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We present a new wormhole solution connecting two points of the same universe separated by finite
distance. Virtually all the existing solutions connect two disconnected universes, or two points of the same
universe that are infinitely far away. We construct our solution by placing two black holes at the antipodes
of the closed de Sitter space with a matter shell between them. The gravitational action of the matter shell
and cosmological constant counteracts attractive gravity between the black holes and makes the whole
configuration static. The whole space outside the wormhole mouths is causally connected, even though the
wormhole is not traversable. The stress energy tensor corresponds to de Sitter vacuum everywhere outside
of the black holes except at the equator where we match the black hole spacetimes, where a shell with
positive energy density appears. We discuss the physical relevance of this solution in various contexts,
including the cosmological constant problem.
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I. INTRODUCTION

The study of wormholes has a long and distinguished
history. The original wormhole solution was discovered by
Einstein and Rosen (ER) in 1935 [1]. In the 1950s and
1960s Wheeler [2] and collaborators emphasized the
importance of wormholes (and topology change) in quan-
tum gravity, as insightfully reviewed in [3]. Then in the
1980s two parallel developments stressed the role of
wormholes in fundamental physics: In the first develop-
ment, Baum [4], Hawking [5] and Coleman [6] focused on
the role of topology change in Euclidean quantum gravity
(see [7] for a review), and they speculated that this process
is crucial for the possible fix of fundamental constants in
nature, and in particular, the cosmological constant.
Around the same time Thorne and collaborators realized
that it was possible to construct “traversable” wormhole
solutions [8,9]. (For an in-depth review of this latter work
consult [10].) More recently there has been a lot of activity
on the subject of wormholes and quantum entanglement

[in the form of the Einstein-Podolski-Rosen (EPR) setup]
since the ER ¼ EPR proposal [11] (see also, [12]).
Such possible connections between topology change in

quantum gravity and the (distribution of) values of funda-
mental constants, as well as the conjectured relation
between wormholes and quantum entanglement represent
the main motivation for our present work. In this paper we
present a new exact solution to vacuum Einstein’s equa-
tions describing a wormhole connecting two causally
connected points of the same universe separated by finite
distance. This new solution is obtained by placing two
black holes at the antipodes of the closed de Sitter space
with a matter shell between them. In this situation the
gravitational action of the matter shell and cosmological
constant counteracts attractive gravity between the black
holes and makes the whole configuration static. An
interesting feature of this solution (and what makes it
substantially different from the maximal extension of
Schwarzschild–de Sitter black hole) is that causal commu-
nication is in principle possible across the equator since the
cosmological de Sitter horizon does not have to be crossed.
We show that the metric is nonsingular at the equator, but a
shell with positive energy density appears there. Motivated
by this solution, we then discuss its physical relevance in
the contexts of the dS=CFT [13–18] and AdS=CFT [19–21]
duality and the possible relationship of wormhole configu-
rations and quantum entanglement, especially in the setting
of the Baum-Hawking-Coleman proposal.
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II. WORMHOLE SOLUTION

The first wormhole solution was originally constructed
by Einstein and Rosen in [1]. This wormhole connects two
spacetime points through two black holes. If we start from
the static black hole metric in the Schwarzschild form

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

1 − 2M
r

þ r2dΩ ð1Þ

and apply a simple coordinate transformation, u2¼r−2M,
we find

ds2 ¼ −
u2

u2 þ 2M
dt2 þ 4ðu2 þ 2MÞdu2 þ ðu2 þ 2MÞ2dΩ:

ð2Þ

This metric contains two asymptotically flat spacetimes,
u > 0 and u < 0, which are connected at u ¼ 0. The
geometry is shown in Fig. 1(a). In this representation,
the wormhole connects two different universes, and as such
it does not allow for shortcuts connecting separate points in
the same universe. To circumvent this feature, these two
universes are sometimes artificially connected at infinity to
make the whole construct look as if it were one single
universe, e.g., as in Fig. 1(b). Since the geometry is static,
one can argue that two distant points are in causal contact
since the signal has infinite time to travel between them
(that is, outside the wormhole). However, since the two
black holes are still infinitely far away, they cannot have
any useful communication or interaction outside the worm-
hole. This might not be a serious problem; however it
renders this solution useless when such interaction is
needed, e.g., as in the ER ¼ EPR conjecture [11].
In the present paper, we want to construct a wormhole

solution which connects two black holes that are a finite
distance apart, and which can still communicate outside the
wormhole. At first glance, it appears that we need a time-
dependent solution, since two black holes that are finite
distance apart are always attracted to each other. One can
achieve a static configuration by assigning some charge to
the black holes to counteract gravity. Such a solution might
exist, but it is not clear if it can be found in analytic form.

Alternatively, to overcome this problem, we consider a static
closed universe. We place two Schwarzschild black holes at
the two antipodes (say the north and south poles, respec-
tively), as in Fig. 2(a). The black holes still gravitationally
attract each other and make a static solution impossible to
find. Therefore, we work in de Sitter space endowed with
positive vacuum energy density (cosmological constant),
which produces a repulsive force that could balance the
gravitational attraction of two black holes. Also, we intro-
duce a matter shell between the black holes. Thus, the new
solution is obtained by placing two black holes at the
antipodes of the closed de Sitter space with a matter shell
between them. In this situation the gravitational action of
the matter shell and cosmological constant counteracts
attractive gravity between the black holes and makes the
whole configuration static.
For our purpose, we write a metric for the closed

spherically symmetric de Sitter space in the form

ds2 ¼ −AðλÞdt2 þ BðλÞdλ2 þ r2ðλÞdΩ; ð3Þ

where rðλÞ is the radial coordinate defined as
ffiffiffiffi
S
4π

q
, while S

is the surface of a two-sphere with the center located at the
north pole. The Einstein tensor for this metric is

Gt
t ¼

2r00Brþ Br02 − rr0B0 − B2

r2B2
; ð4Þ

Gλ
λ ¼

Ar02 þ rr0A0 − BA
BAr2

; ð5Þ

Gθ
θ ¼ ð4r00A2Bþ 2A00BAr − 2B0r0A2 þ 2A0r0BA

− A0B0Ar − A02BrÞ=ð4rA2B2Þ; ð6Þ
Gϕ

ϕ ¼ Gθ
θ: ð7Þ

The prime denotes derivative with respect to λ. We now
write down the well-known Schwarzschild black hole
metric in de Sitter space [22]

(a) (b)

FIG. 1. (a) is the original wormhole solution constructed by
Einstein and Rosen. The wormhole connects two different
universes. (b) is the same solution as (a), but the universes are
connected at infinity. While the whole construct looks as if it were
one single universe, the black holes are still infinitely far apart.

(a) (b)

FIG. 2. (a) represents closed de Sitter space with two black
holes located at the north pole and south pole respectively.
(b) represents the same black holes connected by a wormhole.
There is a mass shell at the equator marked with a dashed line.
Now the causal signal can go either through the wormhole
or across the equator which connects the north and south
hemispheres.
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ds2 ¼ −
�
1 −

2M
r

− r2
�
dt2 þ dr2

1 − 2M
r − r2

þ r2dΩ; ð8Þ

where we set the Hubble parameter (and thus, essentially,
the cosmological constant) to unity. By Birkhoff’s theorem,
this metric is the unique solution representing a black hole
in de Sitter spacetime. We use this metric to describe two
patches in the north and south hemispheres as shown in the
Fig. 2(a). We locate the north pole at the origin, r ¼ 0.
Since the north and south hemispheres are copies of

Eq. (8), we should find the value of the coordinate r that
corresponds to the equator. We can now use the physical
requirement which states that on the south hemisphere a
test particle is attracted to the south pole, while on the
north hemisphere a test particle is attracted to the north
pole. This implies that there is no net force at the equator,
and consequently, the gravitational acceleration must van-
ish at that location. Therefore, the required condition reads

∂rgtt ¼ 0: ð9Þ

From Eq. (8) we find the location of the equator at
r0 ¼ M1=3. This is where we connect the north and south
hemispheres.
The only remaining task is to find the explicit form of

rðλÞ across the whole spacetime. To find a match between
the black hole geometry and the background de Sitter
spacetime, we parametrize the transformation as

ðr − 2M − r3Þ ¼ a2sin2λ: ð10Þ

We choose this form because we need a periodic function
to obtain a continuous metric connecting two identical
patches, so that it reduces to the Einstein-Rosen coordinate
transformation for the vanishing cosmological constant
near λ ¼ 0 or λ ¼ π. If the transformation is not continuous
at the equator, we need to introduce some extra matter
contribution there.
Since the north and south hemispheres are connected, the

location of the equator is at the maximum of a2 sin2 λ,
which is at λ ¼ π=2. From Eq. (10) and the radial location
of the equator, r0 ¼ M1=3, we find the value of a2 as

a2 ¼ M1=3 − 3M: ð11Þ

Since a2 sin2 λ monotonically increases from λ ¼ 0 to
λ ¼ π=2, the left-hand side of Eq. (10) must be a mono-
tonically increasing function of r from the black hole
horizon to r0. Therefore M must satisfy

M < 3−
3
2: ð12Þ

This condition puts a restriction on the black hole mass that
gives a satisfactory solution. Since we set the Hubble
parameter to 1, this black hole mass is given in units of the

inverse Hubble parameter, which in turn depends on the
cosmological constant of de Sitter space. We can now write
down the solution to Eq. (10) as

r ¼ cosðαÞffiffiffi
3

p − sinðαÞ; ð13Þ

α ¼ arctanð
ffiffiffiffiffiffiffiffiffiffiffi
3−81b2

p
9b Þ

3
; ð14Þ

b ¼ M þ a2

2
sin2λ; ð15Þ

which gives the explicit form of the coordinate rðλÞ in the
metric (3). The remaining metric elements in Eq. (3) are

A ¼ 1 −
2M
rðλÞ − r2ðλÞ; ð16Þ

B ¼ 1

1 − 2M
rðλÞ − r2ðλÞ

�
drðλÞ
dλ

�
2

: ð17Þ

Note that the resulting metric looks like that of the
Schwarzschild black hole in de Sitter space. However, in
the r and t coordinates one sees only the local geometry.
By introducing the λ parameter we are nontrivially match-
ing the two copies. The λ parameter determines the physical
metric across the whole spacetime, except at the equator,
where B ¼ 0. To connect to the equator smoothly, we use
the coordinate transformation

r ¼ r0 − jξj; ð18Þ

which gives the following metric

ds2 ¼ −
�
1 −

2M
r

− r2
�
dt2 þ dξ2

1 − 2M
r − r2

þ r2dΩ: ð19Þ

In these coordinates the equator is located at ξ ¼ 0, while
two black hole horizons are at ξ ¼ �ðr0 − rhÞ, where rh
denotes the radius of the black hole horizon. Since
∂2
ξr ¼ −2δðξÞ, a delta function appears in the Einstein

tensor

Gt
tjξ¼0 ¼

−4δðξÞ
rB

; ð20Þ

Gλ
λjξ¼0 ¼ 0; ð21Þ

Gθ
θjξ¼0 ¼ Gθ

θjξ¼0 ¼
−2δðξÞ
rB

: ð22Þ

We have kept only the terms with δðξÞ, since only the delta
function remains after integration. The nonzero elements of
the Einstein tensor indicate that there is a positive energy
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density and tension at the equator. The geometry of
this matter distribution is described by a shell located at
ξ ¼ 0, or equivalently r ¼ r0. Thus, to smoothly cover the
whole spacetime, we need to use the λ parametrization
everywhere except around the equator, where we need to
switch to the ξ parameter.
The null energy condition and the weak energy condition

are easily checked by looking at

Tαβxαxβ ≥ 0 ð23Þ

where xα is a null or timelike vector. In general relativity
Gα

β ¼ Tα
β , implying jTt

tj ¼ 2jTθ
θj ¼ 2jTϕ

ϕj. These two con-
ditions are always satisfied at the equator. At the same time,
since jTt

tj > jTθ
θj ¼ jTϕ

ϕj, the dominant energy condition is
satisfied as well. The strong energy condition requires

T̄αβxαxβ ≥ 0 ð24Þ

where, T̄αβ ¼ ðTαβ − 1
2
trðTÞgαβÞ. The nonzero elements of

T̄αβ are

T̄t
tjξ¼0 ¼

−8δðξÞ
rB

; ð25Þ

T̄λ
λjξ¼0 ¼

4δðξÞ
rB

; ð26Þ

T̄θ
θjξ¼0 ¼ Gθ

θjξ¼0 ¼
2δðξÞ
rB

: ð27Þ

It can be checked that Eq. (24) is satisfied. The strong
energy condition is satisfied at the equator as well. Outside
the mass shell, we have de Sitter vacuum, and the strong
energy condition is violated, as usual.
The total energy, Ee, at the equator can be found by

integrating the Tt
t ¼ Gt

t near the equator:

Ee ¼ −
Z

ϵ

−ϵ
Gt

t4π
ffiffiffiffi
B

p
r20dξ ¼ 16πM1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M2=3

p
: ð28Þ

If M > ð−3 × 27π2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32214π4 þ 28π2

p
Þ3=2, then M > Ee.

This condition has an overlap with Eq. (12). Therefore, it is
possible to satisfy the conditionM > Ee or, it is possible to
arrange for the black hole masses to be greater than the
shell’s energy.
This metric allows for a wormhole throat, located at

λ ¼ 0 or ξ ¼ �ðr0 − rhÞ, to connect the north and south
poles directly, and not through the equator. The relevant
geometry is shown in Fig. 2(b). The global topology of the
resulting spacetime is that of a torus. Since this is a static
universe, any signal can causally propagate from one to the
other black hole across the equator. However, the wormhole
is not traversable because of the existence of the horizon.
Note that the solution connects two black holes in the same

universe. Of course one can connect the north pole to any
other black hole located anywhere in the other universe.
This will make the spacetime structure more complicated.

III. DISCUSSION

We note that the following Ref. [23] has considered some
subtleties related to the Schwarzschild–de Sitter solution,
however, without addressing the possibility of a wormhole
solution. Our solution has some superficial similarities to
the classic paper [22], where a maximal extension of the
Schwarzschild–de Sitter solution was briefly discussed
(see also [24]). However, the crucial difference is that
our construct does not have a cosmological horizon
between the black holes, while this classic paper uses
the full patch of the static de Sitter spacetime and connects
different patches either at the black hole horizon or at the
cosmological horizon. No useful information can travel
through the cosmological or black hole horizons. Therefore
even though the patches might be connected in [22],
observers located in different patches cannot exchange
any useful information with other patches. Our solution
does not use the whole static de Sitter spacetime. It includes
only the spacetime from the black hole horizon to that place
where the gravitational acceleration is 0. Since the space-
time metric is not divergent, the signal can propagate, in
principle, from one patch to the other one without any
problems. If one can avoid the horizon, then a traversable
wormhole may be possible [8]. In our case, the wormhole
throat from one black hole to the other black hole is not
traversable, because there is a usual Schwarzschild–de
Sitter black hole horizon. Note that there exist traversable
wormhole solutions in the available literature [25–27]. A
traversable wormhole may be constructed by replacing the
metric near the black hole with a traversable wormhole
solution. Note that our goal was to construct a wormhole
solution such that outside of which any two points can
communicate with each other. In other words, the two
mouths of our wormhole solution open into the same
universe. After this clarification, we collect some com-
ments about the physical relevance of this solution.
(1) First, it would be interesting to understand this

solution from the Euclidean point of view. Of course,
the Lorentzian solution is more physical, and more general,
but the corresponding Euclidean solution should be under-
stood as well, especially in the context of Euclidean
quantum gravity. (2) Next, it would be natural to under-
stand the doubly Wick rotated solution in the AdS context.
The Lorentzian de Sitter and the Euclidean anti–de Sitter
have the same isometries, and thus it should be possible to
relate the Lorentzian de Sitter solution to the Euclidean
anti–de Sitter solution. As noted in [18] (see also [17]),
there exists a natural nonlocal map between these two
spaces that can be used in this context. (3) This in turn leads
to the issue of the possible holographic meaning of the new
wormhole solution. One natural guess is that this solution
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represents an entangled state between two conformal field
theory duals living on the infinite past and future “boun-
daries,” once again discussed in the above paper [18].
In particular, it is natural to conjecture that this is a BCS-
like entangled state well known from the BCS theory of
superconductivity (and also mentioned in the same paper
[18]). Perhaps the 3d example is the simplest here, because
it involves two entangled 2d Euclidean CFT duals. The 3d
example should be also understood from the point of view
of the Chern-Simons formulation of 3d gravity. (4) One can
also envision that the so-called elliptical de Sitter (going
back to Schrödinger’s classic book [28], in which the
antipodal points are identified, and the space is not time
orientable) should be important for the full understanding
of the wormhole solution. The elliptical de Sitter was
pursued in [29] in the early days of dS=CFT correspon-
dence. (5) Also, in the context of Euclidean and Lorentzian
quantum gravity, it would be valuable to understand
multiwormhole solutions. In the dilute wormhole gas
approximation, such multiwormhole solutions should be
independent and weakly interacting. In general, of course,
the dense wormhole gas is not a simple superposition of
individual wormhole solutions. (6) Finally, any discussion
of wormholes always involves the issues of stability and
causality, which are also subtle in the holographic context,
especially in de Sitter space [17,18]. In particular, the dual
Euclidean CFT had unusual conjugacy relations for its
Virasoro generators. Thus one could easily imagine that the
stability of the wormhole bridge is related to such unusual
properties of the holographic dual.
Next, we collect some comments related to the cosmo-

logical constant problem and the relevance of topology
change and wormhole configurations (including, not only
the new wormhole discussed in this paper, but also the
standard maximally extended Schwarzschild–de Sitter
solution) in quantum gravity/string theory. Given such
wormhole solutions in de Sitter space, it is tempting to
think about the old Baum-Hawking-Coleman mechanism
[4–6] for resolving the cosmological constant problem
from a new point of view inspired by the recent discussion
about wormholes and entanglement, or ER ¼ EPR [11,12].
We recall that, in particular, Coleman’s version of the
Baum-Hawking-Coleman mechanism [6], which asserts
that topology change (in Euclidean quantum gravity) may
imply a probabilistic distribution for coupling constants in
the relevant effective field theory (based on Euclidean
quantum gravity coupled to matter) and, in particular, that
the relevant probability distribution (in the dilute wormhole
approximation) for the cosmological constant is peaked
around 0þ. Nevertheless, there are many problems with this
proposal:
(A) Euclidean quantum gravity has many conceptual

issues, and thus it might not be entirely trustworthy (even
though the AdS=CFT correspondence has clarified some of
its aspects), and the Lorentzian analysis gives complex

phases, so the Baum-Hawking-Coleman measure for the
cosmological constant is not peaked around any real value
(as shown by Polchinski in [30]). (B) The proposal suffers
from the menace of the giant wormholes [as pointed out
by Kaplunovsky (unpublished) and Fischler and Susskind
in [31] ]. (C) The proper analysis (claimed to have been
done by Fischler et al. [32]) asserts that Coleman’s proposal
should be reinterpreted from the point of view of infrared
divergences in quantum gravity (which connects to the
current discussion about soft modes and deep infrared
physics [33]). (D) There was a philosophical dissatisfaction
that this proposal in some sense ignores short-distance
physics, even though it does emphasize the role of non-
locality in the cosmological constant problem. (A few nice
and balanced reviews on this subject are presented in
[34,35]. For a discussion of the Baum-Hawking-Coleman
measure and holography, see [36].)
However, if we follow the idea of connecting holography

and the Baum-Hawking-Coleman proposal [36] and the
recent suggestion that wormholes (à la ER bridges) can be
understood as being “dual” (or equivalent, in some sense)
to entanglement (à la EPR), the so called “ER ¼ EPR”
[11,12], we could rephrase the Coleman proposal from the
point of view of entanglement of degrees of freedom at
short distance and long distance (in a Lorentzian picture of
quantum gravity). Note that in this case the wormholes
cannot be traversed. In this way, one would end up with
nonlocality (the good feature) and perhaps evade the
problem of giant wormholes. This could provide a proper
Lorentzian proposal (in the Euclidean picture, the entan-
glement does not really make sense, because we cannot
define spacelike separated regions), and finally, we might
connect to the recent discussion of the relevance of soft
modes in the infrared [33] in the context of quantum gravity
and the cosmological constant problem. Both the high
energy and low energy modes should be essential from this
new point of view. Thus, according to this new scenario, the
(maximal) entanglement of high energy and low energy
modes (and, thus, the maximal entanglement of the two
holographically dual Euclidean CFTs) should be crucial for
understanding why the Universe is large.
In this way one would be turning the Baum-Hawking-

Coleman proposal upside down in order to explore the good
feature of nonlocality via entanglement, while (hopefully)
avoiding the bad features of Euclidean quantum gravity
and Euclidean effective field theory with topology change.
(We should also note the recent criticism of Euclidean
quantum gravity and the need for a fundamental Lorentzian
description in [37].) There are also connections here
with the recent research on quantum gravity/string theory
[38–45] with intrinsic nonlocality, and other approaches to
the cosmological constant problem, such as the sequester
mechanism [46], which invoke the Coleman mechanism, at
least, in spirit. (For other connections between wormholes
and cosmology, see [47].)
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IV. CONCLUSION

In conclusion, we have presented here a new wormhole
solution connecting two causally connected points of the
same universe separated by finite distance. This solution
was constructed by placing two black holes at the
antipodes of the closed de Sitter space with a matter shell
between them. By utilizing the gravitational action of the
matter shell and cosmological constant which counteracts
attractive gravity between the black holes the whole
configuration can be made static. The obtained spacetime
does not have a cosmological horizon between the black
holes which makes it substantially different from the
maximal extension of the Schwarzschild–de Sitter sol-
ution. The metric can be smooth at the equator, but
some matter distribution with positive energy density
must be placed there. Motivated by this solution, we
have then outlined its physical relevance in the context
of the relation between wormhole configurations and
quantum entanglement which should be important for

the Baum-Hawking-Coleman proposal, albeit from a new
and more general viewpoint. We plan to explore these
implications elsewhere.
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