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Université d’Abomey-Calavi, 072 BP 50 Cotonou, Benin

(Received 21 September 2018; published 19 December 2018)

Tensor models admit the large N limit dominated by the graphs called melons. The melons are
characterized by the Gurau number ϖ ¼ 0 and the amplitude of the Feynman graphs are proportional to
N−ϖ . Other leading order contributions, i.e.,ϖ > 0 called pseudo-melons, can be taken into account in the
renormalization program. The following paper deals with the renormalization group for a Uð1Þ-tensorial
group field theory model taking into account these two sectors (melon and pseudo-melon). It generalizes a
recent work [V. Lahoche and D. Ousmane Samary, Classical Quantum Gravity 35, 195006
(2018)], in which only the melonic sector has been studied. Using the power counting theorem the
divergent graphs of the model are identified. Also, the effective vertex expansion is used to generate in
detail the combinatorial analysis of these two leading order sectors. We obtained the structure equations,
which help to improve the truncation in the Wetterich equation. The set of Ward-Takahashi identities is
derived and their compactibility along the flow provides a nontrivial constraint in the approximation
schemes. In the symmetric phase the Wetterich flow equation is given and the numerical solution is studied.
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I. INTRODUCTION

The consistent formulation of the quantum theory of
gravity (QG) is one of the fundamental and tedious problems
of modern physics, which remains unsolved, and most
probably intertwines between quantum mechanics and
general relativity (GR). It has evolved a lot since the past
two decades due to the appearance of new background
independent approaches such as loop quantum gravity,
dynamical triangulations, and noncommutative geometry
(see [1–7] and references therein). Recently, tensor models
(TMs) and group field theories (GFTs) are developed as a
new way to investigate this conundrum question [8–27].
TMs generalize matrix models and are considered as a
convenient formalism for studying random geometry in
dimensionsD ≥ 3. It provides awell-defined framework for
addressing QG in higher dimensions and its cortege of
consequences on integrable systems [18]. GFTs are quan-
tum field theories over the group manifolds and are
considered as a second quantization of loop quantumgravity

[15]. GFT is characterized by a specific form of nonlocality
in their interactions, with the basis variable being a complex
field, function of d-group elements [8,26]. Recently TMs
and GFTs are merged to provide the so-called tensorial
group field theory (TGFT) [28–57]. It can also be viewed as
a new proposal for quantum field theories based on a
Feynman path integral, which generates random graphs
describing simplicial pseudo-manifolds. It aims at providing
a content to a phase transition called geometrogenesis
scenario by relating a discrete quantum pregeometric phase
of our spacetime to the classical continuum limit consistent
with EinsteinGR [43–45]. In short,within this approach, our
spacetime and its geometry has to be reconstructed or must
emerge from more fundamental and discrete degrees of
freedom. Its very encouraging features such as renormali-
zation of large class of models and asymptotic freedom on
the one hand [46–49], and a coexistence with a Wilson-
Fisher fixed point on the other hand [50–56], ensure not only
the quantum consistency at macroscopic scales but also the
possible existence of the condensate phase [58].
The renormalization of TGFT models started with the

work given in [36,37]. The multiscale analysis and power
counting theorem are used to prove that the Uð1Þ-tensor
models in three and four dimensions are just renormalizable.
Very quickly several other interestingmodels are studied and
haveproved to be just and superrenormalizable [28–42]. The
classification of the renormalizable TGFT models frame-
work is also investigated [31]. The computation of the
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β-functions to prove the asymptotic freedom and safety is
also given [46–49]. Very recently the functional renormal-
ization group (FRG) method is introduced in the context of
TGFT and allowed to solve the flow equations of these
various models [50–56]. The occurrence of nonperturbative
fixed points and their critical behavior in the UV and IR is
studied. The confirmation of the asymptotic freedom and
safety are also given. The FRG for TGFT [53] derived from
themethod used in the case of matrixmodels [59–68] can be
simply applied when the dimension of tensors is not very
high (d ¼ 3, d ¼ 4, d ¼ 5). In the case where d ≥ 6 due to
the combinatoric, other technical methods require to be
proposed. In [52] this question is solved and turned on a new
way for investigating the FRG to higher dimensions tensors
models [55–57]. FRGcan be roughly described as a flow in a
certain infinite dimensional functional space for actions, the
theory space. The scale plays the role of time for this flow. Its
allows the construction of a set of effective action Γs,
−∞ ≤ s ≤ þ∞, which interpolates between the classical
action S and the full effective action Γ such that this full
effective action is obtained for the value s ¼ −∞ [60]. Γ is
also called the generating functional of one-particle irre-
ducible vertices. At the same time when s walks R the flow
equations enable us to interpolate smoothly between the UV
laws and the IR phenomena for our systems. The flow
equations are described by the Wetterich equation in which
the choice of IR regulator and the full effective action
remains the only condition to provide solutions and prob-
ably maybe help to derive the fixed points.
The Feynman graphs of TM can be organized as a series

in 1=N and therefore the class of combinatorial objects can
be selected. In the large N limit the dominant graphs are
called melon [23,24]. This limit allows us to understand the
statistical physics properties such as continuum limits,
phase transitions and critical exponents. Taking into
account the Gurau 1=N expansion the amplitudes of the
Feynman graphs are proportional to N−ϖ (ϖ is the Gurau
degree), and the melonic contributions are characterized by
ϖ ¼ 0. However, it might be possible to consider the
nonmelonic leading order contributions ϖ ≠ 0, which we
call in this work the pseudo-melonic graphs. The canonical
dimension of the melons and the pseudo-melons is iden-
tified for the n-point graphs. The new leading order
contributions (the pseudo-melons) modify drastically the
power counting theorem and the renormalization properties
of the class of models studied in this direction. In the
nonperturbative analysis of the TGFT with melonic and
pseudo-melonic graphs the FRG should be carefully used.
There are several reasons to consider the mixing melon and
pseudo-melon; see [69,70] for more explanation. The
combinatorial analysis of these two sectors generated an
intermediate sector between melon and pseudo-melon and
should be taken into account in the renormalization pro-
gram. This point will be discussed in detail throughout
this work.

Recently one new breakthrough is done in the context of
FRG of TGFT models, to improve the truncation and to
choose the regulator in the appropriate way [71]. This is
possible by adding in the Wetterich equation, the so-called
structure equations and theWard-Takahashi (WT) identities.
In the case of symmetric phase a nontrivial UV attractive
fixed point is given. TheWT identities are used to define the
nontrivial constraint on the flows and therefore the method
proposed in [71] is totally different from the usual FRG
method. Despite all the results in this recent contribution, a
lot of questions need to be addressed. First the nonmelonic
leading order contribution should been taken into account in
the flow equations. The nonsymmetric phase needs also to be
scrutinized using probably the intermediate field represen-
tation. The purpose of the following work is to provide the
FRG by taking into account the leading order contribution
(the melonic and pseudo-melonic graphs) in the flow
equations. The new power counting theorem is derived
and the classification of the graphs that contributes to these
two sectors is given. The structure equations and the set of
WT identities are used to provide a nontrivial constraint on
the reliability of the approximation schemes, especially on
the truncation and the choice of the regulator. The compar-
isons between these new results and what we obtain in the
case of usual truncation is also given.
The paper is organized as follows: InSec. IIweprovide the

useful definitions and notations, which will be used through-
out the paper. Particularlywegive the definition of ourmodel
and its symmetries, and then introduce the FRG method by
giving theWetterich equation. In Sec. III the effective vertex
expansion is studied. We identified the renormalization
sector by using the power counting theorem. We also com-
puted the canonical dimension of the n-point Feynman
graphs that contribute to melons and pseudo-melons inde-
pendently. In Sec. IV the same analysis as the previous
section is given by mixing these two sectors. By contracting
the elementary melon we generate the family of six point
vertices in which we considered only the nonbranching
sector. We identified one new leading order contribution that
we called intermediate sector. The structure equations for
melons, pseudo-melons and intermediate graphs are also
given carefully. Section V is devoted to the FRG analysis of
the model using not only the structure equations but also the
set of WT identities as nontrivial constraints in the approxi-
mation schemes. The phase diagrams around the fixed points
are also built and examined. We then provide discussion
between our method and what we obtained in the case of
ordinary truncation. In Sec. VI discussions and conclusion
of our work is given. The set of two Appendices is given.
In Appendix A the computation of the useful formulas
concerning convergent sums that we used in the core of this
paper is given. In Appendix B the usual FRG analysis for a
model is given.Chosen the truncation in appropriateway and
the regulator, the flow equations of the couplings and the
mass parameter are given.
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II. FLOWING ON TENSORIAL GROUP FIELD
THEORY SPACE

A tensorial group field theory (TGFT) is a field theory
defined on a direct product of group manifolds. In this
paper we focus on an Abelian group field theory, defined on
d-copies of the unitary group Uð1Þ isomorphic to the
complex numbers of module 1. We consider a pair of fields,
say ϕ and ϕ̄ on Uð1Þd,

ϕ; ϕ̄∶ Uð1Þd → C: ð1Þ
The dynamics of the TGFT model is governed by the
classical action Sðϕ; ϕ̄Þ chosen to be of the form

Sðϕ; ϕ̄Þ ¼
Z

dgϕ̄ðgÞð−Δg þm2ÞϕðgÞ þ Sintðϕ; ϕ̄Þ; ð2Þ

where Δg denotes the Laplace-Beltrami operator on the
torus Uð1Þd and g ≔ ðg1;…; gdÞ ∈ Uð1Þd. For a tensorial
theory, the interaction Sint is a sum of connected tensorial
invariants Sintðϕ; ϕ̄Þ ¼

P
nVnðϕ; ϕ̄Þ made with an equal

number n of fields ϕ and ϕ̄, whose arguments are identified
and summed only between ϕ and ϕ̄. A generic interaction
term in Vn is then of the form

υhðϕ; ϕ̄Þ ¼ λh

Z Yn
p¼1

dgpdḡp

Yn
p¼1

ϕðgpÞϕ̄ðḡpÞ

×
Yn
p¼1

Yd
i¼1

δðgip − ḡihiðpÞÞ; ð3Þ

where δ denotes the Dirac delta distribution over Uð1Þ and
λh denotes the coupling constant. The interaction as well as
the coupling are indexed with a set of maps h ≔ fhi; i ¼
1;…; dg such that for any p ∈ ⟦1; n⟧; hiðpÞ ∈ ⟦1; n⟧. We

can then associate black and white nodes respectively for
fields ϕ and ϕ̄, and a link between black and white nodes
for each delta, labeled by a color index running from 1 to d.
As a result, each interaction can be then labeled from a
unique colored bipartite regular graph rather than with the
map h; and Vn may be decomposed as a sum of terms
indexed with such a graph γn with n white nodes:

Vnðϕ; ϕ̄Þ ¼
X
γn

υγnðϕ; ϕ̄Þ: ð4Þ

For the rest of this paper, we call valence the integer n. Such
graphs are called tensorial invariants bubbles, or simply
bubbles. As an example, for n ¼ 4 and d ¼ 5 we get

ð5Þ

where each color on the graphs corresponds to one of the
integers of the set ⟦1; d⟧, and λ4;i, λ4;ij denote coupling
constants. Note that in this representation we identified the
diagram with the interaction itself. For convenience, in the
rest of this paper, we do not work on Uð1Þd but on its
Fourier dual space Zd. Fixing the group representation, any
element g ∈ Uð1Þ can be uniquely represented as a
complex number of module 1: g ¼ eiθ with θ ∈ ½0; 2π�.
The fields can then be viewed as functions over the
complex unit circle, depending on d-angular coordinates
ϕðθ1;…; θdÞ and ϕ̄ðθ1;…; θdÞ, so that their Fourier decom-
position writes as

ϕðθ1;…; θdÞ ¼
X
p⃗∈Zd

Tp⃗e
i
P

d
j¼1

θjpj ; ϕ̄ðθ1;…; θdÞ ¼
X
p⃗∈Zd

T̄p⃗e
−i
P

d
j¼1

θjpj : ð6Þ

T and T̄ are maps from Zd to C. They are d-tensors with infinite size. In Fourier components, the classical action (2)
becomes, for d ¼ 5,

ð7Þ

where we have chosen the same coupling for the two sets of interactions pictured above. In Fourier space, the Dirac delta
occurring in the interactions like in (3) become discrete Kronecker delta. Because their explicit expressions shall be useful
in the next sections, we give the decomposition of the following two diagrams:

ð8Þ
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where

Vð4;1Þi
p⃗1;p⃗2;p⃗3;p⃗4

¼ δp1ip4i
δp2ip3i

Y
j≠i

δp1jp2j
δp3jp4j

; ð9Þ

and

Vð4;2Þij
p⃗1;p⃗2;p⃗3;p⃗4

¼
Y
l¼i;j

δp1lp4l
δp2lp3l

Y
k≠i;j

δp1kp2k
δp3kp4k

: ð10Þ

In the literature, the first diagrams are known as melonics.
For our purpose, we then denote as pseudo-melonics the
second ones with two weak edges rather than one. Because
of their importance in the rest of this paper, we will denote
by Bi the four-valent melonic diagrams and Bij the four-
valent pseudo-melonic ones. The indices i and ij refer to
the weak edges in both cases.
Among their properties, the tensorial interactions have

revealed a new and nontrivial notion of locality, said
traciality, which is the only one appropriate to deal with
nonlocal structure of the interactions over the group
manifold. In particular, traciality allowed to renormalize
the quantum field theory version of these classical theory,
and it plays an important role in the building of their
renormalization group flow [29]. Without additional gauge
invariance like closure constraint, traciality reduces to
tensoriality [38]. Then we retain the following definition.
Definition 1.—A connected tensorial invariant bubble

interaction is said to be local. In the same footing, any
interacting action expanded as a sum of such diagrams is
said to be local.
The quantum theory is then defined from the partition

function1:

ZðJ; J̄Þ ¼
Z

dTdT̄e−SðT;T̄ÞþJT̄þJ̄T ; ð11Þ

where dT (respectively dT̄) is the standard Lebesgue
measure for path integration and JT̄ ≔

P
p⃗Jp⃗T̄p⃗.

Because of the ultraviolet (UV) divergences, we introduce
a regularization which suppresses the high momenta con-
tributions. There are different choices of regularization
functions. The most common for renormalization are
Schwinger and sharp regularizations. For our purpose, it
is suitable to consider the sharp regularization, such that the
UV regularized free two-point functions is

CΛðp⃗; p⃗0Þ ≔ ΘðΛ2 − p⃗2Þ
p⃗2 þm2

δp⃗p⃗0 ; ð12Þ

where Θ is the Heaviside step function. The presence of the
Laplacian propagator in the classical action (2) generates a

canonical notion of scale over the Feynman graphs. For
TGFTs, these graphs are dual to the simplicial topological
manifold, and then generate discretization of topological
spaces from the perturbative expansion itself. An example
of such a Feynman graph is given in Fig. 1, the dotted
edges being Wick contractions between T and T̄ fields. We
conventionally attribute the color 0 to these edges. An
important notion for tensorial Feynman diagrams is the
notion of faces, which we recall in the following definition.
Definition 2.—A face is defined as a maximal and

bicolored connected subset of lines, necessarily including
the color 0. We distinguish two cases:

(i) The closed or internal faces, when the bicolored
connected set correspond to a cycle.

(ii) The open or external faces when the bicolored
connected set does not close as a cycle.

The boundary of a given face is then the subset of its
dotted edges, and its length is defined as the number of
internal dotted edges on its boundary.
To complete this definition, we provide what we call

internal/external edges and interior/boundary vertices.
Definition 3.—On a given Feynman graph, the set of

edges split into internal and external edges. External edges
come from the Wick contraction with external fields and
internal edges come from the Wick contractions between
vertex fields. Moreover, a vertex is said to be a boundary
vertex if at least one of the external edges is hooked to him.
It is an interior vertex otherwise. Finally, we define the
interior of a Feynman diagram as the set of internal vertices
with dotted edges.
The quantum fluctuation can then be integrated out from

higher to lower scales, generating a sequence of effective
theories which describes a curve into the theory space.
Along the trajectories, all the coupling constants move from
their initial definition, their running describing the renorm-
alization group flow. The FRG is a specific method to build
such a running, well adapted to the TGFT context. To
parametrize the flow, we then introduce a real parameter
s ∈� −∞;þ∞½ and a one parameter family of models Zs
such that

Zs½J; J̄� ≔
Z

dTdT̄e−SðT;T̄Þ−RsðT;T̄ÞþJ̄TþT̄J: ð13Þ

FIG. 1. A typical Feynman graph contributing to the perturba-
tive expansion of the connected two-point functions. The dotted
edges correspond to free propagator contractions between pair of
fields.

1Strictly speaking the term “quantum” is abusive, we should
talk about statistical model, or quantum field theory in the
Euclidean time.
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The regulator term RsðT; T̄Þ depends on the running scale
k ¼ es such that Λ ≥ k ≥ 0, and introduces a dynamical
splitting into high and low scales. It acts as a mass term
which decouples the low scale contributions from long
distance physics, allowing to build an effective action Γs for
the long distance observable, such that higher scale
fluctuations have been integrated out and the coupling
constants moved from their initial values to their effective
values at the given scale k.
To make this more concrete, the regulator is chosen of

the form [60–62]:

RsðT; T̄Þ ¼
X
p⃗∈Zd

rsðp⃗2ÞT̄p⃗Tp⃗; ð14Þ

so that the regulator function rsðp⃗Þ may be suitably
introduced in the kinetic part of the action, providing us
the effective Gaussian propagator:

Csðp⃗2Þ ¼ 1

p⃗2 þm2 þ rsðp⃗2Þ ; ð15Þ

where we assumed Λ ≫ k so that the UV regulator
disappears. The regulator function satisfies some properties
ensuring that fluctuations are well integrated, among them
(see [72] for more details)

(i) rs ≥ 0,
(ii) lims→−∞rs ¼ 0,
(iii) lims→∞rs ¼ ∞.

The last condition ensures that the initial conditions are
those imposed by the classical action itself. Moreover, the
second condition ensures that all the fluctuations are
integrated out in the deep infrared (IR). The first condition
finally protects the flow from singularities. Note that UV
and IR correspond respectively to the ending points of the
domain of s: k ¼ ∞ in the UV sector and k ¼ 0 in the IR.
The central object in the FRG approach is the averaged
action Γs, defined as the (slightly modified) Legendre
transform of the free energy Ws ≔ lnðZsÞ:

Γs½M; M̄� þ Rs½M; M̄� ¼ J̄M þ M̄J −Ws½J; J̄�; ð16Þ

where M (respectively M̄) is the means field:

M ≔
∂Ws

∂J̄
�
respectively M̄ ¼ ∂Ws

∂J
�
: ð17Þ

The presence of the regulator on the left-hand side ensures
the following initial conditions hold:

Γs¼−∞ ¼ Γ; Γs¼þ∞ ¼ S; ð18Þ

where S is the classical action and Γ the full effective action
for rs ¼ 0. The renormalization group flow is then
described from an order 1 nonlinear differential equation
for Γs [63]:

_Γs ¼
X
p⃗

_rsðp⃗2ÞGsðp⃗; p⃗Þ; ð19Þ

where the dot designates the derivative with respect to s,
i.e., _Γs ≔

∂Γs∂s and

G−1
s ≔

∂2Γs

∂M∂M̄ þ rs ≕Γð2Þ
s þ rs; ð20Þ

is the effective two-point function. Moreover, the regulator
is chosen such that only a finite window of momenta
contributes to the sum, ensuring that it is finite both in UV
and IR. This equation is both simple and complicated.
Simple, because it is of order 1 with respect to the flow
parameter s. Moreover, it only involves a single effective
loop rather than a multiloop expansion as in the standard
Wilson-Polchinski approach, and is then well adapted to
nonperturbative considerations. However, this equation is
also highly nonlinear, and except for very special cases, it is
impossible to solve it exactly. Extracting from it a non-
perturbative information on the renormalization group flow
then requires approximations. The most popular for TGFT
are truncations [50–56]. With this method, the flow in the
full theory space is projected into a reduced dimensional
subspace. Another method, already considered in [71] and
that we will use in this paper, may be called effective vertex
method. Taking successive derivatives of Γs in flow
equation (19), we then get an infinite hierarchical system,

expressing _ΓðnÞ
s in terms of Γðnþ2Þ

s and Γðnþ1Þ
s . The effective

vertex method stops the infinite hierarchical tower of

equation expressing Γðnþ2Þ
s and Γðnþ1Þ

s in terms of deriva-
tives up to a certain n, so that the system of equation
becomes closed. The importance of this new method comes
from the fact that we keep the full momentum dependence
on the effective vertex. Wewill compare the two methods in
the last section, and point out the new behavior coming
from the full momentum dependence.
Now let us give an important aspect about the construction

of the flow and the difference between symmetric and
nonsymmetric phases. Usually, these terms refer to the value
of themean fieldM. ForM ¼ 0, themodel is said to be in the
symmetric phase. Otherwise the model is said to be in the
nonsymmetric phase. For tensorial group field theories, we
adopt another definition, already considered in [71].
Definition 4.—Symmetric and nonsymmetric phases.—

As long as the effective two-points function Gs remains
diagonal, Gsðp⃗; q⃗Þ ∝ δp⃗ q⃗, the theory is said to be in the
symmetric or perturbative phase. If this is not the case the
theory is said to be in the nonsymmetric or nonperturbative
regime.
This definition comes from the fact that in a perturbative

regime, all the 1PI correlations functions of the form

Γð2nþ1Þ
s vanish. Moreover, the conservation of the external

momenta running along the boundaries of the external faces
ensure the presence of a global conservation Kronecker
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delta δp⃗ q⃗. For instance, let us consider the violet external
face on the Feynman graph given on Fig. 1:

ð21Þ

The path of the boundary of the violet face in Eq. (21) is
indicated with arrows. Each propagator shares a Kronecker
delta, as well as each colored edge. Then, the momentum is
already conserved along the path. The same property is true

for all colors. Now, let us consider Γð2Þ
s;p⃗ q⃗ðM; M̄Þ for a

nonvanishing mean field. Expanding it in powers of these
fields, we get

Γð2Þ
s;p⃗q⃗ðM;M̄Þ
¼Γð2Þ

s;p⃗q⃗ð0;0Þþ
X
p⃗1;p⃗2

Γð4Þ
s;p⃗q⃗;p⃗1;p⃗2

ð0;0ÞMp⃗1
M̄p⃗2

þ��� : ð22Þ

Perturbatively, the first term of the expansion Γð2Þ
s;p⃗ q⃗ð0; 0Þ is

proportional to δp⃗ q⃗. However, it is not the case of the next
term. Indeed, a leading order contribution to the second
term could be, at the first order in perturbative expansion

for Γð4Þ
s;p⃗ q⃗;p⃗1;p⃗2

ð0; 0Þ:

ð23Þ

where the fat black edges correspond to Kronecker delta
contractions. As a result, except for very special mean field
configurations ensuring that

X
k⃗∈Zd−1

Mk⃗;p1i
M̄k⃗;p2i

∝ δp1ip2i
;

Γð2Þ
s;p⃗ q⃗ cannot be diagonal for nonvanishing means fields.2 In

the rest of this paper, we consider only the symmetric phase

and the effective vertices then can be considered as the first
terms correction in means field expansion like in (22).
Finally let us end this section by introducing the notion

of boundary graph.
Definition 5.—ConsiderG as a connected Feynman graph

with 2N external edges. The boundary graph ∂G is obtained
from G keeping only the external black and white nodes
hooked to the external edges, connected together with
colored edges following the path drawn from the boundaries
of the external faces in the interior of the graphG:∂G is then a
tensorial invariant itself with N black (respectively white)
nodes. An illustration is given on Fig. 2.

III. MELONIC AND PSEUDO-MELONIC SECTORS

This section addresses the renormalization of a TGFT
model, mixing standard melons and a new interacting
sector called pseudo-melonic. First, we recall some proper-
ties of renormalizable theories and consider the purely
melonic sector, which has been shown to be just renorma-
lizable for d ¼ 5. Second, we define the new family that we
call pseudo-melons, and show that it is power-counting
renormalizable for ϕ6 interactions.

A. Renormalizable sectors

Basically, a renormalizable sector is a proliferating
family of divergent graphs having the same combinatorial
structure and the same power counting, such that their
divergences can be canceled from a finite set of counter-
terms. For our model with a kinetic Laplacian term as a
boundary condition in the UV, the degree of divergences ω
of a Feynman graph with L internal propagator edges and F
internal faces is

ω ¼ −2Lþ F: ð24Þ

We recall the well-known classification criterion. Let us
consider a given sector.

(i) If the degree of divergence depends only on the
number of external edges, and decrease with him,

FIG. 2. An opening Feynman graph with four external edge and
its boundary graph. The strand in the interior of G represents the
path following by the external faces.

2Note that the last condition holds for theory with closure
constraint, a gauge invariance ensuring that, “on shell,”P

d
i¼1 pi ¼ 0. If M and M̄ are on shell, the product

Mk⃗;p1i
M̄k⃗;p2i

is therefore proportional to δp1ip2i
.
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the theory is said to be superficially just-renorma-
lizable.

(ii) If the degree of divergence depends on the number
of external edges, and decreases both with the
number of vertices and external edges, the theory
is said to be superficially super renormalizable.

(iii) If the degree of divergence depends on the number
of external edges, and increases with the number of
vertices and/or the number of external edges, the
theory is said to be superficially nonrenormalizable.

The adjective “superficially” refers to the fact that such a
classification remains heuristic without a rigorous proof for
finiteness of renormalized amplitudes. The renormalization
of TGFT models by considering only the melonic sector is
given in [28–38] and references therein. We expect that the
new sectors that we will consider in this paper require
minimal modifications on the proofs given in these refer-
ences, and we will only proof the key properties allowing to
extend them trivially. Moreover, we left the adjective
“superficially” for the rest of this paper.
We now give a precise definition of a sector.
Definition 6.—Families and sectors.
(i) A family F is a set of proliferating connected

nonvacuum graphs which have the same degree of
divergence and the same boundary graph. A family
is then labeled with a couple F ¼ ðω; γnÞ with
n > 1, γn being a connected invariant bubble of
valence n. The leading family F γn;ωn

has the maxi-
mal divergence degree ωn, i.e., ωn ¼ maxγnω.

(ii) A leading sector S is a set of leading families S ¼
fF γn;ωn

g such that each boundary graphs γn are sums
of the boundary graphs having smallest valence—up to
an eventual prescription for the sum. The set of family
whose boundary graphs have the smallest valence is
called root set, and their elements root families.

(iii) A subleading sector is a sector whose families have
the same boundary graphs as the families of the
leading sector, but smallest degree of divergence.

Then all the diagrams in a given family behave like Λω

with the UV cutoff Λ. Moreover, we recall the definition of
the sum of connected invariants.
Definition 7.—Let γn and γm be two bubbles with valence

n andm respectively. Let n1 ∈ γn and n2 ∈ γm be two black
and white nodes. The sum γn �n1n2 γm is the connected
bubble of valence nþm − 2 obtained from γn and γm as

(i) Drawing an edge between n1 and n2
(ii) Contracting it, deleting the end nodes n1 and n2 and

connecting together the colored edges hooked to
them following their respective colors.

Figure 3 provides an example.
Among the motivations for these definitions, we recall

that the sum of connected tensorial invariant3 does not

change the Gurau degree characterizing the tensorial
invariant of colored random tensor models [23,24]. The
sectors could be then labeled with their Gurau degree.
From the definition of families and sectors, we define the

notion of divergent families and sectors as follows.
Definition 8.—A family is said to be divergent if ω ≥ 0.

Let S be a sector. The divergent sector SD ⊂ S is the subset
SD ¼ fðω; γnÞjω ≥ 0g of divergent families included into
S. Note that SD can be an empty set. If SD ¼ ∅, the sector
S is said to be safe.
Among the families and sectors, we must make the

difference between the case for which the divergent degree
increases, decreases or is constant with respect to the
number of vertices. Note that when the divergent degree
depends on the number of vertices, the families have a short
length. In contrast, when a family is made of an infinite
number of graphs, the divergent degrees, for fixed n does
not depend on the number of vertices. This consideration
leads to the notion of a superficially renormalizable sector.
Definition 9.—SD ⊂ S the divergent sector on S and

kSDk the number of elements in SD. If kSDk < ∞ and
∀ F ∈ SD, kFk ¼ ∞, the sector is said to be superficially
renormalizable. If ω ¼ 0, the corresponding family is said
to be superficially just renormalizable.
Note that the subleading order sectors must have a

divergent sector, requiring to be separately renormalized.
The power-counting renormalizability is a first requirement
to prove that a given theory is renormalizable. In particular,
a renormalizable theory requires the definition of a finite set
of local counterterms canceling the infinities coming from
the divergent families. Then, renormalization requires a
locality principle, allowing to localize and subtract the
divergences occurring in a Feynman diagram (including
eventually the full diagram itself). For tensorial theories,
the relevant locality principle has been given in the
definition (2). Now we have to show that the renormalized
amplitudes whose divergences have been subtracted with
appropriate counterterms are finite at all orders. Technically
such a realization requires an appropriate slicing on the
graphs, allowing to subtract only the dangerous parts of the
divergent graphs. All these technical subtleties have been
already considered in the literature for tensor field theories
[29,38], especially for the melonic sector. Beyond the
melonic sector, other leading order sectors have been

→ →

FIG. 3. The sum of two connected melonic bubbles.

3which is nothing but a contraction of a 0-dipole see
definition (10).
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considered in [57] called necklaces. As mentioned above,
the sector that we consider in this paper in addition to the
melons, the pseudo-melonic sector has many similarities
with the melons, and a rigorous proof of its renormaliz-
ability is a small modification of the proofs given in
[49–57] for the melonic sector. We will briefly recall some
of these requirements, and then we will show in a second
time that (the pseudo-melonic sector) satisfiesmanyof them.
Let us mention that our presentation is highly sketched with
respect to a rigorous treatment, and have to be completed
with the bibliographic details for unfamiliar readers.
Then let us recall some useful definitions that we will use

in the rest of this work. We start by giving the definition of
k-dipoles and their contractions.
Definition 10.—G a connected Feynman graph. A k-

dipole is made with two black and white nodes n and n̄
joining together with a dotted edge and k colored edges.
Contracting a k-dipole corresponds to delete the kþ 1
edges between the nodes as the nodes themselves, and
reconnect together the remaining colored edges following
their respective colors. An example is pictured in Fig. 4.
Another important aspect, especially concerning the

power counting theorem is the notion of contractibility,
playing an important role in the localization and subtraction
of divergences. A first important remark is that the power
counting for a given graph G increase exactly of 2 under the
contraction of spanning tree edge. Indeed, if an edge l ∈ T
for T ⊂ G, be a spanning tree of G, then, the graph G=l
obtained from G by contracting the edge l does not change
the number of internal faces. However, the number L of
edges decreases to L − 1. Contracting all the edges of the
spanning tree, we then get a connected graph, said rosette
and denoted by Ḡ. The divergence degrees of G and of one
of its rosettes Ḡ4 are then related by

ωðGÞ ¼ ωðḠÞ − 2ðVðGÞ − 1Þ; ð25Þ

VðGÞ being the number of bubble vertices in the initial
graph G, and VðGÞ − 1 is the number of edges in a spanning
tree of G. A rosette is then said to be contractible as soon as
the following definition holds:
Definition 11.—Consider the family F, G ∈ F and Ḡ the

corresponding rosette. Ḡ is said to be contractible if there
exists k > 0 such that all the dotted edges in Ḡ can be
successively contracted by k-dipole contraction.
This definition makes sense due to the fact that for a

family whose rosettes are k-dipole contractible, the degree
of divergence for rosettes can be easily computed leading to
the following divergence degree of G:

ωðGÞ ¼ −2LðGÞ þ kðLðGÞ − VðGÞ þ 1Þ: ð26Þ

Indeed, contracting one k dipole is equivalent to removing
one dotted edge, such that the divergent degree is increased
by 2. In the same time, we remove k internal faces, and
therefore ωðḠÞ ¼ ðk − 2ÞLðḠÞ. Finally a relation between
the number of internal edges and vertices can be easily
found, expressing L in terms of a sum involving the number
of vertices with a given valence [30]. Then, the renormaliz-
ability criteria may be directly investigates.
First let us consider an example of the melonic sector and

let us adopt the following definition useful particularly in
the next section and also compatible with [23,24].
Definition 12.—The melonic sector SM is the sector in

which the root families have the set fBig as boundary
graphs. Its elements are called melonic families. Moreover,
among all the families having boundary graphs of valence
n, the melonic families optimized the power counting. We
call melonic bubbles and denote as M the set of all the
tensorial invariants obtained as sums of elementary melons
in the set fBig.
The melonic sector has then the set fBig as smallest

boundary graphs. The melonic graphs satisfy a recursive
definition, and the nonvacuum diagrams can be obtained
from the vacuum ones. Note that the vacuum diagrams as
well as two-point diagrams are not in the sector SM.
Definition 13.—Vacuum melonic diagrams.
(i) For a purely quartic model containing only the

set fBig as interactions, the vacuum melonic dia-
grams are recursively obtained from the elementary
diagrams:

ð27Þ

by replacing any of the dotted edge as

ð28Þ

for arbitrary i. Figure 5 provides us an example of such
quartic vacuum melons.
(ii) For models involving higher melonic bubbles,

obtaining as sums of elementary quartic melon,
the vacuum diagrams are obtained from quartic
vacuum diagrams by contraction of some 0-dipole.
As illustration, Fig. 5 provides an example of such a
contraction.

FIG. 4. A 3-dipole (on the left) and its contraction (on the right).

4In general, there are more than one spanning tree in a given
graph.
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Note that the elementary procedure allows to replace one
edge with a two-point tadpole does not change the degree
of divergence: To be more precise we add two dotted edges
and therefore decrease the degree by 4, but this variation is
exactly compensated from the creation of four internal
faces. It is easy to check that ω ¼ 5 for the quartic vacuum
diagrams, and this quantity increases exactly by 2ðn − 2Þ
when we add an n valent melonic interaction with n > 2.
We denote by SMV

the set of vacuum quartic melonic
diagrams. The 1PI two-points melonic diagrams may be
obtained from vacuum melons from the deletion of one
dotted edge. Obviously, deleting a dotted edge along a face
of length higher to 1, we obtain a 1PI graph. Then, to build
a two-point 1PI graph, we have only the choice to delete a
tadpole edge. The deletion suppresses five internal faces,
and one internal edge. The degree of divergence for
melonic two-point graphs is then equal to 2. We then
defined SM2

as the set of quartic melonic two-point graphs.
The 1PI four-point graphs will be then obtained from the
deletion of another tadpole dotted edge, and it is easy to
check that the optimal way is to delete an edge in the
boundary of one external face. A four-point graph has then
two external vertices, 2ðd − 1Þ external faces of length 2,
whose boundaries are pairs of external edges hooked to the
same external vertex, and two external faces running
through the interior of the diagram. Figure 6 provides an
example with two quartic vertices.
For 1PI melonic diagrams with more external edges, we

get [30–35]:
Proposition 1.—Let G be a 1PI 2N-points diagram with

more than one vertex. It has N external vertices, d − 1

external faces per external vertex, and N external faces of
the same color running through the interior of the diagram.
Among the interesting properties of melonic diagrams,

their rosettes are d − 1-dipole contractible, so that for-
mula (26) becomes

ωðGÞ ¼ −2LðGÞ þ ðd − 1ÞðLðGÞ − VðGÞ þ 1Þ: ð29Þ
Counting the number of edges in a Feynman graph with

N external edges, and Vk vertices of valence 2k, we get
2L ¼ P

k2kVk − N and setting d ¼ 5,X
k

2ðk − 2ÞVkðGÞ þ 4 − NðGÞ; ð30Þ

so that the melonic interactions are just renormalizable for
the quartic set fBig. Then, the dangerous sector SD;M for
the melonic graph only contains the leading families with
boundary graphs γ2 ∈ fBig. This family is built of graphs
with arbitrary size, meaning that each leading family is an
infinite set. SD;M is then a just-renormalizable divergent
sector from definition III A. To this set, we have to add the
infinite set SM2

of two-point melonic graphs, which have
power counting ω ¼ 2. To illustrate how the renormaliza-
tion works, let us consider the four-point graph pictured in
Fig. 6. Let Ap⃗1;p⃗2;p⃗3;p⃗4

be the amplitude of the correspond-
ing diagram. Assuming that the red edges correspond to
component 1 in the momentum space, we get

Aðp⃗1;p⃗2;p⃗3;p⃗4Þ¼−4λ2Aðp2
11;p

2
21ÞSymVð4;1Þ1

p⃗1;p⃗2;p⃗3;p⃗4
; ð31Þ

where

Aðp2
11; p

2
21Þ ≔

X
q⃗∈Zd−1

1

q⃗2 þ p2
11 þm2

1

q⃗2 þ p2
21 þm2

; ð32Þ

and

SymVð4;1Þ1
p⃗1;p⃗2;p⃗3;p⃗4

¼ Vð4;1Þ1
p⃗1;p⃗2;p⃗3;p⃗4

þ Vð4;1Þ1
p⃗3;p⃗2;p⃗1;p⃗4

: ð33Þ

From power counting, Aðp2
11; p

2
21Þ diverges logarithmically

with the UV cutoff. However, any derivative with respect to
the external momenta p11 and p21 is convergent. Then, only
the first term in the Taylor expansion of Aðp2

11; p
2
21Þ is

divergent and requires to be subtracted:

Aðp⃗1; p⃗2; p⃗3; p⃗4Þ ¼ −4λ2Að0; 0ÞSymVð4;1Þ1
p⃗1;p⃗2;p⃗3;p⃗4

þ finite:

ð34Þ

Note that 2SymVð4;1Þ1
p⃗1;p⃗2;p⃗3;p⃗4

is nothing but the combinatorial
factor coming from the contraction of four external fields
with an elementary two-valent vertex B1. The divergent
term can be then exactly canceled adding in the original
action the following one-loop counterterm:

FIG. 5. A quartic vacuum melonic diagrams with three vertices
(on left), and a vacuum melonic diagram with one 3-valent
melonic interaction obtained from the first diagram by the
contraction of the edge e2 (on right).

FIG. 6. A four-point melonic diagram with two vertices. We
have 2 × 4 external faces per external vertex, and two external red
faces running through the internal dotted edges.
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δ1S ¼ 2λ2Að0; 0Þ
X
fp⃗ig

Vð4;1Þ1
p⃗1;p⃗2;p⃗3;p⃗4

Tp⃗1
T̄p⃗2

Tp⃗3
T̄p⃗4

: ð35Þ

The counterterm is then factorized as an elementary bubble.
For two-point graphs, the first derivative of the divergent
function has to be kept, leading to a wave function
counterterm. This is in this sense that the connected
tensorial invariant can be viewed as locals. For the melonic
sector, this property may be generalized for all orders:
Any divergent diagram may be factorized as an elemen-
tary melonic bubble times a divergent contribution (see
[30–35]).
In standard field theory, interactions can be classified

following their dimensions. However, in TGFT, there is no
background space-time, and roughly speaking the action
(2) is dimensionless. An appropriate notion of canonical
dimension appears from renormalization group flow con-
siderations. Renormalizable interaction in particular has
zero dimension, a property corresponding to the marginal
behavior of its renormalization group flow in the vicinity of
the Gaussian fixed point. Such a property is recovered for
tensor field theories, where just-renormalizable interactions
have a marginal behavior. We can then define the flow
dimension as follows.
Definition 14.—Let SD be a renormalizable leading

sector and F ∈ SD a divergent family with ω ¼ 0. The
flow dimension of the corresponding boundary graph γn is
then fixed to zero.
In words, the renormalizable interaction scales logarith-

mically with the UV cutoff, which is another way to say
that their weight on the power counting is zero—as in
Eq. (30) for quartic melonic diagrams. The flow dimension
of renormalizable couplings being fixed for all considered
renormalizable sectors, we can associate a dimension for all
couplings as their optimal scaling. Moreover, this scaling
may be directly read on the power counting as well, if it
exists. This is explicitly the case in Eq. (30). Without
explicit power counting, the flow dimension is obviously
closely related to the degree of divergence. Moreover,ω is a
sum and difference of integers, the number of dotted edges
and faces, respectively weighted with 2 and 1. To add an
edge decreases by 2 the degree of divergence, while to add
a face increases it by 1. It is then coherent to associate a
canonical dimension 2 for each edge of a theory with a
Laplacian type propagator, and a dimension 1 for each face.
From these considerations, we associate a canonical
dimension 2 for mass and Laplacian. One more time,
the dimension of these two operators being fixed, the
canonical dimensions for other tensorial operators may be
deduced. Moreover, canonical and flow dimension seem to
be closely related, and to make contact between them, we
have to show that renormalizable interactions have zero
canonical dimension. In the literature [71], the dimension
estimate d̃b of a bubble b provides an upper bound for
canonical dimension db.

Definition 15.—Let b be a connected tensorial bubble,
and G2ðbÞ the set of one-vertex two-point graphs obtained
from b. The estimate canonical dimension d̃b of the bubble
b is then defined as

d̃b ¼ 2 − max
G∈G2ðbÞ

ωðGÞ; d̃b ≥ db: ð36Þ

Note that d̃b ¼ 2 if G2ðbÞ ¼ ∅, meaning that estimate
canonical dimension for two-point bubbles is then fixed to
2, with respect to our preliminary discussion. This state-
ment may be checked as follows. Let us consider a 1PI
2n-point leading graph Gn in a renormalizable sector, built
of bubbles γn with zero flow dimension. A leading order
2n-point graph Gn may be obtained from a leading two-
points graph G2 from deleting n − 1 internal edges. Let
ωðG2Þ be the divergent degree of the two-point graph.
Consistency with renormalizability then requires that the
leading quantum corrections for considered renormalizable
sectors behave like Λ2, then we come to

ωðG2Þ ¼ 2: ð37Þ

Deleting a k-dipole leads to removing one edge and at
most d internal faces. However, the number of deleted faces
can be reduced if we choose to delete an edge on the
boundary of a maximal number of external faces. We
restrict our attention on the cases of k-dipole contractible
families. Then, deleting n − 1 edges correspond to deletes
kðn − 1Þ faces, and

ωðG2Þ − ðk − 2Þðn − 1Þ

¼ 2 − ðk − 2Þðn − 1Þ ¼ 0 → k ¼ 2þ 2

n − 1
: ð38Þ

Note that this equation make sense only for n ¼ 2 and
n ¼ 3. For n > 3, the equation 2 − ðk − 2Þðn − 1Þ ¼ 0 has
no integer solutions. Then, we expect that the only k-dipole
just-renormalizable models are given when n ¼ 2, k ¼ 4 or
n ¼ 3, k ¼ 3. The first condition corresponds to the quartic
melonic sector. The second condition will be described
later in the next subsection.
The canonical dimension of the different boundaries

bubbles for a given sectors have to be closed. From the
bubbles with valence n in a k-dipole contractible family,
n − 1 valent bubbles may be obtained from optimal
contraction of a k-dipole on a just-renormalizable inter-
action γn. Creating such a dipole increases the number of
0-edges of 1, and then creates k internal faces. The scaling
is then given by

ωðγn−1Þ ¼ ωðγnÞ þ ðk − 2Þ ¼ 2

n − 1
; ð39Þ

implying that ωðγ1Þ ¼ 2 from construction. ωðγn−1Þ is
nothing but the optimal scaling, that is, what we call flow

VINCENT LAHOCHE and DINE OUSMANE SAMARY PHYS. REV. D 98, 126010 (2018)

126010-10



dimension. Moreover, it is easy to check that ωðγ2Þ ¼
2 − 2=ðn − 1Þ, then

ωðγn−1Þ ¼ 2 − ωðγ2Þ; ð40Þ

meaning that the flow dimension for couplings in a
renormalizable sector coincides with the estimated canoni-
cal dimension. The canonical dimension will be inves-
tigated in full detail for the two considered renormalizable
sectors of this paper at the end of the next section.

B. Pseudo-melonic sector

In this subsection we consider a new leading order sector
that we call pseudo-melonic. The power counting theorem
and the classification of the graphs that contribute to this
sector are given. Let us start by the following definition.
Definition 16.—The pseudo-melonic sector SPM is the

family set of graphs whose root family boundaries are in the
set fBijg. We call pseudo-melonic bubbles and denote as
PM the set of all pseudo-melonic tensorial invariants
obtained as sum of the elementary pseudo-melons in fBijg.
An elementary investigation suggests that d − 2 dipoles

will play the same role for pseudo-melonic graphs as d − 1
dipoles for the melonic ones. We then give the following
lemma which provides the effect of a d − 2 dipole
contraction.
Lemma 1.—The set PM ∪ fγ1g is stable under d − 2

dipole contraction.
Proof.—We prove this lemma recursively. Let γn ∈ PM

for n ≥ 2. First of all, for n ¼ 2, γ2 ∈ fBijg and the
contraction of any d − 2 dipole leads to the elementary
graph γ1 with valence one. We then consider the case
n > 2. From its definition, γn is a connected sum of two-
valent bubbles. Then, γn can be considered as a tree made
with n − 1 elementary pseudo-melons. Assuming that the
property holds for n ¼ n0, any n0 þ 1 valent bubbles can be
obtained from γn0−1 ∈ PM as sum of an elementary
pseudo-melon γ2. Let γn0 ¼ γn0−1 � γ2. We have to distin-
guish three cases. First of all, the (d − 2)-dipole is on the
added γ2. Contracting this dipole leads to a γ1. But γ1 is the
identity element of the �-algebra on PM, then: γn0−1 � γ1 ¼
γn0−1. The second case is when a (d − 2)-dipole is con-
tracted on the component γn0−1 itself. Moreover from
induction hypothesis, the contraction leads to a connected
γn0−2 ∈ PM of valence n0 − 2, summed with γ2, and
γn0−2 � γ2 ∈ PM. The third and last possibility is to contract
a (d − 2)-dipole corresponding to a dotted edge between
γn0−1 and γ2. The only possibility is that γn0−1 and γ2 share
(d − 2) internal faces of length 2 as on Fig. 7 below. But it is
easy to check that the contraction of the two dotted edges
bounded the faces yield again the pseudo-melonic bubble
γn0−1 ∈ PM. □

Definition 17.—A connected Feynman graph G is said
pseudo-melonic if it contains only pseudo-melonic

tensorial bubbles. Now contracting the VðGÞ − 1 dotted
edges of a spanning tree leads to a pseudo-melonic rosette
with LðGÞ − VðGÞ þ 1 dotted edges.
Definition 18.—For any pseudo-melonic graph G, we

define ρðGÞ as

ρðGÞ ¼ ðd − 2ÞðLðGÞ − VðGÞ þ 1Þ − FðGÞ: ð41Þ

Lemma 2.—For any pseudo-melonic graph, ρðGÞ is
invariant under (d − 2)-dipole contraction and also as well
under a tree edge contraction.
Proof.—Let us consider an edge e in a spanning tree.

Contracting it does not change the number of face as well as
the combination L − V, due to the fact that contracting a
tree edge decreases both L and V of one unit. Then, ρ is
invariant under a tree edge contraction.
Let us consider a (d − 2)-dipole. Contracting it deletes

exactly d − 2 internal faces. Moreover V is invariant and L
decreases of one unit. Finally, the variation of the first term
exactly compensates the variation of F. □

Proposition 2.—Let G be a pseudo-melonic nonvacuum
graph containing only two valent vertices. Then

ρðGÞ ∈ N; ð42Þ

and

ρðGÞ ¼ 0; ð43Þ

if and only if G=T is (d − 2)-dipole contractible for any
spanning tree T ⊂ G.
Proof.—We proceed by induction on the number of

elementary pseudo-melonic bubbles. For V ¼ 1, the propo-
sition can be easily checked. For V > 1, we assume the
proposition true for V ¼ V0 and consider an arbitrary
pseudo-melonic graph G having V ¼ V0 þ 1 vertices.
Choosing an external vertex b ∈ G, we have to distinguish
three cases [see Fig. 8(a)]:

(i) Only one external edge is hooked to the vertex b. It
is then connected with one, two or three connected
components.

FIG. 7. Illustration of the third configuration: The two pseudo-
melonic connected tensorial invariants γn0−1 and γ2 share three
internal faces of length 2. Contracting e1, we get a 3-dipole,
whose contraction leads to γn0−1 itself.
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(ii) Two external edges are hooked to the vertex b. Then
one or two connected components can be hooked
to him.

(iii) Three external edges are hooked to b, and only one
connected component is hooked to him.

Note that the last case with four external edges hooked to
b is then excluded from the recursive hypothesis V > 1. Let
us consider the generic case pictured having c connected
components Gi. From recursive hypothesis, these two
connected components satisfy ρðGiÞ ∈ N, i ¼ 1;…; c.
Let G0 ≔∪c

i¼1 Gi the graph with c connected components
obtained from G deleting the external vertex b. We have
FðGiÞ ≤ ðd − 2ÞðLðGiÞ − VðGiÞ þ 1Þ, ∀ i, and

FðG0Þ ≤ ðd − 2ÞðLðG0Þ − VðG0Þ þ 1Þ þ ðd − 2Þðc − 1Þ:
ð44Þ

Moreover, VðGÞ ¼ VðG0Þ þ 1 and LðGÞ ¼ LðG0Þ þ l,
where l is the number of dotted edges hooking the vertex
b to G0. Obviously l ≥ c, and

FðG0Þ ≤ ðd − 2ÞðLðG0Þ − VðG0Þ þ 1Þ þ ðd − 2Þðc − lÞ:
ð45Þ

Moreover, it is easy to check that, from all the possibilities
listed above, we have FðGÞ ≤ FðG0Þ þ ðd − 2Þðl − cÞ and
then ρðGÞ ≥ 0.
From Lemma 2, if G=T is a (d − 2)-dipole contractible

rosette, ρðG=T Þ ¼ ρðGÞ ¼ 0. Reciprocally, assuming that
ρðGÞ ¼ 0, then ρðG=T Þ ¼ 0 for any spanning tree T ⊂ G.
Moreover, from recursion hypothesis, one has

ρðGiÞ¼0 ∀ i⇒FðGiÞ¼ðd−2ÞðLðGiÞ−VðGiÞþ1Þ ∀ i;

ð46Þ

and for each i, and any spanning tree T i ⊂ Gi, Gi=T i is
(d − 2)-dipole contractible. Any spanning tree T ⊂ G can
be decomposed as follows: T ¼∪c

i¼1 T i ∪ fl1;…; lcg,
where fl1;…; lcg ⊂ fl1;…; llg is a subset of kc edges
hooked to b. □

Contracting the edges of the trees T i, we get contractible
rosettes which can be contracted themselves. It remains at
most l − c loops, carrying at most d − 2 faces. Optimally,
we then have to FðGÞ ¼ FðG0Þ þ ðd − 2Þðl − cÞ, but it is
easy to check that there is only one such configuration, for
l − c ¼ 1, pictured in Fig. 8(b). After contraction of the
remaining tree edge, we get a (d − 2)-dipole contractible
graph, completing the proof. □

Corollary 1.—For any nonvacuum pseudo-melonic dia-
gram G, ρðGÞ ∈ N. Moreover, ρðGÞ ¼ 0 if and only if G=T
is (d − 2)-dipole contractible, T being a spanning tree of G
containing all the 0-dipole edges of the decomposition of
all the pseudo-melonic bubbles into sums of elementary
quartic pseudo-melonic bubbles.
Proof.—Any pseudo-melonic diagram can be obtained

from a purely quartic pseudo-melonic diagram from the
contraction of 0-dipole edges. However, 0-dipole contrac-
tions do not change the ρðGÞ. □

As a direct consequence, we deduce that a necklace
bubble cannot have more than three colored edges between
a pair of black and white nodes. Otherwise, it will be
possible to obtain a four-dipole, which violates the bound
ρ ≥ 0. Indeed,
Corollary 2.—Let us consider a nonvacuum pseudo-

melonic graph G having VkðGÞ pseudo-melonic bubbles of
valence 2k, LðGÞ internal edges and NðGÞ external edges.
From the relation 2LðGÞ ¼ P

k2kVkðGÞ − NðGÞ, we then
have

ωðGÞ¼1

2

X
k

ð2k−6ÞVkðGÞþ
�
3−

1

2
NðGÞ

�
−ρðGÞ: ð47Þ

Then, Proposition 2 and Corollary 1 motivate the following
definition.
Definition 19.—For a fixed configuration ðfV; kg; NÞ,

the leading order graph satisfies ρ ¼ 0. We call pseudo-
melons these leading families which bound the power
counting and build the pseudo-melonic sector SPM.
From (47), it is clear that the corresponding divergent

sector will be of finite size if and only if VkðGÞ ¼ 0 for
k > 3. In other words:
Proposition 3.—The pseudo-melonic sector is just renor-

malizable up to 3-valent pseudo-melonic interactions.
Moreover, power counting graphs with N > 6 admit the
following bound:

ω ≤ −
N
8
; N > 6: ð48Þ

For a purely 3-valent model, the power counting reduces
to ω ¼ 3 − N=2, and vanishes for the 3-valent leading
family. We then fix to zero the canonical dimension of
3-valent pseudo-melonic bubbles. The complete set of
renormalizable 3-valent interactions is given on Fig. 9.

(a) (b)

FIG. 8. (a) An illustration for the first item: One external edge is
hooked to b, and two connected components are hooked to him,
namely G1 and G2, pictured as grey disks. (b) The only
configuration creating d − 2 internal faces. Note that at least
one of the two edges e1 and e2 have to be external.
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A direct inspection shows that all the divergences have
not taken into account in the leading divergent set of
pseudo-melons. Indeed, for ρ ¼ 0, two-, four- and six-point
functions have respectively ω ¼ 2, ω ¼ 1 and ω ¼ 0. The
remaining functions are power-counting convergent.
However, for ρ ¼ 1, the two- and four-point functions
remain divergent, respectively as ω ¼ 1 and ω ¼ 0; and for
ρ ¼ 2, the two-point function remains logarithmically
divergent ω ¼ 0. We have then two subleading order
sectors, characterized by ρ ¼ 1 and ρ ¼ 2. Figure 10
provides some examples. Moreover, for ρ > 2, the diver-
gent degree admits the bounds:

ω ≤ −
N
2
; ð49Þ

ensuring power-counting convergence. The complete
renormalization of the theory then requires to renormalize
sector by sector with appropriate counterterms. In the rest of
this paper, we will only focus on the leading order sectors,
mixing melons and pseudo-melons, which dominate the
renormalization group flow in the deep UV limit. From
Definition 15, we then deduce the estimate canonical
dimension for each of the pseudorenormalizable inter-
actions, that is, with valence smallest or equal to 3. We
then get d̃b ¼ 0 for each of the bubbles pictured in Fig. 9, in
agreementwith their expectedmarginal behavior.Moreover,
the dimension of the quartic bubbles in the set fBijg is equal
to 1, corresponding to an essential coupling. To close this
section, we will discuss this point with some detail. Let us
consider the quartic melonic sector. From definition, the
coupling λ4;1 must have a zero flow dimension, because all
leading four-point quantum corrections have zero divergent

degree and then behave logarithmically.5 Fixing d4;1 ¼ 0, it
is easy to see that the optimal quantum corrections for two-
point functions and then for mass scales as Λ2. The flow
dimension formass andLaplacian then is fixed to 2, and then
corresponds to the canonical dimension coming from
power-counting itself. Moving on to the pseudo-melonic
sector, the flow dimension for all the couplings correspond-
ing to the bubbles pictured in Fig. 9 have zero flow
dimension. Moreover, optimal quantum corrections for
two-point functions made only with these bubbles scales
as Λ2 as well from power counting (47). Finally, optimal
quantum corrections for four-point functions scale as Λ, in
accordance with a canonical dimension 1. In general, from
power counting and for a general tensorial invariant of
valence n:

dγn ¼
�
4 − 2n In melonic sector

3 − n In pseudo-melonic sector:
ð50Þ

IV. EVE FOR A MIXING TENSORIAL
THEORY SPACE

This section aims at building the effective vertices
for a renormalizable sector beyond the standard melonic
Feynman graphs. We deduce the effective vertices for a
model including melonic and pseudo-melonic renormaliz-
able interactions as initial conditions in the UV. For the rest
of this paper, we consider 5-dimensions TGFT with these
two leading contributions, and we restrict our attention on
the UV sector Λ ≫ k ≫ 1.

(a) (b) (c) (d)

FIG. 9. The complete set of just-renormalizable interactions, having zero canonical dimension.

FIG. 10. One-vertex two-point function examples for leading and subleading orders.

5In other words, adding a new vertex has no additional cost,
which is explicit in Eq. (30).
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A. Mixing melons and pseudo-melons

In this section we investigate the leading sector for a theory mixing melonic and pseudo-melonic renormalizable sectors.
The theory from which we start in the deep UV is the following:

ð51Þ

Note that we have chosen one among the three type of
interactions pictured in Fig. 9. We call this sector non-
branching pseudo-melonic. Nonbranching graphs have
been studied in [57]. The boundary graphs for these
restricted sectors γn are such that

γn ¼ Bij �Bij � � � � �Bij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n−1 times

¼ �n−1k¼1Bij≕BðnÞ
ij : ð52Þ

Figure 11 provides the structure of general pseudo-melonic
interactions. The nonbranching pseudo-melonic sector then
splits into dðd − 1Þ sectors labeled with a couple ði; jÞ,
i > j, such that each family of valence n has boundary
BðnÞ

ij . The interest of this restriction is that the pseudo-
melonic sector is stable in the deep-UV: There are no
leading order quantum corrections which generate an
effective vertex outside of the nonbranching sector from
the initial conditions (51). In other words, the renormal-
ization group flow is stable on the nonbranching sector.
As a first step we will investigate the general structure for

the leading order (LO) graphs. Let G be a Feynman graph
obtained from the classical action (51). Moreover, let Q be
the map from G to its quartic representation QðGÞ, i.e., the
graph obtained from G by replacing all the 3-valent vertices
with their connected sum of quartic interactions.
Definition 20.—We denote by G the complete set of

connected Feynman graphs obtained from action (51). We
call quartic sector the connected Feynman graphs with
only two-valent vertices. We denote by QðGÞ the corre-
sponding subset.
Obviously, for any LO graph G, QðGÞ is a LO graph in

the quartic sector. Reciprocally, LO graphs in the full sector
can be obtained from contraction of some 0-dipoles on a
given LO quartic graph. We then investigate the quartic
sector in the first step.

1. The quartic sector

The quartic sector is most conveniently studied in the
Hubbard-Stratonovich (HS) representation. For tensorial the-
ories, HS representation has been largely discussed in the
literature [28–42]. The procedure can be summarized as
follows. In the HS representation, each vertex corresponds
to a cycle of edges of color 0 of the original representation. The
arcs6 are the edges of color 0 in the original representation. For
our model, there are two types of edges in the HS representa-
tion; Monocolored edges labeled with i (i ¼ 1;…; d) corre-
sponding tomelonic vertices, and bicolored edges of colors ij,
(i > j), corresponding to pseudo-melonic interactions, open-
ing simultaneously both strands of color i and j between two
HS vertices. Finally, external edges in the original representa-
tion are matched as cilia on the vertices in the HS representa-
tion, in such a way that such a vertex has at least one bear at
least one cilium. The exact way to construct the correspon-
dence can be found in [25,73]. Then, a graph in the HS
representation is made with three types of bicolored lines
joining some vertices with at least one cilium, in such a way
that the number of cilium in theHS representation is half of the
number of external edges in the original representation. We
callmaps the graphs in the HS representation and denote their
set as M. Note that the correspondence between the two
representations is exact, in the sense that we can construct a
bijective mapping F∶ G → M such that for any quartic
Feynman graph G in the original representation we may
associate a unique graph FðGÞ in the HS representation and
reciprocally. The construction of the mapping F is pictured in
Fig. 12 for some example, and detailed in [69].
We will investigate the structure of the LO quartic graphs

in the HS representation. We have the first result.
Proposition 4.—Leading order quartic vacuum Feynman

graphs are trees in the HS representation, with power
counting ω ¼ 5.
Proof.—We proceed recursively on the number of colored

and bicolored edges. Let n be the number of colored edges,m
thenumber of bicolored edges andN ¼ nþm the total num-
ber of edges. For N ¼ 1, there are two leading configura-
tions, corresponding to (n ¼ 1,m ¼ 0) and (n ¼ 0,m ¼ 1):

FIG. 11. Structure of general pseudo-melonic interactions. 6It is also called corners in the mathematical literature.
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ð53Þ

For the first one, we have two dotted edges and nine internal
faces, then ω ¼ −2 × 2þ 9 ¼ 5. For the second case, we
have two dotted edges and eight internal faces. Moreover, a
quartic pseudo-melonic interaction has canonical dimension
1, the complete scaling is then the same. LetMN be amap of
order N > 1. Assuming that MN is a tree,

ð54Þ

there are only fourmoves, to pass fromMN toMNþ1, listing
both for colored and bicolored edges in Fig. 13.
Investigating separately each case, we get:
(1) We add a colored edge between two vertices,

creating a loop (a) or we add a tadpole colored
edge on a single vertex (b). From these moves, we
create two internal propagator edges of color 0, and
at most one internal face. The variation of the power
counting is then δω ¼ −2δLþ δF ≤ −3.

(2) We add a bicolored edge between two vertices,
creating a loop (a’) or we add a tadpole bicolored

edge on a single vertex (b’). From these moves, we
create two internal propagator edges of color 0, and at
most two internal faces. Taking into account the
canonical dimension of the quartic pseudo-melonic
vertices, the variation of power counting is then
δω ¼ −2δLþ δF þ 1 ≤ −1.

(3) We add a new monocolored leaf (c) or a monocol-
ored bridge (d). From these moves, we create two
internal propagator edges of color 0 and 4 internal
faces. The variation of power counting is then
δω ¼ −2δLþ δF ¼ 0.

(4) We add a new bicolored leaf (c’) or a biocolored
bridge (d’). From these moves, we create two
internal propagator edges of color 0 and 3 internal
faces. The variation of power counting is then
δω ¼ −2δLþ δF þ 1 ¼ 0.

As a result, only the moves c, d, c0 and d0 do not decrease
the power counting. Moreover, all these configurations
preserve the tree structure, ensuring thatMNþ1 is LO only
if it is a tree itself. □

Nonvacuum 1PI two-point graphs are then obtained from
vacuum graphs from cutting an internal dotted edge.
Obviously, cutting a dotted edge on the boundary of an
internal face with length upper than 1 creates a 1PR graph.
Then we have to cut a dotted edge with ends points hooked
on the same vertex, corresponding to the leafs on the HS
representation. Opening an internal dotted edge deletes five
internal faces, the variation of power counting is then
δω ¼ −2δLþ δF ¼ 2–5 ¼ −3, meaning that leading two
point functions scale with ω ¼ 2.

FIG. 12. HS correspondence between some quartic Feynman graphs.

(a) (b) (c) (d)

(a ) (   ) (   ) (   )b c d

FIG. 13. Elementary moves on the treeMN . For a, b, c and d, we add a single-colored edge, while for a0, b0, c0, d0 we add a bicolored
edge.
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1PI four-point graphs are then obtained from deleting
another tadpole. However, we have to distinguish between
four-point diagrams with melonic and pseudo-melonic
boundaries.

(i) For themelonic boundary, we have to distinguish two
cases: The first one when at least one of the two
boundary vertices is a melonic vertex, the second one
when the two boundary vertices are pseudo-melonic.
Let us start with the first case, and assume that the first
deleted dotted edge is a tadpole over amelonic vertex.
The secondmove can delete another tadpole, andwill
be optimal if the deleted dotted edge is on the
boundary of one of the five opened faces from the
first move. The second move then discards only four
faces, implying δω ¼ 2–4 ¼ −2, and the LO 1PI
four-point graphs are such that ω ¼ 0. When the
second deleted tadpole is pseudo-melonic we have
four external faces of length zero on the melonic
vertex and three on the pseudo-melonic one.We have
then two external faces of the same color with length
≥ 1 passing through the two boundary vertices, and
finally an external face of length ≥ 0 starting and
ending on the pseudo-melonic boundary vertex.
These two cases are pictured in Figs. 14(a) and
14(b). The last case is when the two deleted dotted
edges are pseudo-melonic tadpoles. In this case, the
second move is optimal if the second deleted dotted
edge is on the boundary of one of the opened external
faces from the firstmove.There are then three faces of
length zero per external pseudo-melonic vertices, two
external faces (not necessarily of the same colors)
with length ≥ 0 starting and ending on the same
vertex and two external faces of the same color
connecting together the boundary vertices. This
configuration is pictured in Fig. 14(c).

(ii) For pseudo-melonic boundaries, the two opening
tadpoles have to be pseudo-melonic, meaning that
the four external dotted edges are hooked on two

pseudo-melonic vertices. The optimal cutting deletes
a single dotted tadpole edge in the boundary of two
external faces. Then, this move delete only three
internal faces, such that the total variation for power
counting is δω ¼ 2–3 ¼ −1, meaning that the LO
1PI four-point graphs with pseudo-melonic bounda-
ries with a power counting ω ¼ 1, in accordance to
their proper canonical dimension. This configuration
is pictured in Fig. 14(d).

Nonvacuum LO diagrams with N > 4 may be obtained in
the same way. However, the structure of the effective
vertices becomes difficult to build explicitly. For this reason
we will use the Ward identities for effective vertices with
valence higher than 2.

2. Full nonbranching sector

We now move on the full nonbranching sector, including
3-valent nonbranching interaction bubbles. As recalled in
the previous section, the LO graphs may be obtained from
the contraction of some 0-dipoles, corresponding to the
connected sum of two quartic pseudo-melons. In the HS
representation, the 0-dipoles are the arcs on vertices having
more than one colored or bicolored edges. Moreover, in the
nonbranching sector, the contracted 0-dipoles have to be
the arcs between two bicolored edges with the same couple
of colors. See Fig. 15(a). The contraction of the arc (e)
between the two bicolored edges generates a new type of
bicolored edges that we call breaking edges, whose break-
ing point corresponds to the point of contact with the vertex
in the HS representation. See Fig. 15(b).
As a result, from Proposition 4, we deduce the following.
Proposition 5.—Leading order vacuum Feynman graphs

are trees in the HS representation, whose edges may be
simple colored or bicolored edges as well as breaking
bicolored edges. The power counting remains the same as
for purely quartic sector: ω ¼ 5, meaning that ρðGÞ ¼ −2
for LO vacuum graphs.
The last condition on the invariance of the power

counting may be easily checked.

B. Structure equations for effective vertices

In this section we investigate the structure of the LO
effective vertices with 2, 4, 6 and 8 points. We will use the(a) (b)

(d)(c)

FIG. 14. The four possible boundaries. The three first ones (a)
and (b) and (c) have a quartic melonic boundary while the last one
(d) has a quartic pseudo-melonic boundary. The target of the
external faces running through the interiors of the diagrams are
pictured as internal colored edges between boundary vertices.

(a) (b)

FIG. 15. Contraction of a 0-dipole forming an arc (e) between
two identical bicolored edges (a) and the resulting diagram (b).
The 3-valent resulting from the interactions corresponds to a pair
of bicolored edges with the same color hooked to the same point
on the vertex. They form breaking edges, making a contact on a
vertex with the breaking point, marked with a black arrow.
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method discussed on [71], by using the structure of the LO
graphs established in the previous section. The aim is to get
a closed set around just-renormalizable interactions, using
them to parametrize the entirety of the renormalization
group flow in the sector including melons and pseudo-
melons. As we will see in the next section, the momentum
dependence for four-point effective vertices plays a crucial
role for the computation of the anomalous dimension,
providing a contribution, which is not included in standard
crude truncations. Moreover, six- and eight-point effective
vertices are required in order to close the infinite hierar-
chical system coming from Wetterich equation (19). From
this equation, it is clear that the flow for ΓðnÞ involves
Γðn¼2Þ. Then, in the melonic sector, the system will be
closed if we compute the six-point effective vertices having
a three-valent melon graph as a boundary graph. In the
same way, to close the nonbranching pseudo-melonic
sector around marginal interactions requires eight-point
functions with a nonbranching pseudo-melonic graph as a
boundary graph.

1. Two- and four-point effective vertices

Let us start with the two-point function. We denote as Σ
the leading order self-energy, so that the LO effective
propagators G can be decomposed as

G ¼ ð−Δþm2 þ rs − ΣÞ−1
¼ Cs þ CsΣCs þ CsΣCsΣCs þ � � � ; ð55Þ

where Cs is the bare propagator given in (20). We get the
following closed equation.

Proposition 6.—The leading order self-energy Σ satisfies
the following closed equation:

Σðp⃗Þ¼−2λ4;1
Xd
i¼1

X
q⃗∈Zd

δpiqiGðq⃗Þ

−2λ4;2
Xd
j<i

X
q⃗∈Zd

δpiqiδpjqjGðq⃗Þ

−6λ6;1
Xd
j<i

X
q⃗;q⃗0∈Zd

δpiqiδpjqjδpiq0i
δpjq0j

Gðq⃗ÞGðq⃗0Þ: ð56Þ

Proof.—From the previous section, we know that LO 1PI
two-point graphs may be obtained from the cutting of an
internal tadpole edge. They correspond to leafs on the HS
representation, and the final vertex on the leaf can be
hooked to a single colored edge, to a bicolored edge or to a
breaking bicolored edges. As a result, the opening tadpole
may be localized on a quartic melonic vertex, either on a
quartic pseudo-melonic or on a 3-valent pseudo-melonic
vertex. Opening a melonic tadpole on a LO graph means
that there are two half dotted edges hooked to this vertex,
and connecting it to the rest of the diagram. But it is easy to
check that the remaining part of the diagram hooked to this
vertex is nothing but the LO two-point function G. The
same result holds when a pseudo-melonic tadpole is
deleted. Finally, when the deleted tadpole is on a 3-valent
vertex, it is easy to check that the only 3-dipole contractible
configuration corresponds to the contraction of this vertex
with two effective two-point functions in order to form two
effective 3-dipoles. Graphically, all these configurations
correspond to the equation:

ð57Þ

By expressing these diagrams as an equation and taking
into account all the symmetry factors, we obtain the closed
equation (56). □

The structure of the 1PI four-point function may be
obtained from the same strategy in terms of elementary
essential or marginal couplings, as well as effective
two-point functions. All the configurations for boundary
vertices are pictured in Fig. 14. Note that, for the quartic
pseudo-melonic boundaries, we have to add the ones
coming from 3-valent pseudo-melonic vertices. The
interior of the diagram can be determined for each
configuration with the two following statements:

(1) The structure of the graph is a tree in the HS
representation.

(2) The connectivity of the external faces between the
boundary vertices has to be ensured following their
respective nature.

For the rest of this paper we focus our attention on the
renormalization group flow for local interactions, corre-
sponding to purely tensorial invariants. We focus on the
zero-momenta effective vertices. Even with this simplifi-
cation, the computation of the zero-momenta four-point
function remains difficult, especially when the boundary
graph is a quartic melon, due to the large number of
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configurations. Then, to simplify the proofs, we split the
computation into some partial results, corresponding the
elementary “building block” configurations.
First, let us consider a LO four-point graph having

quartic melonic boundary, such that the external edges are
fully connected to melonic vertices. Such a configuration
corresponds to Fig. 14(a). Let us call “red” the color of the
external faces running through the interior of the diagram
between the ends vertices. In the HS representation, such a
graph corresponds to a two-ciliated tree and the two cilia
are joined together with a red path made of a succession of
colored or bicolored edges where one of them is red.
Figure 16 provides an example of this configuration. We
call this path the skeleton, and the length of the skeleton the
number of edges building with him. Moreover, we call
purely melonic the LO two-ciliated trees whose skeleton

edges have a single color. Let Γð4Þ
a ðp⃗1; p⃗2; p⃗3; p⃗4Þ be the

LO four-point function obtained as a sum of Feynman
graphs having melonic boundary, with nonzero external
momenta. The skeleton being labeled with a single color,
taking into account the structure of the ends vertices,

Γð4Þ
a ðp⃗1; p⃗2; p⃗3; p⃗4Þ have to be decomposed as

Γð4Þ
a ðp⃗1; p⃗2; p⃗3; p⃗4Þ≕

Xd
i¼1

Γð4Þ;i
a ðp⃗1; p⃗2; p⃗3; p⃗4Þ; ð58Þ

where

Γð4Þ;i
a ðp⃗1; p⃗2; p⃗3; p⃗4Þ≕Πð2Þ

a ðp1i; p3iÞSymVð4;1Þi
p⃗1;p⃗2;p⃗3;p⃗4

;

ð59Þ

in accordance with the perturbative expansion (34). In the

rest of this paper, we will refer to Πð2Þ
a ðp1i; p3iÞ as effective

skeleton function, and we denote by Πð2Þ
a ≡ Πð2Þ

a ð0; 0Þ its
zero momenta value. Note that the upper index 2 indicates
the number of cilia on the graphs contributing to it. From

their structure, obviously, Πð2Þ
a split into purely melonic

contributions, whose skeletons are chain of melons, and
mixing contributions, whose skeletons includes bicolored

edges insertions. We will denote them respectively as Πð2Þ
a;0

and Πð2Þ
a;1, such that

Πð2Þ
a ¼ Πð2Þ

a;0 þ Πð2Þ
a;1: ð60Þ

The decomposition (58) can be generalized for all the
contributions pictured in Fig. 14. From connectivity of the
boundary graphs, it is clear that the configurations (a), (b)
and (c) contribute to the effective vertex function having
melonic boundary, while the last one (d) contributes to the
effective vertex function having pseudo-melonic boundary.
From the configurations (a), (b) and (c), the corresponding
trees in HS representation have skeletons labeled with a
single color, while the skeleton of the configuration (d) has
a bicolored skeleton, labeled by a pair of different colors.
We then have the decomposition:

Γð4Þ
meloðp⃗1; p⃗2; p⃗3; p⃗4Þ≕

Xd
i¼1

Γð4Þ;i
meloðp⃗1; p⃗2; p⃗3; p⃗4Þ; ð61Þ

Γð4Þ
pseudo-meloðp⃗1;p⃗2;p⃗3;p⃗4Þ≕

Xd
j<i

Γð4Þ;ij
pseudo-meloðp⃗1;p⃗2;p⃗3;p⃗4Þ;

ð62Þ
where

Γð4Þ;i
meloðp⃗1; p⃗2; p⃗3; p⃗4Þ ¼ Πð2Þ

1 ðp1i; p3iÞSymVð4;1Þi
p⃗1;p⃗2;p⃗3;p⃗4

;

ð63Þ
with

Πð2Þ
1 ðp1i; p3iÞ ≔ Πð2Þ

a ðp1i; p3iÞ þ Πð2Þ
b ðp1i; p3iÞ

þ Πð2Þ
c ðp1i; p3iÞ; ð64Þ

and

Γð4Þ;ij
pseudo-meloðp⃗1; p⃗2; p⃗3; p⃗4Þ
¼ Πð2Þ

2;ijðp1i; p1j;p3i; p3jÞSymVð4;2Þij
p⃗1;p⃗2;p⃗3;p⃗4

ð65Þ

with

Πð2Þ
2;ijðp1i; p1j;p3i; p3jÞ ≔ Πð2Þ

d;ijðp1i; p1j;p3i; p3jÞ; ð66Þ

Πð2Þ
d;ij being the skeleton function corresponding to the

configuration (d) in Fig. 14. The following result holds.
Lemma 3.—The zero-momenta effective skeleton func-

tion for purely melonic graphs, Πð2Þ
a;0 writes as

Πð2Þ
a;0 ¼

2λ4;1
1þ 2λ4;1A4;2

ð67Þ
FIG. 16. A tree with two cilia contributing to the LO four-point
function with melonic boundary. The red arrows follow the path
of the skeleton corresponding to the color 1, joining together the
boundary vertices.
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where

Am;n ≔
X
p⃗∈Zm

Gnðp⃗Þ: ð68Þ

Proof.—Let us consider a LO tree having purely melonic
red skeleton. To each vertex in the way of this red path are
hooked some connected components T 1; T 2;…. They are
1PI two-point graphs from construction, and it is easy to
check that all of them provides a contribution to the
effective self-energy Σ:

ð69Þ

where ΣðnÞ denote a contribution of order n for the self-
energy. Then, the two skeleton edges hooked to a vertex in
the HS representation split him into two corners, to which
some connected trees can be hooked. Summing over all
possible trees we then reconstruct the effective two-point
function (55) to each corners between skeleton edges:

ð70Þ

The same structure may be repeated along the length of the
skeleton. Then, summing over lengths, we get the first
contribution to the 1PI four-point function with melonic
vertices on its boundaries:

ð71Þ

This is formally the structure of the four-point vertex.
The effective loop of length two can be easily computed,
and we get, once again in accordance with (34),

ð72Þ

Note that the factor 2 in front of this expression comes to
the symmetry of the melonic vertices insertion. Figure 17
below provides us an illustration.
The translation of the final diagram (71) into an equation

is then straightforward, and we get

ð73Þ

the last equality, coming from definition (59) completing
the proof. □

In addition to purely melonic configurations, we have to
take into account bicolored edge insertions along the
skeleton. Moreover from Fig. 14(a), it is clear that all
these bicolored insertions have to contain the color red in
the pair. An example is pictured in Fig. 18. Note that this
constraint on the existence of a common color for the edges
along the skeleton as well as the linear topology of the
skeleton will be a precious help for enumeration of the
different configurations.
Taking into account bicolored insertions introduces

another difficulty. Quartic pseudo-melons are not the only
source of bicolored edges. We have to take into account a
new type of edge, coming from breaking edges. To
understand how they occur in the way of the skeleton,
let us consider the example pictured in Fig. 18. We have

FIG. 17. The two configurations for a melonic insertion. The
black node labeled by 1 can be contracted on the right or on
the left.
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one breaking edge, with colors red and green (1 and 2), and
following the same argument leading to Eq. (69) the
contribution of the vertex labeled with v writes explicitly as

ð74Þ

As a result, summing over all trees having the same
skeleton, we get, as for Eq. (70):

ð75Þ

We then observe that we have to distinguish two types of
quartic pseudo-melons for the counting. The purely quartic
pseudo-melonic interactions, which we call type 1, and the
effective quartic pseudo-melonic interactions, arising from
the contraction of a six-point pseudo melon with an
effective two-point function, which we call type 2 quartic
pseudo-melon. We denote them by

ð76Þ

Type 2 vertices behave like type-1 ones. They have the
same canonical dimension and the same boundary graph,
the only difference comes from their respective weight.
Nevertheless, in order to investigate the combinatorial
structure of the skeleton, we have to sum over all repetitions
of the same (type 1 or type 2) vertex, as for the melonic
chain in Eq. (71). To this end, we introduce the zero
momenta purely pseudo-melonic effective skeleton func-

tions Πð2Þ
d;1i, with i ≠ 1, so that Πð2Þ

d;1i is a chain of pseudo-
melons of type 1 or 2 with intermediate colors 1i.
Obviously, such a configuration corresponds to the struc-
ture pictured in Fig. 14(d): this is why we labeled these
effective function with a lower index d. Figure 19 provides
an example of tree with two cilia and a purely bicolored
skeleton.
Therefore we have an analogous lemma to Lemma 3.
Lemma 4.—The zero momenta purely pseudo-melonic

function Πd;1i has the following expression:

Πð2Þ
d;12 ≔

πd;1 þ πd;2 þ πd;1πd;2
1 − πd;1πd;2

; ð77Þ

where the partial effective purely pseudo-melonic skeleton
functions πd;1 and πd;2 are defined as

πd;1 ¼
2λ4;2

1þ 2λ4;2A3;2
πd;2 ¼

6λ6;1b
1þ 6λ6;1bA3;2

; ð78Þ

with

b ≔
X
q⃗∈Z3

Gðq⃗Þ: ð79Þ

Proof.—The graphs structure is very reminiscent of the
pure melonic case. The essential difference comes from the
fact that we have to distinguish two elementary building
block configurations, respectively made of chains of type-1
and type-2 pseudo-melons. For the first case, when
elementary quartic type-1 pseudo-melons form a chain
with zero momenta running throughout the boundaries of
the external faces, we have the formal sum:

FIG. 19. A typical contribution for Γð4Þ
d .

FIG. 18. A skeleton with two pseudo-melonic insertion. The
red arrows follow the path of the skeleton corresponding to the
color 1, joining together the boundary melonic vertices.
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ð80Þ

The second case is when type-2 pseudo-melonic interactions, coming from 3-valent vertices build a chain:

ð81Þ

The two kernels in brackets must be computed explicitly. Introducing the function b it is easy to check:

ð82Þ

so that the formal equations (80) and (81) lead to the two
partial effective skeleton functions πd;1 and πd;2. Note the
factor 2 occurring in the denominator of the formula has the
same origin as the factor 2 occurring in expression (71): It
comes from the symmetry exchange for the pseudo-
melonic vertices. Moreover, the factor 3 in front of b
comes from the rotational symmetry of the 3-valent
vertices: there are three different ways to build an effective
four-dipole on a 3-valent vertex to obtain a type-2 quartic
pseudo melon.
To obtain the complete four-point kernel Πd;1i, we then

have to sum over all possible partitions of type-1 and type-2
domains. We have to distinguish three cases:

(i) The boundary vertices are both of type-1.
(ii) The boundary vertices are both of type-2.
(iii) One boundary vertex is of type-1, the second of

type-2.
For the two first cases, we have the sequences:

πd;1 þ πd;1πd;2πd;1 þ πd;1πd;2πd;1πd;2πd;1 þ � � �

¼ πd;1
X∞
n¼0

ðπd;2πd;1Þn; ð83Þ

for type-1 boundary vertices, and

πd;2 þ πd;2πd;1πd;2 þ πd;2πd;1πd;2πd;1πd;2 þ � � �

¼ πd;2
X∞
n¼0

ðπd;2πd;1Þn; ð84Þ

for type-2 boundaries. For the heteroclite boundaries
however, fixing the end vertices we get

πd;1πd;2 þ πd;1πd;2πd;1πd;2 þ � � � ¼
X∞
n¼1

ðπd;1πd;2Þn: ð85Þ

All the sums can be easily computed as geometric pro-
gressions. Computing them, we finally get the effective
skeleton function Πd;12. □

As we will see, a large part of contributions to the

effective function Πð2Þ
a;1 require the knowledge of the

momentum dependence of the effective pseudo-melonic

function Πð2Þ
d;12ðp1; p2;p0

1; p
0
2Þ. More precisely, because we

are only interested for zero momenta four-point functions,
we consider the restriction p1 ¼ p0

1 ¼ 0, p2 ¼ p0
2 ¼ p:
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Π̃ð2Þ
d;12ðpÞ ≔ Πð2Þ

d;12ð0; p; 0; pÞ; ð86Þ

which can be easily deduced from the previous proof.
Corollary 3.—

Π̃ð2Þ
d;12ðpÞ ¼

πd;1ðpÞ þ πd;2ðpÞ þ πd;1ðpÞπd;2ðpÞ
1 − πd;1ðpÞπd;2ðpÞ

; ð87Þ

where the momentum-dependents effective vertex func-
tions πd;1ðpÞ and πd;2ðpÞ are defined as

πd;1ðpÞ¼
2λ4;2

1þ2λ4;2A3;2ðpÞ
πd;2¼

6λ6;1bðpÞ
1þ6λ6;1bðpÞA3;2ðpÞ

;

ð88Þ

and

A3;2ðpÞ¼
X
q⃗∈Z4

δq2;pG
2ðq⃗Þ; b≔

X
q⃗∈Z4

δq2;pGðq⃗Þ: ð89Þ

From these elementary “pure” building block functions,
we can easily deduce all the allowed configurations for
each configuration in Figs. 14(a)–14(c), and the complete
skeleton functions may be summarized with the following
statement.
Proposition 7.—The complete zero momenta skeleton

functions Πð2Þ
1 and Πð2Þ

2;12 are given in terms of the essential
and marginal couplings λ4;1, λ4;2, λ6;1 and effective two-
point function Gðp⃗Þ as

Πð2Þ
1 ¼ Πð2Þ

a;0 þ
Πa;0BΠa;0

1 − Πa;0B
þ ð1þ B̄Þ Πa;0B̄

1 − Πa;0B
þD; ð90Þ

Πð2Þ
2;12 ¼

πd;1 þ πd;2 þ πd;1πd;2
1 − πd;1πd;2

; ð91Þ

where B, B̄ andD are respectively given by formulas (114),
(118), (120).
Proof.—The components Πð2Þ

d;12 and Πð2Þ
a;0 have been

computed and are given Eqs. (67) and (77). To complete

the proof, we then have to compute the components Πð2Þ
a;1,

Πð2Þ
b and Πð2Þ

c . To this end, we will proceed step by step,
computing each component separately.

(i) Computation of Πð2Þ
a;1.

The skeletons of trees contributing to Πð2Þ
a;1 have melonic

boundaries and common color on their edges, with at least
one bicolored edge. The most general configuration cor-
responds to a succession of colored and bicolored edges;
and to take into account all possible configurations, we
introduce a new elementary building block replacing the
purely melonic pattern (70). This elementary building
block is itself a sum of blocks, made of a succession of

pure pseudo-melonic blocks between melonic boundaries.
The first of these elementary building blocks are then

ð92Þ

ð93Þ

ð94Þ

ð95Þ

where the grey bubble represents the insertion of an

effective purely melonic patternΠð2Þ
a;0, and the white bubbles

represent the insertion of a pure bicolored pattern Πð2Þ
d;1i i.e.,

the color 1 (red on the figures) being common on melonic
and pseudo-melonic insertions. The indices i, j, k and l are
such that consecutive indices are different. There are then
d − 1 ¼ 4 different ways to choose the first index i, and
d − 2 ¼ 3 ways for all successive indices j; k; l;….
The value of each diagram being independent to the

choice of the selected values for these indices, the complete
elementary pattern including pseudo-melonic contributions
may be written as

ð96Þ

with

Πa;0B ≔ 4ðA12 þ 3A123 þ 32A1232 þ 33A12323 þ � � �Þ;
ð97Þ

where the big grey bubble that we called “PM” denotes the
sum of contributions coming from chains of pseudo-
melonic interactions. As for the elementary purely mel-
onics patterns (70), the same scheme can be repeated up to
infinity, as in (71):
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ð98Þ

and the formal sum can be explicitly computed as a
geometric progression, leading to

ð99Þ

Finally the complete effective vertex function Γð4Þ;1
a;1 having

skeleton functionΠð2Þ
a;1 and completing (71) is decomposed as

ð100Þ

Explicitly,

Γð4Þ;1
a;1 ð0⃗; 0⃗; 0⃗; 0⃗Þ ¼ 2 ×

�
Πa;0BΠa;0

1 − Πa;0B

�
: ð101Þ

Note that all the effective functions commute. We preserved
their order to keep the structure of the diagrams. Moreover,

note that the skeleton with length one has been included on
the purely melonic contribution Πð2Þ

a;0.

(i) Computation of Πð2Þ
b and Πð2Þ

c .
The next contributions coming from Figs. 14(b) and

14(c), and whose effective skeleton functions are respec-

tively denoted asΠð2Þ
b andΠð2Þ

c can be computed in the same
way. In Fig. 20 we give a picture of typical trees
contributing to each of these two functions. Let us start

with the computation of Πð2Þ
b , whose building trees have a

melon and a pseudo-melon on their boundaries as in
Fig. 20(a). Obviously, the first edge has to be monocolored,
and the ending edge has to be bicolored. The effective
skeleton function then has to begin with an effective melon
and end with an effective pseudo-melonic function, con-
necting together with an history involving all possible
configurations of edges having a common color. The
elementary pattern then connects together the effective
boundaries. For the next term, the same pattern repeats, and
we get the structure

ð102Þ

where the effective white pseudo-melonic vertex denoted as “PM” is nothing but that we called “PM” with a grey bubble,
where we have extracted a boundary pseudo-melonic vertex. Completing the series in (102), we then get

ð103Þ

Obviously, the elementary building block in the bracket is
nothing that we called Πa;0B in Eq. (97). Moreover, the
diagram on the right is nothing but this elementary building
block amputated from its right external loop. We denote it
as Πa;0B̄:

ð104Þ(a) (b)

FIG. 20. Typical contributions to Γð4Þ
b (a) and Γð4Þ

c (b).
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and we get

Πð2Þ
b ≔

Πa;0B̄
1 − Πa;0B

: ð105Þ

Finally, for the computation of Πð2Þ
c , we have to dis-

tinguish the pairs of colors of the boundary pseudo-melonic
vertices. We will denote them as (1i) and (1j), we have to
treat separately the case i ¼ j and the case i ≠ j. For the
case i ≠ j, the elementary pattern must be the following,
connecting together two effective pseudo-melonic func-
tions of type (1i) and (1j):

ð106Þ

the white bubble being a sum over the skeleton with
pseudo-melonic interactions only. The factor 2 comes from

SymVð4;1Þi
0⃗;0⃗;0⃗;0⃗

;¼ 2 for zero external momenta.

This elementary pattern has to be completed with
melonic insertions between the two effective boundaries,
leading to the contribution:

ð107Þ

Note that, because of the melonic insertions, the external
faces of colors i and j do not cross one in the other, and the
constraint i ≠ j can be removed. The same structure can be
repeated up to infinity and leading to the sum:

ð108Þ

Then, the kernel Πð2Þ
c is written as

Πc ¼ Dþ B̄Πð2Þ
b : ð109Þ

(i) Computation of B, B̄ and D.
To complete the proof we have to compute the kernels B,

B̄ andD. Let us start with B defined in (97). The successive
contributions in this equation, i.e., A12;A123;…, can be
easily expressed clearly. First of all, we get

A12 ¼ Πð2Þ
a;0

X
p

A3;2ðpÞΠð2Þ
2;12ðpÞA3;2ðpÞ: ð110Þ

Now, let A123 be a quantity obtained from gluing Πd;12 and
Πd;13. In addition to the “short” faces of length two, coming
from gluing of the two effective vertices, there are two long
faces of effective length four, for colors 2 and 3, such that

A123 ¼ Πð2Þ
a;0

X
p;p0

A3;2ðpÞΠð2Þ
2;12ðpÞCðp; p0ÞΠð2Þ

2;13ðp0ÞA3;2ðp0Þ;

where we defined

Cðp; p0Þ ≔
X

q⃗q⃗0∈Zd−1

G2ðq⃗Þδq2pδq3p0 : ð111Þ

Note that we have distinguished the indices onΠð2Þ
2;12ðpÞ and

Πð2Þ
2;13ðpÞ for convenience; the structure of C took into

account the strand structure of the diagram. Then, we may

use the indice of Πð2Þ
2;12ðpÞ only. Then, in the same way, for

A1232, we get

A1232 ¼ Πð2Þ
a;0

X
p;p0;p00

A3;2ðpÞΠð2Þ
2;12ðpÞCðp; p0Þ

× Πð2Þ
2;12ðp0ÞCðp0; p00ÞΠð2Þ

2;12ðp00ÞA3;2ðp00Þ: ð112Þ

In order to write conveniently the general term, we
introduce the compact matrix notation:

A1232¼Πð2Þ
a;0

X
p;p0

A3;2ðpÞ½Πð2Þ
2;12CΠ

ð2Þ
2;12CΠ

ð2Þ
2;12�ðp;p0ÞA3;2ðp00Þ:

ð113Þ

Equation (97) becomes therefore

B ¼ 4Πð2Þ
a;0

X
p;p0

A3;2ðpÞKðp; p0ÞA3;2ðp0Þ; ð114Þ

with

K ≔ Πð2Þ
2;12ð1þ 3CΠð2Þ

2;12 þ ð3CΠð2Þ
2;12Þ2 þ � � �Þ

¼ Πð2Þ
2;12ð1 − 3CΠð2Þ

2;12Þ−1: ð115Þ

In the same way, we defined the function B̄ as B
amputated to the right external loop as
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B̄ ≔ 4ðĀ12 þ 3Ā123 þ 32Ā1232 þ 33Ā12323 þ � � �Þ ð116Þ

with

Ā12 ¼ Πð2Þ
a;0A3;2Π

ð2Þ
2;12; ð117Þ

Ā123 ¼ Πð2Þ
a;0

X
p

A3;2ðpÞΠð2Þ
2;12ðpÞCðp; 0ÞΠd;13;

such that, in a compact matrix form,

B̄ ¼ 4Πð2Þ
a;0

X
p;p0

A3;2ðpÞKðp; 0Þ: ð118Þ

Finally, the last function that we have to compute is D,
built of chains of pseudo-melons of type-1 or type-2, such
that the boundaries are of type (1i) and (1j) with i ≠ j. It
can be easily deduced from decomposition (97), keeping
only the contributions having such a boundary. We get

D ¼ 4 × 3½Πð2Þ
2;12CΠ

ð2Þ
2;12ð1þ 2ðCΠð2Þ

2;12Þ
þ ð2CΠð2Þ

2;12Þ2 þ � � �Þ�ð0; 0Þ; ð119Þ

which can be computed as formula (115):

D ¼ 12½Πð2Þ
2;12CΠ

ð2Þ
2;12ð1 − 2ðCΠð2Þ

2;12ÞÞ−1�ð0; 0Þ: ð120Þ

□

The renormalization conditions impose the values of
zero-momenta couplings. They define the asymptotic
couplings in the IR, which is given for s → −∞, so that

Πð2Þ
1 ðs → −∞Þ ¼ 2λr4;1; ð121Þ

Πð2Þ
2;12ðs → −∞Þ ¼ 2λr4;2; ð122Þ

the upper index r for “renormalized” referring to the
finiteness of the corresponding quantities in the continuum
limit Λ → ∞. Note that this is not obvious, because some
quantities like b and Amn are divergent. The finiteness of
the limit is guaranteed from renormalizability of the theory.
In practice, counterterms may be defined in order to ensure
the finiteness of the effective skeleton function for arbitrary
s, from deep UV. In this intermediate regime, these
functions define effective couplings at scale s:
Definition 21.—The effective essential and marginal

couplings at scale s, λ4;1ðsÞ and λ4;2ðsÞ, respectively
associated to the quartic melonic and quartic pseudo-
melonic interactions are defined as

Πð2Þ
1 ðsÞ ¼ 2λ4;1ðsÞ; ð123Þ

and

Πð2Þ
2;12ðsÞ ¼ 2λ4;2ðsÞ: ð124Þ

Note that in these equations, we introduce the explicit
dependence on s for effective vertex functions. This
dependence comes from their definition, and have been
left without all confusion in the hope to simplify the
notations.

2. Six- and eight-point effective vertices

The equations for the LO four-point function are
obtained above. We have to compute the same equations
for six- and eight-point effective vertices in this section.
We will investigate successively the effective six- and
eight-point vertices having melonic, pseudo-melonic or
intertwining boundary graphs. Indeed, we will see that, in
addition to the melonic and pseudo-melonic boundaries, we
get mixing boundaries, having intermediate canonical
dimensions between melons and pseudo-melons as men-
tioned in our Introduction. These mixing boundaries
correspond to connected sums of elementary quartic
melons and/or pseudo-melons, with colors respecting the
LO tadpole deletions leading to six- and eight-point
functions from LO four-point functions. We will detail
all of them for each case. However before starting this
investigation, let us make a remark about the existence of
mixing configurations. An elementary example, corre-
sponding to the connected sum of a quartic melon and a
quartic pseudo-melon is given in Fig. 22(b), and it is easy to
see that it comes from the contraction of a 0-dipole between
two vertices, as pictured in Fig. 21. Then, even if the initial
theory space is a direct sum SM ⊕ SPM, the theory space
does not remain along this subspace under the renormal-
ization group flow. A new type of graph arises in the theory
space, mixing melons and pseudo-melons, and having
intermediate power counting between them. Schematically,

ð125Þ

As for four-point functions, the LO six-point functions are
obtained from deletion of the melonic or pseudo-melonic

FIG. 21. Contraction of a zero dipole e1 between a melonic
vertex and a pseudo-melonic vertex. The contraction leads to the
intertwining diagram on the right.
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tadpole along the boundary of an external face from LO
four-point graphs. Then, the allowed boundaries for LO
graphs may be all deduced from the four leading order
configurations pictured in Fig. 14, and it is easy to see from
the deletion procedure that there are only four allowed
boundaries for LO graphs, see Figure 22.
The first graph of Fig. 22 denoted by (a) is an element of

the nonbranching melonic family, obtained as a connected
sum of two identical quartic melons.7 The second one (b) is
a branching melon graph, obtained from Figure 14(b)
opening a melonic tadpole on the boundary of the green
external face, whose end points are hooked on the pseudo-
melonic opened boundary vertex. The last diagram (d) cor-
responds to the nonbranching pseudo-melonics, obtained
as a connected sum of two identical quartic pseudo-melons.
Finally, the boundary graph of type (c) corresponds to the
intertwining graphs, obtained from Fig. 14(d). However,
from deletion of three melonic and/or pseudo-melonic
tadpoles, it is easy to check that the connectivity of the
external faces allows three configurations and all of these
are pictured in Fig. 22. The first one (a) corresponds to a
nonbranching melon. The last one (c) corresponds to a
nonbranching pseudo-melon. The intermediate one (b)
however, corresponds to the connected sum of a quartic
melon and a quartic pseudo-melon, and intertwine between
the two sectors. It is clear from the canonical dimensions,
indicated in Fig. 22. Note that we have to take into account
the intermediate diagram for the computation of the flow
equations, due to the fact that the leading contraction
building from a four-dipole has a quartic pseudo-melon as a
boundary graph.
The intertwining configurations are relevant for our

analysis. Indeed, we will use two kinds of equations in
the next section: The flow equation (19) in order to compute
the evolution of the essential and marginal couplings; and
the Ward identities, to compute the first derivative with
respect to the external momenta of the effective vertex
functions, involved in the computation of the anomalous
dimension. In any case, all our computations involve a single

effective loop, and our restriction in the deep UV sector
requires to consider only the LO contractions, i.e., having
themaximal degree of divergences, as relevant contributions
for the flow of the couplings and the value of the anomalous
dimension. Then, even is its canonical dimension is smaller
than the one of the pseudo-melon in Fig. 22(d), the graph in
Fig. 22(c) will contribute to the flow of the quartic pseudo-
melonic coupling, and have to be retained as a relevant
contribution on theWard identity. Indeed, it compensates its
lack of canonical dimensionwith amelonic “pole,” allowing
to create a four-dipole. For instance, the following graph,

ð126Þ

has power counting ω ¼ −2þ 4 − 1 ¼ 1, and it is easy to
check that its boundary graph is a quartic pseudo-melon. The
same behavior will arise for eight-point functions, for which
we will only retain those LO six-points nonbranching
pseudo-melon after one-loop contraction.
Let us start with nonbranching melonic six-point effec-

tive vertices. As for four-point functions, the six-point
effective vertex has to be a sum indexed with the color of its
external face, being as well the color of the skeleton in the
corresponding tree in HS representation,

Γð6Þ
s;a;meloðfp⃗jgÞ ¼

Xd
i¼1

Γð6Þi
s;a;meloðfp⃗jgÞ; ð127Þ

the index a referring to Fig. 22(a). For the four-point
functions, we see that the LO graphs are trees organized
around a skeleton having the topology of a line. For the six-
point functions, the skeleton will be a tripod, with three
arms hooked to a common vertex. More precisely, inves-
tigating the structure of 3-ciliated trees with skeleton of
color 1, we get two types of tripods, distinguished both in
Fig. 23. In the first one case (a), the three arms of color 1
hooked to the three opened tadpoles and are fully hooked
on the same vertex vwith nonbreaking edges. In the second

(a) (c) (d)(b)

FIG. 22. The four possible LO boundary graphs for melonic, pseudo-melonic and interwining graphs. A nonbranching 3-valent melon
(a), a 3-valent branching melon (b), a nonbranching pseudo-melon (d) and an intertwiner diagram (c). The canonical dimensions are also
indicated.

7As for pseudo-melons, nonbranching melons are obtained as
connected sums of the same elementary quartic melon. These
graphs are described in [55,71].
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case (b), the three arms are hooked to the same vertex v
from a common breaking edge. As for four-point functions,
we can fix the size of the tripod skeleton and sum over trees
having such a skeleton, relaxing in a second time the length
of the different arms. Precisely as for the four-point
functions, we define the zero-momenta melonic effective

tripod function Πð3Þ
1;a as

Γð6Þi
s;a;meloð0⃗; 0⃗; 0⃗; 0⃗; 0⃗; 0⃗Þ≕ 3!Πð3Þ

1;a: ð128Þ

Similarly, effective vertices having boundaries of type

(b) and (c) in Fig. 22 may be denoted by Γð6Þij
s;b;melo and

Γð6Þij
s;c;inter and both of these contributions depend on a pair of

indices. We define the corresponding effective skeleton
functions as

Γð6Þij
s;b;meloð0⃗; 0⃗; 0⃗; 0⃗; 0⃗; 0⃗Þ≕ 3!Πð3Þ

1;b; ð129Þ

Γð6Þij
s;c;interð0⃗; 0⃗; 0⃗; 0⃗; 0⃗; 0⃗Þ≕ 3!Πð3Þ

1;c: ð130Þ

and we have the following statement.
Proposition 8.—The effective zero-momenta tripod

functions Πð3Þ
1;a, Π

ð3Þ
1;b and Πð3Þ

1;b are expressed in terms of
the essential and marginal couplings as8

Πð3Þ
1;a ¼ 8

�
ðλ34;1ðsÞA4;3 þ 12λ24;1ðsÞλ4;2ðsÞA3;3 þ 36λ24;2ðsÞλ4;1ðsÞA2;3

þ 24λ34;2ðsÞA1;3Þ − 12λ34;1ðsÞ
X
p∈Z

λ6;1ðp; sÞðA3;2ðpÞÞ3 þ 12λ6;1ðsÞλ24;1ðsÞðA3;2Þ2
�
; ð131Þ

Πð3Þ
1;b ¼ 3! × 8f2λ24;1ðsÞλ4;2ðsÞA3;3 þ 3λ6;1ðsÞλ24;1ðsÞðA3;2Þ2g; ð132Þ

Πð3Þ
1;c ¼ 3! × f8λ4;1ðsÞλ24;2ðsÞA3;3 þ 24λ34;2ðsÞA2;3 − 6λ4;1ðsÞλ6;1ðsÞA3;2Þg: ð133Þ

where λ4;1ðsÞ, λ4;2ðsÞ and λ6;1ðsÞ are effective couplings at scale s and λ6;1ðp; sÞ is the p dependent effective coupling at the
momentum p given by

λ6;1ðp; sÞ ¼
�

λ6;1ðsÞ − 4
3
λ34;2ðsÞA3;3

1 − 3!λ4;2ðsÞA3;2 þ 12λ24;2ðsÞA2
3;2 − 8λ34;2ðsÞA3

3;2

�
ð1 − 3!λ4;2ðsÞA3;2ðpÞ

þ 12λ24;2ðsÞA2
3;2ðpÞ − 8λ34;2ðsÞA3

3;2ðpÞÞ þ
4

3
λ34;2ðsÞA3;3ðpÞ: ð134Þ

In order to prove this statement, we have to consider the intermediate result about effective nonbranching pseudo-melonic
functions.
Lemma 5.—The bare coupling λ6;1 may be expressed in terms of the effective essential and marginal effective pseudo-

melonic couplings at scale s as

λ6;1 ¼
λ6;1ðsÞ − 4

3
λ34;2ðsÞA3;3

1 − 3!λ4;2ðsÞA3;2 þ 12λ24;2ðsÞA2
3;2 − 8λ34;2ðsÞA3

3;2

: ð135Þ

Proof.—As for the trees having melonic boundary, the LO trees contributing to the effective tripod functionΠð3Þ
2;ij split into

two families: the trees whose three arms are hooked to a common vertex, and the trees whose arms are hooked to a common
breaking edge corresponding to the boundary graph of the global tree. Listing all the possible LO configurations, we get

(a) (b)

FIG. 23. Typical tree configurations contributing to the LO six-
point functions with melonic boundaries. In (a), the three arms of
the red skeleton are hooked on the same vertex v from non-
breaking edges. In (b), they are hooked to v with a common
breaking edge.

8Note that, as for four-point functions, the upper index 3 refers to the number of cilia.
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ð136Þ

where the first term with a grey bubble represents the
effective six-point vertex having pseudo-melonic boundary
with fixed bicolored edges (red and green on the figure):

ð137Þ

the function Γð6Þij
s;melo being defined such that the effective

vertex function for pseudo-melonic boundaries is written as

Γð6Þ
s;pseudo-melo ¼

P
j<iΓ

ð6Þij
s;pseudo-melo. The function Γ

ð6Þij
s;pseudo-melo

may be then computed directly from renormalization
conditions for four-point functions (122). Taking into
account the symmetry factors, we get

Γð6Þij
s;pseudo-melo ¼ ð3!Þ2λ6;1½1 − 3!λ4;2ðsÞA3;2

þ 2 × 3!λ24;2ðsÞA2
3;2 − 23λ34;2ðsÞA3

3;2�
þ 3!23λ34;2ðsÞA3;3: ð138Þ

Note that the symmetry factors as well as relative signs may
be easily understood and computed considering the first
terms of the perturbative expansion, and identifying them
with the corresponding terms in this expansion. Moreover,
note that we reintroduced the variable s to make a differ-
ence between effective and bare couplings. We define the

effective tripod skeleton function Πð3Þ
2;ij as

Γð6Þij
s;pseudo-melo ¼ ð3!Þ2Πð3Þ

2;ij: ð139Þ

With the renormalization conditions, we provide new
definition, which completes Definition 21:
Definition 22.—The effective marginal coupling λ6;1ðsÞ

at scale s is defined as

Πð3Þ
2;ij ¼ λ6;1ðsÞ; Πð3Þ

2;ijðs → −∞Þ ¼ λr6;1; ð140Þ

we get the equality

λ6;1ðsÞ ¼ λ6;1½1 − 3!λ4;2ðsÞA3;2 þ 2 × 3!λ24;2ðsÞA2
3;2

− 23λ34;2ðsÞA3
3;2� þ

4

3
λ34;2ðsÞA3;3; ð141Þ

which ends the proof. □

However, using Lemma 5, we are able to provide the
proof of Proposition 8.
Proof of Proposition 8.—We will proceed as for the

proof of the previous lemma, listing all the allowed
configurations compatible with the corresponding boun-
dary diagram, pictured in Fig. 22(a). As explained before,
we have to distinguish the case when the three arms are
hooked to the same vertex, and the case when the three
arms are hooked to a common breaking edge, having a
common color with the three arms hooked to him. These
two configurations are pictured in Fig. 23. However, the
classification has to be refined from Lemma 5. Indeed,
among the configurations of type 23(a), some of them are
made with a tripod kernel having a pseudo-melonic
boundary graph, and allows one to build an effective
breaking edge to which are hooked three arms. These
Kernels are nothing but the fourth condribution in
Eq. (136). Adding it to the other ones having a common
breaking edge for the three arms, we build an effective six-
point vertex having pseudo-melonic boundary, with mel-
onic arms hooked to him, corresponding to effective
melonic four-point functions. It is easy to check that all
allowed configurations are those pictured in Fig. 24, the
configurations (e) and (f) having a kernel corresponding to
an effective pseudo-melonic function. Taking into account
the respective canonical dimensions for each effective
insertions, it is easy to see that all these configurations
have the same power-counting, ω ¼ −2, in accordance
with the expected canonical dimension for 3-valent melonic
bubbles given Eq. (50). From renormalization conditions
(121), (122) and (140), and taking into account relative
signs and symmetry factors considering the first terms of
the perturbative expansion, we get

Γð6Þi
s;a;melo ¼ 3! × 8

�
ðλ34;1ðsÞA4;3 þ 12λ24;1ðsÞλ4;2ðsÞA3;3

þ 36λ24;2ðsÞλ4;1ðsÞA2;3 þ 24λ34;2ðsÞA1;3Þ
− 12λ34;1ðsÞ

X
p∈Z

λ6;1ðp; sÞðA3;2ðpÞÞ3

þ 12λ6;1ðsÞλ24;1ðsÞðA3;2Þ2
�
: ð142Þ

We then deduce the expression of Πð3Þ
1;a for definition (128).

In the same way, the configurations contributing to
effective six-point vertex functions having branching mel-
onic and intertwining boundaries can be easily obtained
from a list of all allowed configurations. As for the previous
case, some of these contributions can be resumed as
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effective pseudo-melonic effective vertices, such that the
relevant LO contributions for each case are pictured in
Figs. 25 and 26 below.
Expressing this relationship in detail, we get for zero

external momenta effective functions:

Γð6Þij
s;b;melo ¼ ð3!Þ2 × 8f2λ24;1ðsÞλ4;2ðsÞA3;3

þ 3λ6;1ðsÞλ24;1ðsÞðA3;2Þ2g; ð143Þ

for branching melonic boundaries, and

Γð6Þij
s;c;inter ¼ ð3!Þ2 × f8λ4;1ðsÞλ24;2ðsÞA3;3

þ 24λ34;2ðsÞA2;3 − 6λ4;1ðsÞλ6;1ðsÞA3;2Þg; ð144Þ

for intertwining boundaries. □

Let us now focus on the leading order eight-point
functions. They can be obtained as for four- and six-point
functions from deleting a new tadpole in the boundary of an
opened face running through the interior of the diagrams.
Once again all the eight-point function can be classified
from their power counting and their boundary graphs.
Moreover, in the flow equations, the melonic interactions
become closed from six-point functions. Then, the eight-
point functions are relevant only to close the pseudo-
melonic interactions. As a result, only the leading order
functions having a boundary graph whose one-loop con-
traction leads to a pseudo-melonic boundary will contribute
in our flow equations. Figure 27 provides an example.
From these considerations, it is easy to check that there

are only two relevant boundaries for leading order eight-
point graphs, pictured in Fig. 28 below.
In both cases, the corresponding eight-point functions

are labeled with a pair of indices:

(a)

(e)

(b) (c)

(d) (f)

FIG. 24. All the possible configurations having a nonbranching melon as boundary graph. The grey bubbles denote effective vertices
whose boundary graphs are explained. The trajectories of the external faces running in the interior of the diagrams are pictured with
colored arrows.

(a) (b)

FIG. 25. Two configurations contributing to the six-point
effective vertices having branching melonic boundaries.

(a) (c)(b)

FIG. 26. Three configurations contributing to the intertwining six-point effective vertices.
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Γð8Þ
s;pseudo-melo ¼

X
j<i

Γð8Þ;ij
s;pseudo-melo; Γð8Þ

s;inter ¼
X
j<i

Γð8Þ;ij
s;inter;

ð145Þ

and we define their respective zero momenta skeleton
function as pictured in Fig. 29

Γð8Þ;ij
s;inter ≕ 4!Πð4Þ

1 ; Γð8Þ;ij
s;pseudo-melo≕ 4!Πð4Þ

2 : ð146Þ

As for six-point functions, there are essentially two differ-
ent configurations for the four arms of the skeleton:
(1) The four arms hooked to external deleted pseudo-

melonic tadpole can be hooked to the same vertex.
(2) The four arms can be hooked to form effective

tripods, hooked together with a common bicolored
path.

Figure 30 provides some examples of trees correspond-
ing to these two configurations for the pseudo-melonic
boundary. The first one (a) corresponds to configuration
(1): The four arms of the bicolored skeleton are hooked to
the same vertex. The second (b) and third (c) both
correspond to configuration (2): The four arms are organ-
ized as two 3-valent tripods and are hooked together with a
common bicolored path. We have the following statement:
Proposition 9.—The zero-momenta skeleton functions

Πð4Þ
1 and Πð4Þ

2 are given in terms of essential and marginal
effective couplings at scale s, λ4;1ðsÞ, λ4;2ðsÞ and λ6;1ðsÞ as

Πð4Þ
1 ¼ −

4!24

3!
λ34;2λ4;1A3;4 −

ð4!Þ2
3!

Πð3Þ
1;cλ

2
4;2ðsÞA3;3 þ λ6;1ðsÞλ4;2ðsÞλ4;1ðsÞA3;3

þ 4!

2
Πð3Þ

1;c

λ6;1ðsÞ − 4
3
λ34;2ðsÞA3;3

1 − 3!λ4;2ðsÞA3;2 þ 12λ24;2ðsÞA2
3;2 − 8λ34;2ðsÞA3

3;2

ð1 − 4λ4;2ðsÞA3;2 þ 4λ24;2ðsÞA2
3;2Þ; ð147Þ

Πð4Þ
2 ¼ −

9 × 4!

2
λ6;1ðsÞ

λ6;1ðsÞ − 4
3
λ34;2ðsÞA3;3

1 − 3!λ4;2ðsÞA3;2 þ 12λ24;2ðsÞA2
3;2 − 8λ34;2ðsÞA3

3;2

× ð1 − 4λ4;2ðsÞA3;2 þ 4λ24;2ðsÞA2
3;2Þ − 24λ44;2ðsÞA3;4 þ

4!

2
λ6;1ðsÞλ24;2A3;3: ð148Þ

Proof.—Like for four- and six-point functions, we have
to list all leading order configurations and, for each of them,
compute their respective boundary graphs and their diver-
gent degrees. From this analysis, and taking into account
effective summations like for six-point graphs, we easily
check that there are only five configurationswhose complete
set is given in Fig. 31, having a pseudo-melonic boundary

graph. The two first configurations (a) and (b) can be easily
computed from renormalization conditions (121), (122) and
(140), and symmetry factors aswell as the relative signsmay
be fixed from comparison with lowest orders of the
perturbative expansion. The three remaining configurations
(c), (d) and (e) require to be carefully checked on the
counting procedure. We get explicitly, using Lemma 5,

FIG. 27. One-loop contraction on the melonic “pole” in a eight-
point boundary graph. The corresponding eight-point function
has divergent degrees bounded as ω ¼ −2. The created four-
dipole then increases it to 2; so that the global scaling becomes
ωþ 2 ¼ 0.

(a) (b)

FIG. 28. Allowed boundaries for relevant eight-point functions
with their respective canonical dimensions. As for six-point
boundaries, type (a) intertwines between melons and pseudo-
melons and has a single melonic “pole,” whereas type (b) is a
purely nonbranching eight-point graph.

FIG. 29. Two allowed topologies for configurations of the four
arms of the leading order eight-point functions. In case (1), the
four arms are hooked to the same vertex. In case (2), the arms
form effective tripods, hooked together with a bicolored path.
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Γ8;ij
s;pseudo-melo ¼ −

9 × ð4!Þ2
2

λ6;1ðsÞ
λ6;1ðsÞ − 4

3
λ34;2ðsÞA3;3

1 − 3!λ4;2ðsÞA3;2 þ 12λ24;2ðsÞA2
3;2 − 8λ34;2ðsÞA3

3;2

× ð1 − 4λ4;2ðsÞA3;2 þ 4λ24;2ðsÞA2
3;2Þ − 4!24λ44;2ðsÞA3;4 þ

ð4!Þ2
2

λ6;1ðsÞλ24;2A3;3: ð149Þ

Then the expression of Πð4Þ
2 can be derived easily.

Moving on to the configurations having intertwining boundaries, it is easy to check that the only ones
allowed such boundaries are pictured in Fig. 32 below; and the corresponding zero momenta eight-point function
writes as

Γð8Þij
s;inter ¼ −

ð4!Þ224
3!

λ34;2λ4;1A3;4 −
3ð4!Þ223

3!
Πð3Þ

1;cλ
2
4;2ðsÞA3;3 þ 4!λ6;1ðsÞλ4;2ðsÞλ4;1ðsÞA3;3

þ ð4!Þ2
2

Πð3Þ
1;c

λ6;1ðsÞ − 4
3
λ34;2ðsÞA3;3

1 − 3!λ4;2ðsÞA3;2 þ 12λ24;2ðsÞA2
3;2 − 8λ34;2ðsÞA3

3;2

ð1 − 4λ4;2ðsÞA3;2 þ 4λ24;2ðsÞA2
3;2Þ; ð150Þ

(a) (b) (c)

(d) (e)

FIG. 31. The three leading order configurations for eight-point functions having nonbranching pseudo-melonic boundaries.

(a) (b) (c)

FIG. 30. Three configurations for the arms of the four skeletons. In (a), the four arms are hooked to the same vertex. In (b) two arms are
hooked to the same breaking edge. In (c) the two remaining edges are hooked to another common breaking edge.
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where the 1=3! in front of the effective skeleton function

Πð3Þ
1;c comes from its definition (133)—it suppresses the

counting of the external contractions on black (or white)
nodes. □

V. FLOWEQUATIONS ANDTHEIR FIXED POINTS

The leading effective vertex being obtained, let us now
focus on the building of the leading order renormalization
group flow corresponding to the initial conditions (51),
from effective interactions generated from essential and
marginal couplings at scale s. Once again, we limit our
investigation on the UV regime Λ ≫ es ≫ 1.

A. Flow for local couplings

From Definition 3, local interactions correspond to pure
connected tensorial invariants. Therefore, we have defined
the effective couplings at scale s as the zero-momenta
n-point functions corresponding to a given boundary graph.
Then, we can compute the successive functional derivatives
of theWetterich equation (19), and identify in both sides the
terms corresponding, at leading order to the same boundary
graph when the external momenta are setting to zero.
The effective couplings at scale s have been defined

from Eqs. (123), (124) and (140). To complete Definitions
21 and 22, we have to define the dynamical mass m2ðsÞ,
which is a relevant coupling with canonical dimension
equal to 2:
Definition 23.—The effective mass at scale s is

defined as

m2ðsÞ ≔ Γð2Þ
s ðp⃗ ¼ 0⃗Þ: ð151Þ

We have the following proposition.
Proposition 10.—In the deep UV sector (Λ ≫ es ≫ 1)

and in the symmetric phase, the exact flow equations for

essential and marginal coupling in the sector mixing
melons and nonbranching pseudo-melons are given by

_m2 ¼ −10λ4;1I4;2 − 20λ4;2I3;2; ð152Þ

_λ4;1 ¼ −
�
2Πð3Þ

1;a þ
2

3
Πð3Þ

1;b

�
I4;2 þ 4λ24;1I4;3 þ 16λ4;1λ4;2I3;3;

ð153Þ

_λ4;2 ¼ −
�
3λ6;1 þ

1

6
Πð3Þ

1;c

�
I3;2 þ 4λ24;2I3;3; ð154Þ

_λ6;1 ¼−
�
1

6
Πð4Þ

2 þ 1

4!
Πð4Þ

1

�
I3;2þ 12λ4;2λ6;1I3;3− 8λ34;2I3;4;

ð155Þ

where the dot means derivative with respect to s, and

Im;n ≔
X
p⃗∈Zm

_rsðp⃗ÞGnðp⃗Þ: ð156Þ

Proof.—Deriving the exact flow equation (19) with
respect to M and M̄, we deduce an equation describing

the flow of the two-point function Γð2Þ
s in terms of Γð4Þ

s only,
in the symmetric phase:

_Γð2Þ
s ðp⃗Þ¼−

X
q⃗

Γð4Þ
s ðp⃗;q⃗;p⃗;q⃗Þ _rsðq⃗Þ

½Γð2Þ
s ðq⃗Þþrsðq⃗Þ�2

; ð157Þ

where ∂sA≕ _A. First, Γð4Þ
s;p⃗ q⃗;p⃗;q⃗ split into melonic and

pseudo-melonic contributions. We just considered only
the boundary graphs of the effective functions to simplify
the notations and then the previous equation is written
graphically as

 (a) (b) (c)

(d) (e) (f)

FIG. 32. The four leading order configurations for eight-point functions having intertwining boundaries.
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ð158Þ

In the deep UV limit, the second and fourth contributions may be discarded. Indeed, with respect to the first one, the second
diagram lacks three faces, and its proper power counting is ω ¼ −1. In the same way, the fourth diagram scales as ω ¼ 1,
while the first and third diagrams scale as ω ¼ 2. The relevant contributions are then

ð159Þ

The dynamic mass m2ðsÞ has been defined in Definition 23. Then, setting p⃗ ¼ 0⃗ in the previous equation, we get

_m2 ¼ −2dλ4;1
X

p⃗∈Zd−1

_rsðp⃗ÞG2ðp⃗Þ − 2
dðd − 1Þ

2
λ4;2

X
p⃗∈Zd−2

_rsðp⃗ÞG2ðp⃗Þ: ð160Þ

In the same way, for the four-point functions we have to derive once again one time with respect toM and M̄; and keep only
the even N-point functions, having the same number of derivatives with respect to the two mean fields. We get

_Γð4Þ
s ¼ −

X
p⃗

_rsðp⃗ÞG2
sðp⃗Þ

�
Γð6Þ
s ðp⃗; 0⃗; 0⃗; p⃗; 0⃗; 0⃗Þ − 2

X
p⃗0

Γð4Þ
s ðp⃗; 0⃗; p⃗0; 0⃗ÞGsðp⃗0ÞΓð4Þ

s ðp⃗0; 0⃗; p⃗; 0⃗Þ
�

þ 2
X
p⃗

_rsðp⃗ÞG3
sðp⃗Þ½Γð4Þ

s ðp⃗; 0⃗; p⃗; 0⃗Þ�2: ð161Þ

Graphically, we get the contributions (we left the external momenta to simplify the notations):

ð162Þ

where once again we have only drawn the boundary graphs
of effective functions. The factors involved in this relation
count the number of contractions leading to the corre-
sponding diagram, including permutations of the external

points. This is the origin of the factor 4 ¼ ð2!Þ2 in front of
the six-point contractions. Moreover, the same factor 4 in
the front of the four-point contributions comes from the
derivation itself: A first factor 2 comes from the derivative
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of G2 in (157); and a second factor 2 comes from a
discarded term in the first derivation, involving three-point
functions. The absence of the factor coming from permu-
tation of external points arises because of the definition of
the corresponding skeleton functions.
However, among these contractions, some of them con-

tribute to themelonic sector, and some others contribute to the
pseudo-melonic one; and we have to classify them with
respect to their boundary graphs. For instance, in the first line,
the two first diagramshavemelonic boundaries,while the two
first diagrams in the second line have pseudo-melonic
boundaries. The diagrams in the third and fourth lines require
to be careful analyzed because their boundary graphs depend
on the selected indices i, j, k, l. For instance, for i ¼ j, the first
diagram in the third line has a pseudo-melonic boundary,
while it has a disconnected boundary for i ≠ j:

ð163Þ

This diagram will not be taken into account, for melonic
and pseudo-melonic flows. Moreover, it is completely
discarded in the UV limit, its proper power counting
begins ω ¼ −2; while the one of the case i ¼ j is ω ¼ 0,
as expected for a relevant contribution to the flow of the
marginal coupling λ4;1.

9 In the same way, the second
contribution in the third line is melonic for k ¼ j or
k ¼ i, and completely disconnected for i ≠ j ≠ k.
Therefore, taking into account only the relevant contri-
butions for each sectors we get

ð164Þ

Finally, using renormalization conditions (123), (124) and (140) to identify the relevant couplings on both sides as

Γð4Þ
s;melo ¼ 4λ4;1 and Γð4Þ

s;pseudo-melo ¼ 4λ4;2, we get

_λ4;1 ¼ −
�
2Πð3Þ

1;a þ
2

3
Πð3Þ

1;b

� X
p⃗∈Zd−1

_rsðp⃗ÞG2ðp⃗Þ þ 4λ24;1
X

p⃗∈Zd−1

_rsðp⃗ÞG3ðp⃗Þ þ 16λ4;1λ4;2
X

p⃗∈Zd−2

_rsðp⃗ÞG3ðp⃗Þ ð165Þ

and

_λ4;2 ¼ −
�
3λ6;1 þ

1

6
Πð3Þ

1;c

� X
p⃗∈Zd−2

_rsðp⃗ÞG2ðp⃗Þ þ 4λ24;2
X

p⃗∈Zd−2

_rsðp⃗ÞG3ðp⃗Þ: ð166Þ

9Disconnected contributions can be taken into account; and mixing sectors involving their contributions have been investigated in
[54], from a truncation approach.
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Finally, following the same strategy, we get for the six-point function

where the additional factor 4 in front of the first term in line four comes from the counting of the permutation of the

external points hooked to the six-point effective vertex. Then, from the renormalization condition (140), we haveΓð6Þ
s;pseudo-melo ¼

ð3!Þ2λ6;1, and keeping only the relevant contributions in the UV having pseudo-melonic boundaries, we get finally

ð167Þ

Equivalently we get

_λ6;1 ¼ −
�
1

6
Πð4Þ

2 þ 1

4!
Πð4Þ

1

� X
p⃗∈Zd−2

_rsðp⃗ÞG2ðp⃗Þ þ 12λ4;2λ6;1
X

p⃗∈Zd−2

_rsðp⃗ÞG3ðp⃗Þ − 8λ34;2
X

p⃗∈Zd−2

_rsðp⃗ÞG4ðp⃗Þ; ð168Þ

which ends the proof. □

B. Anomalous dimension

Until now we have no explicitly introduced counter-
terms. However, fields and couplings in the original action
(51) have to be completed with some counterterms so that
the quantum corrections are finite. For all couplings,
including mass, these counterterms have to be understood
included in the definition of the bare couplings themselves;
the renormalization conditions in the deep IR fixing the
renormalization prescription. However, we need for our
discussion to appear explicitly the wave-function counter-
terms, which we call Z−∞ following the notations used in
[71]—the subscript −∞ referring to the deep IR limit
s → −∞, in which the asymptotic renormalization pre-
scription are fixed. The bare kinetic kernel C−1ðp⃗Þ is then
replaced by

C−1ðp⃗Þ ¼ ðZ−∞p⃗2 þm2ÞΘ−1
a ðΛ2 − p⃗2Þ; ð169Þ

where Θ−1
a ðΛ2 − p⃗2Þ is a smooth invertible distribution

depending on a real parameter a, such that lima→0ΘaðxÞ ¼
ΘðxÞ. As example we write

ΘaðxÞ ≔
1

a
ffiffiffi
π

p
Z

x

−∞
e−y

2=a2dy: ð170Þ

Moreover, because Λ > es the regulator is unaffected from
the modification rs → rs=Θa in the limit a → 0; so that the
regularized propagator Cs can be written as

C−1
s ¼ ðZ−∞p⃗2 þm2 þ rsðp⃗ÞÞΘ−1

a ðΛ2 − p⃗2Þ: ð171Þ

Our renormalization prescriptions, defining the asymptotic
mass m2

r in the same time, is such that (see [71])
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Γs→−∞ðp⃗Þ ¼ m2
r þ p⃗2 þOðp⃗2Þ: ð172Þ

Note that this definition matches only if the trajectory does
not cross a non-Gaussian fixed point. A more general
definition, including this case, fixes the renormalization
conditions to a finite scale s0 so that es0 ≪ es. For arbitrary
s, we conventionally define the wave function renormal-
ization and the anomalous dimension such that:
Definition 24.—Anomalous dimension.— The wave

function renormalization ZðsÞ and the anomalous dimen-
sion ηðsÞ—both depending on s are defined as

ZðsÞ ≔ ∂
∂p2

1

Γð2Þ
s ðp⃗Þjp⃗¼0⃗

; ηðsÞ ≔
_Z
Z
: ð173Þ

The flow equations deduced in the previous section are
“exact” i.e., up to the limit of our approximation scheme.
However, the anomalous dimension, formally given from
Eq. (173), remains unknown. To exploit our flow equations,
we then have to complete our approximation scheme. We
have expressed all the LO effective vertices in terms of
essential and marginal couplings, as well as effective two-

point functions Γð2Þ
s . Formally, these functions are fixed

from closed Eq. (56); however, solving exactly this
equation remains an open challenge in tensor field theories
[74,75]. Following the method explained in [71], in order to
extract available equations for renormalization group flow,
especially in view of a numerical analysis, we have to fix

the form of Γð2Þ
s ; and we adopt the following definition.

Definition 25.—In the symmetric phase, and in the range
of momenta contributing significantly in the domain
defined by the distribution _rs, the effective two-point

function Γð2Þ
s is assumed to be truncated around the two

first terms in derivative expansion [[76–78]]

Γð2Þ
s ðp⃗Þ ≔ ZðsÞp⃗2 þm2ðsÞ; ð174Þ

so that ZðsÞ matches with the definition (173).
Note that this definition is compatible with usual trunca-

tions in the symmetric phase, that is with derivative and
mean field expansion considered in the literature [79,80].
Moreover, in the nonsymmetric phase, a dependence ofZðsÞ
on themean fieldsM and M̄ is expected. Finally, the domain
of the momentas defined by the distribution _rs is important.
It corresponds to the relevant integration domain involved in
the flow equations (19), and may be viewed in a sense as an
approximation “slice by slice” along the flow line. However,
it cannot be used globally in the full range of momenta,
especially in the deep UV, for p⃗2 ∼ Λ2, without dangerous
contradictions with Ward identity, as we will briefly discuss
at the end of this section.
In addition to this definition, we recall the usual

definition for renormalized and dimensionless couplings.
Definition 26.—In the deep UV, the dimensionless and

renormalized couplings, m̄2, λ̄4;1, λ̄4;2 and λ̄6;1 are defined as

m2 ¼ Ze2sm̄2; λ4;1 ¼ Z2λ̄4;1;

λ4;2 ¼ Z2esλ̄4;2; λ6;1 ¼ Z3λ̄6;1: ð175Þ

Moreover, we denote respectively by βm, β4;1, β4;2 and β6;1
their derivative with respect to s.
Now, let us give the set of WT identities, which will help

to extract the anomalous dimension η.
Proposition 11.—(UV-regularized Ward-Takahashi

identity).—Let ZsðJ; J̄Þ be the one-parameter generating
functional for the theory with microscopic action (51):

ZsðJ; J̄Þ ≔
Z

dμCs
½T; T̄�e−SintðT;T̄ÞþJ̄TþT̄J;

dμCs
½T; T̄� ≔ dTdT̄e−T̄C

−1
s T : ð176Þ

The free energy WsðJ; J̄Þ ≔ lnZðJ; J̄Þ satisfies the func-
tional differential equation:

X
p⃗⊥;p⃗0⊥

Y
j≠1

δpjp0
j

�
ðC−1

s ðp⃗Þ − C−1
s ðp⃗0ÞÞ

� ∂2Ws

∂J̄p⃗0∂Jp⃗ þ M̄p⃗Mp⃗0

�

− J̄p⃗Mp⃗0 þ Jp⃗0M̄p⃗

�
¼ 0; ð177Þ

where the mean fields M and M̄ have been defined in (17),
and p⃗⊥ ≔ ð0; p2;…; pdÞ ∈ Zd−1.
Proof (Sketched).—The Ward-Takahashi identity was

extensively discussed in the literature [71,74,81,82]. We
provide only the sketch of this proof, to take into account
the little modifications coming from the sharp UV regu-
lation; and the new boundary graphs coming from the
pseudo-melonic sector. The given proofs follow the steps
detailed in [71].
Let us consider the unitary transformations U ∈ U×d

acting independently over each component of the tensors T
and T̄. U is a d-dimensional vector U ¼ ðU1; U2;…; UdÞ
whose components Ui are unitary matrices acting on the
indices of color i. The action of U on the two tensors is
defined as (we sum over repeated indices)

U½T�p1;p2;…;pd
≔ ½U1�p1q1

½U2�p2q2
� � � ½Ud�pdqd

Tq1;q2;…;qd

ð178Þ
U½T̄�p1;p2;…;pd

≔ ½U�
1�p1q1

½U�
2�p2q2

� � � ½U�
d�pdqd

T̄q1;q2;…;qd ;

ð179Þ
where the star exponent � means the complex conjugation.
Obviously,

P
p⃗T̄p⃗Tp⃗ and any higher valence tensorial

interactions are invariant under any such transformations.
Then

U½Sint� ¼ Sint: ð180Þ
In contrast, it is not the case for the kinetic and source
terms, due to the nontrivial propagator and sources J
and J̄, which breaks the unitary invariance. However, the
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functional integral defining the generating functional
ZsðJ; J̄Þ has to be insensitive on the bad transformation
of the kinetic term because of the formal translation
invariance of the Lebesgue integration measure. Then, it
has to be invariant under any unitary transformation; and as
a direct consequence, the two-point function hT̄p⃗Tq⃗i and
any higher functions transform like a trivial representation
of U ⊗ U�.
We can translate this conclusion as follows: In the

vicinity of the unity we can write U ¼ I þ iϵ, where ϵ ¼
ϵ† is a Hermitian matrix and I the identity matrix. Then, at
the first order

U ¼ Iþ
X
i

ϵ⃗i; ð181Þ

where I ≔ I⊗d and ϵ⃗i ¼ I⊗ði−1Þ ⊗ ϵi ⊗ Id−iþ1. In this
infinitesimal prescription, the invariance of the generating
functional simply means ϵ⃗i½ZsðJ; J̄Þ� ¼ 0. Explaining each
term at the first order in ϵi, we then get

Z
ϵ⃗i½dμCs

�e−SintþJ̄TþT̄J þ
Z

dμCs
fϵ⃗i½Sint� þ J̄ϵ⃗i½T�

þ ϵ⃗i½T̄�Jge−SintþJ̄TþT̄J ¼ 0: ð182Þ

Obviously, this equation has to be true for all i. From
Eq. (180), it follows that ϵ⃗i½Sint� ¼ 0. Moreover, from
definition (179), it is easy to deduce the infinitesimal
variations for single tensor fields:

ϵ⃗i½T�p⃗ ¼
X
p⃗0

ϵipip0
i

Y
j≠i

δpjp0
j
Tp⃗0 : ð183Þ

Finally, from definition (176); the variation of the Gaussian
measure dμCs

can be easily computed. In matrix notation:

ϵ⃗i½dμCs
� ¼ −ðϵ⃗i½T̄�C−1

s T þ T̄C−1
s ϵ⃗i½T�ÞdμCs

: ð184Þ

Because of the Hermiticity of the matrix ϵi, the two terms in
bracket have opposite relative signs. Then consider
Eq. (182), and let us use the explicit variation (183) and
finally rewriting each tensor field T and T̄ respectively as
∂=∂J̄ and ∂=∂J, we deduce the formula (177) setting
i ¼ 1. □

In practice, in the symmetric phase, the Ward identity

allows to link up Γðnþ2Þ
s to the ΓðnÞ

s and their derivative. In
this paper, we only keep the two first relations, involving
only essential and marginal sectors and write the following
corollary.
Corollary 4.—First and second LO zero-momenta WT

identities.—In the symmetric phase, the zero momenta
four- and six-point functions satisfy

Z−∞ðΠð2Þ
1 L1 þ 4Πð2Þ

2 L2Þ ¼ −
∂

∂p2
1

½Γð2Þ
s ðp⃗Þ − C−1ðp⃗Þ�jp⃗¼0⃗

;

ð185Þ

Z−∞

�
L1

�
2Πð3Þ

1;a þ
2

3
Πð3Þ

1;b

�
− 8λ24;1U1 − 32λ4;1λ4;2U2

�

¼ −
∂

∂p2
1

Πð2Þ
1 ðp1; 0Þjp1¼0; ð186Þ

Z−∞

�
L2

�
12λ6;1 þ

2

3
Πð3Þ

1;c

�
− 8λ24;2U2

�

¼ −
∂

∂p2
1

Πð2Þ
2 ðp1; 0Þjp1¼0; ð187Þ

where

Z−∞Li ≔
X

p⃗⊥∈Zd−i

∂C−1
s ðp⃗⊥Þ
∂p2

1

G2ðp⃗⊥Þ;

Z−∞U i ≔
X

p⃗⊥∈Zd−i

∂C−1
s ðp⃗⊥Þ
∂p2

1

G3ðp⃗⊥Þ: ð188Þ

Proof (Sketched).—Assuming we are in the symmetric
phase and taking the derivative of Eq. (177) with respect to
Mq⃗0 and M̄q⃗; and vanishing the sources J ¼ J̄ ¼ 0, we get

X
p⃗⊥;p⃗⊥ 0

Y
j≠1

δpjp0
j

�
½Csðp⃗2Þ − Csðp⃗02Þ�

� ∂2Gp⃗;p⃗0

∂Mq⃗0∂M̄q⃗
þ δp⃗ q⃗δp⃗0;q⃗0

�

− Γð2Þ
s;q⃗ p⃗δq⃗0p⃗0 þ Γð2Þ

s;q⃗0p⃗0δp⃗ q⃗ − rsðp⃗2Þδq⃗ p⃗δq⃗0p⃗0

þ rsðp⃗02Þδq⃗0p⃗0δp⃗ q⃗

�
¼ 0; ð189Þ

where we used the fact that following (16) the inverse of the

two-point function G ¼ ∂2Ws=∂J∂J̄ is Γð2Þ
s þ rs, implying

∂Γs=∂M ¼ J̄ − rsM̄. Then it is easy to check that

∂2Gp⃗;p⃗0

∂Mq⃗0∂M̄q⃗
¼ −Gðp⃗ÞΓð4Þ

s ðp⃗⊥; p⃗⊥; 0⃗; 0⃗ÞGðp⃗0Þ: ð190Þ

Inserting this relation in Eq. (189), and taking the limit
p1 → p0

1 → 0 and q⃗ ¼ q⃗0 ¼ 0⃗, we get

X
p⃗⊥

G2ðp⃗⊥ÞΓð4Þ
s ðp⃗⊥; p⃗⊥; 0⃗; 0⃗Þ

¼ −
∂

∂p2
1

½Γð2Þ
s ðp⃗Þ − C−1ðp⃗Þ�jp⃗¼0⃗

: ð191Þ

Recall that C−1 ≔ C−1
s − rs. In fact, it is easy to see that the

LO contractions of G2 are those building a 4-dipole in the
melonic contribution, and a 3-dipole in the pseudo-melonic
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one. In the first case, this implies thatwe have to keep only the

contribution of Γð4Þ;1
smelo. In the second case, we keep only

the contributions ofΓð4Þ;1i
s pseudo-melo for i ≠ 1. Finally, because the

Sym is the decomposition of the four-point functions, only
half of them contribute at LO. Formula (185) follows.
To prove formulas (186) and (187), we have to derive

two times with respect to M, and two times with respect to
M̄. Straightforwardly we get

X
p⃗⊥;p⃗0⊥

δp⃗⊥p⃗0⊥ΔCsðp⃗; p⃗0ÞΓ̃ð6Þ
s;p⃗4p⃗2p⃗0;p⃗3p⃗1p⃗

Gsðp⃗ÞGsðp⃗0Þ

þ
X
p⃗⊥;p⃗0⊥

δp⃗⊥p⃗0⊥Xp⃗1;p⃗2;p⃗3;p⃗4;p⃗p⃗0 ¼ 0; ð192Þ

where we used the following definitions:

Γ̃ð6Þ
s;p⃗4p⃗2p⃗0;p⃗3p⃗1p⃗

≔ Γð6Þ
s;p⃗4p⃗2p⃗0;p⃗3p⃗1p⃗

− 2Γð4Þ
s;p⃗p⃗4;p⃗1p⃗00Gsðp⃗00ÞΓð4Þ

s;p⃗00p⃗2;p⃗2p⃗0 ; ð193Þ

and

Xp⃗1;p⃗2;p⃗3;p⃗4;p⃗p⃗0 ≔−δp⃗3p⃗0Γð4Þ
s;p⃗2p⃗4;p⃗p⃗1

−δp⃗1p⃗0Γð4Þ
s;p⃗2p⃗4;p⃗p⃗3

þδp⃗4p⃗Γ
ð4Þ
s;p⃗0p⃗2;p⃗1p⃗3

þδp⃗2p⃗Γ
ð4Þ
s;p⃗0p⃗4;p⃗1p⃗3

ð194Þ

and finally we introduced the notation ΔCsðp⃗; p⃗0Þ ≔
Csðp⃗2Þ − Csðp⃗02Þ. There is an important difference with
the previous Ward identity. While the boundary graph of
any connected two-point graph is the elementary melon,
denoted as γ1 in Sec. III B, the boundaries of connected
four-point graphs can be melonics or pseudo-melonics. In
both sides of Eq. (192), we then have to identify the
contributions having the same boundary graphs, exactly
like for the flow equations in the previous section, Eq. (162)
for instance. Moreover, the intertwining sector has to be
taken into account in the computation of the pseudo-
melonic contribution. Once again, picturing only the
boundary structure of the effective vertices, the left-hand
side of Eq. (192) is written as

ð195Þ

and it is not hard to select, among these contractions, the LO ones, having respectively melonic or pseudo-melonic
boundaries. For instance, the first one in the upper line has quartic melonic boundary, while the second ones have pseudo-
melonic boundaries. We then have to split the series of allowed contractions as

for relevant melonic, and

ð196Þ

for relevant pseudo-melonic. Then, setting p⃗3 ¼ p⃗4 ¼ 0⃗ in a first time, p⃗1 ¼ ðp0
1; 0⃗⊥Þ, in a second time p⃗2 ¼ ðp1; 0⃗⊥Þ, and

finally p1 → p0
1 → 0, we get the two formula (186) and (187); taking into account the renormalization conditions (123),

(124) and (140). □

To complete this proposition, we may compute the derivative in both sizes, for C−1 and C−1
s ¼ C−1 þ rs, using the

regularized version (169) and (171) of these kinetic kernels, we get
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∂C−1

∂p2
1

ðp⃗Þ ¼ Z−∞Θ−1
a ðΛ2 − p⃗2Þ − ðZ−∞p⃗2 þm2ÞΘ

0
a

Θ2
a
ðΛ2 − p⃗2Þ: ð197Þ

Then, taking the limit a → 0, and due to the fact that Θ0 ¼ δ, we get, for the right-hand side,

∂C−1

∂p2
1

ðp⃗ ¼ 0⃗Þ ¼ Z−∞: ð198Þ

In the same way,

∂C−1
s

∂p2
1

ðp⃗Þ ¼
�
Z−∞ þ ∂rs

∂p2
1

ðp⃗Þ
�
Θ−1

a ðΛ2 − p⃗2Þ − ðZ−∞p⃗2 þm2ÞΘ
0
a

Θ2
a
ðΛ2 − p⃗2Þ: ð199Þ

Moreover, we have to take into account the factorsΘ2
a ofΘ3

a coming fromG2 ofG3 in the definitions of the functionsLi and
U i. Indeed,

G ¼ Cs

1 − CsΣðp⃗Þ
∝ ΘðΛ2 − p⃗2Þ; ð200Þ

which leads to, in the limit a → 0,

Z−∞Li ≔
X

p⃗⊥∈Zd−i

�
Z−∞ þ ∂rs

∂p2
1

ðp⃗Þ
�
G2ðp⃗⊥Þ −

5 − i
2

ðZ−∞Λ2 þm2ÞG2ðΛÞΩd−iΛ3−i; ð201Þ

Z−∞U i ≔
X

p⃗⊥∈Zd−i

�
Z−∞ þ ∂rs

∂p2
1

ðp⃗Þ
�
G3ðp⃗⊥Þ −

5 − i
2

ðZ−∞Λ2 þm2ÞG3ðΛÞΩd−iΛ3−i; ð202Þ

where for the “boundary terms” we used the fact that Gðp⃗Þ only depends on p⃗2, from which we introduced the notation:
Gðp⃗ÞδðΛ2 − p⃗2Þ≕GðΛÞδðΛ2 − p⃗2Þ. Moreover, we computed the following sum using integral approximation:X

p⃗⊥

δðΛ2 − p⃗2⊥Þ ∼
Z

dd−ixδðΛ2 − x⃗2Þ ¼ 1

2
ð5 − iÞΩd−iΛ3−i: ð203Þ

In the continuum limit, i.e., for a large Λ, the boundary
terms in Eq. (201) are irrelevant for U i for i ¼ 1 and 2; and
for Li for i ¼ 2. For i ¼ 1, the boundary term remains of
order 1. The first term, proportional to Z−∞Λ2 may be
discarded with respect to the logarithm divergence of the
first term. Taking into account the proper scaling of the
mass, including counterterm, the second term is as well of
order 1; but a difficulty arises from the fact that it does not
share the factor Z−∞ allowing to compare it with the first
term. However, our investigations are far away from the
scale Λ. Then this constant term, only depending on the
microscopic initial condition at this scale does not com-
promise our conclusions, which are essentially based on
variations with respect to the IR scale k ¼ es. Finally, the
other regularization scheme allows to prevent the occur-
rence of such boundary terms. This is especially the case of
dimensional regularization working on the dimension of
the internal group manifold, Uð1Þ, which becomes Uð1ÞD.
The integrals may be analytically continued in D, and
the divergences localized around the poles in ϵ ¼ 1 −D.

All the incoming conclusions may be deduced from one or
the other regularization scheme, with the corresponding
definition.
Definition 27.—In dimensional regularization, the con-

tinuum limit corresponds to D → 1.
TheWard identity allows to compute the derivative of the

four-point functions at zero momenta, or in other words, to
keep additional information coming from the momentum
dependence of the effective vertex. Note that such a
dependence does not appear in the standard crude trunca-
tions, as it can be easily checked from Appendix B where
the truncation method around just-renormalizable inter-
actions has been briefly recalled to compare with the flow
equations deduced from the effective vertex method. The
knowledge of these derivatives allows to compute the
anomalous dimension from its definition (173) like any
other couplings. However, the Ward identities (185), (186),
and (187) are not directly practicable because of the
presence of Z−∞ and divergent quantities like L1. These
quantities refer to the global history of the flow, but to be
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usable, the local flow equation (19) requires local infor-
mation. Then, we have to deal with these divergent terms to
extract local information from Ward identities. To this end,
let us first consider the case of the pure melonic sector,
setting λ4;2 ¼ λ6;1 ¼ 0. Note that this sector is stable, in the
sense that relevant pseudo-melonic contributions cannot be
generated from the melonic sector itself in the UV. In a
second time, we will consider the mixing sector.

(i) Melonic sector.— Setting λ4;2 ¼ λ6;1 ¼ 0, only the
melonic sector remains in the theory, and the
relevant theory space in the UV sector contains
only melonic functions, having melonic graphs as a
boundary. The effective marginal coupling λ4;1ðsÞ≡
λðsÞ remains the only relevant parameter to control
the large behavior of the flow. Then, all correlation
functions may be expressed in terms of this param-
eter as well as effective two-point functions. The
corresponding six-point function may be obtained
from our results of Sec. IV vanishing the pseudo-
melonic couplings (see [71] for more detail). As
mentioned before, the interest of this discussion
allows only to understand the way to deal with
nonlocal terms in the Ward identity, a point which in
not discussed in the previous work. For convenience,
and because it has to be precise, we limit our study to
the standard modified Litim regulator [72,83]:

rsðp⃗Þ ≔ ZðsÞðe2s − p⃗2ÞΘðe2s − p⃗2Þ: ð204Þ

In the melonic sector, and using (201) and (198), the
Ward identities (185) and (186) are reduced to10

2Z−∞λL ¼ −Z þ Z−∞; ð205Þ

2Z−∞Πð3ÞL − 8Z−∞λ
2U ¼ −

d
dp2

Πð2Þ; ð206Þ

where to simplify the notations we left the irrelevant lower
index 1 for L and U, and we denote as Πð3Þ and Πð2Þ the
quantities respectively called Πð3Þ

1;a and Πð2Þ
1 . Defining

Z̄ ≔ Z=Z−∞, we get from the first equation (205):

Z̄ ¼ 1 − 2λL: ð207Þ

Note that this equation has been derived in [71] directly
from closed Eq. (56). A first important relation between
beta functions and anomalous dimension can be deduced
from the first relation (205). This is useful as a consistency
ingredient for our incoming approximation as well as a test
for other approximation schemes. This is the case like the
ones considered in the reference paper [71] for the
computation of the effective loop integrals involved in

the Effective vertex expansion (EVE) method, and for other
methods like truncation, considered in Appendix B. From

the definition (173), η ¼ _̄Z=Z̄, and from definition (207),

_̄Z ¼ −2ð_λLþ λ _LÞ ¼
_λ

λ
ðZ̄ − 1Þ − 2λð _A4;2 þ _ΔÞ: ð208Þ

The difference Δ ≔ L −A4;2 involves the derivative of the
regulator function: Δ ¼ 1

Z−∞

P
p⃗∈Zd−1G2ðp⃗Þr0sðp⃗Þ, the

“prime” meaning derivative with respect to the variable
p2
1, setting equal to zero. For the Litim regulator,

r0sðp⃗Þ ¼ −ZðsÞΘðe2s − p⃗2Þ → _rsðp⃗Þ
¼ −½ηðe2s − p⃗2Þ þ 2e2s�r0sðp⃗Þ: ð209Þ

The two distributions r0s and _rs are proportionals. Thus, the
approximation 25 used for computation of the sums In;m in
the flow equationsmust be used for computation ofΔ and _Δ.
However, as explained before Definition 25, this approxi-
mation becomes totally wrong for the computation of _A2;4,
and all divergent quantities, for which the deep UV terms
survive.Wewill discuss this point carefully. Fromnow, let us
consider the structure equations for melonic four-point

functions. They only involve Πð2Þ
1;a ≡ Πð2Þ ¼ 2λðsÞ, and it

is explicitly given from Lemma 3:

λðsÞ ¼ λ

1þ 2λA4;2
; ð210Þ

where, in the right-hand side, coupling without explicit s
dependence designates the bare coupling. Deriving it with
respect to s, we get

_λðsÞ ¼ −2λ2ðsÞ _A4;2: ð211Þ

Finally, because of the definition of rs, Δ is proportional to
Z̄=Z2. Extracting this factor asΔ≕ Z̄

Z2 B̄ðsÞ, and defining the
renormalized coupling following Definition 26 λ̄ ≔ λ=Z2,
we obtain from Eq. (208)

η ¼
_λ

λ
− 2λ̄ð−ηB̄ðsÞ þ _̄BðsÞÞ: ð212Þ

The contribution B̄ðsÞ can be easily computed using integral
approximation, valid for es ≫ 1,

B̄ðsÞ ¼ −
Ωd−1

ð1þ m̄2Þ2 →
_̄BðsÞ ¼ 2

Ωd−1

ð1þ m̄2Þ3 βm; ð213Þ

where Ωd−1 denotes the hypervolume of the unit ball in
dimension d − 1. Inserting this result in Eq. (208), and using
the definition of βλ ¼ ð_λ − 2ηλÞ=Z2, we get:10We discard the boundary terms for this discussion.
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Corollary 5.—In the deep UV and for purely melonic
sector, and with approximation 25, the Ward identity rely
the beta functions and anomalous dimension as

βλ ¼−ηλ̄
�
1−2λ̄

Ωd−1

ð1þ m̄2Þ2
�
þ4λ̄2

Ωd−1

ð1þ m̄2Þ3βm: ð214Þ

This equation is an additional constraint on the flow, and
among their consequences, it adds a strong constraint on
the fixed points. Indeed, let us define a fixed point p ¼
ðm̄2�; λ̄�Þ such that βλðpÞ ¼ βmðpÞ ¼ 0, we must have

η� ¼ 0; or 2λ̄�
Ωd−1

ð1þ m̄2�Þ2
¼ 1: ð215Þ

The fixed point found in [71], recovered in Sec. V C and
Appendix B was such that p ≈ ð−0; 55; 0; 003Þ, η ≈ 0, 7
and violates the two previous conditions. This seems to be a
strong argument in favor of a disappearance of the fixed
point, which violates the Ward identities. However, this
argument requires to be carefully analyzed. First of all, the
Ward identity is written in the symmetric phase. Also, the
constraint depends on the choice of the regulator, except for
one and two loop approximation as well, in accordance to
their universality. Then, such a statement requires a proper
analysis on the influence of the regulator. However, the
strong gap between the obtained values and the requirement
of the constraint seems to indicate that this fixed point is
well a spurious consequence of the lack of the Ward
identity constraint. We keep this important discussion for
a work in preparation. At this stage, the constraint given
from Corollary 5 provides us important information for the
computation of the integrals. Indeed, if we try to compute
the integral A4;2 using approximation 25, introducing a
cutoff on the high momenta, we get

A4;2 ¼ ðB̄þ a lnðΛÞÞ=Z2: ð216Þ

The derivative with respect to s then generates a factor
−2ηA4;2, having the same expected behavior in Λ as Z̄. As
a result, we generate a term −2ηλ̄, which exactly compen-
sates the same term coming from _λ=λ. As a consequence,

the leading term in λ̄ writes as βð2Þλ ¼ ηð1Þλ̄, where ηð1Þ

denotes the first order term in the expansion of η in power
of λ. From Appendix B or from a direct computation, we

get ηð1Þ ¼ 8Ωd−1λ, implying βð2Þλ ¼ 8Ωd−1λ
2 ≥ 0. This

result is in complete violation of universality. Indeed, a
direct calculation shows that the theory is asymptotically

free and βð2Þλ ¼ −ηð1Þλ̄. In the decomposition of A4;2, the
problem comes from the big logarithm term a lnðΛÞ=Z2ðsÞ,
and especially from the dependence on ZðsÞ. The bound of
the integration is so far from the allowed windows of
momenta ensuring validity of the approximation, and the
factor in front of this big logarithm does not have to depend

on s. With this hypothesis, and assuming that 1=Z̄ → 0 in
the continuum limit Λ → ∞, we recover the exact result 5.
For this reason, we will use this approximation only for
convergent integrals, and more generally whenever these
deep UV contributions are completely discarded. This is
the case for the integral approximations used in Ref. [71].
Even to close this discussion, let us return on the express-

ion (207). From renormalization conditions, Zðs→−∞Þ¼1
and λðs → −∞Þ ¼ λr, we have

Z−1
−∞ ¼ 1 − 2λrA−∞; ð217Þ

where A−∞ ≔ Lðs → ∞Þ. From the condition rs→−∞ ¼ 0,
we have explicitly

A−∞ ¼
X

p⃗∈Zd−1

1

½Γs→−∞ðp⃗Þ�2

¼
X

p⃗∈Zd−1

�
1

Z−∞p⃗2 þm2 − Σ−∞ðp⃗Þ
�
2

: ð218Þ

The counterterms subtract all the subdivergences, except
the global one.11 Then, we expect that Z−1

−∞ diverges
logarithmically in the continuum limit Λ → ∞ (D → 1),
or equivalently Z−∞ → 0 like 1= lnðΛÞ. Then Z ≈
−2Z−∞λL, without contradiction with formula (5), as we
can show from a straightforward computation. Moreover, in
the second Ward identity (206),

ZΠð3Þ þ 8Z−∞λ
3U ¼ λ

d
dp2

Πð2Þ: ð219Þ

As for L, the quantity U splits as

U ¼ A4;3 þ
Z̄
Z3

C̄ðsÞ: ð220Þ

However, A4;3 is superficially convergent and all the
subdivergences have been canceled from renormalization.
Then, in the continuum limit, we have Z−∞A4;3 → 0.
Recall that Πð3Þ is given in Sec. IV B 2, Proposition 8.
Then, using integral approximation for the computation of
the sum, and Definition 25 for the computation of the
convergent integral, we get with Ω4 ¼ π2=2

Πð3Þ ¼ 8λ3A4;3

¼ 8λ3
1

2Z3e2s
π2

1þ m̄2

�
1

ð1þ m̄2Þ2 þ
1

1þ m̄2
þ 1

�
;

ð221Þ

and

11We lack the final subtraction in the Zimmerman forest
formula.
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C̄ðsÞ ¼ −
1

2e2s
π2

ð1þ m̄2Þ3 ; ð222Þ

so that Eq. (219) becomes

d
dp2

Πð2Þ ¼ 1

2Z2e2s
λ2

π2

1þ m̄2

�
1

1þ m̄2
þ 1

�
: ð223Þ

The right-hand side of Eq. (219) may be computed from the
same approximation. Because of the structure equation for
the four-point function, it is easy to check that (see [71])

d
dp2

Πð2Þ ¼ −2λ2ðsÞ d
dp2

A4;2ðp ¼ 0Þ; ð224Þ

where A4;2ðpÞ ≔
P

q⃗∈Zdδpq1G
2ðq⃗Þ. Once again this func-

tion can be computed using approximation 25, because the
derivative with respect to p2

1 is insensitive on the deep UV
effect depending on the UV cutoff. Explicitly, we get

d
dp2

A4;2ðp¼0Þ¼−
1

2Z2e2s
π2

1þm̄2

�
1

1þm̄2
þ1

�
; ð225Þ

so that Eq. (223) is identically verified. Then, this simple
checking ensures at least the coherence of our approxima-
tion for the computation of convergent integral with Ward
identities.

(i) Mixing sector.— In the mixing sector, and following
the Ward identity (185), the formula (205) is
replaced by

Z̄ ¼ 1 − 2λ4;1L1 − 8λ4;2L2: ð226Þ

As for the purely melonic sector, we expect that Z̄ ∼ lnðΛÞ
in the continuum limit. Moreover, once again, we have
Z̄ðs → −∞Þ ¼ 1=Z−∞, so that

Z−1
−∞ ¼ 1 − 2λr4;1A4;2ð−∞Þ − 8λr4;2A3;2ð−∞Þ; ð227Þ

andZ−∞ → 0 like 1= lnðΛÞ in the continuum limit. As in the
melonic sector, this allows to simplify the Ward identities.
However, an additional strong simplification comes from the
fact that A3;2ð−∞Þ is a superficially convergent integral,
whose subdivergences are canceled from renormalization.
Then, we have Z−1

−∞ ≈ −2λr4;1A4;2ð−∞Þ, meaning that
Z−∞A3;2 → 0 in the continuum limit. This can be translated
as an approximation for Z itself. Indeed, decomposingLi as

Li ¼ A5−i;2 þ kd−i−4Z̄B̄i=Z2; ð228Þ

with

B̄i ¼ −
Ωd−i

ð1þ m̄2Þ2 ; ð229Þ

and imposing in the continuum limit that Z−∞A3;2 → 0,
we get Z ≈ −2Z−∞λ4;1L1 − 8λ4;2B̄2=ðkZÞ. Also U i is
decomposed as

Z−∞U i ¼ Z−∞A5−i;3 þ kd−i−6
1

Z
C̄i; C̄i ¼ −

Ωd−i

ð1þ m̄2Þ3 :

ð230Þ

Because A5−i;3 is a superficially convergent quantity, we
expect that, up to the subdivergences canceled from renorm-
alization, it is insensitive on the UV cutoff. Therefore, we
have to impose Z−∞A5−i;3 → 0 in the continuum limit and
the Ward identities (186) and (187) reduce to12

∂Πð2Þ
1

∂p2
1

¼ Z
λ4;1

�
Πð3Þ

1;a þ
1

3
Πð3Þ

1;b

��
1þ 32λ4;2π

3Z2ð1þ m̄2Þ2
�

−
4λ4;1π

ð1þ m̄2Þ3
�
πλ4;1 þ

32

3
λ4;2

�
; ð231Þ

∂Πð2Þ
2

∂p2
1

¼ 4π

3Z
1

ð1þm̄2Þ2
�
12λ6;1þ

2

3
Πð3Þ

1;c

�
−λ24;2

32

3Z
π

ð1þm̄2Þ3 :

ð232Þ

The knowledge of these derivatives is the last ingredient
required for computation of the anomalous dimension.
Moreover, to find a nontrivial fixed point requires to use
renormalized couplings defined in Definition 26. To this
end, we introduce the dimensionless renormalized sums
Īm;n as

Im;n≕Z1−neðmþ2−2nÞsĪm;n: ð233Þ

Generally, we will adopt the convention that any bared
quantity x̄ is renormalized and dimensionless, in the sense
that we have extracted its proper Z and es dependence:

x ¼ Zαedxsx̄; ð234Þ

dx being the canonical dimension of x. From these defi-
nitions, the two equations (231) and (232) admit dimension-
less and renormalized versions as

Π̄ð2Þ0
1 ¼ 1

λ̄4;1

�
Π̄ð3Þ

1;a þ
1

3
Π̄ð3Þ

1;b

��
1þ 32λ̄4;2π

3ð1þ m̄2Þ2
�

−
4λ̄4;1π

ð1þ m̄2Þ3
�
πλ̄4;1 þ

32

3
λ̄4;2

�
; ð235Þ

12We recall that Ω3 ¼ 4π=3.
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Π̄ð2Þ0
2 ¼4π

3

1

ð1þm̄2Þ2
�
12λ̄6;1þ

2

3
Π̄ð3Þ

1;c

�
− λ̄24;2

32

3

π

ð1þm̄2Þ3 :

ð236Þ

Moving on the computation of the anomalous dimension,
from Eq. (157) and definition (173), we get

_Z ¼ −
d

dp2
1

�X
q⃗

Γð4Þ
s ðp⃗; q⃗; p⃗; q⃗Þ _rsðq⃗Þ

½Γð2Þ
s ðq⃗Þ þ rsðq⃗Þ�2

�




p1¼0

:

ð237Þ

Keeping only the LO terms like for the computation of βm,
we get

_Z¼−Πð2Þ0
1 Ī4;2−4Πð2Þ0

2 Ī3;2−Πð2Þ
1 Ī 0

4;2−4Πð2Þ
2 Ī 0

3;2: ð238Þ

Then, from renormalization conditions (121), using defi-
nitions (26) and (233), as well as (173); and from the flow
equation (10), we deduce the following final statement.
Proposition 12.—In the symmetric phase and in the

continuum limit, the anomalous dimension ηðsÞ defined in
(173) satisfies the equation

ηðsÞ ¼ ð4λ̄4;1 − Πð2Þ0
1 Þπ2 þ ð3λ̄4;2 − Πð2Þ0

2 Þ 32π
3

ð1þ m̄2Þ2 þ ðΠð2Þ0
1 − 6λ̄4;1Þ π26 þ ðΠð2Þ0

2 − 5λ̄4;2Þ 32π15
;

ð239Þ

and the autonomous system for beta functions:

βm ¼ −ð2þ ηÞm̄2 − 10λ̄4;1Ī4;2 − 20λ̄4;2Ī3;2; ð240Þ

β4;1 ¼ −2ηλ̄4;1 −
�
2Π̄ð3Þ

1;a þ
2

3
Π̄ð3Þ

1;b

�
Ī4;2

þ 4λ̄24;1Ī4;3 þ 16λ̄4;1λ̄4;2Ī3;3; ð241Þ

β4;2 ¼ −ð1þ 2ηÞλ̄4;2 −
�
3λ̄6;1 þ

1

6
Π̄ð3Þ

1;c

�
Ī3;2 þ 4λ̄24;2Ī3;3;

ð242Þ

β6;1 ¼ −3ηλ̄6;1 −
�
1

6
Π̄ð4Þ

2 þ 1

4!
Π̄ð4Þ

1

�
Ī3;2

þ 12λ̄4;2λ̄6;1Ī3;3 − 8λ̄34;2Ī3;4; ð243Þ

where we defined

Īm;nðpÞ ≔
1

Z1−neðmþ2−2nÞs
X

p⃗∈Zmþ1

δp;p1
_rsðp⃗ÞGnðp⃗Þ;

Ī 0
m;n ¼

∂Īm;n

∂p2
1

ð0Þ: ð244Þ

All the dimensionless sums involved in these proposi-
tions may be easily computed using integral approximation.
The details are given in Appendix A, we get

Īm;nðpÞ ¼
e−ðmþ2ÞsΩm

ð1þ m̄2Þn

×

�
2e2s þ η

�
e2s −

�
m

mþ 2
ðe2s −p2Þ þp2

���

× ðe2s −p2Þm=2: ð245Þ

Finally, from the approximation Z ≈ −2Z−∞λ4;1L1 −
8λ4;2B̄2=ðkZÞ used before, and from a straightforward
computation following the same steps as for the purely
melonic sector, we deduce the complementary statement of
Corollary 5.
Corollary 6.—In the symmetric phase, and taking the

continuum limit, the beta functions for ϕ4 couplings are
related to the anomalous dimension as

ηλ̄4;1 ¼ ðβ4;1 þ 2ηλ̄4;1Þ
�
1 −

32π

3

λ̄4;2
ð1þ m̄2Þ2

�
−

π2λ̄24;1
ð1þ m̄2Þ2

×

�
ηþ 2βm

1þ m̄2

�
þ 32

3

πλ̄41
ð1þ m̄2Þ2 ðβ4;2 þ 2ηλ̄4;2Þ

−
32

3

πλ̄4;1λ̄4;2
ð1þ m̄2Þ2

�
ηþ 2βm

1þ m̄2

�
: ð246Þ

Once again, these relations which depend only on the
choice of the regulator and on the continuum limit can be
used to analyze the robustness of the fixed points obtained
from flow equation (19). Like for the melonic case, we will
extend the discussion about this constraint in forthcoming
works.

C. Investigations on the phase space structure

To conclude this section, we will investigate the structure
of the phase space, and the existence of nontrivial fixed
points. We divide these investigations into two parts. In a
first time we will study the vicinity of the Gaussian fixed
point, and argue in favor of an asymptotic safety scenario.
In a second time, we will move on to the research of
nontrivial fixed points in accordance to this scenario. Due
to the complicated structure of the flow equations, we use
numerical methods for this purpose. Another important
simplification comes from the choice of the regulator rs.
Formally, the exact renormalization group flow described
from Eq. (19) does not depend on the choice of the
regulator. However, the approximations required to extract
a practicable information from this equation generally
depend on this choice. This is especially the case for crude
truncations whose method is recalled in Appendix B to
compare with the EVEmethod. We expect that the effective
vertex method discussed in this paper does not suffer for the
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same pathology, or at least, the dependence on the
regularization becomes marginal.
Let us remark that Definition 25 is not supported with a

rigorous proof. However, despite the fact that we expected
the reliability on the results deduced from our method, the
approximation scheme that we will use to extract informa-
tion, especially for non-Gaussian fixed points, is suspected
to increase the dependence on the regulator. Due to this
difficulty, a rigorous discussion on the reliability of our
results, especially on the choice of the regulator function
will be considered for a future work, and in this section
we only investigate the plot of using the Litim regulator
(204). For the rest of this section, we denote by p≡
ðm̄2; λ̄4;1; λ̄4;2; λ̄6;1Þ the point in the four-dimensional
phase space.

1. Vicinity of the non-Gaussian fixed point

The Gaussian point p0 ≔ ð0; 0; 0; 0Þ is obviously a fixed
point of the system (12), with critical exponents
ð−2;−1; 0; 0Þ, in accordance with the canonical dimension
of the involved couplings. Expanding the flow equations
around p0, and keeping only the leading order contribu-
tions, we get

βm ≈ −2m̄2 − 10π

�
πλ̄4;1 þ

16

3
λ̄4;2

�
ð247Þ

β4;1 ≈ −4π
�
πλ̄4;1 þ

16

3
λ̄4;2

�
λ̄4;1 ð248Þ

β4;2 ≈ −λ̄4;2 − 8πλ6;1 ð249Þ

β6;1 ≈ −12π
�
πλ̄4;1 þ

16

3
λ̄4;2

�
λ̄6;1: ð250Þ

These equations are very reminiscent to some already
studied in the literature [49,56] for ϕ6 models. Setting
λ̄4;2 ¼ λ̄6;1 ¼ 0, we recover the well-known asymptotic
freedom of the quartic melonic models: β4;1 ≈ −4π2λ̄24;1,
ensuring a well behavior in the UV for perturbative theory.
Complementary, for λ̄4;1 ¼ 0, the expected UV behavior of
the flow lines is radically different. Indeed, let us consider
the flow equations in the invariant plane ðλ̄4;1; λ̄6;1Þ:

β4;2 ¼ −λ̄4;2 − 8πλ̄6;1 ð251Þ

β6;1 ¼ −64πλ̄4;2λ̄6;1: ð252Þ

The situation is quite different from the pure marginal
quartic case. In contrast to him, the sign of the beta function
depends on the sign of the couplings, and this dependence
drastically changes the behavior of the flow lines. When the
two couplings are both positive, λ̄6;1; λ̄4;2 > 0, a region
denoted as I in Fig. 33(a), the beta functions are negative as

well; and the two couplings decrease in the same time.
Nevertheless, so far from p0, the flow line are incoming on
the origin. For the rest of the phase diagram, we have to
distinguish two regions, respectively labeled II and III, such
that β4;2 < 0 in region II and β4;2 > 0 in region III; the two
regions being separated with the line β4;2 ¼ 0. In the region
II, λ̄4;2 < 0 and λ̄6;1 > 0, then, β4;2 < 0 and β6;1 > 0. As a
result, any trajectory starting in this region necessarily goes
ultimately far away of the Gaussian fixed point. Finally, in
region III, the situation is still different, β4;2 and β6;1 are
both positive; and we expect that any trajectory starting in
this region is getting closer to the λ̄6;1 axis and moving
away from the λ̄4;2 axis. To be more precise, let us consider
region I.
It is easy to show that any trajectory starting in this

region (which excludes the vertical axis) has to cross the
λ̄6;1 axis before reaching the Gaussian fixed point, and then
is ultimately repelled from it, to the infinity. Indeed,
consider a trajectory whose points reach the surface of a
disk of radius ϵ around p0. Excluding the axis, the two
coordinates are both of order ϵ, and then β4;2 ¼ OðϵÞ while
β6;1 ¼ Oðϵ2Þ. As a consequence, for any variation δs of the
flow parameter, δλ̄4;2 ∝ ϵδs and δλ̄6;1 ∝ ϵ2δs, implying that
δλ̄4;2 ∝ δλ̄6;1=ϵ. For any variation δλ̄6;1 in the direction of
the λ̄4;2 axis, the component of the velocity vector in the
direction of the horizontal axis becomes arbitrarily large.
The vector field then becomes more and more vertical, and
finally goes through the horizontal axis. It is not so hard to
show that around this point corresponds to the minimal
distance with the origin of coordinates.13 The same phe-
nomena is expected in region III, and the qualitative
behavior is pictured in Fig. 33(a). Figure 33(b) is a
numerical integration of the same region, which confirms
this expected behavior. As a consequence, it seems that the
mixing sector is not asymptotically free, due to the presence
of pseudo-melons. Solving this difficulty, and a well
understanding of the UV completion of the theory then
requires to have more information about the landscape
around the Gaussian fixed point, especially concerning the
existence of the non-Gaussian UV fixed point to which the
outgoing trajectories may be to ends.

2. Non-Gaussian fixed points

To investigate the non-Gaussian fixed points, we have to
solve the complete autonomous system given from
Proposition 12. However, the complicated structure of
these equations requires approximations to solve them.
Due to this difficulty, we limit our investigations on the
fixed points which can be reached from a perturbative
analysis. Our strategy is the following. Increasing the terms

13In polar coordinates, denoting by rðtÞ the distance from
the origin, we get easily that _rðsÞ ¼ −rðsÞ sin θðsin θþ
8π cos θ þ 64rðsÞπ sin θ cos θÞ, vanishing for θ ¼ 0.
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keeping in the perturbative expansion of the exact flow
equations, we get a list of fixed points which progressively
converge to a single one:

p1 ≈ ð−0.55; 0.003; 0; 0Þ; ð253Þ

having one relevant, one irrelevant and two attractive focal
directions. Because all the pseudo-melonic couplings
vanish, we call this fixed point “melonic.” Moreover, it
matches with the fixed point already deduced in our
previous work [71] in the melonic sector, and with the
fixed point called FP2 in Appendix B of this paper. This
fixed point seems to be a good candidate as a UV fixed
point, providing an indication in favor of an asymptotic
safety scenario. In this respect, the fact that only melonic
interactions survive when the trajectories reach this fixed
point remains an interesting feature of this theory. However,
even if we discard the numerical difficulties, the existence
of this fixed point seems to be compromised from the
constraint (5) coming from Ward identity. Indeed, a simple
numerical calculation shows a large deviation at the fixed
point p1, indicating a strong violation of the Ward identity
for relevant operators. At this stage, we cannot expect that
the problem comes from the numerical analysis. Indeed, the
same difficulty occurs in the purely melonic sector, where
the numerical investigation may be done easily. Moreover,
as discussed above, we naively expect that the dependence
on the regularization has to be improved with respect to the
crude truncations. Nevertheless in both cases the difficulty
is the same. A possibility is to consider that this discord-
ance indicates the break down of the validity of the
expansion around the vanishing mean field, as it is the
case in the symmetric phase. More generally, we can expect

that the problem comes from a crude reduction of the full
theory space.

VI. CONCLUSION

In this paper we have built a version of the nonpertur-
bative renormalization group flow including nontrivial
dependence of the effective vertices on the relevant and
marginal operators in a sector mixing melonics and pseudo-
melonics interactions. This allows to use them to solve the
renormalization group flow of the full operators in the UV,
and close the infinite hierarchy equation coming from the
flow equations. The resulting flow equations seem to
indicate the existence of a nontrivial UV attractive fixed
point including only purely melonic interactions. However,
we showed that the Ward identity is strongly violated at this
fixed point. As a result, our unique fixed point seems to be
unphysical, and the possible existence of other nontrivial
fixed points far away of our investigation procedure seems
to be necessary.
The importance to include the constraint coming from

Ward identity in the resolution of the flow equation is not a
novelty, and is well known in gauge theory, especially in
the QCD nonperturbative approach. Note that it is not the
only limitation of our results. Despite the fact that we do not
crudely truncate the flow, we have made some approx-
imations whose consistency have to be supported in
forthcoming works. In particular our investigations have
been limited on the symmetric phase, ensuring convergence
of any expansion around vanishing means field. Moreover,
we have retained only the first terms in the derivative
expansion of the two-point function, and only considered
the local potential approximation, i.e., potentials which can
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FIG. 33. Phase portrait in the plan ðλ̄4;1; λ̄6;1Þ, in the vicinity of the Gaussian fixed point. On the left, the qualitative phase space,
obtained from an analysis of the differential equations describing the flow. On the right, the same region obtained from a numerical
analysis. In both cases, the red point corresponds to the Gaussian fixed point.
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be expanded as an infinite sum of melonic and pseudo-
melonic local interactions. Some deviations from ultra-
locality could be introducing nontrivial effects having the
same power counting with ultralocal interactions with
higher valences, and then to contribute with them on the
same footing. All these difficulties are not taken into
account in our conclusions, and will be discussed in some
works in progress.

APPENDIX A: USEFUL FORMULAS

In this section we provide the proof of the useful sums
involved in the flow equations. First of all, let us write

Am;n ≔
X
p⃗∈Zm

Gnðp⃗Þ: ðA1Þ

Due to the Heaviside function θðxÞ, the above expression
can be decomposed into two different contributions
depending respectively on θðe2s − p2Þ and θðp2 − e2sÞ.
The first one corresponds to the integration domain
p2 ≤ e2s, i.e., the IR domain. On the other hand, the
second integration region p2 > e2s corresponds to the UV
domain. Now integrating over the m-ball we get

Am;nðpÞ ¼
�

Ωmðe2s − p2Þm2
Zne2nsðm̄2 þ 1Þn þ

mΩm

Zn

×
Z

∞ffiffiffiffiffiffiffiffiffiffi
e2s−p2

p xm−1dx
ðx2 þ p2 þ e2sm̄2Þn

�
θðe2s − p2Þ

þmΩm

Zn

Z
∞

0

xm−1dx
ðx2 þ p2 þ e2sm̄2Þn θðp

2 − e2sÞ;

ðA2Þ

where Ωm ¼ π
m
2

Γðm
2
þ1Þ is the volume of unit m-sphere. The

particular case of integers m at p ¼ 0 are given by the
following relations:

A4;3 ¼
π2ðm̄2 þ 2Þe−2s
2ðm̄2 þ 1Þ2Z3

þ π2e−2s

2ðm̄2 þ 1Þ3Z3
ðA3Þ

A3;n ¼
4πeð3−2nÞs

3Znðm̄2 þ 1Þn þ
4πeð3−2nÞs

Zn

Z
∞

1

x2dx
ðx2 þ m̄2Þn ðA4Þ

A2;n ¼
πeð2−2nÞs

Znðm̄2 þ 1Þn þ
2πeð2−2nÞs

Zn

Z
∞

1

xdx
ðx2 þ m̄2Þn ðA5Þ

A1;n ¼
2eð1−2nÞs

Znðm̄2 þ 1Þn þ
eð1−2nÞs

Zn

Z
∞

1

dx
ðx2 þ m̄2Þn : ðA6Þ

Now let us compute the quantities
P

p∈ZðA3;2ðpÞÞn andP
p∈ZA3;3ðpÞðA3;2ðpÞÞ3 using (A2):

A3;2ðpÞ ¼
�

4πðe2s − p2Þ32
3Z2e4sðm̄2 þ 1Þ2 þ

4π

e2sZ2

Z
∞

1

xðe2sx2 − p2Þ12dx
ðx2 þ m̄2Þ2

�
θðe2s − p2Þ þ 4π

Z2

Z
∞

0

x2dx
ðx2 þ p2 þ e2sm̄2Þ2 θðp

2 − e2sÞ:

ðA7Þ

Note that the support of the distributions θðe2s − p2Þ and θðp2 − e2sÞ denoted respectively by D1 and D2 are such that
D1 ∩ D2 ¼ fesg, which is of null measure in the Lebesgue sense. Then the integration of the functions of the form
XðpÞ ≔ ðaðpÞθðe2s − p2Þ þ bðpÞθðp2 − e2sÞÞn is therefore

Z
dpXðpÞ ¼

Z
D1

dpanðpÞθðe2s − p2Þ þ
Z
D2

dpbnðpÞθðp2 − e2sÞ: ðA8Þ

To give more explanation about the above relation, let us remark that (A8) can be viewed as the following sum:

2

Z
dpXðpÞ≡ X

p∈D1

anðpÞ þ
X
p∈D2

bnðpÞ þ
Xn−1
l¼1

X
p∈D1∩D2

n!
l!ðn − lÞ! a

lðpÞbn−lðpÞ

¼
X
p∈D1

anðpÞ þ
X
p∈D2

bnðpÞ þ
Xn−1
l¼1

n!
ðn − lÞ! a

lðe2sÞbn−lðe2sÞ; ðA9Þ
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where in the UV limit, i.e., s → ∞, the quantity aðe2sÞ≡ e−sZαā → 0 and bðe2sÞ≡ e−sZαb̄ → 0, α ∈ Z. Now applying
this result to

P
p∈ZðA3;2ðpÞÞn we come to

X
p∈Z

ðA3;2ðpÞÞn ¼ 2

�
4π

Z2

�
n
eð1−nÞs

Z
∞

1

dy

�Z
∞

0

x2dx
ðx2 þ y2 þ m̄2Þ2

�
n

þ 2

�
4π

Z2

�
n
eð1−nÞs

Z
1

0

dy

� ð1 − y2Þ32
3ðm̄2 þ 1Þ2 þ

Z
∞

1

xðx2 − y2Þ12dx
ðx2 þ m̄2Þ2

�
n
: ðA10Þ

In the same manner

X
p∈Z

A3;3ðpÞðA3;2ðpÞÞn ¼ 2

�
4π

Z2

�
n 4π

Z3
e−ð2þnÞs

Z
∞

1

dy

�Z
∞

0

x2dx
ðx2 þ y2 þ m̄2Þ3

�Z
∞

0

x2dx
ðx2 þ y2 þ m̄2Þ2

�
n
�

þ 2

�
4π

Z2

�
n 4π

Z3
e−ð2þnÞs

Z
1

0

dy

�� ð1 − y2Þ32
3ðm̄2 þ 1Þ3 þ

Z
∞

1

xðx2 − y2Þ12dx
ðx2 þ m̄2Þ3

�

×

� ð1 − y2Þ32
3ðm̄2 þ 1Þ2 þ

Z
∞

1

xðx2 − y2Þ12dx
ðx2 þ m̄2Þ2

�
n
�
: ðA11Þ

As in the previous paragraph the sum (244) can be integrated in the d − 1 ball as follows:

I4;nðpÞ≡ ðd − 1ÞΩd−1
∂sZðsÞðe2s − p2Þ þ 2ZðsÞe2s

ðZðsÞðe2sm̄2 þ e2sÞÞn
ðe2s − p2Þd−12

ðd − 1Þ − ðd − 1ÞΩd−1
∂sZðsÞ

ðZðsÞðe2sm̄2 þ e2sÞÞn
ðe2s − p2Þdþ1

2

ðdþ 1Þ :

ðA12Þ

In the same manner the sum (244) can be integrated in the d − 2 ball as follows:

I3;nðpÞ ¼ ðd − 2ÞΩd−2
∂sZðsÞðe2s − p2Þ þ 2ZðsÞe2s

ðZðsÞðe2sm̄2 þ e2sÞÞn
ðe2s − p2Þd−22

ðd − 2Þ − ðd − 2ÞΩd−2
∂sZðsÞ

ðZðsÞðe2sm̄2 þ e2sÞÞn
ðe2s − p2Þd2

ðdÞ :

ðA13Þ

Now we come to the simple expressions of I4;nð0Þ and
I3;nð0Þ as

I4;nð0Þ ¼
π2e6s−2ns

6Zn−1ðm̄2 þ 1Þn ðηþ 6Þ;

I3;nð0Þ ¼
8πe5s−2ns

15Zn−1ðm̄2 þ 1Þn ðηþ 5Þ ðA14Þ

I 0
4;nð0Þ ¼ −

π2eð4−2nÞs

2Zn−1ðm̄2 þ 1Þn ðηþ 4Þ;

I 0
3;nð0Þ ¼ −

4πeð3−2nÞs

3Zn−1ðm̄2 þ 1Þn ðηþ 3Þ: ðA15Þ

APPENDIX B: ϕ6-TRUNCATION
FOR MIXING -Uð1Þ TGFT

In this section the flow equation for the ϕ4 model is
derived using the usual truncation method of the Weterrich

equation. For more detail concerning this process let us see
Refs. [50–57,71] and [64–68] in the case of matrix models.

1. Truncation procedure

The truncation is a projection of the RG flow into a finite
dimensional subspace of the infinite dimensional full
theory space. In the case where d ¼ 5 we write

Γs ¼ ZðsÞ
X
p⃗

Tp⃗ðp⃗2 þ e2sm̄ðsÞ2ÞT̄p⃗ þ Z2ðsÞλ̄4;1ðsÞV4;1

þ Z2ðsÞesλ̄4;2ðsÞV4;2 þ Z3ðsÞλ̄6;1ðsÞV6;1; ðB1Þ

where the renormalized couplings Z2ðsÞλ̄4;1ðsÞ,
Z2ðsÞλ̄4;2ðsÞes and Z3ðsÞλ̄6;1ðsÞ are used and the functions
V4;1, V4;2 and V6;1 are the four- and six-point interactions
taking into account the two different sectors: melon and
pseudo-melon. The Wetterich flow equation can then be
expand as
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∂sΓs ¼ Tr_rsG
ð0Þ
s ð1− 2λ4;1ðsÞV 00

4;1G
ð0Þ
s − 2λ4;2ðsÞV 00

4;2G
ð0Þ
s − 3λ6;1ðsÞV 00

6;1ðGð0Þ
s Þ2 þ 4ðλ4;1ðsÞV 00

4;1G
ð0Þ
s Þ2 þ 4ðλ4;2ðsÞV 00

4;2G
ð0Þ
s Þ2

þ 4λ4;1ðsÞV 00
4;1G

ð0Þ
s λ4;2ðsÞV 00

4;2G
ð0Þ
s þ 6λ4;1ðsÞλ6;1ðsÞV 00

4;1V
00
6;1ðGð0Þ

s Þ3 þ 6λ4;2ðsÞλ6;1ðsÞV 00
4;1V

00
6;1ðGð0Þ

s Þ3

þ 9λ26;1ðsÞV 00
6;1ðGð0Þ

s Þ4 þ � � �Þ: ðB2Þ

Now separate the contribution to the mass and couplings, the flow equations involve many contractions of lines which can
be represented graphically by the following diagrams [note that we only considered the leading order contribution taking
into account the melons, the pseudo-melons and the intermediate contributions reported in Sec. IVA]:

ðB3Þ

ðB4Þ

ðB5Þ

In (B3) the first term corresponds to the melonic contribution and the second one to the pseudo-melonic sector. Further, the
first line of Eq. (B4) contributes only to the melonic sector and the second line to the pseudo-melonic one. On the other
hand, the first two graphs in the first line of Eq. (B5) contribute to the melonic sector, the first two graphs of the second line
contribute to the pseudo-melonic sector and the last one to the intermediate leading order contribution. Note that only the
pseudo-melonic sector will be taken into account in the flow equation of the coupling λ6;1ðsÞ. The coefficients Km;i

n and
Km;ij

n are the combinatorial factors and will be given with detail.
Now using the results of Sec. IV, which provided the full expressions of the four- and six-point functions, and because of

the choice of the truncation, we have the following relations:

m2ðsÞ ¼ Γð2Þ
s ð0⃗Þ; ðB6Þ
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ZðsÞ ¼ dΓð2Þ
s ðp⃗Þ
dp2

1






p⃗¼0⃗

; ðB7Þ

∂sΓ
ð4Þ
meloð0⃗; 0⃗; 0⃗; 0⃗Þ ¼ 4∂sλ4;1ðsÞ; ðB8Þ

∂sΓ
ð4Þ
pseudo-meloð0⃗; 0⃗; 0⃗; 0⃗Þ ¼ 4∂sλ4;2ðsÞ; ðB9Þ

∂sΓ
ð6Þ
s;pseudo-meloð0⃗; 0⃗; 0⃗; 0⃗; 0⃗; 0⃗Þ ¼ 36∂sλ6;1ðsÞ: ðB10Þ

Then using the above expressions and expanding in detail
the relations (B3), (B4) and (B5), we get the following flow
equations in which the dimensionless parameters m̄, λ̄4;1,
λ̄4;2 and λ̄6;1 are used:

βm ¼ −ð2þ ηÞm̄2 − 10λ̄4;1Ī4;2 − 20λ̄4;2Ī3;2

β4;1 ¼ −2ηλ̄4;1 þ 4λ̄24;1Ī4;3 þ 16λ̄4;1λ̄4;2Ī3;3

β4;2 ¼ −ð1þ 2ηÞλ̄4;2 − 3λ̄6;1Ī3;2 þ 4λ̄24;2Ī3;3

β6;1 ¼ −3ηλ̄6;1 þ 12λ̄4;2λ̄6;1Ī3;3 − 8λ̄34;2Ī3;4; ðB11Þ

In the computation of the anomalous dimension η ≔
∂sZ=Z we use the fact that

∂sZ ¼ −2λ4;1
d

dp2
1

X
p⃗⊥

∂srsðp⃗⊥ÞG2
sðp⃗⊥Þjp⃗¼0⃗

− 8λ4;2
d

dp2
1

X
p⃗⊥0

∂srsðp⃗⊥0 ÞG2
sðp⃗⊥0 Þjp⃗¼0⃗

; ðB12Þ

and now solve the linear equation of the form ∂sZ ¼
Lð∂sZÞ, which leads to

η ¼ 12πðπλ̄4;1 þ 8λ̄4;2Þ
3ðm̄2 þ 1Þ2 − πð3πλ̄4;1 þ 32λ̄4;2Þ

: ðB13Þ

2. Fixed points in the UV regime

Solving numerically the system (B11), we find some
discrete non-Gaussian fixed points, whose relevant charac-
teristics are summarized in Table I below. Also we give the

critical exponents θðiÞ, i ¼ 1, 2, 3, 4 of these different fixed
points, corresponding to the opposite signs of the eigenval-
ues of the stability matrix: βij ≔ ∂iβji ∈ fm2; λ1; λ2; λ3g.
Let us remember that the fixed points are chosen in the

domain fD > 0g where D is the denominator of the
anomalous dimension η, i.e.,

D ¼ 3ðm̄2 þ 1Þ2 − πð3πλ̄4;1 þ 32λ̄4;2Þ: ðB14Þ

This denominator introduces a singularity in the phase
space of the flow. But further away from the Gaussian fixed
point (GFP), i.e., the non-Gaussian fixed points D may
vanish, creating in the plan ðλi; m̄2Þ, i ∈ fð4; 1Þ; ð4; 2Þ;
ð6; 1Þg, a singularity hypersurface with equation D ¼ 0.
The area below this line where D < 0 is thus disconnected
from the region D > 0 connected to these fixed points.
Then, we ignore for our purpose the fixed points in the
disconnected region, for which D < 0. Note that we get
such a singularity surface with the EVE method, get close
to the one discussed here for small enough couplings.
Numerically we get the fixed point given in Table I. In this
Table, let us remark that FP2 corresponds to what we
obtained by taking into account only the melonic contri-
butions which is investigated in our previous work [71].
Now let us discuss the behavior of our model along these
non-Gaussian fixed points. For more explanation see [84].
Note that we have four dimensionless couplings, thus the
theory space is four dimensional. The signs of the eigen-
values determine whether we approach or go away from the
fixed point where the linearization is performed. Consider
the UV limits, i.e., k → ∞. According to Table I, we have
(1) For the fixed point FP1, two pairs of complex

conjugate critical exponents, with real parts having
opposite signs. The fixed point is then focused
attractive in the plan defined from two eigenvectors,
and focused repulsive in the complementary plan,
spanned from the two remaining eigenvectors.

(2) For the fixed point FP2, we have one relevant
direction, one irrelevant direction, and a focusing
attractive behavior in the complementary plan.

(3) For the fixed point FP3, we get one relevant and four
irrelevant directions.

TABLE I. Summary of the non-Gaussian fixed points.

FP m̄2 104λ̄4;1 104λ̄4;2 106λ̄6;1 η θð1Þ θð2Þ θð3Þ θð4Þ

FP1 −0.64 0 −5.6 −4.1 0.513 12þ 13i 12-13i −14þ 13i −14-13i
FP2 −0.52 28 0 0 0.553 2.5 −3 1þ 0.6i 1-0.6i
FP3 1.36 0 −370 −70 −0.545 3.08 −0.41 −0.75 −1.4
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