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We establish a classical analog of the Nambu–Goldstone theorem for spontaneous breaking of spacetime
symmetries. It provides a counting rule for independent Nambu–Goldstone fields and states which of them
are gapped. We demonstrate that only those symmetry group generators give rise to independent Nambu–
Goldstone fields that act nontrivially on a vacuum at the origin of coordinates. Other generators give rise to
auxiliary fields that must be excluded from a theory by the means of inverse Higgs constraints. The physical
meaning of the inverse Higgs phenomenon and an application of our results to theories of massive gravity
are discussed.
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I. INTRODUCTION

Providing an analog of the Nambu–Goldstone theorem
for spontaneous symmetry breaking (SSB) of spacetime
symmetries is still a challenge. The reason lies in the fact
that theories undergoing such SSB behave qualitatively
different from systems undergoing SSB of internal sym-
metries. This difference comes in two aspects. First, the
degrees of freedom (DoF) associated with the action of
broken generators on a vacuum are not necessarily inde-
pendent [1,2]. For example, all possible fluctuations of a
scalar domain wall background can be obtained by the
action of broken Lorentz transformations on it, as well as
by the action of broken translation generators [2]. Recently,
this phenomenon was investigated in detail in [3–5]. One
major outcome of those studies was the understanding that
a possible redundancy in associating a Nambu–Goldstone
field (NGF) to each broken generator is closely related to a
spacetime group representation an order parameter belongs
to. Namely, depending on this representation, there may
exist nontrivial simultaneous transformations of NGF that
yet describe the same fluctuation of the vacuum [2,6].
Consequently, these transformations could be considered as

a special sort of gauge freedom [6], which yields some of
the NGF redundant.
The second feature of SSB of spacetime symmetries is

that some of the NGF can be gapped [6].1 This peculiarity
was also observed in [3] from the perspective of IR
theories—it was shown that, in order to realize a particular
symmetry group linearly, one must introduce massive fields
that are not radial modes. Unlike pseudo–NGF, whose mass
originates from explicit symmetry breaking, the gappness
of such NGF is an inherent property of SSB itself.
To separate these two mechanisms, we adopt the notion
“massive NGF” (mNGF) to refer to the gapped NGF
appearing in the latter case.2

Both issues outlined above stem from the question of
how many NGF must be introduced in order to realize an
SSB pattern in a given dynamical system. For SSB of
internal symmetries, this question is resolved by the
Goldstone theorem, which prescribes to assign one NGF
to each broken generator. However, for spontaneous break-
down of spacetime symmetries the general answer is
unknown due to possible redundancies among NGF. On
the one hand, it is known that all NGF on which broken
generators are realized nonlinearly can be obtained by
following so–called inverse Higgs phenomenon [1]. On
the other hand, the studies carried out in [3,6] show that
effective theories may necessarily include massive nonradial*ivan.kharuk@phystech.edu

†andrey.shkerin@epfl.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1By NGF we understand modes associated with the action of
broken generators on the vacuum. A priori, there is no guarantee
that such modes are massless.

2In [5,7,8] the mixture of the two mechanisms was studied.
In this paper, we limit the discussion to the case of mNGF.
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modes. The latter can be redefined to transform linearly
under the action of the full symmetry group and can be
integrated out at low energies. Hence, they do not represent
NGF in the conventional sense [9]. Nevertheless, their
presence may necessarily follow from the SSB pattern [3],
and, moreover, their effective Lagrangian can be fully
reproduced within the coset space technique (CST).
Because of these two observation, we believe it is reasonable
to consider them as NGF.
The aim of this paper is to establish the general rule for

counting all independent NGF. Although this question was
adressed in literature for particular spacetime groups
[2,6,8], to the best of author’s knowledge no general
criterion was provided so far. We show that the full set
of NGF is obtained by assigning one NGF to each generator
acting nontrivially on the vacuum at the origin.3 The NGF
on which one may impose inverse Higgs constraints (IHC)
can be redefined to transform linearly under the action of
the full symmetry group [1] and represent massive non-
radial modes noticed in [3]. For the remaining broken
generators, one should introduce auxiliary NGF and
impose IHC on them. This generalizes the known results
on this topic and provides a simple criterion for identifying
redundant NGF. In particular, this implies that the knowl-
edge of an SSB pattern and a representation of fields with
nonzero vacuum expectation value uniquely fixes the
number of NGF. We also clarify the physical interpretation
of the procedure of eliminating auxiliary NGF via inverse
Higgs phenomenon and show that they can always be
expressed in terms of the true NGF.
Our results are complementary to those of [5,8,10].

There, the question of when independent NGF form
canonically conjugated pairs was studied, while the present
paper concerns with the question when the NGF should be
introduced in the first place. Both problems result in the
reduction of the amount of DoF, but the underlying physics
is different. We would also like to note the following
difference between our work and [11]. In [11], the mass of
NGF results from an explicit symmetry breaking, while our
mNGF acquire mass via spontaneous symmetry breaking
mechanism.
The paper is organized as follows. In Sec. II, we consider

two theories undergoing SSB of spacetime symmetries.
The first one is aimed to demonstrate how mNGF appear in
the process of SSB. The second one includes the use of
inverse Higgs phenomenon and illustrates its physical
meaning. Section III covers major consequences of our
analysis, including the classical analog of the Goldstone
theorem. Therein we also make contact with other works in
the field and comment on the relevance of our results to

theories of massive gravity. Finally, Sec. IV contains a brief
summary of the results and concludes.

II. PRELIMINARY EXAMPLES

For simplicity, in this section we work in the Euclidean
space, which allows us to disregard the question of stability
of solutions and focus on their symmetry aspects.

A. Massive NGF

We would like to start by providing an example of a
theory whose effective Lagrangian includes massive NGF.
It is defined on d–dimensional Euclidean space and
consists of two fields charged under the spatial and internal
Poincare groups, ISOðdÞST and ISOðdÞint accordingly. The
first field is a d–component scalar φaðxÞ belonging to the
co–fundamental representation of SOðdÞint and on which
the internal translations act as shifts,

φaðxÞ→Ωa
bφ

bðxÞþca; Ωa
b ∈ SOðdÞint; ca ∈R: ð1Þ

The second field Vi
aðxÞ is a vector and co–vector with

respect to the spatial and internal Poincare groups accord-
ingly, with the internal translations realized trivially,4

Vi
aðxÞ → Ωb

aΛi
jV

j
bðxÞ; ð2Þ

where Ωb
a ∈ SOðdÞint;Λi

j ∈ SOðdÞST . The Lagrangian of
the theory reads

L ¼ −
1

2
ð∂iφ

aÞ2 þ 1

4
ð∂ ½iVa

j�Þ2 þ ϰVi
a∂iφ

a

þ λ

4d
ðVi

aVa
i − dM2

VÞ2; ð3Þ

where ϰ, λ, andMV are some positive constants and square
brackets stand for antisymmetrization in the corresponding
indices. We are interested in the background solutions with
the following asymptotics at infinity,

φaðxÞ ∼ μ2xa; Vi
aðxÞ ∼ const; when xa → ∞; ð4Þ

where μ is some constant with unit mass dimension.
Assuming λM2

V > ϰ2, the solution fulfilling this require-
ment reads5

3We assume that a theory is defined on some homogeneous
space G=H of the symmetry group G. Then, by definition, the
origin is a stable point of H, see the Appendix for more details.

4The fact that Vi
a transforms trivially under the internal

translations allows us to use the terms containing Vi
a without

derivatives (unlike φa) in the Lagrangian.
5Note that the value of μ is not fixed by the Ansatz describing

the asymptotic behaviour at infinity, hence the variation of φa on
the boundary is nonzero. Requiring the boundary term arising
from varying Lagrangian (3) with respect to φa to vanish then
fixes μ as in Eq. (5).
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φa ¼ μ2xa; Vi
a ¼ Mδia;

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

V −
ϰ2

λ

r
; μ2 ¼ ϰM: ð5Þ

We now study fluctuations on top of this background. To
identify NGF, we first determine the broken symmetry
generators. The SSB pattern corresponding to solution (5) is

ISOðdÞST × ISOðdÞint → ISOðdÞV; ð6Þ

where ISOðdÞV is a semidirect product ofPi
V ¼Pi

ST −μ2Pi
int

and SOðdÞV—diagonal subgroup of SOðdÞST × SOðdÞint.
Because only SOðdÞV is unbroken, in the spontaneously
broken phase we do not distinguish between spatial and
internal indices. Thus, the NGF are given by translations of
φa and simultaneous internal rotations of φa and Vi

a. Note,
however, that an arbitrary rotation of φa can be expressed in
terms of its (internal) translation,

eiM̄cdω
cd
φa ¼ μ2xa þ μ2ðΩa

b − δabÞxb ¼ eiP̄cψ
c
φa;

ψa ¼ μ2ðΩa
b − δabÞxb; ð7Þ

where P̄a and M̄ab are generators of internal translations and
rotations accordingly. Then, to simplify the calculations and
ensure that the coordinates do not enter the effective
Lagrangian, we parametrize the fluctuations of the fields as

φaðxÞ ¼ μ2xa þ ψaðxÞ; Vi
aðxÞ ¼ Ωi

aðxÞM;

Ωi
a ¼ δia þ ωi

a −
1

2
ωi
bω

b
a þ � � � ; ð8Þ

where dots stay for higher order terms in ωi
a, and ψa andΩa

b
are independent. Substituting this into Eq. (3) and restricting
ourselves to the second order in ωi

a, we obtain the effective
Lagrangian,

Lψ ;A ¼ −
1

2
ð∂iψ

aÞ2 þ 1

4
ð∂ ½iAa

j�Þ2 −
1

2
ϰ2Ai

jA
j
i þ ϰAi

a∂iψ
a;

ð9Þ

where we have switched to the canonically normalized filed
Ai
a ¼ Mωi

a. To rewrite this Lagrangian in a more convenient
form, we redefine DoF as follows,

ϰAij ¼ ∂iψ j − ∂jψ i þ ϰÃij: ð10Þ

Note that, as it can be verified from Eq. (8), the field Ãi
j

transforms linearly under the action of the full symmetry
group.Aswewill see at the end of this section, redefinition of
DoF (10) corresponds to extracting the “inverse Higgs part”
of Ai

j in the coset space framework. In the new variables the
Lagrangian takes the form

Lψ ;Ã ¼ −
1

4
ðð∂iψ

aÞ2 þ ð∂aψ
aÞ2Þ − ϰ2

2
Ãi
jÃ

j
i þ

1

4
ð∂ ½iÃk

j�Þ2:
ð11Þ

The peculiarity of this Lagrangian is that besides ψa, it also
contains themassive antisymmetric vector field Ãi

a,
6 which is

not a radial mode.
Let us discuss the physical nature of the field Ãi

j. As long
as by the NGF one understands a field transforming non-
linearly under the group action, Ãi

j is not one of them.
However, we believe that it is more appropriate to define
NGF as modes associated with independent fluctuations of
the vacuum. Such definition is physically justified as it
shows which fields must be present in the theory to realize a
given SSB pattern dynamically. In this sense, Ãi

j is indeed a
NGF, similar to ones studied in [3].
Note also that Ãi

j can be distinguished from matter fields,
possibly present in the theory, by the fact that its dynamics
is severely restricted by the symmetry breaking pattern.
Indeed, the Lagrangian of the matter fields is only subject
to the general requirement of the invariance under the group
action. On contrary, the Lagrangian for Ãi

j necessarily
includes the mass term, and, further, the kinetic term for Ãi

j

must sum up to

Lkin ¼
1

4
ð∂ ½iΩa

j�ðÃk
l =MÞÞ2: ð12Þ

These features of the effective theory allow to recognize Ãi
j

as a NGF.
At energy scales much below ϰ, one can integrate the

field Ãi
a out. The resulting Lagrangian reads

Lψ ¼ −
1

4
ðð∂iψ

aÞ2 þ ð∂aψ
aÞ2Þ: ð13Þ

Thus, by the direct expansion of Lagrangian (3) on top of
background (5), we obtained the Goldstone sector of the
effective theory, Eq. (9), containing the gapped mode, and
the low energy limit of this sector, Eq. (13), describing the
massless modes. Note that the mass ϰ of the vector field is
not fixed by the symmetry breaking pattern. Moreover, one
can choose it to be of the order of or higher than the strong

6The mass of the original field Ai
a comes from the interaction

term between φa and Vi
a in Eq. (3). In particular, because in

Eq. (8) we rotate Vi
a but not φa, the linear in the background

values of the fields term does contribute to the effective
Lagrangian. It should be noticed that if we choose to rotate both
fields, all terms in the effective Lagrangian will contain at least
one derivative of the NGF. However, because the background
solution depends on the coordinates, the effective Lagrangian will
depend on them as well. Then, as it can be verified, the term
coming from the interaction part will, in fact, represent a mass
term for Ai

a.
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coupling scale M,7 in which case the dynamics of mNGF
can be neglected in the whole range of validity of the
effective theory. Still, it is important to know about it, since
the UV completion of the effective theory necessarily
includes this field. Thus, we see that the field Ãi

j plays
the role of massive nonradial modes observed in [3].
Let us now study SSB pattern (6) from the CST

perspective. Following the standard rules [12], we consider
the coset space

gH ¼ eiPVixieiP̄aψ
0a
e

i
2
M̄abω

0ab
; ð14Þ

where ψ 0a and ω0ab are the NGF for the broken internal
translations and rotations correspondingly and the unbro-
ken combination of translations8 gives rise to the coor-
dinates in the broken phase of the theory. As a first step, we
would like to verify that the NGF introduced in this way
coincide (up to constant multipliers) with their counterparts
appearing in the direct expansion, Eq. (8).9 For this
purpose, we study their transformation properties under
the action of the symmetry generators. By acting by eiP̄aqa

and eiM̄abα
ab
on coset space (14) with constant parameters

qa and αab, we find the transformation law of ψ 0a and ω0ab
to be

eiP̄aqa∶ ψ 0a → ψ 0a þ qa; ω0ab → ω0ab;

eiM̄abα
ab∶ ψ 0a → ΩðαÞabψ 0b þ ðΩðαÞab − δabÞxb;

ω0ab → ω0ab þ αab þ � � � ; ð15Þ

where dots stand for higher order terms. As it can be verified,
ψa and ωi

a defined in Eq. (8) have the same transformation
properties, and, hence, represent the same DoF.
Further, to obtain the ingredients for the construction of

the effective theory, we calculate the Maurer–Cartan forms
for coset space (14),

gHdg−1H ¼ iωi
PV
PVi þ iωa

P̄P̄a þ iωab
M̄ M̄ab: ð16Þ

Up to the linear order they are given by

ωi
PV

¼dxi; ωa
P̄¼dψ 0a−μ2ω0a

bdx
b; ωμa

M̄ ¼dω0μa: ð17Þ

The tetrads, the metric and the covariant derivatives of the
NGF can be readily read out from Eq. (17),

eij ¼ δij; gij ¼ eki e
l
jδkl ¼ δij;

Diψ
0a ¼ ∂iψ

0a − μ2ω0a
i ; Diω

0ab ¼ ∂iω
0ab: ð18Þ

Then, the part of the effective Lagrangian, containing the
kinetic term for ψ 0a, the mass term for ω0i

a, and their
interaction, is reproduced in the CST as

−
1

2
ðDiψ

0aÞ2¼−
1

2
ð∂iψ

0aÞ2−1

2
ϰ2Ai

aAi
aþϰAi

a∂iψ
0a; ð19Þ

where we have switched to the canonically normalized field
Ai
a ¼ Mω0i

a . This coincides with the corresponding part of
Eq. (9) upon the identification ψ 0a ¼ ψa, ω0ab ¼ ωab,
which will be assumed from now on. Finally, the kinetic
term for Ai

a can be reproduced straightforwardly, since the
covariant derivative of ωab coincides with the usual partial
derivative. Thus, we see that Lagrangian (9) is fully
reproduced within the coset space approach. In particular,
one can integrate the field Ai

j out and reproduce the low
energy Lagrangian (13).
Let us now discuss the inverse Higgs phenomenon. For

the case under consideration, IHC read,

D½iψ j� ¼ 0∶ ∂iψa − ∂aψ i ¼ ϰAia: ð20Þ

Because of the symmetry restrictions, in the absence of
matter fields this gives the expression for Ai

j in terms of ψa

one would have obtained by integrating Ai
j out [6,14].

Hence, by using the left covariant derivatives one can
reproduce the low energy limit of the theory. In particular,
low energy Lagrangian (13) is reproduced as

Lψ ¼ −
1

8
ðDfiψ jgÞ2: ð21Þ

Note, however, that instead of imposing IHC one can
introduce a new variable Ãi

j according to

D½iψ j� ¼ Ãi
j: ð22Þ

Since the l.h.s. of this equation contains Ai
j without deriv-

atives, it represents a valid change of variables. It allows us to
switch from the field Ai

j, which transforms nonhomoge-
neously under the action of the symmetry group, in favor of
the field Ãi

j transforming linearly under all symmetries. Such
redefinition of DoF corresponds to extracting the “inverse
Higgs part” fromAi

j and it is precisely the change of variable
we made before, Eq. (10). The redefinition can always be
performed and, by itself, does not reduce the amount ofNGF.
Consequently, when dealing with SSB of spacetime sym-
metries, the right question to ask is not whether one should

7We estimate the strong coupling scale as the scale at which the
energy of fluctuations becomes comparable with the energy of the
background solution. This estimate coincides with the one
following from the analysis of the suppression of higher dimen-
sional derivative terms in the coset space framework.

8By definition, in this section we call a generator unbroken if
its action on the background solution is trivial. This allows us to
distinguish between nonlinearly realized generators and broken
ones.

9Note that this check is nontrivial since one can use various
parametrizations of the fluctuations as well as of the coset space
[13].
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impose IHC or not, but whether Ãi
j will be present in the

theory or not. In the studied example the answer to this
question is positive, since Ãi

j is needed to describe Vi
a’s

fluctuations. In the next sectionwe consider the theorywhere
this is not the case and explore the inverse Higgs phenome-
non from one more perspective.

B. Inverse Higgs phenomenon and redundant fields

1. The model

To clarify the physical meaning of IHC in cases when
some of the NGF are redundant, we track the way they
appear during the direct calculation of the effective
Lagrangian. Consider the theory which, besides the fields
φa and Vi

a introduced in the previous section, contains a
scalar field θ, with the Lagrangian

L ¼ −
1

2
ð□φaÞ2 − 1

2
ð∂iθÞ2 þ

1

4
ð∂ ½iVa

j�Þ2 þ λθVi
a∂iφ

a;

ð23Þ

where □ ¼ ∂i∂i and λ is a constant. Such theory has the
same symmetries as in the example of Sec. II A, but the
presence of θ and the box operator ensure that

φa ¼ μ2xa; θ ¼ 0; Vi
a ¼ 0 ð24Þ

is a solution of equation of motion with arbitrary μ2.
Clearly, background (24) invokes the same SSB pattern
as in the previous example, (6). However, now the NGF for
the broken Lorentz generators are redundant, since the
NGF sector of the effective theory contains only d DoF
describing the fluctuations of φa.
The effective Lagrangian for this theory can be found

to be

Lψ ¼ −
1

2
ð□ψaÞ2 − 1

2
ð∂iθÞ2 þ

1

4
ð∂ ½iVa

j�Þ2

þ λθVi
aðμ2δai þ ∂iψ

aÞ; ð25Þ

where ψa is the fluctuation of φa on top of background
(24). The only field undergoing SSB is φa, while Vi

a and θ
are spectators and, hence, represent matter fields in the low
energy phase.An important thing to note is thatVi

a is charged
under the actionofSOðdÞint, while a lowenergyobserverwill
introduce fields as linear representations of SOðdÞV , since
only the latter group is unbroken. Hence, one should trans-
form Lagrangian (25) further, so that the matter fields will be
charged under the action of SOðdÞV only.

2. Employing coset space technique

Before finding the required field redefinition, let us
discuss the question of which coset space should be used to
reconstruct the effective Lagrangian. For this purpose, we

apply the formalism of reducing matrix [15,16], also known
as the polar decomposition, to theory (23) with vacuum
expectation value (VEV) (24). As we will show, the answer
is not the expected one, given by Eq. (14).
The idea of polar decomposition is to separate NGF and

other fields:

χðxÞ ¼ γðxÞχ̃ðxÞ; ð26Þ

where χ are the fields of a theory under consideration and
χ̃ðxÞ is such that it does not include NGF. For theory (23),
χðxÞ and χ̃ðxÞ are introduced as

χðxÞ ¼ ðφ1;…;φd; V1
1;…; Vd

d; θÞT;
χ̃ðxÞ ¼ ðφ̃1;…; φ̃d; Ṽ1

1;…; Ṽd
d; θ̃ÞT; ð27Þ

Since NGF are DoF associated with the action of the broken
generators on the vacuum, the condition for χ̃ðxÞ not to
include NGF reads as follows,

χ̃TðxÞðẐaχðxÞÞ ¼ 0; ð28Þ

where Za are broken generators and Ẑa is their representa-
tion appropriate for χðxÞ. Taking Za to be the broken
internal translations, we get

φ̃a ¼ 0 for all a: ð29Þ

Further, taking Za to be M̄ab yields no additional restric-
tion, since Vi

a ¼ 0 on the background solution. Thus, we
have

χ̃ðxÞ ¼ ð0;…; 0; V1
1;…; Vd

d; θÞ; ð30Þ

where we have taken into account that decomposition (26)
should preserve the number of DoF. Then, knowing the
explicit form of χðxÞ and χ̃ðxÞ, from Eq. (26) we find

γðxÞ ¼ eiP̄aψ
aðxÞ: ð31Þ

Now we substitute (26) back into Lagrangian (23).
Remembering further that Lagrangian (23) can be written
in terms of the wedge products,10 and by making use of
transitivity, we obtain that the only NGF that is present in
the theory is ψa, and that it will appear in the effective
Lagrangian via the combination

e−iP̄aψ
aðxÞe−iPVixideiPVixieiP̄aψ

aðxÞ: ð32Þ

Hence, to reproduce Lagrangian (24) one should consider
the coset space

10To obtain the box operator, one would also need to use the D
operator [12,16]. Its construction is a standard part of CST.
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gH ¼ eiPixieiP̄aψ
a
: ð33Þ

Let us show that such coset space does allow to reproduce
effective Lagrangian (25). From (33) one can readily read
out the Maurer–Cartan forms,

ωi
P ¼ dxi; ωa

P̄ ¼ dψa; ωab
M ¼ ωij

L ¼ 0: ð34Þ

The covariant derivative of ψa is thenDiψ
a ¼ ∂iψ

a. Taking
a covariant derivative Dj of Diψ

a as if it was a matter field
[12,16], one gets DjDiψ

a ¼ ∂j∂iψ
a. Then, the part of

effective Lagrangian (25) containing ψa is reproduced as

−
1

2
ðDiDiψ

aÞ2 þ λθVi
jDiψ

j: ð35Þ

Thus, we have reproduced effective Lagrangian (25) within
coset space (33).
The considered example admits a straightforward gen-

eralization. Suppose one is given fields of a theory χðxÞ and
their VEV. Let Za be a full set of broken generators, Bα ∈
Za be a subset of Za consisting of all generators acting non–
trivially on the VEVat the origin, and let Sn supplement Bα

to the full set of generators of Za. Then, note that a
generator S ∈ Sn can be broken if and only if there exists
B ∈ Bα such that

½P̃μ; S� ∋ B; ð36Þ

where P̃μ are translational generators in the broken phase of
the theory.11 Indeed, the action of S at a point xμ is related to
its action at the origin by the formula

SðxÞ ¼ e−iP̃μxμSð0ÞeiP̃μxμ : ð37Þ

Since the action of Sð0Þ on the vacuum is trivial, S is broken
if and only if (36) holds. Thus, the breakdown of Sn is
always the consequence of the breakdown of Bα. In what
follows, we will call generators Sn partially broken to
distinguish them from Bα. Further, consider the analog of
Eq. (26) for determining γ. Since Bα are independent,
Eq. (28) with Za taken to be Bα are independent as well. On
the other hand, since the action of Sn on the vacuum
reduces to that of Bα, substituting them into Eq. (28) does
not yield new constraints on χ̃ðxÞ. Hence, to exclude the
NGF from χðxÞ, it is enough to choose γ in the form

γ ¼ eiBαξ
α
; ð38Þ

where ξα are the NGF for Bα. Then, by repeating further
steps, one concludes that only Bα should be included into

the coset space, and, hence, only the NGF ξa will be present
in the effective theory.
In the Appendix we justify the prescription above in the

language of induced representations, by employing the
connection between them and CST. From our results it also
follows that when dealing with the redundant fields, the
inverse Higgs phenomenon cannot be considered as a real
physical effect, nor as a gauge fixing condition.

3. Interpreting inverse Higgs phenomenon

From the discussion above we conclude that with the
proper usage of the CST one can avoid introducing
redundant NGF at any step of the construction of an
effective theory. However, the effective Lagrangians
obtained in this way do not provide the required from
the low energy perspective parametrization of DoF: fields
are charged under the action of partially broken generators,
which is not the way a low energy observer will introduce
them. Hence, one should find a way to “uncharge” matter
fields under the action of partially broken generators. For
the theory under consideration, this implies that one should
search for a field redefinition

Vi
a → Ωb

aṼi
b; ð39Þ

where Ωb
a belongs to SOðdÞint and is a function of ψa, the

NGF at hand. If it is possible to compose Ωb
a from ψa, this

will allow to express the transformation of Vi
a under the

action of SOðdÞint through the transformation of Ωb
a. This

will also allow us to uncharge Vi
a under the action of

SOðdÞST , since any such transformation can be completed
to a composition of the diagonal and internal transforma-
tions. Hence, the question is whether a suitable matrix Ωb

a
exists.
Let us show that the answer to the question above is

positive and the procedure of uncharging Vi
a, in fact,

corresponds to employing inverse Higgs phenomenon.
To this end, note that if the fields ωab were true NGF,
Ωa

b could be taken as ΩðωÞab. One should therefore find a
combination of ψa that has the same transformation
properties as ωab. This can be achieved by the means of
coset (14) in which ωab are considered as auxiliary fields,
and the desired combination of ψa is provided by the
IHC. Thus, one can use the latter to make the field
redefinition (39).
Note that the suitable expression for the matrixΩa

b can be
found within any coset space, including ωab, not neces-
sarily the one given in Eq. (14). The latter choice, however,
provides the most convenient expression. Indeed, depend-
ing on the parametrization, Ωa

b can in general include
coordinates and fields other than ψa [13]. As our analysis
shows, the Lagrangians obtained via different parametriza-
tions of the coset are equivalent, and one can switch
between them by suitable fields redefinitions.

11As we saw on examples of this section, P̃μ may differ from
Pμ, the translational generators in the unbroken phase.
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It is instructive to point out the difference in the para-
metrizations of DoF in the theories of this and the previous
sections. As we showed, in the current example employing
inverse Higgs phenomenon amounts to redefining the DoF
(39). In the example of Sec. II A the analogous redefinition
for the field with its “inverse Higgs part” extracted takes the
form

Vi
a → Ωc

aðψÞΩb
cðω̃klÞδibM; ð40Þ

where ω̃kl ¼ Ãkl=M. Hence, the difference is that the first
theory requires the presence of ω̃ab in order to describe the
full set of fluctuations of the vacuum, while the second
theory does not.

III. IMPORTANT CONSEQUENCES

A. Nambu-Goldstone theorem and structure
of effective theories

Let us summarize briefly the results of the previous
section. First, we showed that all broken generators acting
non–trivially on a vacuum at the origin (and only they) give
rise to independent NGF. This constitutes the Nambu–
Goldstone theorem for SSB of spacetime symmetries.
Second, for each partially broken generator one should
introduce an auxiliary field that is excluded from the
content of the theory with the help of IHC. Note that
Eq. (36) guarantees that this step can always be performed.
Different parametrizations of the coset space result in
different ways to eliminate redundant fields in favor of
independent NGF, but all of them are physically equivalent.
To find the number of mNGF, note that in the course of

applying the polar decomposition all 1–forms containing
NGF without differentials can appear only from commuting
out the term

e−iZaξ
aðe−iP̃μxμdeiP̃μxμÞeiZaξ

a ∈ g−1H dgH: ð41Þ

As it was proven in [6], the derivative coupling between
various NGF does not change the total number of gapped
and gapless states. Consequently, there are as many gapped
fields as many NGF enter Eq. (41) without differentials,
which reduces the problem to the explicit calculation
of (41). The only possible exception to this rule are the
NGF entering the 1–form for the translations without
differential—depending on the group under consideration,
they may, in fact, disappear from the effective metric, which
would yield them massless. Hence, the question of mass-
lessness of such modes should be addressed separately.
Due to the possible presence of mNGF, the structure of

effective theories arising from SSB of spacetime sym-
metries is, in general, qualitatively different from that
corresponding to SSB of internal symmetries. In both
cases, a low energy theory contains the strong coupling
scale at which it must be UV completed. But when

spacetime symmetries are involved in SSB, the scales
associated with mNGF will appear as well. At energies
much below these scales, the corresponding mNGF can be
integrated out. Generally, the relation between the strong
coupling scale and the scales of mNGF can be arbitrary. For
example, in the theory of Sec. II A, the strong coupling
scale isM, while the mass of the vector field, ϰ, can, in fact,
be of the order of or even larger than M. If ϰ ≳M, the
dynamics of the vector field can be neglected all the way up
to the UV cutoff of the effective theory. In any case, in a low
energy limit mNGF become inessential [4,13]. However,
their presence is important from the perspective of a UV
completion which cannot be successfully made without
adding mNGF at some stage [3].
Further, we note that mNGF can always be redefined to

transform linearly under the action of the full symmetry
group. Indeed, suppose we have an mNGF A, which enters
some homogeneously transforming Maurer–Cartan form
ΩA without differential (we have dropped indices for
simplicity). Then, one can make a change of variables

A0 ¼ ΩA: ð42Þ

This represents a valid change of variables because both
sides of the equation contain fields without differentials.
Next, since Maurer–Cartan form ΩA transforms homo-
geneously, so will A0. In this parametrization, A0 transforms
like ordinary matter fields and represents massive nonradial
modes observed in [3].
We would also like to note that from our analysis it

follows that if some subgroup of a symmetry group acts
trivially on fields at the origin, the generators of this
subgroup never give rise to NGF [17]. As an instructive
example, consider the conformal group and let Kn be the
generators of special conformal transformations. Then,
since K̂nΦ ¼ 0 for a quasiprimary Φ, they do not describe
independent fluctuations of the vacuum. Hence, for exam-
ple, the Conf → ISOð1; dÞ SSB pattern can give rise only
to a single NGF corresponding to the broken dilations. This
implies that the NGF for special conformal transformations
are always auxiliary and must be excluded by employing
the inverse Higgs phenomenon, which agrees with the
result of [18,19]. Also, the outlined above consequence
may be of interest in the context of polynomial sym-
metries [20,21].

B. Comparison with the literature

We would like to start this section by making contact
with [2,6]. As it was shown in these works, redundancies
among NGF appear when some of the broken generators do
not produce independent fluctuations of a background
configuration. Let us illustrate this phenomenon using
theories (3) and (23) as examples. Denote by Φ the
collection of fields forming the background, and consider
the following equation on Δψa, Δωa

b,
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δΦ≡
�
ΔψaP̄a þ

1

2
Δωa

bM̄
b
a

�
Φ ¼ 0: ð43Þ

If nontrivial solutions of this equation exist, then the
field configurations ðψa;ωa

bÞ and ðψa þ Δψa;ωa
b þ Δωa

bÞ
describe the same fluctuation of the background, and,
hence, the set of variables ðψa;ωa

bÞ is redundant. It is easy
to see that for background (5) there are no nontrivial
solutions to Eq. (24). On the other hand, with zero value of
the vector field, Eq. (24), the solution is of the form

ΔψaðxÞ ¼ xbαabðxÞ; Δωa
bðxÞ ¼ αabðxÞ; ð44Þ

where αabðxÞ is an arbitrary antisymmetric tensor field. The
existence of such solutions for theory (23) reflects the fact
that M̄a

b are partially broken—they annihilate the vacuum at
the origin but commute with the unbroken translations to the
broken P̄a. This is the reason why Eq. (43) has nontrivial
solutions. As our analysis shows, the NGF ωab are auxiliary
fields and should not be interpreted as physical DoF. Note
that one can come to the same conclusion by noticing that it is
possible to nullify ωab in the whole spacetime by choosing
αab properly. On the other hand, an attempt to nullifyψa fails
since the corresponding function αab will be singular at the
origin of coordinates.
Next, we would like to note that our construction is in a

full agreement with the results of [11]. There, it was noticed
that if there are functional relations between Noether
currents associated with broken symmetries, then the
corresponding NGF are redundant and should not be
introduced as independent fields. In our approach, these
redundant NGF are identified as auxiliary fields from the
very beginning. Although the reasoning leading to this
equivalence is very similar to the previous one, let us
provide it for illustrative purposes. Consider a scalar field
theory with a coordinate–dependent (say, z–dependent)
VEV. Then, since the Lorentz generators act trivially on the
scalar field at the origin, they are only partially broken and,
hence, the corresponding NGF are auxiliary. To arrive at the
same result by using the method of [11], note that the action
of the Lorentz group in the whole spacetime is given by
formula (37). Since Mzμ and Pν commute to the broken
translation Pz, the Lorentz generators act nontrivially at a
general spacetime point. Combined with the trivial action at
the origin, this results in the following functional depend-
ence of the energy–momentum and the angular momentum
tensors,

Mλ
zν ¼ zTλ

ν − xνTλ
z: ð45Þ

Hence, according to [11], NGF for the Lorentz group are
redundant and one should not introduce them as indepen-
dent fields. The generalization of this example to general
case is straightforward.

Finally, wewould like to make contact with [3]. From the
discussion above we see that what was argued to be a new
strong coupling scale in this work is nothing but the scale at
which the effect of mNGF on the low energy physics
cannot be neglected anymore. Namely, since the Lorentz
and internal rotations were broken down to the diagonal
subgroup, and since the action of the internal group at the
origin is nontrivial, the corresponding NGF are physical.
Hence, the theory studied in [3] must include mNGF. In
particular, since these fields can be defined to transform
linearly under the action of the full symmetry group, they
were not recognized as the fields needed to restore the
broken symmetries.

C. Inverse Higgs phenomenon in massive gravity

The obtained results allow us to reveal versions of
massive gravity that have not been studied so far.
Namely, to restore diffeomorphism and local Lorentz
invariance, one usually introduces 10 Stukelberg fields
[22,23]: 4 scalars φa, restoring diffeomorphism invariance,
and 6 antisymmetric spin–2 fields Λμν restoring local
Lorentz transformations.12 However, the results of Sec. II
give us a hint that the field Λμν may not be independent,
and, hence, the full invariance can be restored by only 4
fields, as it was suggested in [25]. To show that such
theories are possible, consider a typical term appearing in
massive gravity [26–28],

LdRGT ¼ ϵabcd1
a ∧ eb ∧ ec ∧ ed; ð46Þ

where 1a ¼ δaμdxμ and ea are the tetrads. The 1–form 1a

plays a central role in this construction and is responsible
for the breakdown of diffeomorphism and local Lorentz
invariance. Note, however, that Lagranian (46) is invariant
under the diagonal subgroup of the Lorentz groups acting
on tetrad and spacetime indices. Hence, it corresponds to
the following “SSB pattern” [24],

SOgc × SOloc → ðSOgc × SOlocÞdiag; ð47Þ

where SOgc and SOloc act on spacetime and tetrad indices
respectively. This situation is analogous to the one we
studied in the examples of Sec. II, where it was possible to
realize the similar pattern with the different amount of
fields. In particular, if we have at hand a field φa trans-
forming as a vector in the broken phase, then one can
introduce an auxiliary field

ωμν ¼ ∂ ½μφν�; Λμν ¼ eωμν ; ð48Þ

12In [24] the symmetries are restored by introducing 16 fields.
We do not consider this case here, though our discussion applies
to it as well.
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which allows to realize all of the symmetries by only 4
Stuckelberg fields. This would be the case when Λμν is not
associated with physical DoF. In the context of decoupling
limit and other aspects of massive gravity, this possibility
has not yet been studied in the literature. In particular, the
analysis of [22,23] does not cover this case since it is not
valid to vary the action with respect toΛμν when the latter is
given by (48). We leave any more detailed consideration of
such theories for elsewhere.
Finally, we would like to mention the similarity between

the model of Sec. II A and that of [29]. The latter work is
devoted to the UV completion of Lorentz–violating mas-
sive gravity, and its matter sector has the same structure as
the example of Sec. II A. More precisely, the scalar and
bi–fundamental fields of [29] acquire a time–dependent
VEV very similar to Eq. (5), which allows to give a mass to
the graviton in the IR phase. We conclude that theories
admitting mNGF can play an important role in studies of
possible UV completions and IR modifications of general
relativity.

IV. CONCLUSION

In this paper, we established the Nambu–Goldstone
theorem for SSB of spacetime symmetries. Namely, we
showed that the careful use of the polar decomposition
uniquely fixes the NG sector of a theory. All broken
generators acting nontrivially on a vacuum at the origin
give rise to independent NGF, while the remaining fields
are auxiliary. Massive nonradial modes, which one may
have to introduce to UV complete a theory resulting from
SSB of spacetime symmetries, are nothing but mNGF.
They can be made to transform linearly under the action of
the full symmetry group.
We also clarified the physical meaning of the inverse

Higgs phenomenon. Contrary to often seen interpretation,
its aim is not to reduce the number of DoF in the effective
theory. Instead, it is used to find all NGF that transform
non–linearly under the action of the broken generators. The
other NGF may or may not be present in the theory,
depending whether they are needed or not to complete the
set of possible fluctuations of the vacuum. In particular,
when the CST is used for obtaining Lagrangians with gauge
invariance [24,30–32], following inverse Higgs phenome-
non accounts for not using some of the modes. The
obtained insight into the meaning of the inverse Higgs
phenomenon and possible presence of mNGF can be
relevant in massive gravity [24] and in a so-called self-
gravitating medium [33].
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APPENDIX: COSET CONSTRUCTION
REVISITED

In this Appendix we provide a mathematical justification
of the rule formulated in Sec. II B for determining which
generators must be present in the coset space. As we
demonstrate, the rule follows directly from the method of
induced representations.

1. Induced representations

We start with a brief outline of the method of induced
representations [34–36], which allows us to fix the nota-
tions and to remind the underlying structure of the con-
struction. Let G be a symmetry group,13 A its chosen
homogeneous space, and H a stability group of some point
0⃗ in A. Since A is the homogeneous space of G, there is a
one–to–one correspondence,

A ¼ G=H: ðA1Þ

Denote by Vi the generators of H and by Pμ the rest of the
generators of G. Then, Eq. (A1) establishes the isomor-
phism between A and the orbit of 0⃗ under the action of an
element gH of the coset space G=H,

gH ¼ eiPμxμ : ðA2Þ

Within this isomorphism, an arbitrary element of G=H is
identified with the point of A obtained by acting by the
former on 0⃗. As gH is uniquely characterized by xμ, it is
natural to refer to Pμ as generators of translations and to xμ

as coordinates onA. Consider further the left action ofG on
G=H, which for arbitrary g ∈ G can be written as14

g · gH ¼ g0Hðg; gHÞ · hðg; gHÞ; ðA3Þ

with hðg; gHÞ ∈ H. This naturally defines the transforma-
tion rule of gH under the action of G to be

gH → g · gH · h−1ðg; gHÞ∶ xμ → x0μðg; xμÞ; ðA4Þ

which can be thought of as a change of coordinates.
Given the spaceA and the action ofG on its coordinates,

we can introduce fields that are defined on A and form a
representation of G. This is done by the method of induced
representations, which goes as follows. First, consider a
vector space V on which H acts by some linear represen-
tation T ¼ TðhÞ,

TðhÞ∶ V → V∶ ∀ψ ∈ V → TðhÞψ : ðA5Þ

13Below we assume that the action of G is global and that G
does not include discrete elements.

14Considering the right action of G on G=H would lead to an
equivalent representation of G.
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As the next step, ψ’s are promoted to functions with the
domain A, taking values in V,

ψ → ψðxÞ; ðA6Þ

where we used the fact that each representative of G=H is
uniquely determined by the values of xμ. Finally, one
defines the action of G on this space of functions to be

TðgÞψðxÞ ¼ Tðh−1ðg−1; gHÞÞψðx0ðg−1; xÞÞ; ðA7Þ

where h is defined from Eq. (A3) for gH taken at the point
xμ. The obtained representation ofG, acting on xμ and ψðxÞ
via Eqs. (A4) and (A7) accordingly, is called the induced
representation. In particular, it can be verified that this is
indeed a (nonlinear) representation of G on the space of
V–valued functions on A.
An illustrative example of the application of the method

of induced representations is the construction of represen-
tations of the Poincaré group from those of the Lorentz
subgroup. In this case, one has G ¼ ISOð1; dÞ;A ¼
M1;d; H ¼ SOð1; dÞ and Pm are the usual translation
generators. To obtain a representation of the Poincaré
group, one first introduces a representation of the
Lorentz group, which is characterized by spin. Then, the
elements of this representation are promoted to dynamical
fields by making them functions of xμ, thus forming the
space of the representation of the Poincaré group. Finally,
one defines the action of the latter on the coordinates and
fields according to Eqs. (A4) and (A7), which results in the
usual well-known expressions. As another example, the
same procedure can be applied to the construction of
representations of the AdS group, which corresponds to
inducing representations of SOð1; dÞ to those of SOð2; dÞ.
In this case we have G ¼ SOð2; dÞ;A ¼ AdS1;d and
Pn ¼ M−1;n [36].
The outcome of the discussion above is that the fields are

introduced via the two–step construction. First, one intro-
duces a representation of H on a vector space V, without
appealing to A in any way. And only when this represen-
tation is induced to that of G, do the vectors ψ of V are
replaced by the fields with the domainA. Note that ψ’s can
be regarded as the fields defined at the single point 0⃗ of A,
since at this point the induced representation, Eq. (A7),
reduces to the initial one, Eq. (A5). Speaking loosely, the
induction of the representation amounts to extending the
domain of ψ from 0⃗ to the entire A in a consistent way.

2. Induced representations and SSB

Let us now apply this construction in the case when some
of the symmetries are spontaneously broken. That is,
consider a theory defined on A, which develops some
nonzero VEV. Then, from the geometric perspective this
implies that the effective theory describing the fluctuations

on top of this background is defined on A accompanied
with the VEV of the fields at each point. We will call this
space Ã. For example, if some scalar φ develops constant
VEV φ0; Ã is a set of points ðxμ;φ0Þ. In the case of SSB
of spacetime symmetries, the situation gets complicated
by the fact that fields are allowed to have coordinate–
dependent VEV. Let us illustrate this subtlety using the
theory of Sec. II A as an example. In this case the space Ã
consists of the points ðxν; μ2xν;MδνaÞ. Clearly, the action of
Pμ on this space is not transitive, and, hence, one should
search for new “effective” translational generators P̃μ that

would act transitively on Ã. For the case under consid-
eration, they are formed by the unbroken combinations of
the internal and spacetime translations, which we used in
coset space (14). Note, however, that, in general, the
generators P̃μ acting transitively on Ã may not exist.
For example, this situation takes place for the scalar domain
wall. Below we will assume that this is not the case,
although the reasoning presented here can be generalized to
such situations.
To proceed further, let us fix Ã to be a set of points

ðxμ;φαðxÞÞ for some φαðxÞ (α can stand for spacetime or
internal indices), H0 to be the stability group of Ã at 0⃗, and
Za to be the set of generators supplementing P̃μ and the
generators of H0 to the full set of generators of G. Then,
note that the range of the fluctuations of the background at
0⃗ is formed by the points ð0⃗;ψÞ with all possible values of
ψ . To reflect this fact, we introduce the quotient space of G
by ðH0 ×AÞ,

gH0
¼ eiZaξ

a
: ðA8Þ

This step is very similar to introducing the coordinates on
A via coset (A2), except for the fact that the action of coset
(A8) on Ã at 0⃗ establishes the isomorphism between ξa and
ψ . Importantly, (A8) yields all of the NGF (which at this
stage are vectors) that must be present in the theory to
realize G nonlinearly. The action of h ∈ H on ξa is realized
as the left action of H on coset (A8),

gH0
→ h · gH0

· h−10 ðh; gH0
Þ∶ ξa → ξ0aðh; gH0

Þ; ðA9Þ

where h0 ∈ H0 is such that h · gH0
¼ g0H0

· h0. In particular,
the action of all h0 ∈ H0 on ξa is linear, as it follows from

h0 · gH0
¼ ðh0 · gH0

· h−10 Þ · h0: ðA10Þ

After obtaining this representation of H, one should induce
it to that of G. This is done by introducing the exponentials
of the effective translations to coset (A8) and promoting ξa

to functions of xμ,

gH ¼ eiP̃μxμeiZaξ
aðxÞ: ðA11Þ

I. KHARUK and A. SHKERIN PHYS. REV. D 98, 125016 (2018)

125016-10



Once ξa become fields in this way, they can be identified
with the NGF corresponding to the broken generators.
As we see, the accurate use of the method of induced

representations shows that one should include into the coset

only the generators acting nontrivially on the vacuum at the
origin. This provides an independent justification of our
approach to the construction of effective Lagrangians result-
ing from SSB of spacetime symmetries within the CST.
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