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The spectrum of IIB supergravity on AdS5 × S5 contains a number of bound states described by long
double-trace multiplets inN ¼ 4 super Yang-Mills theory at large ‘t Hooft coupling. At largeN these states
are degenerate and to obtain their anomalous dimensions as expansions in 1

N2 one has to solve a mixing

problem. We conjecture a formula for the leading anomalous dimensions of all long double-trace operators
which exhibits a large residual degeneracy whose structure we describe. Our formula can be related to
conformal Casimir operators which arise in the structure of leading discontinuities of supergravity loop
corrections to four-point correlators of half-BPS operators.
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I. INTRODUCTION

Recently much progress has been made in understanding
the structure of the spectrum of double-trace operators in
N ¼ 4 super Yang-Mills theory at large N and large ‘t
Hooft coupling λ ¼ g2N [1]. Based on these results,
operator product expansion (OPE) and bootstrap tech-
niques have been applied in [2,3] to obtain closed form
expressions for supergravity loop corrections of certain
holographic correlators, uncovering novel and rich struc-
ture (see [4,5] for related approaches to such loop correc-
tions). Here we complete the picture for the double-trace
spectrum and conjecture a general formula for the leading
anomalous dimensions of all long double-trace operators of
any twist, spin, and suð4Þ representation.
In the regime N → ∞ and λ ≫ 1, the theory is in

correspondence with classical IIB supergravity on AdS5 ×
S5 [6]. The graviton and the Kaluza-Klein multiplets are
dual to protected half-BPS operators in the ½0; p; 0�
representation of suð4Þ,

Op ¼ yi1…yipTrðΦi1…ΦipÞ þ… ð1Þ

where Φi¼1;…;6 are the elementary scalar fields, the
complex vector y⃗ is null, and the ellipsis stands for

1=N-suppressed multitrace terms (for p ≥ 4), whose pre-
cise nature will be described in Sec. II.
At leading large N and for any value of λ, we may

consider spin l long double-trace superconformal primary
operators of the form

Opq ¼ Op∂l
□

1
2
ðτ−p−qÞOq; ðp ≤ qÞ: ð2Þ

In the large N limit, the operators Opq are orthogonal and
have dimension Δ0 ¼ τ þ l, hence τ coincides with the
twist in the limit N → ∞. For fixed τ and suð4Þ labels
½a; b; a�, there are d allowed values of the pair ðp; qÞ. We
denote this set by Dlong

τ;l;a;b and we parametrize it as follows:

p ¼ iþ aþ 1þ r; q ¼ iþ aþ 1þ b − r;

i ¼ 1;…; ðt − 1Þ; r ¼ 0;…; ðμ − 1Þ; ð3Þ

so that d ¼ μðt − 1Þ with

t≡ ðτ − bÞ=2 − a; μ≡
(
bbþ2

2
c aþ l even;

bbþ1
2
c aþ l odd:

ð4Þ

The operatorsOpq are in long multiplets, but in the strict
large N limit their dimensions are protected. At order 1=N2

they acquire anomalous dimensions and mix among them-
selves and with other long operators. In the supergravity
regime λ ≫ 1, operators corresponding to massive string
excitations should decouple from the spectrum leaving
only those corresponding to supergravity states, e.g., the
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single-particle states Op and the two-particle bound states
Opq. At leading order in large N the Opq just mix among
themselves to produce the true scaling eigenstates, which
we denote by Kpq. Mixing with higher multiparticle states
will only occur at higher orders in the 1=N expansion.
Analysis of the OPE in the tree-level supergravity regime
(see Sec. III) leads us to the following conjecture, general-
izing results in [1–3].

A. Main conjecture

Up to order 1=N2, the dimensions of the operators Kpq

are given by

Δpq ¼ Δ0 −
2

N2

2Mð4Þ
t Mð4Þ

tþlþ1

ðlþ 2p − 2 − a − 1þð−Þaþl

2
Þ
6

ð5Þ

where ð…Þ6 is the Pochhammer symbol, and

Mð4Þ
t ≡ ðt − 1Þðtþ aÞðtþ aþ bþ 1Þðtþ 2aþ bþ 2Þ:

ð6Þ

Note that for μ > 1 and t > 2 some dimensions exhibit a
residual degeneracy because they are independent of q.
We display this property with an illustration of Dlong

τ;l;a;b

(see Fig. 1). The dots connected by vertical lines in the
ðp; qÞ plane represent operators of common anomalous
dimension.

II. HOLOGRAPHIC CORRELATORS

The correlators hOp1
Op2

Op3
Op4

i≡ hp1p2p3p4i may
be written as a free part plus an interacting part,

hp1p2p3p4i ¼ hp1p2p3p4ifree þ P × I ×H: ð7Þ

The factor P carries the conformal and suð4Þ weights and
assuming (without loss of generality) p21 ≥ 0, p43 ≥ 0, and
p43 ≥ p21, it takes the form

P ¼ N
1
2

P
pig

p1þp2−p43
2

12 g
−p21þp43

2

14 g
p21þp43

2

24 gp3

34 ; ð8Þ

where pij ¼ pi − pj and gij ¼ ðyi · yjÞ=x2ij. The quantities
I and H are functions of the variables x, x̄, y, ȳ, related to
the conformal and suð4Þ cross ratios u, v, σ, τ via

u ¼ xx̄ ¼ x212x
2
34

x213x
2
24

; v ¼ ð1 − xÞð1 − x̄Þ ¼ x214x
2
23

x213x
2
24

;

1

σ
¼ yȳ ¼ y212y

2
34

y213y
2
24

;
τ

σ
¼ ð1 − yÞð1 − ȳÞ ¼ y214y

2
23

y213y
2
24

: ð9Þ

In terms of these variables we have

Iðx; x̄; y; ȳÞ ¼ ðx − yÞðx − ȳÞðx̄ − yÞðx̄ − ȳÞ=ðyȳÞ2: ð10Þ

The decomposition into free and interacting parts in (7)
reflects the property of “partial nonrenormalization” [7],
i.e., the statement that all the dependence on the coupling
appears in the function H. Here we consider the leading
contribution toH at large λ. In the OPE of ðOp1

×Op2
Þ and

ðOp3
×Op4

Þ, the free term contributes both a protected
sector and a long sector. Identifying the sectors is nontrivial
due to possible semishort multiplet recombination at the
unitarity bound [8,9].
At leading order in the 1=N2 expansion, a correlator is

determined by disconnected contributions to the free part.
These only exist for hppqqi and cases related by crossing,

hppqqi ¼ pqP
�
1þ δpq

��
g13g24
g12g34

�
p
þ
�
g14g23
g12g34

�
p
��

:

ð11Þ
At the next order in 1=N2 in the supergravity regime, tree-
level Witten diagrams contribute both the free theory
connected diagrams and the first contribution to H.

A. Supergravity states and free theory

It was noticed in [10] that the connected part
of hp1p2p3p4ifree, generated via tree-level Witten
diagrams, disagrees with free theory four-point functions
of single-trace half-BPS operators. The resolution is that
single-particle supergravity states are not dual to single-
trace half-BPS operators, rather they are uniquely defined
as those orthogonal to all multitrace operators. From this
property we can identify multitrace contributions to TrΦp

for p ≥ 4. The presence of multitrace admixtures was also
discussed in [11,12]. Consider e.g., O4, the condition
hO4ðO2Þ2i ¼ 0 determines

O4 ¼ yi1…yi4TrðΦi1…Φi4Þ −
2N2 − 3

NðN2 þ 1Þ ðO2Þ2: ð12Þ

With this identification of O4 the free theory computation
of h2244i agrees with that of supergravity [10]. The correct
identification of the operators Op is also necessary for the
“derivative relation” of [13] to hold, as can be directly
observed for the cases h22nni. More generally, connected
free theory diagrams where, e.g., Op3

is joined only to Op4

(see Fig. 2) are absent. To see this note that, at twist
p43 in the ðOp3

×Op4
Þ OPE, only a half-BPS operator

Op43
of charge p43 could potentially be transferred. By

our definition, Op4
is orthogonal to all multitrace operators

and in particular to the double (or higher) trace operator
½Op43

Op3
�. But the vanishing two-point function

h½Op43
Op3

�Op4
i is just a nonsingular limit of the three-

point function, hOp43
Op3

Op4
i, which therefore also van-

ishes. Hence no operator Op43
can be exchanged and the
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coefficient of the above diagram must vanish. Note that this
holds no matter if Op43

is single-trace, multitrace, or a
combination thereof. Obviously any topology related by a
permutation to Fig. 2 also vanishes.

B. Tree-level dynamics

The conjecture of [14] is a simple Mellin integral for the
leading term in H

HRZ ¼ −N p1p2p3p4

I
dzdwu

z
2v

w
2R

h z w

σ τ

i
Γp1p2p3p4

;

Γ ¼ Γ
�
p1 þ p2 − z

2

�
Γ
�
p3 þ p4 − z

2

�
Γ
�
p1 þ p4 − w

2

�

× Γ
�
p2 þ p3 − w

2

�
Γ
�
zþ wþ 4 − p1 − p3

2

�
Γ

×

�
zþ wþ 4 − p2 − p4

2

�
;

R ¼ u
p3−p4

2

v
p2þp3

2

X
i;j

aijk
i!j!k!

σiτjðμ̃ − z − wþ 2iÞ−1
ðz − z̃þ 2kÞðw − w̃þ 2jÞ : ð13Þ

In the sum i, j, k ≥ 0 and we use the notation

μ̃ ¼ p2 þ p4 − 2; w̃ ¼ p2 þ p3 − 2;

z̃ ¼ minðp1 þ p2; p3 þ p4Þ − 2; k ¼ M − 1 − i − j;

M ¼ p3 − 1þminð0;ΛÞ; Λ ¼ p1 þ p2 − p3 − p4

2
:

ð14Þ
The coefficients aijk are given by

aijk ¼
23ðM − 1Þ!

ð1þ jΛjÞkð1þ p43þp21

2
Þið1þ p43−p21

2
Þj
: ð15Þ

The conjecture agrees with all known supergravity com-
putations ([15] and refs. therein). The precise integration
contour and the assumptions which led to (13) are spelled
out in [12].

C. Determining N p1p2p3p4 from the lightlike limit

The normalization N is not determined in [14]. Here we
fix it using the following nontrivial statement:

lim
u;v→0

hp1p2p3p4i
P

����
1

N2

¼ 0;
u
v

fixed: ð16Þ

The limit u, v → 0 with (u=v) fixed corresponds to taking
the points x1, x2, x3, x4 to be sequentially lightlike
separated.
Examining both the free theory and interacting contri-

butions to the lhs of (16) above, we find that it takes the
form

P
M
r¼1 Arðuτ=vÞr where

Ar ¼ p1p2p3p4

p21 þ p43 þ 2

2N2
−N p1p2p3p4

Rp3p4
p1p2

: ð17Þ

The first term in (17) comes from hp1p2p3p4ifree=P and
arises from the diagrams in Fig. 3. The normalization of
each of these diagrams in the planar limit can be simply
obtained by counting the number of inequivalent
planar embeddings. Cyclic rotation on each vertex leaves
the diagram unchanged, hence the factor p1p2p3p4.
Additionally, the diagonal propagators can be drawn inside
or outside the square, giving 1

2
ðp21 þ p43Þ þ 1 different

possibilities. The multitrace terms in Op do not affect the
leading N result for the diagram. The cases r ¼ 0 or
r ¼ M þ 1 correspond to the diagrams of Fig. 2 which
are absent as discussed above.
The second contribution in (17) is obtained from

I ×HRZ. Note that each term in u
z
2v

w
2R has the form

u
z−p43

2 v
w−p2−p3

2 σiτj

ðz − p43 − 2 − 2ðiþ jÞÞðw − p2 − p3 þ 2þ 2jÞ ð18Þ

and upon residue integration will produce a term propor-
tional to ðuσÞiðu=vÞ1þjτj. Since I ¼ τ þOðu; vÞ, the
contribution to Ar comes from taking the simple poles
with i ¼ 0 in (15). The residue is

FIG. 1. Illustration of residual degeneracies.

FIG. 3. Free theory diagrams in the lightlike limit.

p2 p3

p1 p4

FIG. 2. A free theory diagram absent from hp1p2p3p4i.
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Rp3p4
p1p2

¼ jΛj!
�
p43 − p21

2

�
!

�
p21 þ p43 þ 2

2

�
!ðM − 1Þ!:

ð19Þ

Crucially the j dependence cancels between a0jk=ðj!k!Þ
and Γp1p2p3p4

and hence Ar is in fact independent of r. Now
the statement (16) is clearly equivalent to the statement
Ar ¼ 0 for all r. Rearranging (17) we thus obtain the result
for N p1p2p3p4

,

N ¼ 1

N2

p1p2p3p4

jΛj!ðp43−p21

2
Þ!ðp43þp21

2
Þ!ðM − 1Þ! : ð20Þ

The result combines neatly with the coefficients aijk,

N aijk ¼
1

N2

23p1p2p3p4

ðjΛj þ kÞ!ðp43þp21

2
þ iÞ!ðp43−p21

2
þ jÞ! : ð21Þ

Note that the expression (20) is consistent with the results
for N ppqq and N p;pþ1;q;qþ1 obtained in [1,3].

D. Proof of lightlike vanishing

The lightlike limit projects the common OPE of
ðOp1

×Op2
Þ and ðOp3

×Op4
Þ onto operators with large

spin and naive twist τ ≤ p43 þ 2M, i.e., τ < minðp1 þ
p2; p3 þ p4Þ. To justify the statement (16) let us consider
the various contributions to the OPE expected in the
supergravity regime. First of all we have single-particle
states corresponding to half-BPS superconformal
primary operators. Such operators have spin zero and do
not contribute in the limit v → 0 which receives contri-
butions from large spin. Next we have (both protected
and unprotected) double-trace operators of the form
½Op□

n∂lOq� or mixtures thereof. The leading large N
contribution to three-point functions of the form
hOpOq½Op0□n∂lOq0 �i ∼OðNpþqÞ arises when p ¼ p0

and q ¼ q0 when the three-point function factorizes into
a product of two-point functions. The twist τ of the double-
trace operator therefore must obey τ ≥ pþ q, otherwise the
three-point function will be suppressed by 1=N2. The
exchanged operators surviving the lightlike limit (16) all
have twist less than both p1 þ p2 and p3 þ p4 and hence
the contributions will be suppressed by at least 1=N4 and
will not contribute to the lhs of (16). Higher multitrace
operators are even more suppressed and we conclude that
no operators in the supergravity spectrum can contribute in
the lightlike limit, justifying (16).

III. UNMIXING EQUATIONS

We now describe how the system of relations implied by
the OPE describes an eigenvalue problem which allows us
to determine the anomalous dimensions of the true double-
trace eigenstates Kpq. In particular, we consider the long

multiplet superconformal partial wave (SCPW) expansion
of the correlators hp1p2p3p4i, in which the pairs ðp1; p2Þ
and ðp3; p4Þ both run over the set Dlong

τ;l;a;b described in (3).
The result is a symmetric (d × d) matrix whose partial wave
expansion reads

½hp1p2p3p4i� ¼
X
τ;l;a;b

�
Aτ;l

a;b þ
1

N2
log uMτ;l

a;b

�
LðτjlÞ
½a;b;a�: ð22Þ

Terms of order 1=N2 which are analytic at u ¼ 0, i.e.,
without a factor of logu, have been dropped on the rhs.
The matrix Aτ;l

a;b in (22) is determined by disconnected
free theory and is diagonal due to the form of the dis-
connected contributions (11). The matrix Mτ;l

a;b is obtained
from the discontinuity around u ¼ 0 of HRZ. For com-
pleteness, we recall the explicit expression [16,17] of a long
superblock of naive twist τ, spin l, and suð4Þ rep
R ¼ ½n −m; 2mþ p43; n −m�,

LðτjlÞ
R ¼ PIðx; x̄; y; ȳÞϒnmðy; ȳÞB2þτ

2
jlðx; x̄Þ

u2þ
p43
2

: ð23Þ

This structure is the simplest among the determinantal
superconformal blocks [9], since it factorizes into an
ordinary conformal block Bsjlðx; x̄Þ [18],

Bsjlðx; x̄Þ ¼ ð−Þl u
sxlþ1FsþlðxÞFs−1ðx̄Þ − ðx ↔ x̄Þ

x − x̄
;

FsðxÞ ¼ 2F1

�
s −

p12

2
; sþ p34

2
; 2s

�
ðxÞ ð24Þ

and an suð4Þ block ϒnmðy; ȳÞ [19],

ϒnmðy; ȳÞ ¼ −
Pnþ1ðyÞPmðȳÞ − PmðyÞPnþ1ðȳÞ

y − ȳ
;

PnðyÞ ¼
n!y

ðnþ 1þ p43Þn
JPðp43−p21jp43þp21Þ

n

�
2

y
− 1

�
;

ð25Þ
where JP stands for a Jacobi polynomial.
The matrices A and M contain conformal field theory

data for the operators Kpq,

Aτ;l
a;b ¼ Cτ;l;a;b · CT

τ;l;a;b;

Mτ;l
a;b ¼ Cτ;l;a;b · η · CT

τ;l;a;b: ð26Þ
Here the (d × d) matrix C, indexed by pairs ðp1; p2Þ and
ðq1; q2Þ running over Dlong

τ;l;a;b, is given by

C≡ ½hOp1
Op2

Kq1q2i�; ð27Þ
and η ¼ diagðηpqÞ is a (d × d) diagonal matrix where ηpq is
(half) the anomalous dimension of the operator Kpq for

ðp; qÞ ∈ Dlong
τ;l;a;b,
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Δpq ¼ τ þ lþ 2

N2
ηpq þOð1=N4Þ: ð28Þ

The eigenvalue problem (26) is well defined as a conse-
quence of the equality

�
#independent

entries of A&M

�
¼

�
#of hOpi

Opj
Kpqi

þ#of ηpq

�
: ð29Þ

Let us comment on the structure of the matrices A and M.
The SCPW expansion of disconnected free theory has the
following compact expression:

Aτ;l
a;b ¼ diagðF 1þaþiþr;b−2r;r;a;tþaþrÞ1≤i≤ðt−1Þ

0≤r≤μ−1
;

where the function F is given by

Fp;h;m;a;s ¼
pðpþ hÞð1þ δh0Þð1þ aÞð2mþ 2þ hþ aÞðlþ 1Þðlþ 2sþ 2þ hÞ
ðp − 1 −mÞ!ðp − 2 −m − aÞ!ðpþmþ hÞ!ðpþmþ hþ 1þ aÞ!

×
ðmþ 1þ hÞmþ1

m!

ðmþ 2þ aþ hÞmþ2þa

ðmþ 1þ aÞ! ΠsΠlþsþ1;

Πs ≡ ððsþ hÞ!Þ2
ð2sþ hÞ! ðsþ 1 −mÞmðsþ 1þ hÞmðs −m − aÞaðsþ 2þ hþmÞaðsþ 1 − pÞp−2−m−a

× ðsþ 3þ hþmþ aÞp−2−m−a: ð30Þ

The SCPW of matrix elements in Mτ;l;a;b has the form

ðlþ 1þ tþ aþ rþ p43−p21

2
Þ!ðlþ 1þ tþ aþ rþ p43Þ!

ð2ðlþ 1þ tþ rþ aÞ þ p43Þ!
× PdðlÞ; ð31Þ

where PdðlÞ is a polynomial in l of degree d ¼ minðp1þ
p2; p3 þ p4Þ − ðp43 − p21Þ − 4, and r labels ðp3; p4Þ. We
determine this polynomial case by case and solve the
eigenvalue problem following [1–3]. We have verified that
our conjecture (5) holds systematically in the suð4Þ
channels ½a; b; a� with 0 ≤ a ≤ 3, 0 ≤ b ≤ 6 up to twist
24 for both even and odd spins. In particular, we have been
able to perform nontrivial tests on the pattern of residual
degeneracies. It would be fascinating to understand
whether higher order corrections lift the pattern of residual
degeneracies observed at order 1=N2 or whether they
remain due to some as yet unknown symmetry.

IV. CASIMIR OPERATORS

Quadratic and quartic conformal Casimir operators have
played a useful role in understanding and simplifying the
structure of correlators [3,5,20]. Here we extend the
analysis of [3] to all suð4Þ channels ½a; b; a� of any cor-
relator hp1p2p3p4i. The quadratic and quartic Casimirs are
given by [20,21]

Dρ1;ρ2
2 ¼ Dρ1;ρ2þ þ 2

xx̄
x − x̄

ðð1 − xÞ∂x − ð1 − x̄Þ∂ x̄Þ;

Dρ1;ρ2
4 ¼

�
xx̄

x − x̄

�
2

Dρ1;ρ2−

�
xx̄

x − x̄

�
−2
Dρ1;ρ2− ; ð32Þ

where Dρ1;ρ2
� ¼ Dρ1;ρ2 � D̄ρ1;ρ2 and

Dρ1;ρ2 ¼ x2∂xð1 − xÞ∂x − ðρ1 þ ρ2Þx2∂x − ρ1ρ2x: ð33Þ

The labels ρi are given by ρ1 ¼ − 1
2
p12, ρ2 ¼ 1

2
p34. The

eigenvalues of D2 and D4 on Bð2þτ
2
jlÞ are

λ2ðτ; lÞ ¼
1

2
ðlðlþ 2Þ þ ðτ þ lÞðτ þ l − 4ÞÞ;

λ4ðτ; lÞ ¼ lðlþ 2Þðτ þ l − 1Þðτ þ l − 3Þ. ð34Þ
Consider the combination of Casimirs

Δð8Þ ¼ −
1

8
ðDρ1;ρ2

4 − ðDρ1;ρ2
2 Þ2 þ ga;b1 Dρ1;ρ2

2 − ga;b2 Þ
× ðDρ1;ρ2

4 − ðDρ1;ρ2
2 Þ2 þ ga;b3 Dρ1;ρ2

2 − ga;b4 Þ; ð35Þ

with the coefficients ga;bi given by

ga;b1 ¼ ðbþ 2aÞ2 þ 6ðbþ 2aÞ þ 6;

ga;b2 ¼ 1

4
ðbþ 2aÞðbþ 2aþ 2Þðbþ 2aþ 4Þðbþ 2aþ 6Þ;

ga;b3 ¼ ðb2 þ 2b − 2Þ;

ga;b4 ¼ 1

4
ðb − 2Þbðbþ 2Þðbþ 4Þ: ð36Þ

The operatorΔð8Þ has the property that its eigenvalue on the
conformal blocks reproduces exactly the numerator of the
anomalous dimensions given in Eq. (5), i.e.,
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Δð8ÞBð2þτ
2
jlÞ ¼ −2Mð4Þ

t Mð4Þ
tþlþ1B

ð2þτ
2
jlÞ: ð37Þ

The operator Δð8Þ greatly simplifies the sums which
compute the leading discontinuities of a correlator to any
loop order. In a large N expansion we have

H ¼
X
k≥1

1

N2k

Xk
r¼0

1

r!
ðlog uÞr

X
m≤n

ϒnmH
ðkÞ
r;nm: ð38Þ

Then the leading discontinuity HðkÞ
k;nm in an suð4Þ channel

with a ¼ n −m and b ¼ 2m − p43 is given by

HðkÞ
k;nm ¼

X
τ;l;ðq1;q2Þ

ðητ;l;a;bq1q2 ÞkCq1q2

Bð2þτ
2
jlÞ

u2þ
p43
2

; ð39Þ

with Cq1q2 ¼ hOp1
Op2

Kq1q2ihOp3
Op4

Kq1q2i. Since the
numerator of the anomalous dimensions does not depend
on ðq1; q2Þ, we may pull out (k − 1) factors of Δð8Þ and
remove (k − 1) powers of the numerator from the anoma-
lous dimension. These reduced sums are considerably
simpler. Indeed the resummed result for general k is of a
similar complexity as the k ¼ 1 case (the log u coefficient
of the tree-level supergravity result). One can then recover
the full leading discontinuity by applyingΔð8Þ (k − 1) times
to the resummed expression.
For concreteness, let us consider the simplest example:

pi ¼ 2, for which we have ρ1, ρ2 ¼ 0 and the only suð4Þ
channel for long multiplets is the singlet a, b ¼ 0. The
ðlog uÞ2 term of the h2222i correlator was computed at one
loop in [2] (and recently reproduced usingΔð8Þ in [5]). With
the aid of Δð8Þ one can produce a closed formula for the
highest transcendental weight part (weight k) of the leading
ðlog uÞk discontinuity for any loop order,

HðkÞ
k jtop ¼

1

u2
ðΔð8ÞÞk−1

�
Gkðx; x̄Þ − v7Gðx0; x̄0Þ

ðx − x̄Þ7
�
;

Gðx; x̄Þ ¼ akðx; x̄Þ
X
ai¼0;1

½Ha10a20���1ðxÞ − ðx ↔ x̄Þ�: ð40Þ

Here x0 ¼ x
x−1 and Hc1���cnðxÞ are harmonic polylogarithms

of weight k [22]. Finally, the coefficient polynomial for the
case h2222i is given by

akðx; x̄Þ ¼ −27−3k31−ku4

× ½2kðûþ vÞðû2 þ 8ûvþ vðvþ 6ÞÞ
− 6ðû3 þ 7û2vþ 3ûvðvþ 2Þ − ðv − 4Þv2Þ
þ 52−k2ðû3 − 3ûv2 þ 3ðûþ 2Þûvþ v3Þ�; ð41Þ

with û ¼ u − 1. Similar results have been obtained for the
correlators h2233i, h2323i, and h3333i, for which the
quantum numbers ðρ1; ρ2Þ and ða; bÞ of Δð8Þ are nontrivial.
We believe that the results on the anomalous dimensions

(5) together with the Casimir operators (35) will aid in the
construction of one-loop supergravity (i.e., order 1=N4)
contributions to all correlators hp1p2p3p4i. It would be
fascinating to see if the methods described in [23] can be
used to make contact with such supergravity loop correc-
tions and the spectrum results described here.
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