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The process of nonlinear electron-positron pair production by an electron colliding with an arbitrary
plane-wave electromagnetic field (nonlinear trident pair production) is studied analytically and numeri-
cally. Special emphasis is put on the properties of the transition amplitude. In fact, its original expression as
resulting from applying the Wick’s theorem turns out to be divergent. By utilizing a functional relation
derived from gauge invariance, however, the amplitude is regularized and investigated in different regimes.
In particular, the amplitude is divided into a two-step and a one-step contribution, depending on the scaling
dependence on the laser pulse duration. The corresponding contributions to the positron angular
distribution spectra and the resulting interference terms are studied numerically, emphasizing the
possibility of measuring experimentally the one-step contribution.
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I. INTRODUCTION

The prediction of QED that massive particle-antiparticle
pairs can be created solely from electromagnetic fields is
certainly among its prominent features. The recent progress
in laser technology (see, e.g., [1–4]) opens the possibility of
observing the production of electron-positron pairs in the
collision of high-energy photons and intense laser beams
[nonlinear Breit-Wheeler pair production (NBWPP)]. This
process has been thoroughly investigated theoretically in
recent years, also accounting for effects of the laser pulse
form [5–11] (see [12] for publications until 2012). Since
usually high-energy photons are produced via electron
backscattering, alternatively, an electron-positron pair can
be produced inside a strong laser field by a high-energy
photon emitted by an ultrarelativistic electron colliding
with the same laser field [nonlinear trident pair production
(NTPP)]. Conventionally, the process can be described as
commencing via two channels where loosely speaking the
photon emission and pair production either occur at the
same laser phase (direct channel) or at two separate ones
(cascade channel). A unified theoretical description based
on strong-field QED has been recently proposed to analyze

NTPP in a plane wave [13,14] and in a constant-crossed
field [15].
For an electron (massm and charge e < 0) of initial four-

momentum pμ
i ¼ ðεi; piÞ, with εi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2i

p
(units with

ℏ ¼ c ¼ 4πϵ0 ¼ 1 are used throughout), colliding with a
plane wave of central angular frequency ω0, electric field
amplitude E and central wave four-vector kμ0 ¼ ðω0; k0Þ,
the total NTPP probability is controlled by the two
Lorentz- and gauge-invariant parameters ξ ¼ jejE=mω0

and χ ¼ ððk0piÞ=m2ÞE=Ecr, where Ecr ¼ m2=jej is the
critical field of QED [16] and we introduced the
short notation ðabÞ ¼ aμbμ [the metric tensor is ημν ¼
diagðþ1;−1;−1;−1Þ]. An exact inclusion of the laser field
in the calculations is necessary for ξ≳ 1 [17,18], which is
nowadays routinely achieved at optical laser facilities [2]. At
ξ ≫ 1NTPP occurs with the absorption of a large number of
laser photons and is essentially controlled only by the
parameter χ: it is exponentially suppressed for χ ≪ 1 and
becomes sizable at χ ≳ 1. Present day technology allows for
optical lasers with ξ ∼ 102 [1] and for electron beams with
εi ≈ 4 GeV produced via laser wakefield acceleration [19],
allowing for a thorough experimental investigation of NTPP
also within all-optical setups.
So far only one experiment on NTPP has been success-

fully carried out [20,21], where, however, the direct
channel was strongly suppressed. For some time quantita-
tive theoretical studies of NTPP were available only in the
idealized cases of monochromatic lasers [13] and constant-
crossed fields [15]. The latter study particularly assessed
the validity of approximating trident pair production as a
sequence of photon emission and Breit-Wheeler pair
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production, i.e., neglecting the direct channel, in a constant-
crossed field background, as is commonly done in numeri-
cal simulations of laser-plasma interactions [22–24], and
neglected the interference between exchange diagrams. The
possibility of suppressing the cascade channel has also been
discussed in [13] in the perturbative regime ξ ≪ 1 at
ω0 ∼ 10 eV. Relying on the laser field being (almost)
monochromatic, in that regime the direct channel is found
to be either dominating or comparable with respect to the
cascade channel for different laser frequencies. Most
recently, however, studies of NTPP were amended to also
include the exchange diagram interference in an arbitrary
plane-wave field [25] as well as in a constant-crossed
field [26], finding it to further suppress the contribution
of the direct channel for small quantum parameters χ.
Additionally, the former investigation revealed that for large
ξ, the direct contribution and the interference between the
direct and cascade amplitudes are negligible [25], further
supporting the basic assumption underlying numerical
particle-in-cell schemes to approximate NTPP as the prod-
uct of the probabilities for photon emission and pair
production. Previous studies had mostly focused on the
cascade contribution, which was obtained by employing the
optical theorem and the two-loop mass operator [27–30].
The present work focuses on formal aspects of the full

NTPP amplitude in arbitrary plane-wave fields, different
from earlier studies. We put forward a possible scheme to
analytically disentangle the amplitude of NTPP in an
arbitrary plane-wave field into direct and cascade channels
putting particular emphasis on the amplitude’s gauge
invariance. We demonstrate how this disentanglement
can be employed to identify an explicit cascade contribu-
tion, facilitating identification of the remaining parts as a
true second-order noncascade contribution. We also show
how at the amplitude level this split-up naturally yields a
phase-ordered cascade and a direct contribution depending
only on one laser phase variable. Concerning the exper-
imental observability, we indicate by means of numerical
simulations how in ultrashort laser pulses with ξ ≫ 1 the
two channels scale in the energy distribution of the
produced positron and one of the electrons.

II. THE TRANSITION AMPLITUDE

The background plane-wave field is described by the
four-vector potential AμðϕÞ, which only depends on the
light-cone time ϕ ¼ t − n · x. Here, the unit vector n
indicates the propagation direction of the plane wave.
By introducing the four-dimensional quantity nμ ¼ ð1; nÞ
and by recalling that the metric tensor reads ημν ¼
diagðþ1;−1;−1;−1Þ, it is ϕ ¼ ðnxÞ. Having in mind
obvious differential properties of the four-vector potential
AμðϕÞ and its derivatives, it is clear thatAμðϕÞ is a solution of
the free Maxwell’s equation □Aμ ¼ 0, with□ ¼ ∂ν∂ν. We
also assume towork in the Lorenz gauge ∂μAμ ¼ 0, with the
additional constraint A0ðϕÞ ¼ 0. Thus, if we represent

AμðϕÞ in the form AμðϕÞ ¼ ð0;AðϕÞÞ, then the Lorenz-
gauge condition implies n · A0ðϕÞ ¼ 0, with the prime
indicating the derivative with respect to ϕ. If we make
the additional physically reasonable assumption that
limϕ→�∞AðϕÞ ¼ 0, it results that n · AðϕÞ ¼ 0. By also
introducing two four-vectors aμj ¼ ð0; ajÞ, with j ¼ 1, 2,
such that ðnajÞ¼−n ·aj ¼ 0 and ðaiajÞ ¼ −ai · aj ¼ −δij,
the most general form of the vector potential AðϕÞ reads
AðϕÞ ¼ ψ1ðϕÞa1 þ ψ2ðϕÞa2, where the two functions
ψ jðϕÞ are arbitrary provided that limϕ→�∞ψ jðϕÞ ¼ 0 and
that they are analytically sufficiently well behaved. By
introducing ñμ ¼ ð1;−nÞ=2, it is clear that the four-dimen-
sional quantities nμ, ñμ, and aμj fulfill the completeness
relation: ημν ¼ nμñν þ ñμnν − aμ1a

ν
1 − aμ2a

ν
2 [note that

ðnñÞ ¼ 1 and ðñajÞ ¼ 0]. Below, we will refer to the
longitudinal (n) direction as the direction along the unit
vector n and to the transverse (⊥) plane as the plane spanned
by the two perpendicular unit vectors aj. In this respect,
together with the light-cone time ϕ ¼ t − xn, with
xn ¼ n · x, we also introduce the remaining three light-cone
coordinates T¼ðñxÞ¼ðtþxnÞ=2, and x⊥¼ðxa1 ;xa2Þ ¼
ðx·a1;x·a2Þ. Analogously, the light-cone coordinates of
an arbitrary four-vector vμ ¼ ðv0; vÞ will be indicated as
v−¼ðnvÞ¼v0−vn, with vn¼n·v, vþ¼ðñvÞ¼ðv0þvnÞ=2,
and v⊥ ¼ ðva1 ; va2Þ ¼ ðv · a1; v · a2Þ.
Now, the amplitude Sfi of nonlinear trident pair pro-

duction in the Furry picture at the leading order is given by
(see Fig. 1 for the corresponding Feynman diagrams)

Sfi ¼ ie2
Z

d4xd4yŪpe;seðyÞγμVpp;spðyÞDμνðy − xÞ

× Ūpf;sfðxÞγνUpi;siðxÞ − ff ↔ eg; ð1Þ

where γμ are the Dirac gamma matrices and

Up;sðxÞ ¼
�
1þ en̂ ÂðϕÞ

2p−

�
eif−ðpxÞ−

R
ϕ

0
dφ½eðpAðφÞÞp−

−e2A2ðφÞ
2p−

�g up;sffiffiffiffiffi
2ε

p ;

ð2Þ

Vp;sðxÞ ¼
�
1 −

en̂ ÂðϕÞ
2p−

�
eifðpxÞ−

R
ϕ

0
dφ½eðpAðφÞÞp−

þe2A2ðφÞ
2p−

�g vp;sffiffiffiffiffi
2ε

p

ð3Þ

are the positive- and negative-energy Volkov states with
on-shell four-momentum pμ ¼ ðε; pÞ and spin quantum
number s [18], where

FIG. 1. Lowest-order Feynman diagrams of NTPP.
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Dμνðy − xÞ ¼
Z

d4q
ð2πÞ4

4π

q2 þ i0
ημνe−iqðy−xÞ ð4Þ

is the photon propagator, and where the symbol ff ↔ eg
indicates that the expression on its left has to be subtracted
with the quantum numbers pf, sf and pe, se exchanged
according to the Fermi-Dirac statistics. We stress here that
in contrast to [25] most of our analytical derivations are
based on Eq. (1), i.e., on the process amplitude rather
than its rate. In the above expression of the Volkov states,

we have assumed a unit quantization volume, we have
introduced the notation v̂ ¼ γμvμ for an arbitrary four-
dimensional quantity vμ and the free bispinors up;s and vps,
which are solutions of the equations ðp̂ −mÞup;s ¼ 0 and
ðp̂þmÞvp;s ¼ 0, respectively [18].
By indicating with an index x and y the light-cone

coordinates corresponding to each vertex, due to the
symmetry of the plane wave, it is possible to carry out
the six integrations on the transverse coordinates and on Tx
and Ty, such that the amplitude Sfi has the form

Sfi ¼
ie2

k−

2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16εiεfεeεp

p ð2πÞ3δðpe;− þ pf;− þ pp;− − pi;−Þδð2Þðpe;⊥ þ pf;⊥ þ pp;⊥ − pi;⊥Þ

×
Z

dϕxdϕy

Z
dqþ
2π

e−i½Spe ðϕyÞ−S−pp ðϕyÞþSpf ðϕxÞ−Spi ðϕxÞ� e−iqþðϕy−ϕxÞ

qþ − k2⊥
2k−

þ i0

× ūe

�
1 −

en̂ ÂðϕyÞ
2pe;−

�
γμ
�
1 −

en̂ ÂðϕyÞ
2pp;−

�
vpūf

�
1 −

en̂ ÂðϕxÞ
2pf;−

�
γμ

�
1þ en̂ ÂðϕxÞ

2pi;−

�
ui − ff ↔ eg; ð5Þ

where

SpðϕÞ ¼ −pþϕ −
Z

ϕ

0

dφ

�
eðpAðφÞÞ

p−
−
e2A2ðφÞ
2p−

�
ð6Þ

where the single index in the bispinors indicates both the corresponding four-momentum and the spin quantum numbers,
and where k− ¼ pi;− − pf;− ¼ pe;− þ pp;− and k⊥ ¼ pi;⊥ − pf;⊥ ¼ pe;⊥ þ pp;⊥. The integral in qþ can also be easily taken
by means of the residue method and the amplitude becomes

Sfi ¼
e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16εiεfεeεp
p 2π

k−
ð2πÞ3δðpe;− þ pf;− þ pp;− − pi;−Þδð2Þðpe;⊥ þ pf;⊥ þ pp;⊥ − pi;⊥Þ

×
Z

dϕxdϕyθðϕy − ϕxÞūe
�
1 −

en̂ ÂðϕyÞ
2pe;−

�
γμ
�
1 −

en̂ ÂðϕyÞ
2pp;−

�
vp

× ūf

�
1 −

en̂ ÂðϕxÞ
2pf;−

�
γμ

�
1þ en̂ ÂðϕxÞ

2pi;−

�
uie−i½SBWðϕyÞþSCðϕxÞ� − ff ↔ eg; ð7Þ

where θð·Þ is the step function and

SCðϕÞ ¼ −kþϕþ Spf
ðϕÞ − Spi

ðϕÞ

¼
Z

ϕ

0

dφ

�
pi;þ − pf;þ − kþ þ eðpiAÞ

pi;−
−
eðpfAÞ
pf;−

−
e2A2

2pi;−
þ e2A2

2pf;−

�
ð8Þ

SBWðϕÞ ¼ kþϕþ Spe
ðϕÞ − S−pp

ðϕÞ

¼
Z

ϕ

0

dφ
�
kþ − pe;þ − pp;þ þ eðppAÞ

pp;−
−
eðpeAÞ
pe;−

þ e2A2

2pp;−
þ e2A2

2pe;−

�
ð9Þ

are the corresponding phases of nonlinear Compton scattering and of nonlinear Breit-Wheeler pair production, respectively.
It is worth noticing that, after performing the integral in qþ, the four-momentum of the intermediate photon appears as being
on shell, i.e., kþ ¼ k2⊥=2k−. Below, we will only consider the experimentally most relevant case of a linearly polarized plane
wave. Thus, we write the four-vector potential as AμðϕÞ ¼ Aμ

0ψðϕÞ, such that SCðϕÞ ¼
R ϕ
0 dφ½αCψðφÞ þ βCψ

2ðφÞ þ γC�
and SBWðϕÞ ¼

R ϕ
0 dφ½αBWψðφÞ þ βBWψ

2ðφÞ þ γBW�, with
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αC ¼
eðpiA0Þ
pi;−

−
eðpfA0Þ
pf;−

; αBW¼ eðppA0Þ
pp;−

−
eðpeA0Þ
pe;−

;

ð10Þ

βC ¼ e2A2
0

2

k−
pi;−pf;−

; βBW ¼ e2A2
0

2

k−
pe;−pp;−

; ð11Þ

γC ¼ pi;þ − pf;þ − kþ; γBW ¼ kþ − pe;þ − pp;þ:

ð12Þ

From the expression of the amplitude Sfi in Eq. (7) one
could think that the whole amplitude only contains a
contribution to the two-step channel or cascade process,
as it contains a phase-ordered double integral of the
“product” of the nonlinear Compton scattering amplitude
and of the nonlinear Breit-Wheeler pair production ampli-
tudes, both with the photon being on shell. This is,
however, not the case mainly because the amplitude Sfi
contains contributions from all polarizations of the inter-
mediate photon, whereas the cascade process only stems
from photons having transverse polarization. Another
reason is that the amplitude in Eq. (7) is, on the one hand,
still divergent because some terms do not contain
the external field in the preexponential function which,
on the other hand, can be regularized by enforcing gauge

invariance. The second reason, though, is less fundamental
in the sense that, in the case of a constant-crossed field, it
does not play a role because also the phase integrals which
do not contain the external field in the preexponential
function do converge. In the present case, precisely the
phase integrals corresponding to these terms diverge.
First, we impose that the amplitudeSfi is manifestly gauge

invariant by going back to the expression in Eq. (5) and
requiring that the amplitude not change if the tensor ημν in the
photon propagator is replaced by ημν þ qμλνðqÞ þ qνλμðqÞ,
where λμðqÞ is an arbitrary function of qμ. It is clear from the
appearance of the energy-momentum conserving delta-func-
tions that we can already assume here that q− ¼ k− and q⊥ ¼
k⊥ from the beginning. Moreover, in order to obtain all the
required regularization conditions for the integrals, it is
sufficient to assume that λμðqÞ is a constant four-vector.
Then, since QED is gauge invariant, once the integrals are
convergent, we can be confident that the resulting amplitude
is invariant under a more general transformation of ημν than
the one studied above. Now, one can easily show that by
exploiting the energy-momentum conservation laws pμ

iþ
ðkþþpf;þ−pi;þÞnμ¼pμ

fþkμ and kμþðpe;þþpp;þ−kþÞnμ¼
pμ
eþpμ

p, the invariance of the amplitude under the mentioned
gauge transformation is guaranteed if the “regularizing”
conditions

Z
dϕψaðϕÞe−i½SCðϕÞþSBWðϕÞ� ¼ −i

Z
dϕxdϕyθðϕy − ϕxÞ½αCψðϕxÞ þ βCψ

2ðϕxÞ þ γC�ψaðϕyÞe−i½SCðϕxÞþSBWðϕyÞ�; ð13Þ
Z

dϕψbðϕÞe−i½SCðϕÞþSBWðϕÞ� ¼ i
Z

dϕxdϕyθðϕy − ϕxÞ½αBWψðϕyÞ þ βBWψ
2ðϕyÞ þ γBW�ψbðϕxÞe−i½SCðϕxÞþSBWðϕyÞ�; ð14Þ

with a, b ¼ 0, 1, 2, are fulfilled. The connection between these integral relations and gauge invariance was previously
pointed out for trident pair production [14] and two-photon emission [31,32]. By introducing the quantities

fa ¼
Z

dϕψaðϕÞe−i½SCðϕÞþSBWðϕÞ�; ð15Þ

fab ¼
Z

dϕxdϕyθðϕy − ϕxÞψaðϕxÞψbðϕyÞe−i½SCðϕxÞþSBWðϕyÞ�; ð16Þ

it is clear that, among all of them, only f0, f00, f01, f10, f02, and f20 need to be regularized. The conditions in Eqs. (13) and
(14) already guarantee that

f0j ¼
1

γC
ðifj − αCf1j − βCf2jÞ; ð17Þ

fj0 ¼ −
1

γBW
ðifj þ αBWfj1 þ βBWfj2Þ; ð18Þ

with j ¼ 1, 2. By subtracting now Eqs. (13) and (14), we obtain that f00 ¼ −ðαCf10 þ βCf20 þ αBWf01 þ βBWf02Þ=
ðγC þ γBWÞ and, by exploiting the above regularizing relations for f0j and fj0, that

f00 ¼
1

γCγBW

�
i
αCγC − αBWγBW

γC þ γBW
f1 þ i

βCγC − βBWγBW
γC þ γBW

f2 þ αCαBWf11 þ βCβBWf22 þ αCβBWf12 þ αBWβCf21

�
: ð19Þ
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Finally, the regularization condition for f0 is obtained by summing Eqs. (13) and (14) as we obtain f0 ¼
−ði=2Þ½ðγC − γBWÞf00 þ αCf10 − αBWf01 þ βCf20 − βBWf02� and then, after some algebra,

f0 ¼ −
1

γC þ γBW
½ðαC þ αBWÞf1 þ ðβC þ βBWÞf2�: ð20Þ

Now that all integrals are regularized, we can appropriately replace the divergent integrals in Eq. (7) and the regularized,
explicitly gauge-invariant amplitude reads

Sfi ¼
e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16εiεfεeεp
p 2π

k−
ð2πÞ3δðpe;− þ pf;− þ pp;− − pi;−Þδð2Þðpe;⊥ þ pf;⊥ þ pp;⊥ − pi;⊥Þ

×

�
i
Z

dϕe−i½SBWðϕÞþSCðϕÞ�
�

ūeγμvpūfγμui
γCγBWðγC þ γBWÞ

½ðαCγC − αBWγBWÞψðϕÞ þ ðβCγC − βBWγBWÞψ2ðϕÞ�

−
ūfγμui
2γC

ūe

�
en̂ ÂðϕÞ
pe;−

γμ þ γμ
en̂ ÂðϕÞ
pp;−

−
e2A2ðϕÞn̂
pe;−pp;−

nμ
�
vp þ

ūeγμvp
2γBW

ūf

�
en̂ ÂðϕÞ
pf;−

γμ − γμ
en̂ ÂðϕÞ
pi;−

þ e2A2ðϕÞn̂
pf;−pi;−

nμ
�
ui

�

þ
Z

dϕxdϕyθðϕy − ϕxÞMμ
BWðϕyÞMC;μðϕxÞ

�
− ff ↔ eg; ð21Þ

where we have introduced the regularized integrands

Mμ
CðϕÞ ¼ ūf

�
−
γμ

γC
½αCψðϕÞ þ βCψ

2ðϕÞ� − en̂ ÂðϕÞ
2pf;−

γμ þ γμ
en̂ ÂðϕÞ
2pi;−

−
e2A2ðϕÞn̂
2pf;−pi;−

nμ
�
uie−iSCðϕÞ; ð22Þ

Mμ
BWðϕÞ ¼ ūe

�
−

γμ

γBW
½αBWψðϕÞ þ βBWψ

2ðϕÞ� − en̂ ÂðϕÞ
2pe;−

γμ − γμ
en̂ ÂðϕÞ
2pp;−

þ e2A2ðϕÞn̂
2pe;−pp;−

nμ
�
vpe−iSBWðϕÞ ð23Þ

of the amplitudes of nonlinear Compton scattering and
nonlinear Breit-Wheeler pair production, respectively [it is
clear that the substitution e ↔ f has to be carried out also
inside these amplitudes in Eq. (21)]. The advantage of this
full regularization already on amplitude level is that in the
numerical evaluation no further singular phase integrals are
encountered (see Sec. III). As a downside, on the other
hand, the resulting probabilities do not have a Gaussian
form with respect to the transverse momenta of the final
particle, which, unlike in [25], prevents us from performing
the corresponding integrals analytically. However, as a
sanity check, we have explicitly proven that by expanding
Eq. (21) with respect to the laser amplitude up to first order,
the perturbative amplitude of the linear trident process is
obtained, as it follows by applying the standard Feynman
rules in vacuum QED. This check is particularly important
because it complements the other check at large fields
discussed below Eq. (43). The gauge-invariant expression
(21) of the amplitude Sfi is already close to the separation
between the one-step (direct) channel and two-step (cas-
cade) channel that we want to obtain. As we have already
mentioned, we still need to isolate in the cascade amplitude
only the contribution due to the two transverse polar-
izations of the intermediate photon. It is convenient to
construct a light-cone basis with the lightlike quantities kμ

andnμ, andwith the two transverse polarization four-vectors
Λμ
j ¼ ðnμaνj − nνaμj Þkν=k−. In fact, all these quantities fulfill

the completeness relation ημν ¼ ðnμkν þ nνkμÞ=k− −
Λμ
1Λν

1 − Λμ
2Λν

2 and we can replace this expression of ημν

in all the Lorentz contractions in Eq. (21). It is noteworthy
that employing this replacement for separating the process
amplitude into a coherent and cascade contribution is
different from both Eqs. (11) and (15) of [25]. We will
demonstrate below, however, that in the physical limit of a
constant-crossed field the two approaches reduce to the
same expression, equivalent to the commonly used approxi-
mation of the trident probability being given by a polari-
zation summed product of the Compton and Breit-Wheeler
probabilities [15]. This equivalence was demonstrated in
[25] by employing an expansion of the total process
probability in orders of ξ−1, indicating that the expressions
can indeed be expected to agree only in the limit ξ → ∞,
corresponding to considering a constant-crossed field. For
smaller ξ the splitting derived from replacing ημν by the
above basis set is not unique, analogously to the split-up
proposed in [25] in this regime. On the other hand, we wish
to stress that due to this ambiguity the difference in the
chosen split-ups does not indicate different physics, as a
physical split-up into separate channels is only possible on a
probability level in the limit of vanishing formation length
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(ξ → ∞) of the two subprocesses. In the regime ξ ∼ 1, on the
other hand, any deviation of the total probability, obtained
from squaring Eq. (24), from the constant-crossed field
predictions are physical and one may chose a split-up

depending on which aspects of the process one wishes to
study, as long as the cascade channel reduces to the constant-
crossed field results in the appropriate limit ξ → ∞. The
result of our approach is

Sfi ¼
e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16εiεfεeεp
p 2π

k−
ð2πÞ3δðpe;− þ pf;− þ pp;− − pi;−Þδð2Þðpe;⊥ þ pf;⊥ þ pp;⊥ − pi;⊥Þ

×

�
i
Z

dϕe−i½SBWðϕÞþSCðϕÞ�
�

2

k−

ūen̂vpūfn̂ui
γC þ γBW

½ðαC þ αBWÞψðϕÞ þ ðβC þ βBWÞψ2ðϕÞ�

−
X
j

ūeΛ̂jvpūfΛ̂jui
γCγBWðγC þ γBWÞ

½ðαCγC − αBWγBWÞψðϕÞ þ ðβCγC − βBWγBWÞψ2ðϕÞ
�

þ
X
j

ūfΛ̂jui
2γC

ūe

�
en̂ ÂðϕÞΛ̂j

pe;−
þ eΛ̂jn̂ ÂðϕÞ

pp;−

�
vp −

ūeΛ̂jvp
2γBW

ūf

�
en̂ ÂðϕÞΛ̂j

pf;−
−
eΛ̂jn̂ ÂðϕÞ

pi;−

�
ui

�

−
X
j

Z
dϕxdϕyθðϕy − ϕxÞ½MBW;μðϕyÞΛμ

j �½MC;νðϕxÞΛν
j �
�
− ff ↔ eg: ð24Þ

This expression is particularly suited to studying the
contributions of the intermediate photon’s different polari-
zation states to the full probability. Furthermore, it should
be noticed that the gauge invariance of the amplitude Sfi
does not imply that the contribution of the terms propor-
tional to nμkν and to nνkμ vanishes. In fact, the require-
ment of gauge invariance has already been exploited
and is related to the intermediate photon with four-
momentum qμ. Indeed, one can show that if one first

constructs a basis with the four quantities qμ, nμ and
Λ0μ
j ¼ ðnμaνj − nνaμj Þqν=q−; separates out the transverse

polarization contribution (notice that after the integrals
over the transverse and the T coordinates are taken, one
obtains Λ0μ

j ¼ Λμ
j ); and then imposes gauge invariance, one

again obtains Eq. (24).
The result in Eq. (24) is our main analytical result. By

introducing the reduced amplitudes for the direct and the
cascade channels as

Md ¼ i
Z

dϕe−i½SBWðϕÞþSCðϕÞ�
�

2

k−

ūen̂vpūfn̂ui
γC þ γBW

½ðαC þ αBWÞψðϕÞ þ ðβC þ βBWÞψ2ðϕÞ�

−
X
j

ūeΛ̂jvpūfΛ̂jui
γCγBWðγC þ γBWÞ

½ðαCγC − αBWγBWÞψðϕÞ þ ðβCγC − βBWγBWÞψ2ðϕÞ�

þ
X
j

ūfΛ̂jui
2γC

ūe

�
en̂ ÂðϕÞΛ̂j

pe;−
þ eΛ̂jn̂ ÂðϕÞ

pp;−

�
vp −

ūeΛ̂jvp
2γBW

ūf

�
en̂ ÂðϕÞΛ̂j

pf;−
−
eΛ̂jn̂ ÂðϕÞ

pi;−

�
ui

�
− ff ↔ eg; ð25Þ

Mc ¼ −
X
j

Z
dϕxdϕyθðϕy − ϕxÞ½MBW;μðϕyÞΛμ

j �½MC;νðϕxÞΛν
j � − ff ↔ eg; ð26Þ

we can write the differential trident probability dP summed/averaged over all final/initial spin quantum numbers and
integrated over the final electrons’ momenta as

dP ¼ α2π2

4

1

pi;−

d3pp
ð2πÞ3

1

2εp

X
si;sf;se;sp

Z
d3pe
ð2πÞ3

1

2εe

1

k2−pf;−
½jMdj2 þ jMcj2 þ 2ReðM�

dMcÞ� ð27Þ

where we have exploited the three-dimensional delta
function in the amplitude to take the integral in d3pf
and where α ¼ e2 is the fine-structure constant. This
equation is equivalent to Eq. (4) of [25]. It is worth

pointing out that the probability corresponding to the term
jMcj2 in the integrand should not be identified yet with the
cascade probability. The reason is that the quantity jMcj2
contains interference terms between different (transverse)
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polarizations of the intermediate photon and interference
terms between the two amplitudes differing by the ex-
change of the quantum numbers of the two final electrons.
In order to clearly isolate what we will call the cascade
probability, which reduces to the one computed in [27–30]
in the case of a constant-crossed field, we decompose the
direct and the cascade amplitudes as

Md¼MðefÞ
d;n þMðefÞ

d;1 þMðefÞ
d;2 −MðfeÞ

d;n −MðfeÞ
d;1 −MðfeÞ

d;2 ; ð28Þ

Mc ¼ MðefÞ
c;1 þMðefÞ

c;2 −MðfeÞ
c;1 −MðfeÞ

c;2 ; ð29Þ

with the definition of each single term being clear from the
expression in Eqs. (25) and (26) [for the sake of clarity we

specify that the termMðefÞ
d;n corresponds to the second line in

Eq. (24) and that the indexes 1 and 2 refer to the different
transverse polarizations of the intermediate photon]. Ac-
cording to this splitting of the amplitude, we write the
differential probability as dP ¼ dPc þ dPd þ dPi, where

dPc ¼
α2π2

4

1

pi;−

d3pp
ð2πÞ3

1

2εp

X
si;sf;se;sp

Z
d3pe
ð2πÞ3

1

2εe

1

k2−pf;−

× ½jMðefÞ
c;1 j2 þ jMðefÞ

c;2 j2 þ jMðfeÞ
c;1 j2 þ jMðfeÞ

c;2 j2�

¼ α2π2

2

1

pi;−

d3pp
ð2πÞ3

1

2εp

X
si;sf;se;sp

Z
d3pe
ð2πÞ3

1

2εe

1

k2−pf;−

× ½jMðefÞ
c;1 j2 þ jMðefÞ

c;2 j2� ð30Þ

is the cascade-channel probability,

dPd ¼
α2π2

4

1

pi;−

d3pp
ð2πÞ3

1

2εp

X
si;sf;se;sp

Z
d3pe
ð2πÞ3

1

2εe

1

k2−pf;−

× ½jMðefÞ
d;n j2 þ jMðefÞ

d;1 j2 þ jMðefÞ
d;2 j2 þ jMðfeÞ

d;n j2

þ jMðfeÞ
d;1 j2 þ jMðfeÞ

d;2 j2�

¼ α2π2

2

1

pi;−

d3pp
ð2πÞ3

1

2εp

X
si;sf;se;sp

Z
d3pe
ð2πÞ3

1

2εe

1

k2−pf;−

× ½jMðefÞ
d;n j2 þ jMðefÞ

d;1 j2 þ jMðefÞ
d;2 j2� ð31Þ

is the direct-channel probability, and dPi ¼ dP − dPc −
dPd is the sum of the several interference terms, which do
not need to be reported here (since dPi can be negative we
have used a different symbol to indicate it). Before passing
to the numerical results, we would like to show explicitly
how the quantity Pc ¼

R
dPc, with the integral being meant

to be over the positron momentum [see Eq. (30)], reduces to
the cascade probability in the local constant field approxi-
mation (see [27–30]). Since in Eq. (30) we decided to write
the probability in terms ofMðefÞ

c;j , we consider the following
one-vertex processes:
(1) Nonlinear Compton scattering by an electron with

four-momentum pμ
i and spin quantum number si

which emits a (real) photon with four-momentum kμ

and (transverse) polarization j and remains with
four-momentum pμ

f and spin quantum number sf;
(2) Nonlinear Breit-Wheeler pair production by a (real)

photon with four-momentum kμ and (transverse)
polarization j, which transforms into an electron
with four-momentum pμ

e and spin quantum number
se and a positron with four-momentum pμ

p and spin
quantum number sp.

The regularized probability amplitudes of these two proc-
esses can be written as

SC;j ¼ −ie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

8εiεfω

s
ð2πÞ3δðpf;− þ k− − pi;−Þ

× δð2Þðpf;⊥ þ k⊥ − pi;⊥Þ
Z

dϕxMC;νðϕxÞΛν
j; ð32Þ

SBW;j¼−ie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

8εeεpω

s
ð2πÞ3δðpe;−þpp;−−k−Þ

×δð2Þðpe;⊥þpp;⊥−k⊥Þ
Z

dϕyMBW;νðϕyÞΛν
j; ð33Þ

and we compare these amplitudes with the cascade
amplitude

SðefÞc;j ¼ −e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4πÞ2
64εiεfω

2εeεp

s
ω

k−
ð2πÞ3δðpe;− þ pf;− þ pp;− − pi;−Þδð2Þðpe;⊥ þ pf;⊥ þ pp;⊥ − pi;⊥Þ

×
Z

dϕxdϕyθðϕy − ϕxÞ½MBW;μðϕyÞΛμ
j �½MC;νðϕxÞΛν

j �; ð34Þ

corresponding to the partial amplitude MðefÞ
c;j . In order to

calculate the transition probabilities, we have to square
the delta functions and it is convenient first to use the

transformations (we have implicitly employed the last of
these transformations already above when we computed the
differential probability dP)
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δðpf;− þ k− − pi;−Þ ¼
εi
pi;−

δðpi;n − p̄i;nÞ; ð35Þ

δðpe;− þ pp;− − k−Þ ¼
ω

k−
δðkn − k̄nÞ; ð36Þ

δðpe;− þ pf;− þ pp;− − pi;−Þ ¼
εi
pi;−

δðpi;n − p̄0
i;nÞ ð37Þ

to the corresponding longitudinal components of the
momenta, where the exact expressions of the quantities
p̄i;n, k̄n, and p̄0

i;n are not necessary here. By computing the
modulus square of the above amplitudes, we obtain the
following probabilities:

dPC;j

d3k
¼ e2

2

1

ð2πÞ3
X
si;sf

Z
d3pf
ð2πÞ3

ω

k−

εi
pi;−

ð2πÞ3δð3Þðk − k0Þ
				
Z

dϕxMC;νðϕxÞΛν
j

				2; ð38Þ

PBW;j ¼ e2
X
se;sp

Z
d3pp
ð2πÞ3

ω

k−

εe
pe;−

				
Z

dϕyMBW;μðϕyÞΛμ
j

				2; ð39Þ

PðefÞ
c;j ¼e4

2

X
si;sf;se;sp

Z
d3pp
ð2πÞ3

Z
d3pf
ð2πÞ3

ω2

k2−

εi
pi;−

εe
pe;−

				
Z

dϕxdϕyθðϕy−ϕxÞ½MBW;μðϕyÞΛμ
j �½MC;νðϕxÞΛν

j �
				2: ð40Þ

Note that, in order to calculate the cascade probability out of
the two probabilities of nonlinear Compton scattering and
nonlinear Breit-Wheeler pair production, one needs initially
only the differential probability of nonlinear Compton
scattering in the photon momentum. In this respect, it
was convenient towrite the three-dimensional delta function
in terms of the emitted photonmomentum and, as above, the
expression of the momentum k0 is not needed. Also, we
observe that it makes physical sense to talk about a cascade
process only when the probabilities can be expressed as
integrals over laser phases (or times for external fields of
different structures) of corresponding probabilities per unit
phase (time), which depend only on the local value of the
planewave (external field) at that phase (time). We now first
focus on the one-vertex processes and thus imagine to work

in the local constant-crossed field limit where the classical
nonlinearity parameter ξ is very large. When we square the
amplitude, e.g., of nonlinear Compton scattering, we obtain
a double integral in ϕx and, say, ϕ0

x [see Eq. (32)]. Since in
the local constant-crossed field limit the dominant contri-
bution to the probabilities comes from the region where the
quantity jϕ0

x − ϕxj ismuch smaller (by a factor of the order of
1=ξ) than the laser central period [16,33], it is convenient to
pass to the variables ϕx;þ ¼ ðϕ0

x þ ϕxÞ=2 and ϕx;− ¼ ϕ0
x −

ϕx and expand the integrand with respect to ϕx;−. The
procedure is well known (see, e.g., [34]) and it is not
necessary to report the details here. It is important to point
out that the probability of nonlinear Compton scattering in
this limit can be written in the form dPC;j=d3k ¼R
dϕx;þdPC;jðϕx;þÞ=dϕx;þd3k, where

dPC;jðϕx;þÞ
dϕx;þd3k

¼ e2

2

1

ð2πÞ3
X
si;sf

Z
d3pf
ð2πÞ3

ω

k−

εi
pi;−

ð2πÞ3δð3Þðk − k0Þ

×
Z

dϕx;−½MC;νðϕx;þ − ϕx;−=2ÞΛν
j �½M�

C;ν0 ðϕx;þ þ ϕx;−=2ÞΛν0
j �; ð41Þ

with dPC;jðϕx;þÞ=dϕx;þd3k being a non-negative quantity (in this limit) depending only on the plane-wave electromagnetic
field calculated at ϕx;þ. Analogously, one can write in the same limit that PBW;j ¼

R
dϕy;þdPBW;jðϕy;þÞ=dϕy;þ, where

dPBW;jðϕy;þÞ
dϕy;þ

¼ e2
X
se;sp

Z
d3pp
ð2πÞ3

ω

k−

εe
pe;−

Z
dϕy;−½MBW;μðϕy;þ − ϕy;−=2ÞΛμ

j �½M�
BW;μ0 ðϕy;þ þ ϕy;−=2ÞΛμ0

j �; ð42Þ

with ϕy;þ ¼ ðϕ0
y þ ϕyÞ=2 and ϕy;− ¼ ϕ0

y − ϕy. We checked analytically that Eqs. (41) and (42) are equivalent to
Eqs. (20) from [15], respectively, which were demonstrated to be obtainable from Eqs. (36) and (37) of [25],
respectively, when considering a constant-crossed field. Now, it is clear that the total cascade probability P̃c calculated
out of the two elementary processes of nonlinear Compton scattering and nonlinear Breit-Wheeler pair production is
given by
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P̃c ¼
X
j

Z
d3k

Z
dϕx;þdϕy;þθðϕy;þ − ϕx;þÞ

dPBW;jðϕy;þÞ
dϕy;þ

dPC;jðϕx;þÞ
dϕx;þd3k

¼ e4

2

X
j

X
si;se;sf;sp

Z
dϕx;þdϕy;þθðϕy;þ − ϕx;þÞ

Z
d3pp
ð2πÞ3

Z
d3pf
ð2πÞ3

ω2

k2−

εi
pi;−

εe
pe;−

×
Z

dϕy;−dϕx;−½MBW;μðϕy;þ − ϕy;−=2ÞΛμ
j �½M�

BW;μ0 ðϕy;þ þ ϕy;−=2ÞΛμ0
j �

× ½MC;νðϕx;þ − ϕx;−=2ÞΛν
j �½M�

C;ν0 ðϕx;þ þ ϕx;−=2ÞΛν0
j �; ð43Þ

which is equivalent to P2 defined in Eq. (39) of [25],
confirming that the constant-crossed field limit reproduces
literature results. Now, looking back at Eq. (40), imagining
performing the sum over j, and then working in the local
constant field limit, we easily realize that equation coincides
with Eq. (43) if the approximation θðϕy − ϕxÞθðϕ0

y − ϕ0
xÞ ≈

θðϕy;þ − ϕx;þÞ holds in the same limit. In fact, the ampli-
tudes of the elementary processes (nonlinear Compton
scattering and nonlinear Breit-Wheeler pair production)
are exactly the same [and given by Eqs. (22)–(23)] and
the limiting procedure is the same for both equations. The
above approximate identity between theta functions can be
proved starting from the identity θðaÞθðbÞ¼θðabÞθðaþbÞ
valid for any pair of real numbers a and b, which in our case
provides the identity

θðϕy − ϕxÞθðϕ0
y − ϕ0

xÞ
¼ θðϕy;þ − ϕx;þÞθððϕy − ϕxÞðϕ0

y − ϕ0
xÞÞ: ð44Þ

Now, we use the identity θðabÞθðaþbÞ¼f1− ½θðaÞ−
θðbÞ�2gθðaþbÞ¼½1−θðja−bj=2−ðaþbÞ=2Þ�θðaþbÞ to
finally obtain

θðϕy−ϕxÞθðϕ0
y−ϕ0

xÞ

¼ θðϕy;þ−ϕx;þÞ
�
1−θ


jϕy;− −ϕx;−j
2

− ðϕy;þ−ϕx;þÞ
��

;

ð45Þ

which approximately turns into the needed equality oncewe
observe that in the local constant field limit we can neglect
the small quantity jϕy;− − ϕx;−j=2. An analogous derivation
was used in [25] to relate the cascade contribution of the full
trident scattering rate to a product approach of multiplying
the rates of Compton scattering and Breit-Wheeler pair
production on the probability level. One can alternatively
define as a cascade term only the one coming from the first
term in Eq. (45), which is still exact.

III. NUMERICAL INVESTIGATIONS

In the following we wish to exemplify the analytical
finding of Eqs. (24),(27),(30),(31) in a series of numerical

test cases. Before we turn to quantitative results, however,
we wish to repeat that the main advantage of Eq. (24) is that
in the following we will not encounter any singular phase
integrals. The reason for this simplification is that the
amplitude itself is already fully regularized with all singu-
larities removed. On the contrary, the resulting probabilities
do not have a Gaussian form with respect to the transverse
momenta of the final particle, which, unlike in [25], prevents
us from performing the corresponding integrals analytically.
Now, in order to obtain these desired numerical results, the
multidimensional dynamic integrals defined in Eqs. (15)–
(20) need to be evaluated numerically. To this end, we
employ a well-established multidimensional Filon-type
integration routine [32,35] (see [36] for details of this
method’s computational implementation). Inserting the
numerical values of these integral expressions into
Eq. (24) then results in a complex-valued result for the
scatteringmatrix amplitude for each combination of the four
particles’ polarizations. This explicit polarization depend-
ence makes it easily feasible to study polarization dynamics
of the pair production based on Eq. (24). But as here we do
not wish to elaborate on the intricacies of the polarized cross
section, we numerically sum and average over the final and
initial state particles’ polarizations, respectively. To this end
we represent the particles’ two polarization states with the
two standard spinors for electrons and positrons [18],

un ¼
 ffiffiffiffiffiffiffiffiffiffiffiffi

εþm
p

wn
σ⋅pffiffiffiffiffiffiffi
εþm

p wn

!
; vn ¼

 σ⋅pffiffiffiffiffiffiffi
εþm

p w0
nffiffiffiffiffiffiffiffiffiffiffiffi

εþm
p

w0
n

!
; ð46Þ

respectively, with n ∈ ½1; 2� and where wn and w0
n ¼

ið−1Þnþ1wn are arbitrary two-dimensional unit vectors
and we chose wn ¼ ðδn1; δn2Þ. The remaining integrals over
the final particles’ phase space are then also computed
numerically by a Simpson rule quadrature.
Before we turn to the specific examples, however, we

wish to benchmark our numerics against the known
literature results of the SLAC experiment 144 on trident
pair production [21,37]. In this experiment, a laser pulse
with a peak nonlinearity parameter of ξ ≈ 0.5 and wave-
length λ ¼ 527 nm was brought into collision with the
SLAC beam of 46.6 GeV electrons under a collision angle
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of θ0 ¼ 17°. We model this interaction geometry by
calculating the positron production probability of a single
electron colliding under an angle θ0 with a plane-wave laser
pulse with a flat-top temporal profile of an effective
duration of 40 fs, corresponding to the transit time of
the electron through the laser focus, and one-cycle rising
and falling edges, in analogy to [13]. In order to account
for the transverse change of the field strength over the
laser’s finite focal volume, which is not included in our
plane-wave model, we average our calculations over this
volume by multiplying the results for varying values of ξ
with the focal volume’s portion in which that particular
value of ξ is reached. We then convert our results to the
units used in [37] for better comparability; i.e., we show
the spectrum of produced particles in GeV−1 as a function
of the produced positrons’ momentum in GeV. In
order to recover the spectrum of the total number of
produced positrons [37] we then have to multiply our
result with the total number 21962 of used shots and the
corrected estimate of 5 × 109 electrons per bunch [21].
Comparing the resulting prediction of our calculations to
the data points of Fig. 3(b) in [37] we find good agreement
(see Fig. 2). Notably, we find the spectral peak of the
produced positrons located at a momentum comparable to
the peak of the experimental data, in contrast to earlier
predictions of harder than observed spectra [21].
Integrating the shown spectrum over momenta we obtain
a positron production probability of 8 × 10−3 per success-
ful shot, resulting in an integrated production of Neþ ≈
176 positrons over the whole experimental run, which is in
excellent agreement to the number of 175� 13 produced
positrons reported in [37].
Having established this benchmark, in the following we

are going to study fully differential rates. To this end, we fix
the observation directions of the positron and one of the
final state electrons, use energy-momentum conservation
laws of the scattering amplitude to fix the second electron’s
momentum and skip the phase space integrations of the

final particles. By varying the observation angles for the
positron and final state electrons we can hence provide
the first angularly resolved NTPP probabilities in a plane-
wave laser pulse. As we are interested in deviations from
the constant-crossed field limit, we consider a linearly
polarized laser pulse with the standard short pulse-shape
function [35]

ψðϕÞ ¼ sin4


ω0ϕ

2N

�
sin ðω0ϕÞ ð47Þ

propagating along the z-axis, which we additionally
assume to collide head-on with an ultrarelativistic electron
(see Fig. 3). Furthermore, we assume the laser to be in the
optical regime ω0 ¼ 1.55 eV and its duration to be ultra-
short, comprising only N ¼ 2 cycles of the carrier wave.
As we are considering a linearly polarized laser pulse, we

expect most of the classical particle dynamics and positron
production to occur on the plane identified by the laser
propagation direction and the laser polarizationdirection. In a
spherical coordinate frame (see Fig. 3) this plane is denoted
by the x-z plane, so we focus most of our discussion on
observing particles in either ϕs ¼ 0 or ϕs ¼ π. Furthermore,
we note that in the regime εi,ω ≫ mξ, aswe study here, final
state particles in nonlinear Compton scattering and NBWPP
are angularly confined around the initial state electron’s and
photon’s propagation direction, respectively, to a narrow
cone of opening angle θs ∼mξ=εi and θs ∼mξ=ω, respec-
tively. We thus observe the final state particles of NTPP in a
direction close to the initial state electron’s propagation
direction, in a head-on collision along the z-axis given by
θs ¼ π. Finally, in all examples we are going to compare the
probabilitiesPc andPd, derived from the direct squares ofMc
andMd, defined in Eq. (30) and Eq. (31), respectively, to the
full probability defined in Eq. (27). Consequently, in contrast
to [25,26] we do not explicitly consider the interference term
of the pair production probability separately.
We begin by studying a case typical of nowadays

feasible all-optical experiments in which an electron of
initial energy εi ¼ 1 GeV collides with a laser pulse of
intensity I ¼ 2 × 1021 W=cm2 (ξ ≈ 22), yielding a com-
paratively small quantum nonlinearity parameter χ ≈ 0.25.
We find the full pair production probability to be com-
pletely dominated by the cascade process [see Figs. 4(b)
and 4(c)], in agreement with earlier studies in the regime
ξ ≫ 1, χ ≪ 1 [25], with the direct contribution suppressed

FIG. 3. Spherical coordinate frame in which we study the NTPP
process with the polar and azimuthal emission angles ðθs;ϕsÞ,
respectively, indicated.

FIG. 2. Comparing our model derived by numerically evalu-
ating Eq. (24) (solid red line) to the experimental data of [37]
(blue dots with experimental error bars) by averaging over the
focal volume of the used laser and multiplying with the number of
electrons in each bunch and the total number of successful shots.
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by about 5 orders of magnitude [see Fig. 4(a)]. The
dominance of the cascade contribution is even more
obvious from studying the relative error made by approxi-
mating the full NTPP probability with the cascade con-
tribution, distinguished by the parameter

R ¼ dP − dPc

dP
: ð48Þ

In the current case we find this parameter to be of percent
level in the particle energy regime where the direct
channel is strongest. However, we note that the deviation
is not a pure contribution of the direct channel, but an
interference effect. Furthermore, we find the probability of
NTPP to be centered around the symmetry axis of the

energy distribution, indicating that all three final state
particles share a comparable amount of energy.
We continue by studying a case deeper in the nonlinear

quantum regime in which an electron of initial energy
εi ¼ 5 GeV collides with a laser pulse of intensity I ¼
1022 W=cm2 (ξ ≈ 50), yielding a larger quantum non-
linearity parameter χ ≈ 3, likely to be close to the optimum
operation parameters for upcoming laser facilities. Due to
the increased laser intensity, we find the full pair production
probability to be even more strongly dominated by the
cascade process [see Figs. 5(b) and 5(c)], with the direct
contribution’s suppression increased to 7 orders of magni-
tude [see Fig. 5(a)] and contributing only at the smallest
final state particle energies. The relative error of the cascade
approximation is consequently found to be most significant
at small final state particle energies, where the direct
channel is strongest, but to be overall small on the level
of a per mill [see Fig. 5(d)].
These findings further corroborate the common approxi-

mation of higher order nonlinear QED effects, notably
NTPP, by their cascade contributions [22,23]. In order to
explore the limitations of this approximation, we turn to a
parameter regime where its applicability is expected to be
less justified. We study a regime with a high quantum
nonlinearity parameter but relatively small laser intensity
[15,26]. Consequently, we consider the initial electron to
have a very high energy of εi ¼ 100 GeV. In combination
with a laser intensity of I ¼ 2 × 1021 W=cm2 (ξ ≈ 22) this
results in a quantum nonlinearity parameter of χ ≈ 26.
Analyzing now the direct contribution on the same scale as
the cascade and full contributions, we find its impact to be
no longer negligible at low particle energies (see Fig. 6).
Furthermore, we find larger positron than electron
energies to be favored in this regime, as apparent from
the asymmetric distributions of the energy spectra

FIG. 5. Differential NTPP probability of direct (a), cascade
(b) and full (c) channels for the collision of an electron with
initial energy εi ¼ 5 GeV with a laser pulse of intensity
I ¼ 1022 W=cm2 (ξ ≈ 50, χ ≈ 3); the positron observed at
ðθs;ϕsÞ ¼ ðπ −mξ=εi; π=2Þ; and one of the electrons at
ðθs;ϕsÞ ¼ ðπ −mξ=εi; 0Þ. The relative error of the cascade
approximation R is shown in (d).

FIG. 6. Differential NTPP probability of direct (a), cascade
(b) and full (c) channels for the collision of an electron with
initial energy εi ¼ 100 GeV with a laser pulse of intensity I ¼
2 × 1021 W=cm2 (ξ ≈ 22, χ ≈ 26); the positron observed at
ðθs;ϕsÞ ¼ ðπ −mξ=εi; πÞ; and one of the electrons at
ðθs;ϕsÞ ¼ ðπ −mξ=εi; 0Þ. The relative error of the cascade
approximation R is shown in (d).

FIG. 4. Differential NTPP probability of direct (a), cascade
(b) and full (c) channels for the collision of an electron with
initial energy εi ¼ 1 GeV with a laser pulse of intensity I ¼
2 × 1021 W=cm2 (ξ ≈ 22, χ ≈ 0.25); the positron observed at
ðθs;ϕsÞ ¼ ðπ −mξ=εi; π=2Þ; and one of the electrons at
ðθs;ϕsÞ ¼ ðπ −mξ=εi; 0Þ. The relative error of the cascade
approximation R is shown in (d).
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[see Figs. 6(a)–6(c)]. Interestingly, in the cascade contri-
bution we also find considerable interference fringes,
depending almost exclusively on the electron’s energy
[see Fig. 6(b)]. This is most probably due to the fact that
the final state contains two indistinguishable electrons
whose distributions can interfere. The relative error of
the cascade approximation, on the other hand, is found to
reach the level of 100% for small final state particle
energies [see Fig. 6(d)], indicating that at these extreme
parameters the cascade approximation starts to lose
applicability.
We can even further enhance the visibility of the

direct channel by considering a lower laser intensity.
Furthermore, as a semiclassical picture of NTPP predicts
the particle production to be mostly confined to the laser’s
plane of polarization, we can expect to observe stronger
deviations from the cascade model, by observing one of
the electrons inside the polarization plane ðθs;ϕsÞ ¼
ðπ −mξ=εi; 0Þ but the positron in a direction perpendicular
to this plane ðθs;ϕsÞ ¼ ðπ −mξ=εi; π=2Þ. We note, how-
ever, that for smaller initial electron energies observing the
positron perpendicularly to the laser’s plane of polarization
does not result in a significant contribution from the direct
channel (see Fig. 4). For a large initial electron energy of
εi ¼ 100 GeV, on the other hand, we indeed find that

in the collision with a laser pulse of intensity I ¼ 5 ×
1020 W=cm2 (ξ ≈ 11, χ ≈ 13), the direct contribution is
more pronounced in comparison to the cascade channel
[see Fig. 7(a)]. Again, we find the cascade channel’s
interference fringes to depend dominantly on the electron’s
energy [see Fig. 7(b)]. In the full NTPP probability,
however, at small final state particle energies we find
the interference fringes to exhibit a dependence on the
positron’s energy as well. This is a clear indication that
the direct channel and interference terms between
exchange diagrams start to affect the full NTPP rate [see
Fig. 7(c)]. Furthermore, we find the full NTPP signal to be
significantly enhanced at low particle energies, as is also
apparent from the relative error R, which is significant for
low particle energies [see Fig. 7(d)].

IV. CONCLUSIONS

We have further advanced the theoretical understanding
of two aspects of NTPP. Specifically, we have found a
regularized expression of the amplitude of NTPP, which
exploits the gauge invariance of QED, and which allows a
relatively easy numerical computation of the probability of
NTPP. The regularized amplitude is naturally split into a
cascade and direct contribution. Moreover, we have for the
first time provided angularly resolved information about
nonlinear trident pair production in a pulsed planewave.We
confirmed the cascade probability to reduce to the common
product of nonlinear Compton scattering and Breit-Wheeler
pair production probabilities in the case of a constant-
crossed field, in agreement with other recent studies, and
isolated the contributions of noncascade parts to NTPP. By
squaring the amplitudes we found the observable proba-
bilities for NTPP via the cascade and direct channels and
analyzed the latter in exemplary cases. Our numerical
analyses further confirmed the applicability of the cascade
approximation of NTPP at low initial electron energies and
high laser intensities ðξ ≫ 1; χ ∼ 1Þ, but also indicated that
at very high initial electron energies (such that χ ≫ 1),
noncascade contributions may affect the full NTPP rate.
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