular momentum and

the color, respectively. Nðu;dÞ
L is the degeneracy of the LLL

given by Nðu;dÞ
L ¼ V⊥jQu;deBj=ð2πÞ with the transverse

volume V⊥. ϕ
ðu;dÞ
l is the perpendicular part of the wave

function in the LLL,

ϕðu;dÞ
l ðx⊥Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jeQu;dBj
2πl!

r �jQu;deBj
2

�
l=2
ðxþ iyÞl

× e−
jeQu;dBj

4
ðx2þy2Þ; ð3:21Þ

while the cðu;dÞl;c is a two-component spinor with NðuÞ
f (NðdÞ

f )
flavors. Integrating the perpendicular parts of the coordi-
nate, we can reduce the action to the (1þ 1)-dimensional
one,

S2Dψ ¼
Z

d2xkc̄
ðuÞ
l0;c0 ½iΓμð∂μδl0lδc0c þ igs½AðuÞ

μ �l0;c0;l;cÞ�cðuÞl;c

þ ðu ↔ dÞ; ð3:22Þ

where the definition of the two-dimensional Dirac matri-
ces is the same as in the previous section,4 and the
chemical potential is absorbed into the field by shifting

it as cðu;dÞl;c → eiμzΓ
5

cðu;dÞl;c . The gauge field in Eq. (3.22) is
given by

½Aðu;dÞ
μ �l0;c0;l;cðxkÞ¼

Z
d2x⊥ϕ

ðu;dÞ�
l0 ðx⊥Þ½AμðxÞ�c0;cϕðu;dÞ

l ðx⊥Þ:

ð3:23Þ

Now, the bosonized version of the bulk quark part of the
action can be expressed in terms of the WZW action as

S2Dkin ¼ S
NðuÞ

f
ðGðuÞÞ þ S

NðdÞ
f
ðGðdÞÞ; ð3:24Þ

with the definition (2.10). Here, GðuÞ and GðdÞ are elements

of the SUðNðuÞ
L NcÞ and SUðNðdÞ

L NcÞ groups, respectively.
Precisely speaking, in addition to the action (3.24), there
are flavor and charge parts similar to (2.9), which are
irrelevant to the current case. This is a generalization of
the bosonization scheme for the strong magnetic field
system with a single flavor Nf ¼ 1 [23] to the multiflavor
cases Nf > 1. In this study, we consider a simple case,

namely, NðuÞ
f ≠ 0 and NðdÞ

f ¼ 0, and the heavy quark
impurity has the charge þ2=3. Further generalized cases
will be investigated in future work.
We can read off the symmetry of the (1þ 1)-dimensional

effective theory of the strong magnetic field system from
the WZW action

4In this study, we apply the magnetic field B in the z direction.
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d
SUðNðuÞ

L NcÞNðuÞ
f
×

d
SUðNðuÞ

f Þ
NðuÞ

L Nc
× dUð1Þ

NðuÞ
L NcN

ðuÞ
f
:

ð3:25Þ

If there are also NðdÞ
f d-type quarks with the charge

ed ¼ ð−1=3Þ × e, there appears another system with the

symmetry (3.25) by replacing ðNðuÞ
L ; Nc; N

ðuÞ
f Þ →

ðNðdÞ
L ; Nc; N

ðdÞ
f Þ. The SUðNcÞ color symmetry is now

enhanced to SUðNðuÞ
L NcÞ due to the LLL degeneracy, and

thus the rank of this enhanced color symmetry SUðNðuÞ
L NcÞ

becomes very large, which allows us to apply the large-N
approximation to this case. In contrast to the finite density
system, there is no enhancement of the flavor symmetry. This
is because the LLL state is fully polarized, and thus the spin
d.o.f. is frozen in the strong magnetic field. Assuming the
impurity heavy quark is in the (anti)fundamental represen-
tation, the magnetically induced QCD Kondo effect is
specified by the fundamental parameters ðN; k; RimpÞ ¼
ðNðuÞ

L Nc; N
ðuÞ
f ; fund=antifundÞ. This assumption is justified

when the magnetic field scale is sufficiently larger than the
heavy quark mass so that the LLL approximation is also
applicable to the heavy quark. Otherwise, the heavy quark

does not behave under the SUðNðuÞ
L NcÞ transformation but

the ordinary SUðNcÞ color transformation. Similarly, it is
also possible to consider the situation in which the light
quark is u type and the heavy quark is d type, and vice versa.
In these cases, the light and heavy quarks belong to the
different symmetry groups, and the analysis using the
boundary CFT will be much more involved. We would like
to return to this problem in the future.

2. IR behaviors of magnetically induced
QCD Kondo effect

In the following, we use ðNL;Nc; NfÞ suppressing (u)
for simplicity as long as there is no confusion. To character-
ize the IR fixed point of the current Kondo problem, we
compute the g factor for the (anti)fundamental representa-
tion for the strong magnetic field system, which is given by
the formula (2.14) with q ¼ exp ð2πi=ðNLNc þ NfÞÞ.
Expanding this expression under the assumption NL ≫ 1
with Nf fixed, we obtain

g ¼ Nf −
NfðN2

f − 1Þ
ðNLNcÞ2

π2

6
þOðN−3

L Þ: ð3:26Þ

In the large-NL limit, corresponding to the large-B limit,
the g factor is approximated to g ¼ Nf, and the correction
is highly suppressed since it starts with OðN−2

L Þ. This
(almost) integer behavior implies that the QCD Kondo
effect is described as the Fermi liquid in the strong
magnetic field limit, and thus the low-temperature scaling

of the specific heat and so on is expected to exhibit the
Fermi liquid behavior.
These results implying the Fermi liquid behavior at the

IR fixed point also suggest that we correspondingly observe
the low-temperature behavior described by the Fermi liquid

Cimp ∝ T; χimp ∝ const: ð3:27Þ

The Wilson ratio in this case is given by

RW ¼ NLNc

NLNc − 1
⟶
NL→∞

1: ð3:28Þ

Such a behavior is expected to be observed in the QCD
Kondo effect occurring in the strong magnetic field and
would be a signal for it.

IV. DISCUSSION

In this paper, we have studied QCD Kondo effect in both
finite density and strong magnetic field systems based on the
CFT approach. We have derived the (1þ 1)-dimensional
WZW model, which is the effective theory of the QCD
Kondo effect, and then pointed out that, in contrast to the
ordinary Kondo effect, the spin interaction does not play
any role in both QCD Kondo effects. In both cases, we have
observed the symmetry enhancement, which is indeed a
specific feature of QCD Kondo effect since there is no such
enhancement in the conventional Kondo effects. In the finite
density system, the flavor symmetry is enhanced due to the
spinor structure, while the color symmetry is enhanced in the
magnetic system due to the LLL degeneracy.
Because of the flavor symmetry enhancement for the

finite density system, we have shown that the correspond-
ing QCD Kondo effect is always overscreening, which
exhibits the non-Fermi liquid behavior at the IR fixed point.
On the other hand, for the strong magnetic field system, we
have performed the large-N analysis thanks to the enhance-
ment of color symmetry. We have obtained the Fermi liquid
behavior in the strong magnetic field limit, and its correc-
tion just starts in OðB−2Þ. Applying the CFT analysis to the
QCD Kondo problem, we have shown the impurity con-
tribution to the low-temperature dependence of specific
heat and susceptibility, which could also distinguish the
universality of QCD Kondo effects.
It is important to discuss several physical situations in

which QCD Kondo effect can occur and possible signatures
of the QCD Kondo effect in QCD phenomenology. In the
core of the neutron star and magnetar, a high-density quark
matter would exist, as would strong magnetic fields. If the
high-energy cosmic ray such as neutrino comes into the
core, it interacts with a light quark in the matter and
transforms the light quark to a charm quark though weak
interaction. In this situation, the QCD Kondo effect and/or
magnetically induced QCD Kondo effect can occur inside
neutron star and magnetar.
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Another situation is relatively low-energy heavy ion
collisions to be conducted in GSI-FAIR and J-PARC.
There, a quark matter at high density and low temperature
would be created. Hard processes at the initial stage of the
collision can produce charm quark pairs, and they induce
the QCD Kondo effect in the quark matter created. In this
situation, let us focus on the anticharm quark. In the
hadronization process, the anticham quark must be either
coupled to the charm quark being charmonium or to light
quark being a D meson. If the QCD Kondo effect occurs,
the fraction of D-meson production should increase. This
will be reflected on the ratio of the charmoniumandD-meson
yields with and without the QCD Kondo effect and can be a
strong signature of the QCD Kondo effect.
At finite temperature, the temperature dependence of

resistivity of QCD Kondo effect is analyzed recently in
Ref. [17]. It is shown that the resistivity of the QCD Kondo
effect increases as the temperature decreases. In nonpertur-
bative regions, the exact form of the resistivity can be found
in Ref. [7], which depends on the fundamental parameters
(N, k, Rimp) given for the finite density QCD Kondo effect
and magnetically induced QCD Kondo effect in the present
analysis. The enhancement of the resistivity due to the QCD
Kondo effect might be observable in asymmetric heavy ion
collisions. In Ref. [24], the authors investigate the possibility
of observing the conductivity (or equivalently resistivity) of
quark-gluon plasma in asymmetric heavy ion collisions
owing to the imbalance of the charge distributions of the
two nuclei. In this situation, an enhancement of the resistivity
could be also a signal of the QCD Kondo effect.
Apart from QCD phenomenology, the “QCD Kondo

effect” would be realized in several situations in condensed
matter physics. From the viewpoint of universality of
the fixed point, the finite density QCD Kondo effect is
classified into the SU(3) Kondo universality class, the
realization of which has been recently proposed in con-
densed-matter systems, e.g., quantum dot [25] and ultra-
cold atomic systems [26,27]. Another recent proposal of
the SU(3) Kondo system based on the Tomonaga-Luttinger
liquid description directly gives rise to the two-channel
system [28], the universality of which is exactly the same
as the finite density QCD Kondo effect for Nf ¼ 1 theory.
In addition, the three-channel Kondo effect caused by
ordinary SU(2) spin interaction is also relevant to our
SU(3) problem, through the level-rank duality betweendSUð3Þ2 and dSUð2Þ3. This implies that various aspects of
the finite density QCD Kondo effect could be examined
in experiments of these systems. It would be helpful for
understanding the QCD Kondo effect, and our CFT
approach can be directly applied to such systems.
As mentioned in Secs. III A and III B, we have observed

the symmetry enhancement in the effective (1þ 1)-
dimensional model of the QCD Kondo effect. In particu-
lar, we have shown the color symmetry enhancement
in the strong magnetic field system, due to the LLL

degeneracy. This allows us to apply the large-N analysis in
the large-B limit. Let us comment on several arguments
peculiar to this limit. According to the Mermin-Wagner
theorem, there is no spontaneous symmetry breaking
in a (1þ 1)-dimensional system [29–31]. However, the
large-N limit suppresses the long-range fluctuation so that
a second-order phase transition becomes possible. In fact,
the large-N Kondo model exhibits a phase transition
where the Kondo singlet plays the role of the order
parameter [32,33], while it is a crossover transition in a
realistic situation. We can expect that such a phase
transition actually occurs in the strong magnetic field
Kondo effect, and it would be relevant to the recent work
on the Kondo phase diagram [34]. In addition to the
standard saddle-point approximation, in the large-N limit,
we can also apply another nonperturbative method, called
the AdS=CFT correspondence, to the Kondo problem
[35–40]. See also Ref. [41]. This would also be interesting
since the QCD Kondo effect provides a possible realistic
application of the AdS=CFT correspondence.
In the QCD Kondo effect, the color exchange interaction

between quarks provides a non-Abelian property needed for
the appearance of the Kondo dynamics. Actually, instead of
the color exchange interaction, the isospin exchange inter-
action between nucleon and heavy flavor hadrons can play a
similar role. By using the isospin exchange interaction, Yasui
and Sudoh discuss possibilities of the Kondo effect realized
in nuclear matter with a heavy flavor hadron as an impurity
[42–47]. See also Ref. [21] for another realization of the
Kondo effect. We expect that the CFT approach can be also
applied to the Kondo dynamics in nuclear physics.
In this paper, we have only discussed the one-impurity

Kondo problem. However, the interaction between impurity
spins induced by the conduction electrons, called the
Ruderman-Kittel-Kasuya-Yoshida interaction, would play
an important role for heavy electron systems. A minimal
model describing the interaction between the impurities is
the two-impurity Kondo model, which is also studied based
on the CFT analysis [48,49]. It would be interesting to
consider a similar situation for QCD Kondo systems in
which light quarks induce an interaction with heavy quarks,
in addition to the ordinary color interaction.
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Field Theory Graduate Texts in Contemporary Physics
(Springer-Verlag, New York, 1997), DOI: 10.1007/978-1-
4612-2256-9.

[12] E. Abdalla, M. C. B. Abdalla, and K. D. Rothe, Non-
Perturbative Methods in Two-Dimensional Quantum Field
Theory (World Scientific, Singapore, 2001), DOI: 10.1142/
4678.

[13] H.W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Conformal
Invariance, the Central Charge, and Universal Finite Size
Amplitudes at Criticality, Phys. Rev. Lett. 56, 742 (1986).

[14] I. Affleck, Universal Term in the Free Energy at a Critical
Point and the Conformal Anomaly, Phys. Rev. Lett. 56, 746
(1986).

[15] I. Affleck, Realization of a Witten Critical Theory in
ðCH3Þ4NMnCl3, Phys. Rev. Lett. 56, 2763 (1986).

[16] K. G. Wilson, The renormalization group: Critical phenom-
ena and the Kondo problem, Rev. Mod. Phys. 47, 773
(1975).

[17] S. Yasui and S. Ozaki, Transport coefficients from the QCD
Kondo effect, Phys. Rev. D 96, 114027 (2017).

[18] E. Shuster and D. T. Son, On finite density QCD at largeNc,
Nucl. Phys. B573, 434 (2000).

[19] T. Kojo, Y. Hidaka, L. McLerran, and R. D. Pisarski,
Quarkyonic chiral spirals, Nucl. Phys. A843, 37 (2010).

[20] N. J. Evans, S. D. H. Hsu, and M. Schwetz, An effective
field theory approach to color superconductivity at high
quark density, Nucl. Phys. B551, 275 (1999).

[21] T. Kanazawa and S. Uchino, Overscreened Kondo effect,
(color) superconductivity and Shiba states in Dirac metals
and quark matter, Phys. Rev. D 94, 114005 (2016).

[22] G. S. Bali, F. Bruckmann, G. Endrödi, S. D. Katz, and A.
Schäfer, The QCD equation of state in background magnetic
fields, J. High Energy Phys. 08 (2014) 177.

[23] T. Hayata, Y. Hidaka, and A. Yamamoto, Temporal chiral
spiral in QCD in the presence of strong magnetic fields,
Phys. Rev. D 89, 085011 (2014).

[24] Y. Hirono, M. Hongo, and T. Hirano, Estimation of electric
conductivity of the quark gluon plasma via asymmetric
heavy-ion collisions, Phys. Rev. C 90, 021903 (2014).

[25] R. López, T. Rejec, J. Martinek, and R. Žitko, SU(3) Kondo
effect in spinless triple quantum dots, Phys. Rev. B 87,
035135 (2013).

[26] Y. Nishida, SU(3) Orbital Kondo Effect with Ultracold
Atoms, Phys. Rev. Lett. 111, 135301 (2013).

[27] Y.Nishida, Transportmeasurement of the orbitalKondoeffect
with ultracold atoms, Phys. Rev. A 93, 011606 (2016).

[28] Y. Hu and C. L. Kane, Universal symmetry-protected
resonances in a spinful Luttinger liquid, arXiv:1604.08280.

[29] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One-Dimensional or Two-
Dimensional isotzropic Heisenberg Models, Phys. Rev.
Lett. 17, 1133 (1966).

[30] P. C. Hohenberg, Existence of long-range order in one and
two dimensions, Phys. Rev. 158, 383 (1967).

[31] S. R. Coleman, There are no Goldstone bosons in two-
dimensions, Commun. Math. Phys. 31, 259 (1973).

[32] P. Coleman and N. Andrei, Diagonalisation of the gener-
alised Anderson model, J. Phys. C 19, 3211 (1986).

[33] P. Coleman, Mixed valence as an almost broken symmetry,
Phys. Rev. B 35, 5072 (1987).

[34] S. Yasui, K. Suzuki, and K. Itakura, Kondo phase diagram
of quark matter, arXiv:1604.07208.

[35] J. Erdmenger, C. Hoyos, A. O’Bannon, and J. Wu, A
holographic model of the Kondo effect, J. High Energy
Phys. 12 (2013) 086.

[36] A. O’Bannon, I. Papadimitriou, and J. Probst, A holo-
graphic two-impurity Kondo model, J. High Energy Phys.
01 (2016) 103.

[37] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, and
J. M. S. Wu, Entanglement entropy in a holographic Kondo
model, Fortschr. Phys. 64, 109 (2016).

[38] J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J.
Probst, and J. M. S. Wu, Holographic Kondo and Fano
resonances, Phys. Rev. D 96, 021901 (2017).

[39] J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J.
Probst, and J. M. S. Wu, Two-point functions in a holo-
graphic Kondo model, J. High Energy Phys. 03 (2017) 039.

[40] J. Erdmenger, M. Flory, M.-N. Newrzella, M. Strydom, and
J. M. S. Wu, Quantum quenches in a holographic Kondo
model, J. High Energy Phys. 04 (2017) 045.

[41] B. Padhi, A. Tiwari, C. Setty, and P.W. Phillips, Log-rise of
the resistivity in the holographic Kondo model, Phys. Rev. D
97, 066012 (2018).

[42] S. Yasui and K. Sudoh, Heavy-quark dynamics for charm
and bottom flavor on the Fermi surface at zero temperature,
Phys. Rev. C 88, 015201 (2013).

[43] S. Yasui, Kondo effect in charm and bottom nuclei, Phys.
Rev. C 93, 065204 (2016).

[44] S. Yasui and K. Sudoh, Kondo effect of D̄s and D̄�
s mesons

in nuclear matter, Phys. Rev. C 95, 035204 (2017).

CONFORMAL FIELD THEORY ANALYSIS OF THE QCD … PHYS. REV. D 99, 014040 (2019)

014040-11

https://doi.org/10.1103/PhysRevD.92.065003
https://doi.org/10.1103/PhysRevD.92.065003
https://doi.org/10.1103/PhysRevD.94.074013
https://doi.org/10.1016/0550-3213(90)90440-O
https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/10.1016/0550-3213(91)90109-B
https://doi.org/10.1016/0550-3213(91)90109-B
https://doi.org/10.1016/0550-3213(91)90419-X
https://doi.org/10.1016/0550-3213(91)90419-X
https://doi.org/10.1103/PhysRevB.48.7297
https://doi.org/10.1103/PhysRevB.48.7297
https://doi.org/10.1016/0550-3213(94)90365-4
https://doi.org/10.1016/0550-3213(94)90365-4
https://doi.org/10.7566/JPSJ.86.084703
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1142/4678
https://doi.org/10.1142/4678
https://doi.org/10.1142/4678
https://doi.org/10.1142/4678
https://doi.org/10.1142/4678
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevLett.56.746
https://doi.org/10.1103/PhysRevLett.56.746
https://doi.org/10.1103/PhysRevLett.56.2763
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevD.96.114027
https://doi.org/10.1016/S0550-3213(99)00615-X
https://doi.org/10.1016/j.nuclphysa.2010.05.053
https://doi.org/10.1016/S0550-3213(99)00175-3
https://doi.org/10.1103/PhysRevD.94.114005
https://doi.org/10.1007/JHEP08(2014)177
https://doi.org/10.1103/PhysRevD.89.085011
https://doi.org/10.1103/PhysRevC.90.021903
https://doi.org/10.1103/PhysRevB.87.035135
https://doi.org/10.1103/PhysRevB.87.035135
https://doi.org/10.1103/PhysRevLett.111.135301
https://doi.org/10.1103/PhysRevA.93.011606
http://arXiv.org/abs/1604.08280
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1007/BF01646487
https://doi.org/10.1088/0022-3719/19/17/017
https://doi.org/10.1103/PhysRevB.35.5072
http://arXiv.org/abs/1604.07208
https://doi.org/10.1007/JHEP12(2013)086
https://doi.org/10.1007/JHEP12(2013)086
https://doi.org/10.1007/JHEP01(2016)103
https://doi.org/10.1007/JHEP01(2016)103
https://doi.org/10.1002/prop.201500099
https://doi.org/10.1103/PhysRevD.96.021901
https://doi.org/10.1007/JHEP03(2017)039
https://doi.org/10.1007/JHEP04(2017)045
https://doi.org/10.1103/PhysRevD.97.066012
https://doi.org/10.1103/PhysRevD.97.066012
https://doi.org/10.1103/PhysRevC.88.015201
https://doi.org/10.1103/PhysRevC.93.065204
https://doi.org/10.1103/PhysRevC.93.065204
https://doi.org/10.1103/PhysRevC.95.035204


[45] S. Yasui, Kondo cloud of single heavy quark in cold and
dense matter, Phys. Lett. B 773, 428 (2017).

[46] S. Yasui, K. Suzuki, and K. Itakura, Topology and stability of
the Kondo phase in quark matter, Phys. Rev. D 96, 014016
(2017).

[47] K. Suzuki, S. Yasui, and K. Itakura, Interplay between chiral
symmetry breaking and the QCD Kondo effect, Phys. Rev.
D 96, 114007 (2017).

[48] I. Affleck and A.W.W. Ludwig, Exact Critical Theory of
the Two Impurity Kondo Model, Phys. Rev. Lett. 68, 1046
(1992).

[49] I. Affleck, A. W.W. Ludwig, and B. A. Jones, Conformal
field theory approach to the two-impurity Kondo problem:
Comparison with numerical renormalization-group results,
Phys. Rev. B 52, 9528 (1995).

TARO KIMURA and SHO OZAKI PHYS. REV. D 99, 014040 (2019)

014040-12

https://doi.org/10.1016/j.physletb.2017.08.066
https://doi.org/10.1103/PhysRevD.96.014016
https://doi.org/10.1103/PhysRevD.96.014016
https://doi.org/10.1103/PhysRevD.96.114007
https://doi.org/10.1103/PhysRevD.96.114007
https://doi.org/10.1103/PhysRevLett.68.1046
https://doi.org/10.1103/PhysRevLett.68.1046
https://doi.org/10.1103/PhysRevB.52.9528

